
Bayesian Inverse Problems Meet Flow Matching: Efficient and Flexible Inference
via Transformers

Abstract

In this paper, we present a new framework that
combines Conditional Flow Matching (CFM) with
a transformer-based architecture. This enables us
to sample fast and flexibly from complex poste-
rior distributions when solving Bayesian inverse
problems. The methodology directly learns condi-
tional probability trajectories from the data, lever-
aging CFM’s ability to bypass iterative simulation
and transformers’ capacity to process an arbitrary
number of observations. The primary outcomes
show that relative parameter recovery errors are
as low as 1.5%, and that inference time is reduced
by up to 2,000 times on a CPU compared to the
Markov Chain Monte Carlo, as demonstrated by
three Bayesian problems.

1 INTRODUCTION

Numerous natural and engineering systems are amenable
to rigorous mathematical modelling; however, the govern-
ing parameters of these models commonly remain latent
and must be inferred from limited, noisy measurements.
Bayesian inversion frames this problem as the estimation
of the posterior distribution of the parameters conditioned
on the observed data and a prior distribution, thereby de-
livering both point estimates and the attendant uncertainty
quantification [Cotter et al., 2009, Koval et al., 2024]. Classi-
cal sampling schemes—most notably Markov chain Monte
Carlo (MCMC) methods [Geyer, 1992]—are asymptoti-
cally exact, yet they typically require thousands of forward
model evaluations per data set, rendering them impractica-
ble for real-time digital-twin deployments [Kapteyn et al.,
2021]. Consequently, recent research has pivoted toward
amortised generative surrogates: variational auto-encoders
(VAEs) [Kingma and Welling, 2022], generative adversarial
networks (GANs) [Goodfellow et al., 2014], and diffusion

models [Sohl-Dickstein et al., 2015] are capable of repre-
senting intricate posterior landscapes, albeit only approx-
imately, because they lack exact likelihood evaluation. In
contrast, continuous normalizing flows preserve exact likeli-
hood computation while dispensing with the costly iterative
sampling loop [Gudovskiy et al., 2024], thereby constitut-
ing a promising foundation for scalable Bayesian inverse
solvers.

Our contribution

• We formulate the Bayesian inverse problem as the prob-
lem of learning the conditional probability distribution
from samples, that can be easily constructed.

• We propose a transformer-based Conditional Flow
Matching (CFM) Lipman et al. [2023] architecture
that can handle different number of observations.

• We test our method on several inverse problems and
compare it to the MCMC approach.

2 BACKGROUND AND RELATED WORK

Classical Bayesian Inference Sampling–based schemes
such as MCMC, Hamiltonian/Sequential Monte Carlo, and
variational methods remain the work-horse for Bayesian
inverse problems but become prohibitive in high dimen-
sions. Each posterior sample often requires many expensive
forward solves and derivative evaluations, which hampers
real-time inversion and continual data assimilation.

Deep-Learning Surrogates Physics-informed invertible
neural networks (PI-INNs) [Raissi et al., 2019, Guan
et al., 2023] replace the forward model with an explicit
bijection, giving exact likelihoods yet demanding a hand-
crafted loss for every PDE and a fixed sensor layout. Diffu-
sion–transformer hybrids such as Simformer [Cunningham
et al., 2024] scale to complex priors but rely on stochastic
sampling, limiting interpretability and latency. In medical

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.

imaging, score/diffusion generators have shown strong re-
construction quality [Aali et al., 2023, Song et al., 2022] but
still lack closed-form posteriors.

GANs and VAEs MCGAN [Mücke et al., 2022] acceler-
ates MCMC by learning a GAN surrogate, and MDGM [Xia
and Zabaras, 2022] embeds a multiscale VAE prior inside
MCMC. These hybrid designs improve prior expressiveness
yet inherit the iterative sampling burden and assume a fixed
number of observations.

Continuous Normalizing Flows Flow Matching (FM)
[Lipman et al., 2023] trains continuous normalizing flows
via vector-field regression, unifying diffusion and optimal-
transport paths for rapid likelihood evaluation and ODE-
based sampling. When combined with variational inference
[Whang et al., 2021], CNFs yield flexible posteriors but
incur high memory-time costs as system size grows.

Our Conditional Flow-Matching Transformer (CFM-Tr) in-
herits the exact likelihood estimation and training stability
of FM while using attention to ingest an arbitrary, unordered
set of measurements. This removes the fixed-sensor limita-
tion of PI-INNs, avoids iterative latent sampling required by
GAN/VAE hybrids (Table 1).

3 METHODOLOGY

Consider a forward model defined as:

d = F(m, e) + η,

where m represents model parameters sampled from their
prior distribution, e denotes experimental conditions or de-
sign parameters, and η is random noise sampled from a
predefined noise distribution.

The Bayesian inverse problem aims to infer un-
known/unobservable parameters m using known experiment
parameters e and observations d from the forward model.
The solution is characterized by a posterior probability dis-
tribution, with density given by Bayes’ law:

π(m|d, e) = π(d|m, e)π(m)

π(d|e)
,

where π(m) is the prior distribution encoding prior knowl-
edge about parameters, π(d|m, e) is the likelihood, and
π(m|d, e) is the posterior distribution.

The primary objective is to solve the inverse problem: given
observations d and experiment parameters e, infer the model
parameters m. Since m is not uniquely determined by d
and e, it is characterized by the conditional distribution
π(m|d, e). The solution can be reformulated as learning the
conditional distribution π(m|d, e).

To achieve this, we employ the conditional flow matching
(CFM) framework from [Lipman et al., 2023] (Algorithm
1). This involves first sampling from an unconditional prior
distribution for m (denoted as m0).

Figure 1: Solving the inverse problem using flow-matching
scheme

Training We define a conditional interpolation path be-
tween (m0, d, e) and (m, d, e), where (d,m, e) is drawn
from the dataset (Appendix B).

In the CFM approach, we learn a velocity field
vθ(mt, t, d, e) that minimizes:

where the interpolation path is given by:

mt = (1− t)m0 + t ·m, t ∈ [0, 1]

Here, vθ is a learnable function parameterized by θ that
predicts the velocity field given inputs (mt, t, d, e). The
input dimensions correspond to mt, t, d, and e, while the
output dimension matches that of m.

During training, elements (d,m, e) are sampled from the
dataset, and m0 is drawn from the prior for each iteration of
a stochastic optimizer. A neural network effectively repre-
sents vθ in our experiments.

Once trained, samples from π(m|d, e) are generated by solv-
ing an ordinary differential equation (ODE) parameterized
by the learned velocity field.

A key feature of our approach is the ability to handle arbi-
trary numbers of observations d and design parameters e as
input. This capability stems from our transformer architec-
ture, shown in Figure 5.

4 NUMERICAL EXPERIMENTS

We utilize numerical experiment formulations adopted from
[Koval et al., 2024]. Specifically, we consider solutions of
ordinary differential equation systems modeling disease
propagation, as well as elliptic partial differential equations

2

Method Base model
Exact

likelihood
estimation

No middle-man
Training

Arbitrary
number of

observations

MDGM VAE based on CNN × ✓ ×
MCGAN MCMC + GAN × × ×
PI-INN PI + flow-based model ✓ ✓ ×
CFM-Tr (ours) CFM + Transformer ✓ ✓ ✓

Table 1: Comparison of methods for solving Bayesian Inverse problems. *MDGM use the PDE solution as a holistic
observation; the problem was not formulated as the recovery of the forward model from a small number of observations

Et∼U(0,1)Em0∼priorE(m,d,e)∼data

[∥∥vθ(mt, t, d, e)− (m−m0)
∥∥2]→ min

θ

such as the Darcy Flow. These problem classes are widely
employed in the literature on Bayesian inverse problems.

4.1 SIMPLE NONLINEAR MODEL

After 10,000 runs of the trained model, the generation error
is 1.5 · 10−3 ± 0.9 · 10−3. Figure 4 in Appendix B shows
example paths as we move from the prior distribution to the
target distribution π(d,m, e). Notably, due to the efficient
learning of Flow Matching, the paths are almost straight,
indicating optimal transport.

4.2 SEIR DISEASE MODEL

The SEIR (Susceptible-Exposed-Infected-Removed) model
is a mathematical framework used to simulate the spread of
infectious diseases. In this case study, we simulate a realistic
scenario where we measure the number of infected and de-
ceased individuals at random times and use this information
to recover the control parameters of the ODE system.

For mtrue = [0.4, 0.3, 0.3, 0.1, 0.15, 0.6], after 1,000 calcu-
lations the average error is 2.05%± 1.04% using a 4-point
multilayer perceptron (MLP) model.

4.3 PERMEABILITY FIELD INVERSION

We next consider the problem of solving a two-dimensional
elliptic PDE. This type of problem is common in the oil in-
dustry, where pressure observations from a small number of
wells are used to reconstruct the permeability field of an oil
reservoir. The equation also has applications in groundwater
modeling and many other domains.

Our results show that we can effectively recover the PDE
coefficient using just a few strategically placed measure-
ment points. Figure 3 demonstrates that with 8 relatively
uniformly distributed points over the solution field, we can
obtain an almost identical solution (approximately 2.75%

relative error). The ensemble-generated log κ represents the
mean of 50 parameter predictions from the transformer’s
inference.

5 RESULTS AND DISCUSSIONS

Table 2 presents the results of numerical experiments for
our proposed method using the following error metric:

ε =
∥DE(m)− DE(m̃)∥

∥DE(m)∥

where DE represents the solution of the differential equation
(ODE or PDE) using either the true parameters m or the
generated parameters m̃, computed as an average over 10
generations from the flow matching model.

The true solution of the ODE system and the reconstructed
parameter distribution, obtained using only four observation
points, are illustrated in Figure 2.

Table 2: The relative inference error of the trained model
for two numerical experiments

N SEIR Problem 4.2 Permeability Field 4.3

2 10.88%± 2.39% 28.84%± 3.43%
3 3.31%± 1.47% 16.23%± 1.53%
4 2.80%± 1.37% 17.80%± 1.99%
5 2.15%± 0.99% 16.86%± 1.76%
6 1.97%± 0.91% 7.21%± 1.26%
7 1.59%± 0.75% 7.48%± 1.23%
8 1.48%± 0.71% 2.75%± 0.60%

We compare our method against the Metropolis-Hastings
MCMC (MH-MCMC) algorithm, running it with sufficient
iterations to match the error levels shown in Table 4. The
results for the SEIR problem are presented in Table 2.

3

Figure 2: Probabilistic solutions to the inverse problem for
mtrue = [0.4, 0.3, 0.3, 0.1, 0.15, 0.6]

Figure 3: PDE coefficient and solution: true (left) and re-
constructed using Flow Matching (right)

Comparison with MCMC Conditional Flow Match-
ing (CFM) dominates a tuned Metropolis–Hastings (MH)
baseline in both accuracy and speed. On the permeabil-
ity–inversion benchmark, MH requires 10 000 iterations
(≈ 37min) yet still exceeds 30% relative L2 error for ≥ 6
observations, whereas a single CFM forward pass (1.08 s,
CPU) yields 2–8% error (Tables 2–4). For the SEIR model,
the CFM Transformer answers in 0.22 s with analogous
gains. More details on the results of the comparison with
MCMC can be found in the table below 4

1. Variable-length conditioning. Rotary-augmented Trans-
formers generalise to sequences longer than those seen in
training, sustaining accuracy as observations accumulate.

2. Structured transport. Learned trajectories from prior
to posterior are nearly linear (Fig. 4), indicating efficient
exploration of parameter space.

3. Data–efficiency. Error decreases monotonically with ad-
ditional observations (Table 2), confirming robustness in
dense-data regimes.

Additionally, Conditional Flow Matching shows promise for

determining optimal experiment design parameters e, which
could further enhance its applicability to practical scientific
applications.

6 LIMITATIONS AND FUTURE WORK

CFM is only one member of a broader class of generative
methods; normalising flows, tensor decompositions Koval
et al. [2024], and GANs offer complementary inductive
biases that merit systematic comparison. Two challenges
stand out. Scaling CFM to very large parameter spaces will
likely require architectural changes and significantly larger
training corpora. Bayesian Optimal Experimental Design
(BOED) hinges on fast, accurate log-likelihood estimates.
Although feasible in principle, we have not yet characterised
the computational cost or numerical stability of evaluating
log p(d |m) under a CFM model.

Beyond these issues, tighter coupling to the forward model
could improve reliability: after an initial CFM draw m̂, a
lightweight correction step could enforce consistency with
the observations. Finally, the stochasticity of the learned ve-
locity field vt deserves scrutiny. When the data fully identify
the parameters, vt may collapse to a deterministic mapping,
turning CFM into a regression engine. Future work will (i)
quantify when noise remains informative, and (ii) compare
two practical strategies—sampling diverse noise realisations
versus selecting samples that minimise data misfit—to rec-
oncile the discrepancies we observed between CFM and
MCMC posteriors.

7 CODE AND AVAILABILITY

Technical training details (architectures, learning rates,
etc.) are given in Appendix B. The code is written using
PyTorch framework and is publicly available at

https://github.com/
FlowMatchingInverseProblems/
Bayesian-Inverse-Meet-FM

8 CONCLUSIONS

We believe that our method is quite universal and can be
adapted to a large number of problems in a short time when
the problem is reduced to a standard Bayesian inverse prob-
lem formulation, since it can learn complex nonlinear dis-
tributions. Another advantage is the possibility of using an
input that is not fixed in terms of the number of observations,
where increasing the number of observed points improves
accuracy in recovering the solution from the generated pa-
rameters. Finally, we can use the learned distribution to do
Bayesian optimal experiment design.

4

https://github.com/FlowMatchingInverseProblems/Bayesian-Inverse-Meet-FM
https://github.com/FlowMatchingInverseProblems/Bayesian-Inverse-Meet-FM
https://github.com/FlowMatchingInverseProblems/Bayesian-Inverse-Meet-FM

References

Asad Aali, Marius Arvinte, Sidharth Kumar, and Jonathan I.
Tamir. Solving inverse problems with score-based gen-
erative priors learned from noisy data. In Proc. 57th
Asilomar Conf. Signals Syst. Comput., pages 837–843.
IEEE, 2023. doi:10.1109/ieeeconf59524.2023.10477042.

S. Cotter, M. Dashti, J. C. Robinson, and A. Stuart.
Bayesian inverse problems for functions and applications
to fluid mechanics. Inverse Probl., 25:115008, 2009.
doi:10.1088/0266-5611/25/11/115008.

John P. Cunningham, Daniel E. Worrall, David Greenberg,
and Roger B. Grosse. All-in-one simulation-based infer-
ence, 2024.

Sergey Dolgov, Boris N. Khoromskij, Ivan Oseledets, and
Eugene Tyrtyshnikov. A reciprocal preconditioner for
structured matrices arising from elliptic problems with
jumping coefficients. Linear Algebra Appl., 436(9):2980–
3007, 2012. doi:10.1016/j.laa.2011.09.010.

Charles J Geyer. Practical markov chain monte carlo. Sta-
tistical science, pages 473–483, 1992.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
networks, 2014. URL https://arxiv.org/abs/
1406.2661.

Xiaofei Guan, Xintong Wang, Hao Wu, Zihao Yang,
and Peng Yu. Efficient bayesian inference using
physics-informed invertible neural networks for inverse
problems, 2023. URL https://arxiv.org/abs/
2304.12541.

Denis Gudovskiy, Tomoyuki Okuno, and Yohei Nakata.
Contextflow++: Generalist-specialist flow-based gener-
ative models with mixed-variable context encoding. In
Negar Kiyavash and Joris M. Mooij, editors, Proc. 40th
Conf. Uncertain. Artif. Intell., volume 244 of Proc. Mach.
Learn. Res., pages 1479–1490. PMLR, Jul 2024.

Michael G Kapteyn, Jacob V R Pretorius, and Karen E
Willcox. A probabilistic graphical model foundation for
enabling predictive digital twins at scale. Nat. Comput.
Sci., 1(5):337–347, May 2021.

Diederik P Kingma and Max Welling. Auto-encoding vari-
ational bayes, 2022. URL https://arxiv.org/
abs/1312.6114.

Karina Koval, Roland Herzog, and Robert Scheichl.
Tractable optimal experimental design using transport
maps, 2024. URL https://arxiv.org/abs/
2401.07971.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maxim-
ilian Nickel, and Matt Le. Flow matching for generative
modeling, 2023. URL https://arxiv.org/abs/
2210.02747.

Nikolaj T. Mücke, Benjamin Sanderse, Sander Bohté, and
Cornelis W. Oosterlee. Markov chain generative ad-
versarial neural networks for solving bayesian inverse
problems in physics applications, 2022. URL https:
//arxiv.org/abs/2111.12408.

William Peebles and Saining Xie. Scalable diffusion mod-
els with transformers. arXiv preprint arXiv:2212.09748,
2022.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys., 378:686–
707, 2019. doi:10.1016/j.jcp.2018.10.045.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics, 2015.
URL https://arxiv.org/abs/1503.03585.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon.
Solving inverse problems in medical imaging with score-
based generative models, 2022. URL https://arxiv.
org/abs/2111.08005.

Jay Whang, Erik M. Lindgren, and Alexandros G. Dimakis.
Composing normalizing flows for inverse problems, 2021.
URL https://arxiv.org/abs/2002.11743.

Yingzhi Xia and Nicholas Zabaras. Bayesian multi-
scale deep generative model for the solution of high-
dimensional inverse problems. J. Comput. Phys., 455:
111008, 2022.

5

https://doi.org/10.1109/ieeeconf59524.2023.10477042
https://doi.org/10.1088/0266-5611/25/11/115008
https://doi.org/10.1016/j.laa.2011.09.010
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2304.12541
https://arxiv.org/abs/2304.12541
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2401.07971
https://arxiv.org/abs/2401.07971
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2111.12408
https://arxiv.org/abs/2111.12408
https://doi.org/10.1016/j.jcp.2018.10.045
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2111.08005
https://arxiv.org/abs/2111.08005
https://arxiv.org/abs/2002.11743

Bayesian Inverse Problems Meet Flow Matching: Efficient and Flexible Inference
via Transformers

(Supplementary Material)

A NUMERICAL EXPERIMENTS PROBLEM STATEMENTS

A.1 SIMPLE NONLINEAR MODEL

In our experiments, we used the following forward model from Koval et al. [2024]:

d(e,m) = e2m3 +m exp (− |0.2− e|) + η

where η follows a known noise distribution, specifically N (0, σ2). In the simplest example from Koval et al. [2024], the
model parameter m is one-dimensional, uniformly distributed on [0, 1]. The experiment parameter e is also one-dimensional
from [0, 1] and uniformly distributed. We generate random triples (di,mi, ei) by:

• Sampling m from U [0, 1]
• Sampling e from U [0, 1]
• Sampling noise η from the noise distribution

• Computing d = f(m, e) + η

After sampling, we obtain a dataset in the form of an N × k matrix, where k = 3. These are samples from the joint
distribution π(d,m, e). The prior distribution for training conditional flow matching was a simple uniform distribution
m0 ∼ U [0, 1].

A.2 SEIR DISEASE MODEL

Following [Koval et al., 2024], we adopt the SEIR model, which assumes a constant population size and is described by the
following system of ordinary differential equations:

dS

dt
= −β(t)SI, dE

dt
= β(t)SI − αE

dI

dt
= αE − γ(t)I,

dR

dt
= γ(t)I

where S(t), E(t), I(t), R(t) denote the fractions of susceptible, exposed, infected, and removed individuals at time t,
respectively. These are initialized with S(0) = 99, E(0) = 1, I(0) = R(0) = 0.

The parameters to be estimated are β(t), α, γr, and γd(t), where the constants α and γr denote the rates of susceptibility to
exposure and infection to recovery, respectively. To simulate the effect of policy changes or other time-dependent factors

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.

Figure 4: Generation paths of variable m conditional on different d, e from prior uniform distribution

(e.g., quarantine and hospital capacity), the rates at which exposed individuals become infected and infected individuals
perish are assumed to be time-dependent and parametrized as:

β(t) = β1 +
tanh(7(t− τ))

2
(β2 − β1)

γ(t) = γr + γd(t)

γd(t) = γd
1 +

tanh(7(t− τ))

2
(γd

2 − γd
1)

where the rates transition smoothly from initial rates (β1 and γd
1) to final rates (β2 and γd

2) around time τ > 0.

We fix τ = 2.1 over a time interval of [0, 4]. The experiment consists of choosing four time points e = [a1, a2, a3, a4] ∼
U [1, 3] to measure the number of infected and deceased individuals di = [Iei , Rei] for i ∈ [1, 4] (d ∈ R2×4). The goal is to
optimally infer the 6 rates m = [β1, α, γ

r, γd
1 , β2, γ

d
2]. After training an MLP and solving the flow matching problem, we

learn a smooth transition from the distribution U [0, 1]6 to the distribution m̂ ∼ ρ(m|e,d).

To summarize the inputs and outputs:

• e = [a1, a2, a3, a4] ∼ U [1, 3]: random measurement times

• di = [Iei , Rei] for i ∈ [1, 4] (d ∈ R2×4): numbers of infected and deceased individuals

• m = [β1, α, γ
r, γd

1 , β2, γ
d
2]: ODE model parameters

Using m̂, we can obtain the predicted dynamics of infected and deceased individuals d̂. We measure accuracy using:

ε =
∥d− d̂∥2
∥d∥2

7

A.3 PERMEABILITY FIELD INVERSION

−∇ · (κ∇u) = 0

with boundary conditions:

u(x = 0, y) = f(y, e1) = exp

(
− 1

2σw
(y − e1)

2

)
u(x = 1, y) = g(y, e2) = − exp

(
− 1

2σw
(y − e2)

2

)

The equation is solved using the finite element (FE) method with second-order Lagrange elements on a mesh of size h = 1
64

in each coordinate direction, where κ is a custom 2D matrix. The discretization follows Dolgov et al. [2012].

In this example, the inverse problem consists of estimating the spatially-dependent diffusivity field κ given pressure
measurements u at pre-determined locations (xi, yi) ∈ Ω. To ensure κ is nonnegative, we impose a Gaussian prior on the
log diffusivity, m = log(κ) ∼ N(0, Cpr), with covariance operator Cpr defined using a squared-exponential kernel:

c(x, z) = σ2
v exp

[
−∥x− z∥2

2ℓ2

]
for x, z ∈ Ω,

with σv = 1 and ℓ2 = 0.1. Using a truncated Karhunen-Loève expansion of the unknown diffusivity field yields the
approximation:

m(x,m) ≈
nm∑
i=1

mi

√
λiϕi(x),

where λi and ϕi(x) denote the i-th largest eigenvalue and eigenfunction of Cpr, respectively, and the unknown coefficients
mi ∼ N (0, 1). The Karhunen-Loève expansion is truncated after nm = 16 modes, capturing 99 percent of the weight of
Cpr.

The transformer architecture accommodates various input formats for this inverse problem. Here, in addition to the observed
solution values, we use the coordinates of measurement points. The specific architecture is detailed in Figure 6.

The input consists of a vector of values d of arbitrary length and two corresponding vectors of coordinates x, y. The final
input is a matrix D = (d,x,y)T with shape (n, 3).

8

B TECHNICAL DETAILS

Dataset The key idea is that we can easily sample from the joint distribution (mi, di, ei). In order to do that, we generate
random model parameters (from the prior distribution) and random observation points. When a pair mi, ei is given, we can
compute di using the forward model. Importantly, mi is also a sample from the conditional distribution π(m|di, ei). Thus,
when a forward model and prior distributions of model parameters m and experimental parameters e are known, we generate
training data by sampling multiple variants of m and e and computing the forward model to obtain observations d. For each
model parameter mi we sample di for several points ei, thus, our training data consists of tuples of the form (mi, di, ei),
where di and ei may have variable lengths. The model should be able to sample mi given observations (di, ei). In order to
do that, we utilize CFM.

features

features projection

Timestep Embedder Linear projection Linear projection

RMSnorm

Attention

RMSnorm

MLP

RMSnorm

MLP

Nx

Figure 5: Transformer architecture

Architecture We parameterize the velocity field using a transformer archi-
tecture with bi-directional attention, motivated by the Diffusion Transformer
Peebles and Xie [2022]. Specifically, our transformer implementation uses
linear projection of input parameters into the embedding space. Time is
encoded using a Timestep Embedder as proposed in [Peebles and Xie,
2022], which ensures proper time representation in the embedding space.
Root Mean Square (RMS) normalization stabilizes learning dynamics. The
activation function is x = ReLU(x)2. Self-attention uses rotary position em-
beddings (RoPE), enabling the transformer to learn relative token positions
and generalize to sequences longer than those seen during training.

The architecture varies slightly across tasks to accommodate different input
data representations. Specific implementations for tasks from Section 4 are
detailed in Figure 6 in Appendix B.

Model inference follows Algorithm 2, where the trained CFM model serves
as the velocity field in the ODE.

The transformer architecture for two numerical experiments

Timestep Embedder Linear projection Linear projection

RMSnorm

Attention

RMSnorm

MLP

RMSnorm

MLP

Nx

Timestep Embedder Linear projection Linear projection

RMSnorm

Attention

RMSnorm

MLP

RMSnorm

MLP

Nx

Linear projection

Figure 6: Transformer architecture for 4.2 (left) and 4.3 (right)

9

Table 3: Hyperparameters for SEIR and Permeability Inversion tasks

Parameter SEIR Permeability Inversion

learning_rate 8e-4 3e-4
n_emb 32 32
n_head 4 4
n_layer 6 4

C ALGORITHMS

C.1 CONDITIONAL FLOW MATCHING

This section provides pseudocode for the core training and inference pro-
cedures used in our Conditional Flow Matching (CFM) framework. These
algorithms form the backbone of our method for solving inverse problems
in various scientific settings.

Algorithm 1 details the training procedure for the conditional flow model. Given a dataset of paired samples and conditioning
information, the model is trained to approximate the velocity field that defines an interpolation between prior and posterior
samples. The training objective minimizes the squared error between the predicted velocity and the ground-truth velocity
vector defined by the linear interpolation between samples.

Algorithm 1: Conditional Flow Matching Training Algorithm
Input: Dataset of paired samples (m1, e, d), neural network model vθ(t,m, e, d), conditioning data e and d, time

t ∼ Uniform(0, 1), number of epochs Nepoch
Output: Trained conditional flow model vθ(t,m, e, d)
for 1 to Nepoch do

for each minibatch of samples (m0,m1) do
t ∼ U(0, 1) // Sample t
m0 ∼ prior distribution
mt ← t ·m1 + (1− t) ·m0

Compute the target velocity: ut ← m1 −m0

Predict the velocity: vt ← v(t,mt, e, d)
Compute the loss: L(θ)← E

[
∥vt − ut∥2

]
Compute gradients:∇θL(θ)
Update θ using the optimizer and∇θL(θ)

end
end
return vθ(t, x, e, d)

Algorithm 2 presents the inference procedure. After training, the model is used to define a deterministic flow by solving
an ordinary differential equation (ODE) starting from a sample from the prior distribution. The terminal state of this ODE
corresponds to a sample from the conditional distribution given the observations and experimental conditions.

Together, these two procedures enable the model to learn and sample from complex conditional distributions without relying
on stochastic sampling or iterative optimization during inference.

Algorithm 2: Conditional Flow Matching Inference Algorithm
Input: Trained CFM model vθ(t, x), conditioning data e and d, initial sample x0, experiment parameters e, arbitrary

observations d
Output: Generated parameters m
x(t = 0) ∼ prior distribution
x(t = 1)← Solutiondx

dt = vθ(t, xt, e, d)
return x(t = 1)

10

C.2 RELATIVE ERRORS FOR NUMERICAL EXPERIMENTS USING MCMC

Table 4: Relative errors for numerical experiments using MCMC

N SEIR Problem Permeability field

Nsample Relative Error Nsample Relative Error

2 15 000 31.39% 10 000 56.57%
3 10 000 3.26% 10 000 39.40%
4 5 000 3.24% 10 000 57.66%
5 5 000 2.74% 10 000 55.71%
6 5 000 1.64% 10 000 42.63%
7 5 000 4.07% 10 000 36.13%
8 10 000 1.44% 5 000 60.02%

11

	Introduction
	Background and Related Work
	Methodology
	Numerical Experiments
	Simple nonlinear model
	SEIR disease model
	Permeability field inversion

	Results and Discussions
	Limitations and Future Work
	Code and Availability
	Conclusions
	Numerical Experiments Problem Statements
	Simple nonlinear model
	SEIR disease model
	Permeability field inversion

	Technical details
	Algorithms
	Conditional Flow Matching
	Relative errors for numerical experiments using MCMC

