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Abstract
Large-scale antibody sequence datasets, such as
the Observed Antibody Space (OAS), contain bil-
lions of unpaired heavy (VH) and light (VL) chain
sequences but fewer than 0.2% paired sequences,
limiting the performance of antibody language
models trained on these resources. Existing com-
putational antibody pairing models, such as Im-
munoMatch, achieve promising accuracy but rely
on computationally intensive cross-encoder ar-
chitectures, making large-scale synthetic pairing
infeasible. Here, we reframe antibody chain pair-
ing as a dense retrieval problem and introduce
SynPair, a dual-encoder model trained with con-
trastive InfoNCE loss that achieves state-of-the-
art pairing accuracy while dramatically reducing
computational requirements. SynPair can pair the
entire unpaired OAS corpus—over 2 billion se-
quences—in less than 24 hours on standard HPC
resources, a task previously computationally in-
tractable. The synthetically paired libraries gen-
erated by SynPair closely match naturally occur-
ring antibody pairing distributions, providing the
potential for a biologically realistic, massively
expanded paired dataset for antibody language
model pre-training.

1. Introduction
Antibodies play a crucial role in the immune response and
are an increasingly important class of therapeutic (Raybould
et al., 2024). They consist of two sets of heavy and light
chains with antigen binding mediated by the Fv region of
each chain (VH and VL, respectively) (Chiu et al., 2019).
The majority of the diversity in antibodies is located in
six hyper-variable loops within the Fv region known as
complementarity-determining regions (CDRs). The light
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chain and heavy chain each contain 3 CDR loops (CDRL
1-3 and CDRH 1-3).

Recent advancements in protein language models (PLMs)
have been effectively applied to a variety of antibody-
specific tasks, including de novo sequence generation (Turn-
bull et al., 2024; Shuai et al., 2023), sequence optimisation
(Olsen et al., 2024), and antibody property prediction (Turn-
bull et al., 2024; Olsen et al., 2024; Kenlay et al., 2024),
and now form an integral part of many antibody discovery
pipelines. A large portion of PLM success is their ability
to train on large corpora of sequences efficiently. This is
particularly important in the case of antibody PLMs due to
the very large space of possible antibody sequences, driven
by the biological processes of recombination, somatic hyper-
mutation, and random pairing of VH and VL chains (Chiu
et al., 2019).

Public datasets such as the Observed Antibody Space (OAS)
(Olsen et al., 2022) provide curated sets of antibody se-
quences and are used for training the majority of publicly
released antibody PLMs. OAS contains over 2.2 billion
unpaired human VH and VL sequences, but only 3 mil-
lion paired VH/VL sequences. Models trained on both
paired and unpaired sequences outperform unpaired mod-
els on downstream tasks (Burbach & Briney, 2025; Olsen
et al., 2024; Turnbull et al., 2024; Burbach & Briney, 2023),
likely due to the richer sequence representation provided by
the paired format. However, unpaired sequences provide
a source of diversity that is currently not found in paired
sequence libraries.

Therefore, an open question in the field is how to best take
advantage of the diversity of unpaired sequences, combined
with the richer representation of paired sequences. Cur-
rent approaches involve finetuning, either in a two-stage
approach (Turnbull et al., 2024), or using curriculum learn-
ing (Burbach & Briney, 2025; Kenlay et al., 2024). However,
both approaches risk catastrophic forgetting of the diversity
present in unpaired pertaining data and a lack of transferabil-
ity from the different data distributions of unpaired to paired
sequences. Additionally, this approach introduces issues
when integrating structural information, current antibody
structure predictors require paired antibody input (Abanades
et al., 2023; Ruffolo et al., 2023).
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An alternative approach we propose is artificial pairing
of unpaired sequences with a computational predictor of
VH-VL compatibility. Recent models, including Immuno-
Match (Guo et al., 2025) and Humatch (Chinery et al.,
2024) achieve promising pairing accuracy but rely on cross-
encoder architectures which make the combinatorial scoring
required by large scale pairing computationally intractable.

We reframe antibody pairing as a large-scale dense retrieval
problem, inspired by successful dual-encoder approaches
from information retrieval research. We present SynPair, a
dense encoder model capable of pairing the entire unpaired
OAS dataset within hours, not years, while surpassing classi-
fication accuracy of current cross-encoder approaches. Syn-
Pair allows for over 3 orders of magnitude increase in the
paired pre-training data for language models. Addition-
ally, SynPair can efficiently identify alternative VL chain
partners from natural repertoires, supporting developability
optimization.

2. Background and Related Work
2.1. Cross-encoder pairing models

Current state-of-the-art pairing predictors encode concate-
nated VH and VL jointly, scoring every candidate pair indi-
vidually. ImmunoMatch (Guo et al., 2025) fine-tunes an
antibody-specific transformer (AntiBERTa2 (Barton et al.,
2024)) to classify cognate versus random pairs, while Hu-
match uses an aligned representation input to a CNN (Chin-
ery et al., 2024).

Although accurate, the compute scales quadratically: eval-
uating the unpaired OAS corpus of 1.9 × 109 VH against
3.5× 108 VL requires O(NM) forward passes, making ex-
haustive pairing with the required ≈ 7× 1017 combinations
infeasible. Using a single A100 GPU this would take over
500,000,000 years.

2.2. Dense retrieval with dual encoders

Natural-language information retrieval side-steps this bottle-
neck by representing queries and documents with separate
encoders whose outputs live in a shared embedding space;
nearest-neighbour search replaces exhaustive scoring. The
paradigm originated with Siamese networks for semantic
similarity (Reimers & Gurevych, 2019), was popularised
for open-domain QA by Dense Passage Retrieval (DPR)
(Karpukhin et al., 2020), and has since powered large-scale
retrieval in vision–language models such as CLIP (Radford
et al., 2021). Key to training such models is a contrastive
objective.

Given a batch of B true VH–VL pairs {(hi, ℓi)}Bi=1, the
InfoNCE loss (Oord et al., 2019) maximises cosine simi-
larity between cognate embeddings while pushing away all

in-batch non-cognates.

LInfoNCE = − 1

B

B∑
i=1

log
exp(sim(f(hi), g(ℓi))/τ)∑B
j=1 exp(sim(f(hi), g(ℓj))/τ)

2.3. Approximate nearest-neighbour search at the scale
of billions

Embedding the entire VL corpus once reduces pairing
to nearest-neighbour search for each VH. Exact search
over hundreds of millions of vectors remains memory- and
compute-heavy, so most systems adopt Approximate Nearest
Neighbour (ANN) indices. We build upon Faiss—a GPU-
accelerated library that implements the IVF–PQ family of
indices (Douze et al., 2025). IVF partitions the space into
nlist Voronoi cells; Product Quantisation (PQ) compresses
residuals into compact byte codes, yielding sub-millisecond
query times with < 1% recall loss when properly tuned.
While ANN search has been applied to protein structural
alignment (Hamamsy et al., 2024), SynPair is the first to
employ a dual-encoder + ANN pipeline for VH–VL pairing.

3. Method
We cast VH–VL pairing as a dense-retrieval problem:
given a heavy-chain query h, retrieve the most compati-
ble light chains ℓ from a large corpus. Our solution cou-
ples a dual encoder trained with a self-supervised con-
trastive loss (Section 3.2) to a GPU-accelerated approximate-
nearest-neighbour (ANN) index (Section 3.4), allowing sub-
millisecond search over billions of candidates.

3.1. Datasets

We train on paired sequences taken from OAS, using the
same train, validation, and test sets publicly released by
Humatch (Chinery et al., 2024). The Humatch set contains
both ”true” pairings taken from paired OAS, as well as
”fake” pairings created from unpaired OAS, intended to be
biologically unrealistic pairings. We trained on only ”true”
pairings, but augmented our test set with fake pairings to
increase the difficulty of synthetic pairing.

As a held-out set, we use sequences from donor 3 from the
Dieudonné et al. study 2024, which was not trained on by
ImmunoMatch nor included in the Humatch dataset. To
create the negative dataset we randomly paired VH and VL
chains from within the test set, giving an equal number of
positive and negative examples. ImmunoMatch provides
separate κ and λ models which we used for testing. We
used ANARCI (Dunbar & Deane, 2015) to split our test set
into κ and λ.
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3.2. Dual-encoder architecture

Backbone. Both VH and VL chains are embedded by
the same frozen AntiBerta2 model ϕ (token length mean
128 ± 19), as used by ImmunoMatch. The final hidden
layer output is averaged across the sequence. The resulting
1536-dimensional sequence representation is then passed to
a trainable projection layer.

Chain-specific projection head:

zH = f(h) = norm(W
(2)
H σ(W

(1)
H ϕ(h))),

zL = g(ℓ) = norm(W
(2)
L σ(W

(1)
L ϕ(ℓ))),

where W (1) ∈ R512×1536, W (2) ∈ R128×512, σ = GELU,
and norm(v) = v/∥v∥2.

A separate projection head is trained for VH and VL se-
quences.

Similarity function. Pair compatibility is the cosine simi-
larity s(h, ℓ) = ⟨zH , zL⟩.

3.3. Contrastive objective

Given a minibatch of B true pairs {(hi, ℓi)}Bi=1 we apply
the InfoNCE loss (Oord et al., 2019):

LInfoNCE = − 1

B

B∑
i=1

log
exp(s(hi, ℓi)/τ)∑B
j=1 exp(s(hi, ℓj)/τ)

,

where τ is a learnable temperature (initial ln 0.07). All
in-batch off-diagonals act as negatives, yielding B(B−1)
negatives per step without hand-crafted sampling.

Optimisation. We train for 100 epochs with AdamW
(lr = 1e−4, β=0.9, 0.98, weight-decay 10−2), batch size
512, a cosine-decay schedule, and fp16 mixed precision.
We monitored mean reciprocal rank (MRR), and recall@20
for hyperparameter optimisation.

3.4. Approximate nearest-neighbour retrieval

All embeddings were stored as fp16. We build a Faiss
IVF–PQ index (nlist=4096, m=16 8-bit sub-quantisers). At
query time we probe nprobe=16 clusters, then scan PQ codes
on GPU, returning the top-k light chains.

3.5. Complexity and memory

Encoding cost is O(N+M) forward passes (one per chain),
and ANN search is O(logN) per VH query.

3.6. Paired Set Testing

For the ”SynPair Pairings” set we sampled 2000 random VH
chains from our test set, and performed a similarity search

against test set VL chains. We found that optimum diversity
was achieved with top k=2 and random sampling of k=1,2
for each VH chain. We also discarded any pairings with a
similarity score <0.3. For the ”True Pairings” set we used
the same set of VH chains combined with their true pairing.

We used ANARCI (Dunbar & Deane, 2015) to determine
the mutation rates of V-gene segments and the V-gene allele
of our SynPair, True, and Random set. For the germline
correlation plot, we counted the frequency of each V-gene
allele combination in our SynPair, True and Random set,
and subtracted the Random counts from the SynPair and
True set.

3.7. Implementation details

All experiments use PyTorch 2.3 and HuggingFace Trans-
formers 4.41. Training, embedding and GPU search run on
an NVIDIA A100-80 GB. Code, pretrained weights, and
full unpaired OAS SynPair pairings will be released upon
publication.

4. Results
4.1. SynPair Achieves State-of-the-Art Paired

Classification

First, we investigated SynPair’s classification accuracy for
predicting true vs random pairings. We benchmarked per-
formance on our held-out test set containing mature paired
sequences not included in the train set of SynPair or Im-
munoMatch. Pseudo-negative data was generated by ran-
dom pairing of VH and VL sequences (see Methods). Syn-
Pair achieved ROC–AUC 0.792 versus ImmunoMatch’s
0.697 on the external-donor test set (Fig. 1), demonstrat-
ing stronger generalisation beyond the training distribution.
This validates SynPair’s state-of-the-art ability to differenti-
ate between true and random pairings.

4.2. SynPair Creates Paired Libraries With Natural
Characteristics

Next, we investigated SynPair’s ability to generate novel and
realistic VH/VL pairings. As a case study, we embedded
and paired sequences from an augmented test set comprising
320,000 true pairs and 320,000 non-cognate (‘fake’) pair-
ings, provided by Humatch, totalling 1.2 million sequences.
We included fake pairings within the search space to in-
crease the difficulty of the pairing task and better resemble
the full unpaired case.

Embedding all sequences took 7 minutes on a single
NVIDIA A100 GPU; subsequent pairing via IVF–PQ in-
dexing took approximately one second. The embedding and
retrieval process scales linearly, enabling practical pairing
even at unpaired OAS scale. Embedding the 2.2 B-sequence
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Figure 1. ROC curves on the external-donor test set. Immuno-
Match values are averaged over κ and λ models.

human uOAS corpus would require 9 GPU-days on a single
A100, on 32 GPUs this falls below 8 hours. IVF–PQ search
for all VH queries completes in <40 minutes.

To validate our generated pairings, we took 2000 syntheti-
cally paired sequences and calculated ImmunoMatch pairing
scores for this set. We also calculated ImmunoMatch pairing
scores for 2000 true pairings, and 2000 VH/VL sequences
we randomly paired from the test set (Fig 2). We found that
true and SynPair-paired sequences showed a very similar
distribution of ImmunoMatch scores. Randomly paired se-
quences also showed a proportion of higher ImmunoMatch
scores, explainable by the known promiscuity of VL/VH
pairing. However, random pairs also showed a distinctive
lower tail not present in SynPair or True pairings.

We also investigated the correlation of mutation rate across
the VL and VH chains. We expect a strong correlation for bi-
ologically meaningful pairings, as VH and VL chains should
undergo a similar rate of somatic hypermutation when orig-
inating from mature B-cells. We observe strong V-gene
identity correlation for SynPair pairs (Pearson r = 0.794)
comparable to true pairs (r = 0.801), whereas random pairs
show no correlation (Appendix Fig. 3).

Finally, we looked at the frequency of V-gene VH/VL com-
binations in both True and SynPair paired sequences, rela-
tive to a random baseline (Appendix Fig. 4. VH/VL chains
have been shown to have weak V-gene pairing preferences
(Jayaram et al., 2012). We found a significant Pearson cor-

relation (0.563) between the V-gene pairing frequencies
of SynPair and True pairings, relative to the random set.
This means that V-gene combinations that are seen more
frequently than a random baseline in True pairings are also
seen more frequently than baseline in SynPair pairings.

Collectively, our results indicate that our generated pair-
ings are biologically plausible, and also predicted to be
good pairings by an independently trained pairing model,
Immunomatch.

Figure 2. ImmunoMatch pairing scores for true, randomly paired,
and synthetically paired VH/VL sequences taken from the test set.

5. Conclusion & Future Work
In this paper, we introduced SynPair, a dual-encoder re-
trieval model capable of computationally efficient and bio-
logically plausible pairing of antibody heavy (VH) and light
(VL) chains at the scale of billions. SynPair exceeds the
accuracy of state-of-the-art cross-encoder pairing models,
achieving ROC–AUC scores of 0.79 on held-out data, while
reducing the computational time required to pair the entire
unpaired OAS from an estimated 500 million GPU-years to
approximately two GPU-weeks. This advance allows rapid
generation of synthetic paired datasets at the scale of the
entire Observed Antibody Space (OAS), greatly expanding
the availability of paired data for antibody language model
pre-training and downstream antibody design applications.
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SynPair: Pairing Unpaired Antibody Chains at Billion-Sequence Scale With Contrastive Learning

A. Mutation Rate Correlation.

Figure 3. Pearson correlation between germline identity for heavy chain v-gen and light chain V-gene for SynPair Pairings, True Pairings,
and Random Pairings.
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SynPair: Pairing Unpaired Antibody Chains at Billion-Sequence Scale With Contrastive Learning

Figure 4. Correlation of the frequency of different VH/VL V-gene combinations in SynPair and True pairings, relative to the Random set
pairings.
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