
GFlowNet-EM for Learning Compositional Latent Variable Models

Edward J. Hu * 1 Nikolay Malkin * 1 Moksh Jain 1 Katie Everett 2 3 Alexandros Graikos 4 Yoshua Bengio 1 5

Abstract
Latent variable models (LVMs) with discrete com-
positional latents are an important but challeng-
ing setting due to a combinatorially large num-
ber of possible configurations of the latents. A
key tradeoff in modeling the posteriors over la-
tents is between expressivity and tractable opti-
mization. For algorithms based on expectation-
maximization (EM), the E-step is often intractable
without restrictive approximations to the posterior.
We propose the use of GFlowNets, algorithms for
sampling from an unnormalized density by learn-
ing a stochastic policy for sequential construction
of samples, for this intractable E-step. By training
GFlowNets to sample from the posterior over la-
tents, we take advantage of their strengths as amor-
tized variational inference algorithms for com-
plex distributions over discrete structures. Our
approach, GFlowNet-EM, enables the training
of expressive LVMs with discrete compositional
latents, as shown by experiments on non-context-
free grammar induction and on images using dis-
crete variational autoencoders (VAEs) without
conditional independence enforced in the encoder.

Code: github.com/GFNOrg/GFlowNet-EM.

1. Introduction
In the real world, we often observe high-dimensional
data that is generated from lower-dimensional latent vari-
ables (Bishop, 2006). In particular, it is often natural for
these latent variables to have a discrete, compositional struc-
ture for data domains like images and language. For exam-
ple, an image might be decomposed into individual objects
that have a relationship between their positions, and natural
language utterances contain individual words that describe

*Equal contribution 1Mila, Université de Montréal 2Google
Research 3Massachusetts Institute of Technology 4Stony Brook
University 5CIFAR Fellow. Correspondence to: Edward J. Hu
<edward@edwardjhu.com>.

Proceedings of the 40𝑡ℎ International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

the cats drink tea the cats drink tea

Q3

the cats drink tea

Q3Q7

the cats drink tea

Q3Q7

Q4B0 B1 B2 B3 = I

GFlowNet sampling trajectory

?\ (I)?\ (G |I) = ?root
\ (Q4) · ?\ (Q7 Q3 | Q4) · ?\ (the cats | Q7) · ?\ (drink tea | Q3)

E-step
Sample G ∼ data
Update conditional GFlowNet

with reward '(I) = ?\ (I)?\ (G |I)

M-step
Sample G ∼ data
Sample I from conditional GFlowNet
Gradient update on log ?\ (I)?\ (G |I)

Figure 1. GFlowNet-EM for training a latent variable model
𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧) to maximize likelihood of observed data 𝑥. The
generative model here is a probabilistic context-free grammar. The
GFlowNet samples a latent parse tree 𝑧 from an approximation
to the posterior 𝑝𝜃 (𝑧 |𝑥). GFlowNet-EM can flexibly handle non-
context-free grammars, black-box priors on tree shape, etc. (§5.2).

relationships between abstract concepts. Modeling this dis-
crete compositional latent structure allows for combining
existing concepts in new ways, an important inductive bias
for human-like generalization (Goyal & Bengio, 2022).

One family of approaches for maximum-likelihood estima-
tion in LVMs is based on the expectation-maximization
algorithm (EM; Dempster et al., 1977), which we review
in §2.1. However, inference of the posterior over latent
variables, which is needed in the E-step of EM, is generally
intractable when there are combinatorially large number of
possible configurations for the latents, such as when the
latent random variable does not factorize and represents a
discrete compositional structure like a tree or graph. One
can approximately sample from this posterior by running
Markov Chain Monte Carlo (MCMC), which can be pro-
hibitively expensive and suffer from poor mixing properties.
Another approach is to impose conditional independence
assumptions on the generative model or on the posterior
approximation; the latter is known as variational EM (see
§2.1). Both limit the expressivity of the LVM. One such
example studied here is the induction of context-free gram-
mars (Baker, 1979), which has a generative model under
which the expansion of a symbol is independent of its con-
text.

Generative flow networks (GFlowNets; Bengio et al., 2021;
2023), which we review in §2.2, are an amortized inference
method for sampling from unnormalized densities by se-
quentially constructing samples using a learned stochastic

1

https://github.com/GFNOrg/GFlowNet-EM

GFlowNet-EM for Learning Compositional Latent Variable Models

policy. This sequential construction makes GFlowNets espe-
cially useful for sampling discrete compositional objects like
trees or graphs. In this work, we propose to use GFlowNets
to learn an amortized sampler of the intractable posterior
conditioned on a data sample (Fig. 1). This enables the learn-
ing of LVMs without conditional independence assumptions,
or with weaker ones compared to traditional LVMs like prob-
abilistic context-free grammars (PCFGs). We also make
several algorithmic contributions to mitigate the optimiza-
tion challenges in jointly learning a GFlowNet sampler and
a generative model, notably, posterior collapse (Wang et al.,
2021), when the learned posterior only models a few of
the modes of the true posterior. We validate our method,
which we call GFlowNet-EM, on both language and image
domains. We intend for this work to serve as a tool for
learning more powerful latent variable models that were
previously prohibitively expensive to learn.

Our contributions include:

(1) The GFlowNet-EM framework for maximum likelihood
estimation in discrete compositional LVMs that are in-
tractable to optimize by exact EM;

(2) Algorithmic improvements to stabilize joint learning
with the generative model while mitigating posterior
collapse;

(3) Empirical demonstrations of LVMs with intractable pos-
teriors learned with GFlowNet-EM, including a non-
context-free grammar and a discrete VAE without inde-
pendence assumptions in the encoder.

2. Background
2.1. Expectation-Maximization (EM)

We review the standard formulation of the EM algorithm
(Dempster et al., 1977) and its variational form (Neal &
Hinton, 1998; Koller & Friedman, 2009). Consider a LVM
with a directed graphical model structured as 𝑧 → 𝑥, with
likelihood given by 𝑝(𝑥) = ∑

𝑧 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧). The latent
𝑧 may itself have hierarchical structure and be generated
through a sequence of intermediate latent variables. Given
a dataset {𝑥𝑖}𝑇

𝑖=1, we wish to optimize the parameters 𝜃 to
maximize the data log-likelihood

L = log
𝑇∏
𝑖=1

𝑝(𝑥𝑖) =
𝑇∑︁
𝑖=1

log
∑︁
𝑧

𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧). (1)

The EM algorithm achieves this by maximizing a variational
bound on Eq. 1, known as the evidence lower bound (ELBO)

or negative free energy:

L ≥
𝑇∑︁
𝑖=1
E𝑧∼𝑞 (𝑧 |𝑥𝑖) log

𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧)
𝑞(𝑧 |𝑥𝑖)

= L −
𝑇∑︁
𝑖=1

𝐷KL (𝑞(𝑧 |𝑥𝑖)∥𝑝(𝑧 |𝑥𝑖)), (2)

where 𝑝(𝑧 |𝑥𝑖) ∝ 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧) is the true posterior over
the latent. The inequality holds for any collection of distri-
butions 𝑞(𝑧 |𝑥𝑖) and is an equality if and only if 𝑞 equals the
true posterior.

An important choice in EM algorithms is how to param-
eterize and store the distributions 𝑞(𝑧 |𝑥𝑖). In simple EM
applications like mixture models, they are stored in a tab-
ular way, i.e., as a matrix of logits that represents the true
posterior (exact EM). In other settings, 𝑞 is constrained
to lie in a simpler family of distributions, and this fam-
ily need not contain the true posterior (variational EM). A
common simplifying assumption is one of conditional inde-
pendence between components of 𝑧, e.g., if 𝑧 = (𝑧1, 𝑧2, 𝑧3),
then 𝑞(𝑧 |𝑥𝑖) = 𝑞(𝑧1 |𝑥𝑖)𝑞(𝑧2 |𝑥𝑖)𝑞(𝑧3 |𝑥𝑖) (see §3). Finally,
in amortized variational EM, 𝑞(𝑧 |𝑥𝑖) can be parametrized
as a neural network, as we will describe below.

The EM algorithm iterates two steps, each of which in-
creases the ELBO (Eq. 2):

E-step. Optimize the distributions 𝑞(𝑧 |𝑥𝑖) so as to approx-
imately make 𝑞(𝑧 |𝑥𝑖) ∝ 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧). If 𝑞, or its factors,
are stored in a tabular way, this step is as simple as appropri-
ately normalizing the full matrix 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧). In other
applications, such as for fitting VAEs, 𝑞 can be optimized
using gradient steps to minimize 𝐷KL (𝑞(𝑧 |𝑥𝑖)∥𝑝(𝑧 |𝑥𝑖)).

M-step. Optimize L with respect to the parameters of 𝑝,
as by taking gradient steps on

E𝑖 [E𝑧∼𝑞 (𝑧 |𝑥𝑖) log 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧)] . (3)

Amortized variational EM. In amortized variational EM,
𝑞 is parametrized by a neural network 𝑞𝜙 taking 𝑥𝑖 as in-
put, which allows evaluation of 𝑞𝜙 (𝑧 |𝑥) at any 𝑥 and thus
generalization to unseen data: sampling from 𝑞(−|𝑥𝑖) be-
comes easy, at the amortized cost of having to train the
neural net. The ELBO can also be jointly optimized with
respect to the parameters of both 𝑞 and 𝑝 instead of through
separate E and M steps. This is the principle behind VAE
models (Rezende et al., 2014; Kingma & Welling, 2014).

Wake-sleep for EM. We return to the question of the E-
step – optimizing 𝑞 – when 𝑞 is parametrized as a neural
network 𝑞𝜙 (𝑧 |𝑥). To maximize the ELBO (Eq. 2), 𝑞 needs
to be trained to minimize 𝐷KL (𝑞(𝑧 |𝑥𝑖)∥𝑝(𝑧 |𝑥𝑖)) for data

2

GFlowNet-EM for Learning Compositional Latent Variable Models

samples 𝑥𝑖 .1 If 𝑧 is high-dimensional, this network can be
difficult to train and 𝑞𝜙 may not assign high likelihood to
all modes of the true posterior (posterior collapse): when
a mode is not represented in 𝑞, no sample from that mode
is ever drawn, which would make it impossible to update 𝑞
to represent that mode. Instead, 𝑞 tends to focus on a single
mode, even if it can in principle represent multiple modes.

The sleep phase, a procedure originally used for fitting pos-
teriors over latents in deep stochastic networks (Hinton et al.,
1995) but later generalized to other settings (Bornschein &
Bengio, 2015; Le et al., 2019; Hewitt et al., 2020), aims
to mitigate posterior collapse. In the sleep phase, latents
𝑧 ∼ 𝑝𝜃 (𝑧) and data 𝑥 ∼ 𝑝𝜃 (𝑥 |𝑧) are hallucinated from the
generative model (‘dreamt’, as opposed to ‘wakeful’ use of
real data 𝑥𝑖), and 𝑞𝜙 (𝑧 |𝑥) is optimized with respect to its
likelihood of recovering 𝑧. That is, the objective minimizes

E𝑧∼𝑝𝜃 (𝑧) ,𝑥∼𝑝𝜃 (𝑥 |𝑧) [− log 𝑞𝜙 (𝑧 |𝑥)] . (4)
For a given 𝑥, this objective is equivalent to minimizing
𝐷KL (𝑝𝜃 (𝑧 |𝑥)∥𝑞𝜙 (𝑧 |𝑥)), the opposite direction of the KL
compared to Eq. 2. This direction of the KL will cause
𝑞𝜙 to seek a broad approximation to the true posterior that
captures all of its modes, preventing posterior collapse. On
the other hand, if hallucinated samples 𝑥 are not close to
the distribution of the real data 𝑥𝑖 , the sleep phase may not
provide a useful gradient signal for the posteriors 𝑞𝜙 (𝑧 |𝑥𝑖)
that are used in the M-step Eq. 3 with real 𝑥𝑖 . Therefore,
both wake and sleep E-steps can be combined in practice
(Bornschein & Bengio, 2015; Le et al., 2019).

2.2. GFlowNets

We briefly review GFlowNets and their training objectives.
For a broader introduction, the reader is directed to Malkin
et al. (2022), whose conventions and notation we borrow,
and to other papers listed in §6.1.

GFlowNets (Bengio et al., 2021) are a family of algorithms
for training a stochastic policy to sample objects from a
target distribution over a set of objectsZ (such as complete
parse trees, in Fig. 1). The set Z is a subset of a larger
state space S, which contains partially constructed objects
(like the incomplete parse trees in the first three panels of
Fig. 1). Formally, the state space has the structure of a
directed acyclic graph, where vertices are states and edges
are actions that transition from one state to another. There
is a designated initial state 𝑠0 with no parents (incoming
edges), while the terminal states – those with no children
(outgoing edges) – are in bijection with the complete objects
Z. A complete trajectory is a sequence of states 𝑠0 → 𝑠1 →
· · · → 𝑠𝑛 = 𝑧, where 𝑥 ∈ Z and each 𝑠𝑖 → 𝑠𝑖+1 is an action
(like an addition of a node to the parse tree).

1Such training can not be done directly in general, since the true
posterior is unknown, but algorithms, including GFlowNet-EM,
use the fact that 𝑝(𝑧 |𝑥𝑖) ∝ 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧), which is available.

A (forward) policy is a collection of distributions 𝑃𝐹 (𝑠′ |𝑠)
over the children of every nonterminal state 𝑠 ∈ S \ Z.
A policy induces a distribution over complete trajectories
𝜏 = (𝑠0 → · · · → 𝑠𝑛) given by 𝑃𝐹 (𝜏) =

∏𝑛
𝑖=1 𝑃𝐹 (𝑠𝑖 |𝑠𝑖−1).

This distribution can be sampled by starting at 𝑠0 and sequen-
tially sampling actions from 𝑃𝐹 to reach the next state. The
policy 𝑃𝐹 also induces a distribution 𝑃⊤

𝐹
over the terminal

states via

𝑃⊤𝐹 (𝑧) =
∑︁

𝜏 leading to 𝑧

𝑃𝐹 (𝜏). (5)

That is, 𝑃⊤
𝐹
(𝑧) is the marginal likelihood that a trajectory

sampled from 𝑃𝐹 terminates at 𝑧.

Training GFlowNets. Given a reward function 𝑅 : Z →
R≥0, the goal of GFlowNets is to learn a parametric policy
𝑃𝐹 (𝑠′ |𝑠; 𝜃) such that 𝑃⊤

𝐹
(𝑧) ∝ 𝑅(𝑧), i.e., the policy samples

an object with likelihood proportional to its reward. Because
𝑃⊤
𝐹

is a (possibly intractable) sum over trajectories (5), auxil-
iary quantities need to be introduced to optimize for reward-
proportional sampling. The most commonly used objective
in recent work, trajectory balance (TB; Malkin et al., 2022),
requires learning two models in addition to the forward pol-
icy: a backward policy 𝑃𝐵 (𝑠 |𝑠′; 𝜃), which is a distribution
over the parents of every noninitial state, and a scalar 𝑍𝜃 ,
which is an estimate of the partition function (total reward).
The TB objective for a trajectory 𝜏 = (𝑠0 → · · · → 𝑠𝑛 = 𝑧)
is

LTB (𝜏; 𝜃) =
[
log

𝑍𝜃

∏𝑛
𝑖=1 𝑃𝐹 (𝑠𝑖 |𝑠𝑖−1; 𝜃)

𝑅(𝑧)∏𝑛
𝑖=1 𝑃𝐵 (𝑠𝑖−1 |𝑠𝑖; 𝜃)

]2
. (6)

If this loss is made equal to 0 for all trajectories 𝜏, then
the policy 𝑃𝐹 (−|−) samples proportionally to the reward.
(From now on, we omit the dependence of 𝑃𝐹 , 𝑃𝐵, and 𝑍
on 𝜃 for simplicity.)

In practice, this loss can be minimized by gradient de-
scent on 𝜃 for trajectories sampled either on-policy, taking
𝜏 ∼ 𝑃𝐹 (𝜏) from the current version of the policy, or off-
policy. Just as in reinforcement learning (RL), off-policy
training can be done in various ways, such as by sampling
𝜏 from a tempered version 𝑃#

𝐹
of the current policy or by

sampling 𝜏 ∼ 𝑃𝐵 (𝜏 |𝑧) from the backward policy starting
at a known terminal state. Madan et al. (2023) introduce
subtrajectory balance (SubTB), which generalizes TB to
partial trajectories.

Conditional GFlowNets. GFlowNets can be conditioned
on other variables (Bengio et al., 2023; Jain et al., 2022b;
Zhang et al., 2023b). If the reward depends on a variable 𝑥,
then the learned models 𝑃𝐹 , 𝑃𝐵, and 𝑍 can all take 𝑥 as an
input and be trained to sample from the conditional reward
𝑅(𝑧 |𝑥). GFlowNet-EM makes critical use of this ability to
model the posterior conditioned on a given data sample.

3

GFlowNet-EM for Learning Compositional Latent Variable Models

3. Motivating Example: Pitfalls of
Factorization

To illustrate the drawbacks of a factorized posterior, we
consider a hierarchical version of a Gaussian mixture model
as a toy example. The data is generated from a set of super-
clusters, in which each supercluster has a set of subclusters,
which we call ‘petals’ because each is located at a fixed
offset around the supercluster mean as in Fig. 3. The data
generation process first selects which supercluster, then
which petal subcluster, a point should be sampled from, and
then samples the point from a standard normal distribution
centered at the component mean that is determined by the
supercluster mean 𝜇𝑖 plus the appropriate offset for the se-
lected petal 𝑗 . This problem illustrates a setting where the
true posterior 𝑝(𝑖, 𝑗 |𝑥) has a dependence between the dis-
crete latent factors 𝑖 and 𝑗 , where 𝑖 denotes the supercluster
and 𝑗 denotes the petal subcluster.

We consider a small version of this problem with four su-
percluster means arranged in a grid shape where each super-
cluster has four petals. We use a fixed variance and uniform
priors over the choice of supercluster and petal for each
data point. The model must learn only the positions of the
supercluster means so as to maximize the data likelihood.

This arrangement induces multiple modes in the true pos-
terior 𝑝(𝑖, 𝑗 |𝑥) for a particular estimate of the superclus-
ter means 𝜇; for example, there can be ambiguity about
whether a certain point came from the top left petal of one
supercluster or the top right petal of another supercluster
(Fig. 2). This requires the inference algorithm to perform
combinatorial reasoning to infer optimal assignments (i.e.,
considering all (𝑖, 𝑗) combinations), which is a notoriously
difficult problem for algorithms that use a mean-field poste-
rior approximation.

In this problem, we can easily perform the exact E-step by
modeling the posterior in a tabular fashion, where 𝑞(𝑖, 𝑗 |𝑥)
is computed exactly as a categorical distribution over all
possible pairs (𝑖, 𝑗). However, if we were to increase the
number of levels of the hierarchy, with each point explained
by a combination of many more than two factors, computing
the exact posterior would become intractable.

Meanwhile, factorized posteriors can be computed analyti-
cally for generative models with this structure (Ghahramani,
1994). To alleviate the scalability limitations as the depth of
the hierarchy grows, we could perform variational EM using
the mean-field assumption, so that the approximate poste-
rior is factorized as 𝑞(𝑖, 𝑗 |𝑥) = 𝑞(𝑖 |𝑥)𝑞(𝑗 |𝑥) and a separate
categorical distribution is modeled over each latent factor.
Yet, as seen in Fig. 2 the factorized approximation fails to
assign the proper posterior, and as shown with Fig. 3, EM
with a factorized approximation to the posterior fails to re-
cover the true supercluster means even on this small dataset.

Exact Factorized GFlowNet

Figure 2. Posteriors 𝑞(𝑖, 𝑗 |𝑥) inferred during a single E-step for
a particular estimate of supercluster means (black dots). Top
row: colour indicates which supercluster (value of 𝑖) each point is
assigned to. Bottom row: colour indicates which petal (value of
𝑗) each point is assigned to. Assignments use the most likely pair
(𝑖, 𝑗) for each point in the posterior 𝑞(𝑖, 𝑗 |𝑥). Note the different
behaviour of the factorized posterior in the areas circled in red.

This simple example illustrates the fundamental limitations
of factorized posteriors. In more complicated problems,
e.g., models for layer separation in computer vision (Frey &
Jojic, 2005), this effect can become more pronounced.

In contrast, the posterior learned by GFlowNet-EM, which
makes no independence assumptions on the approximate
posterior, achieves a better fit to the true posterior while
being more scalable. We elaborate on this approach in the
next section.

4. GFlowNet-EM
The GFlowNet-EM algorithm simultaneously trains two
models: the generative model 𝑝𝜃 (𝑧, 𝑥), factorized as
𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧), and a conditional GFlowNet 𝑞(𝑧 |𝑥) =
𝑃𝑇
𝐹
(𝑧 |𝑥) that approximates the true posterior 𝑝𝜃 (𝑧 |𝑥).

E-step. The GFlowNet is conditioned on 𝑥 and trained to
sample 𝑧 with reward 𝑅(𝑧 |𝑥) = 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧). If trained
perfectly, the GFlowNet’s marginal terminating distribution
𝑃⊤
𝐹
(𝑧 |𝑥) – note the dependence of 𝑃𝐹 on the conditioning

variable 𝑥 – is proportional to 𝑅(𝑧 |𝑥), and thus the policy
𝑃𝐹 (−|−, 𝑥) samples from the true posterior.

In the problems we study, 𝑧 is a discrete compositional
object, and a state space needs to be designed to enable
sequential construction of 𝑧 by a GFlowNet policy. We
describe the state space for each setting in our experiments
in the corresponding section (Section 5).

4

GFlowNet-EM for Learning Compositional Latent Variable Models

Algorithm 1 GFlowNet-EM: Basic form with thresholding
Require: Data {𝑥𝑖}, generative model with parameters 𝜃,

GFlowNet with parameters 𝜙, optimization and explo-
ration hyperparameters, threshold 𝛼

1: repeat
2: Sample 𝑥𝑖 ∼ data
3: Sample 𝜏 ∼ 𝑃#

𝐹
(𝜏 |𝑥𝑖); 𝑧 ← (last state of 𝜏)

4: L ← [TB loss along 𝜏 with reward 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧)]
5: E-step: gradient update on 𝜙 with ∇𝜙L
6: if L < 𝛼 then
7: Sample 𝜏 ∼ 𝑃𝐹 (𝜏 |𝑥𝑖); 𝑧 ← (last state of 𝜏)
8: M-step: gradient update on 𝜃 with

∇𝜃 [− log 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥 |𝑧)]
9: end if

10: until some convergence condition

M-step. The terminating distribution 𝑃⊤
𝐹
(𝑧 |𝑥) of the

GFlowNet is used as a variational approximation to the
posterior to perform updates to the generative model’s
parameters. Namely, for a data sample 𝑥𝑖 , we sample
a terminal state – a latent 𝑧 – from the policy of the
conditional GFlowNet and perform a gradient update on
log 𝑝𝜃 (𝑧)𝑝𝜃 (𝑥𝑖 |𝑧), thus performing in expectation a gradi-
ent update on (3).

Note that because the generative model 𝑝𝜃 evolves over the
course of joint optimization, the reward for the GFlowNet
is nonstationary. E-steps and M-steps are alternated in the
course of training, and the schedule of gradient updates
– number of GFlowNet updates in between successive M-
steps – is a parameter that can be fixed or chosen adaptively.
We discuss the challenges arising from joint training, and
solutions to them, in Section 4.1.

The basic form of the algorithm, including an adaptive E-
step schedule, is presented as Algorithm 1.

4.1. GFlowNet-EM Optimization Techniques

GFlowNet-EM presents two challenges that are not present
in standard GFlowNet training. First, the estimated pos-
terior 𝑞(𝑧 |𝑥) is conditioned on the data point 𝑥, and the
dependence of the reward function on 𝑥 may be complex.
Second, the GFlowNet is trained with a nonstationary re-
ward, as the generative model 𝑝, which provides the reward,
changes over the course of GFlowNet-EM training. On the
other hand, it is important for the GFlowNet to track the true
posterior as it evolves, so as not to bias the M-step and pro-
duce degenerate solutions. We employ a variety of new and
existing techniques to address these two challenges. The
existing techniques are reviewed in Appendix A. Ablation
studies are presented in §C.7 and §5.3 to demonstrate the
effectiveness of individual techniques.

Algorithm 2 GFlowNet-EM: E-step (sleep phase)
1: Sample 𝑧 ∼ 𝑝𝜃 (𝑧), 𝑥 ∼ 𝑝𝜃 (𝑥 |𝑧)
2: Sample trajectory 𝜏 ∼ 𝑃𝐵 (𝜏 |𝑧, 𝑥) leading to 𝑧
3: Gradient step on 𝜙 with ∇𝜙 [− log 𝑃𝐹 (𝜏 |𝑥)]

Adaptive E-steps via loss thresholding. If the GFlowNet
were able to model the true posterior perfectly, one could
reduce the GFlowNet loss to zero after every M-step (yield-
ing exact EM). This is, however, unrealistic due to finite
model capacity and compute constraints. We propose a
method for adaptively choosing the number of updates to
the GFlowNet that are performed in between successive
M-step gradient updates. Treating a moving average of the
GFlowNet’s training loss as an indicator of how well the
true posterior is approximated, we heuristically set a loss
threshold, and perform an M-step gradient update after an
update to the GFlowNet only if this moving average falls
below the threshold. A lower threshold corresponds to re-
quiring a more accurate approximate posterior for updating
the generative model. Because the posterior tends to be-
come simpler to model during the course of training from a
random initialization, we use a heuristic threshold schedule
that linearly decreases the requisite threshold to trigger an
M-step update.

Local credit assignment with modular log-likelihood.
In some interesting LVMs, such as those in §5.2, the reward
decomposes as a product of terms accumulated over steps
of the sampling sequence. In this case, a forward-looking
SubTB loss as described in Pan et al. (2023) can be used as
the GFlowNet objective instead of TB.

Exploratory training policy. Off-policy exploration in
GFlowNet training can be used to improve mode cover-
age. The ability of GFlowNets to be stably trained off-
policy is a key strength compared to other variational in-
ference algorithms (Malkin et al., 2023). As described
in §5, we employ two exploration methods: policy tem-
pering (making 𝑃#

𝐹
(𝑠′ |𝑠, 𝑥) proportional to 𝑃𝐹 (𝑠′ |𝑠, 𝑥)𝛽 for

some 𝛽 < 1) and 𝜖-uniform sampling (making 𝑃#
𝐹
(𝑠′ |𝑠, 𝑥) a

mixture of 𝑃𝐹 (𝑠′ |𝑠, 𝑥) and a uniform distribution over the
action space).

4.2. Improving Posterior Estimation

A sleep phase for GFlowNet-EM. We propose adding
a sleep phase to the E-step updates of GFlowNet-EM, tak-
ing advantage of the ability to sample ancestrally from the
generative model to prevent posterior collapse.

The sleep phase requires minimizing − log 𝑞(𝑧 |𝑥) as in Eq. 4
for 𝑧, 𝑥 sampled ancestrally from the generative model.
However, 𝑞(𝑧 |𝑥) = 𝑃⊤

𝐹
(𝑧 |𝑥) is a (possibly intractable) sum

of likelihoods of all sampling trajectories leading to 𝑧. To

5

GFlowNet-EM for Learning Compositional Latent Variable Models

optimize this log-likelihood, we sample a trajectory leading
to 𝑧 from the backward policy 𝜏 ∼ 𝑃𝐵 (𝜏 |𝑧, 𝑥) and opti-
mize the parameters of the forward policy 𝑃𝐹 with objec-
tive − log 𝑃𝐹 (𝜏 |𝑥). This amounts to maximizing the log-
likelihood that the GFlowNet’s sampling policy conditioned
on 𝑥 recovers 𝑧 by following the sampling trajectory 𝜏. It
can be shown that for any fixed value of the parameters of
𝑃𝐵, the global optimum of this objective with respect to
𝑃𝐹 is a maximizer of log 𝑃⊤

𝐹
(𝑧 |𝑥), guaranteeing correctness.

Theoretical results and experiments related to this maximum
likelihood training objective for GFlowNets can be found in
Zhang et al. (2023a).

MCMC using GFlowNet as the proposal distribution.
Another way to leverage the generative model to better esti-
mate the posterior is to run a short MCMC chain initialized
with samples drawn from the GFlowNet to bring them closer
to the true posterior distribution. The MCMC proposal can
make use of the GFlowNet policy itself, using the ‘back-
and-forth’ proposal of Zhang et al. (2022).

5. Empirical Results
5.1. Hierarchical Mixture Revisited

As our first experiment, we compare exact EM, variational
EM with a factorized posterior, and GFlowNet-EM on the
hierarchical mixture dataset presented in §3. For GFlowNet-
EM, the E-step is performed by a GFlowNet conditioned
on the data. The GFlowNet’s policy, parametrized as a
small MLP, takes two actions: the first action chooses the
supercluster assignment and the second action chooses the
petal assignment. The reward can be set to 𝑅(𝑖, 𝑗 |𝑥) =
𝑝(𝑥 |𝑖, 𝑗), proportional to the posterior 𝑝(𝑖, 𝑗 |𝑥) as the prior
𝑝(𝑖, 𝑗) is uniform.

Averaged over twenty random seeds, after sixty iterations
(which induces convergence in all methods), the data
log-likelihood per sample for exact EM is −5.79 ± 0.74,
variational EM is −7.26 ± 1.12, and GFlowNet-EM is
−5.77 ± 0.48. For reference, the average log-likelihood
for the ground truth supercluster means, used to sample
the dataset, is −5.62 ± 0.01. Implementation details are
described in Appendix B. The estimated supercluster means
for each method on a single initialization are shown in Fig. 3,
where exact EM and GFlowNet-EM both nearly match the
ground truth supercluster means but variational EM fails to
learn the correct means.

5.2. Grammar Induction on Penn Tree Bank (PTB)

In linguistics and in the theory of formal languages, a gram-
mar refers to a set of structure constraints on sequences of
symbols. Since Chomsky (1965), all dominant theories have
assumed some form of hierarchical generative grammar as a

Exact EM Variational EM GFlowNet-EM

Figure 3. Estimated supercluster means are shown as black dots
while ground truth supercluster means are shown as orange stars.
Unlike the (factorized) Variational EM, GFlowNet-EM puts the
means at the right place.

universal feature of natural languages. The task of grammar
induction asks whether one can automatically discover from
data the hierarchical grammar that explains the sequential
structure we observe, and whether the discovered rules coin-
cide with ones created by human experts. We study the case
with binary rule branching. See §C.1 for a more detailed
description of the assumptions we make on the grammar
and the way the rule likelihoods are parametrized.

Dataset. We use a subset of Penn Tree Bank (PTB; Mar-
cus et al., 1999) that contains sentences with 20 or fewer
tokens. Otherwise, we follow the preprocessing done by
Kim et al. (2019), including removing punctuation and to-
kenizing OOV words. The vocabulary size (number of T
symbols) is 9672. We use 30 NT symbols and 60 PT sym-
bols.

Baselines. We reproduce the Neural PCFG architecture
from Kim et al. (2019). Taking advantage of specialized
algorithms for context-free grammars, we either marginalize
over the latent space (Marginalization2) or sample from the
true posterior (Exact sampling EM). Our Marginalization
baseline matches the result produced by the public reposi-
tory of Kim et al. (2019). The Monte-Carlo EM (MC-EM)
baseline draws samples from the posterior by running 1000
MCMC steps with a proposal distribution that performs ran-
dom single tree rotations and symbol changes. All baseline
and GFlowNet-EM runs are run for 10,000 grammar (M-
step) gradient updates. We use Torch-Struct (Rush, 2020)
to perform marginalization and exact sampling in PCFGs.

Metrics. We use two metrics to evaluate learned gram-
mars:

(1) The marginal likelihood of a held-out dataset under the
learned grammar, which can be equivalently expressed
in terms of negative log-likelihood per word. When
marginalization is not tractable, we use a variational
upper bound described in §C.5.

2The marginal likelihood has the same gradient as exact sam-
pling EM in expectation.

6

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 1. Inducing a context-free grammar (CFG) or a non-context-
free-grammar (Non-CFG) using different methods. GFlowNet-
EM allows the incorporation of an energy-based model (EBM)
prior or the use of an intractable grammar, e.g., Non-CFG. All
configuration are run over 5 random seeds.
Grammar Method NLL / word ↓ Sentence F1 ↑

CFG

Marginalization 5.61 ± 0.01 39.51 ± 7.01

Exact-sampling EM 5.74 ± 0.05 31.17 ± 6.06

MC-EM 5.88 ± 0.01 22.31 ± 1.04
+ EBM Prior 5.91 ± 0.02 23.81 ± 1.41

GFlowNet-EM 5.70 ± 0.03 34.85 ± 3.39
+ EBM Prior 5.79 ± 0.03 48.41 ± 1.38

Non-CFG MC-EM - 18.98 ± 0.26
GFlowNet-EM ≤ 5.46 ± 0.07 38.68 ± 1.90

(2) How well the parse trees under the learned grammar
resemble human-labeled trees, as measured by an F1
score between sets of spans (constituents) in a proposed
and a human-labeled parse tree, following Kim et al.
(2019). This metric evaluates the linguistic relevance of
the learned grammar.

GFlowNet-EM parametrization. The GFlowNet models
the posterior over possible parse trees given a sentence (a
sequence of Ts, i.e., terminal symbols). Even though we
only consider binary trees, following Kim et al. (2019), the
number of possible trees is exponential both in the sequence
length and in the number of PTs and NTs.3 We propose
a bottom-up GFlowNet action space, which incrementally
joins two adjacent partial trees by hanging them under a
common parent, as illustrated in Fig. 1. The initial state is
represented by the sequence of 𝑛 terminal symbols 𝑥, each
of which is a tree of depth zero. A binary parse tree is
obtained after 𝑛 − 1 joining steps. We only generate the
NT symbols in the tree and marginalize over PT symbols,
as this can be done in linear time (see §C.3). We use a
Transformer (Vaswani et al., 2017) with full attention over
root nodes and a bottom-up MLP aggregator; see §C.2 for
more details and §C.7 for ablations studying the different
components of GFlowNet-EM.

In addition to the basic algorithm in Alg. 1, we use a forward-
looking SubTB loss, a sleep phase (Alg. 2), and MCMC
steps as described in §4.1 for the grammar induction experi-
ment.

5.2.1. CONTEXT-FREE GRAMMAR

We first consider the well-studied problem of inducing a bi-
nary branching probabilistic context-free grammar (PCFG),
where the rule probabilities are independent of the context.
In this case, the true posterior over parse trees is tractable to

3Even the number of binary tree shapes for a sequence of length
𝑛 is the Catalan number 1

𝑛

(2(𝑛−1)
𝑛−1

)
= 𝑂 (4𝑛/𝑛√𝑛).

sample from or even marginalize over using an algorithm
with run time cubic in the sequence length (Baker, 1979).
Nonetheless, we validate GFlowNet-EM by comparing it
with exact EM, i.e., always sampling from the exact poste-
rior. As Exact sampling EM is equivalent to GFlowNet-EM
with the constraint that the GFlowNet is perfectly trained to
zero loss on every E-step, the exact sampling baseline gives
a rough upper bound on the performance of GFlowNet-EM
without additional inductive biases.

Results. Marginalization baseline performs the best in
terms of both NLL and F1, as shown in Table 1, which we
attribute to its much lower gradient variance compared to
drawing samples from the true posterior. GFlowNet-EM
can match and exceed sampling from the exact posterior
on both metrics, despite having to learn an approximate
posterior sampler. It is worth noting that while GFlowNet-
EM is not necessary in this scenario, it has an asymptotic
computational advantage because it amortizes the cost of
inference; see §C.6 for more details.

We now consider setups where Marginalization and Exact
sampling are not tractable.

5.2.2. CFG WITH ENERGY-BASED MODEL GUIDANCE

It can be useful to bias learned LVMs to incorporate domain-
specific knowledge. For example, we might want the learned
grammar to produce parse trees that have shapes resembling
ones provided by human annotators for linguistic interest.
This preference for tree shapes is hard to integrate because
it is a global attribute, which violates the strong conditional
independence assumptions in CFGs that are required for
correctness of exact sampling algorithms.

We train an energy-based model (EBM) on the shapes of
human-labeled trees to represent black-box domain knowl-
edge. The EBM’s density acts as a prior that is multiplied
by the usual GFlowNet reward. We anneal the temperature
of this prior to infinity in 10,000 steps, thus only biasing the
beginning (symmetry-breaking) phase of the joint learning
process. See more details in §C.4.

Results. Table 1 shows that GFlowNet-EM with the EBM
prior can learn grammars that produce trees more similar
to human annotation compared to Exact sampling EM and
even Marginalization. We also note that the trees generated
have a strong right-branching bias, a well-known feature of
English syntax.

5.2.3. NON-CONTEXT-FREE GRAMMAR

The context-free assumption in CFGs makes exact sampling
from the posterior tractable. GFlowNet-EM, however, does
not require the true posterior to be tractable, as long as there
is underlying structure for amortized learning. To this end,

7

GFlowNet-EM for Learning Compositional Latent Variable Models

we experiment with a non-context-free grammar (Non-CFG)
that allows a rule probability to depend on the parent of the
LHS of the rule (§C.5), for which exact sampling from the
posterior over parse trees becomes prohibitively expensive.

Results. As shown in Table 1, GFlowNet-EM on this
Non-CFG yields a grammar that has a significantly lower
marginal NLL while having a comparable F1 to Marginal-
ization on a CFG, despite drawing finite samples from a
learned approximate posterior. This is attributed to the more
expressive generative model and to inductive biases of its
parametrization: we do not incorporate any external knowl-
edge, e.g., an EBM prior, in this experiment.

5.3. Discrete Variational Autoencoders

Next, we study the problem of learning deep generative mod-
els of images with discrete latent representations. This prob-
lem was previously posed under the framework of vector-
quantized variational autoencoders (VQ-VAE; van den Oord
et al., 2017). VQ-VAEs assume a latent space of the form
{1, . . . , 𝐾}𝑛, where 𝑛 is the length of the latent vector and 𝐾
is the number of possible values for each position. However,
the VQ-VAE decoder represents each value in {1, . . . , 𝐾}
by its representation vector in a vector space R𝐷 , while
the encoder predicts a vector in R𝐷 and maps it to the
value in {1, . . . , 𝐾} whose representation vector is nearest
to the prediction. This manner of passing through a high-
dimensional continuous space allows passing approximate
gradients from the decoder to the encoder using the straight-
through estimator (Bengio et al., 2013), but is inherently
incapable of learning more than a single-point estimate of
the posterior over discrete latents.

GFlowNet encoder. We propose to use a GFlowNet as
the encoder to learn a policy that sequentially constructs
the discrete latent representation of an image (Fig. 4). The
E-step trains the encoder model to match the posterior dis-
tribution over the discrete latents 𝑧 conditioned on an image
𝑥, and the M-step trains the decoder to minimize the error
in reconstructing 𝑥 from the latent sampled by the encoder.

Crucially, this approach does not rely on an approxima-
tion of gradients, as the E and M steps are decoupled, and
admits an expressive posterior by imposing none of the
conditional independence constraints on components of the
latent that VAE encoders make. Furthermore, VQ-VAEs
assume a uniform prior over the discrete latents 𝑧. However,
GFlowNet-EM enables us to also learn a prior distribution,
𝑝𝜃 (𝑧), jointly with the decoder 𝑝𝜃 (𝑥 |𝑧). This is a clear
advantage over VQ-VAEs, which can only learn the prior
distribution post-hoc, after the encoder is trained.

We chose an autogressive encoder: it sequentially constructs
the discrete latent by sampling one categorical entry at a

Table 2. GFlowNet-EM achieves lower NLL than VQ-VAE on the
static MNIST test set (mean and std. over 5 runs; GFlowNet NLL
estimated using 5000 importance-weighted samples). Bold: the
lowest NLL and all those not significantly higher than it (𝑝 > 0.1
under an unpaired 𝑡-test).

Codebook size

Method 𝐾 = 4 𝐾 = 8 𝐾 = 10

VQ-VAE 86.36 ± 0.14 80.84 ± 0.39 82.96 ± 0.38

GFlowNet-EM 74.18 ± 0.41 70.74 ± 0.99 70.67 ± 0.72
+ Greedy Decoder Training (GD) 76.22 ± 0.58 72.03 ± 0.98 72.69 ± 1.56
+ GD + Jointly Learned Prior 78.59 ± 1.48 70.84 ± 1.06 71.69 ± 1.90

time, conditioned on the input image and the previously
drawn entries (Fig. 4). This reduces the complexity of the
encoder network while maintaining an advantage over VQ-
VAEs, where the posterior is fully factorized.

For these experiments we modify Alg. 1 by (i) not using
an adaptive E-step, but alternately performing 400 E-steps
and 400 M-steps and and (ii) using sleep phase exploration
(Alg. 2).

Training and evaluation. To train the encoder and de-
coder networks, we alternate between E- and M-steps, using
400 gradient updates in each step (see §D for details). We
found that this was adequate and no adaptive E-step was
needed. During E-steps, we exploit the sleep phase for ex-
ploration, where we sample 𝑧 from either the uniform or
learned prior and 𝑥 from the current 𝑝𝜃 (𝑥 |𝑧). We also ob-
serve that convergence is accelerated by training the decoder
with samples drawn greedily from the learned encoder pol-
icy, although this gives a biased objective in the M-step and
results in slightly lower test data likelihood.

Results and discussion. We perform our experiments
on the static MNIST dataset (Deng, 2012), with a 4 × 4
spatial latent representation and using dictionaries of sizes
𝐾 ∈ {4, 8, 10} and dimensionality 𝐷 = 1. We compare
with a VQ-VAE with the same latent representation as a
baseline. (For codebook sizes larger than 10, we observed
the NLL of the VQ-VAE increase.) In Table 2 we show esti-
mated NLL on the test set obtained by the VQ-VAE model
and different variations of GFlowNet-EM for all dictionary
sizes 𝐾 . In all experiments, GFlowNet-EM performs signifi-
cantly better than VQ-VAE, which we attribute to the higher
expressiveness of the posterior.

Just as for VQ-VAEs, decoded samples with the latent drawn
from a uniform prior do not resemble real images. When the
prior 𝑝(𝑧) is also learned jointly with 𝑝(𝑥 |𝑧), we achieve
similar results to those assuming a uniform prior, but also
gain the ability to draw reasonable unconditional samples
from the prior (Fig. 6).

We note that the more expressive posterior and lower NLL
come with an increased training cost. Sampling from the

8

GFlowNet-EM for Learning Compositional Latent Variable Models

posterior requires multiple forward passes of the GFlowNet
encoder, and performing the E and M steps alternately en-
tails more training iterations than are needed for VQ-VAEs.

6. Related Work
6.1. GFlowNets

GFlowNets (Bengio et al., 2021; 2023) were first formu-
lated as a reinforcement learning algorithm that general-
izes maximum-entropy RL (Haarnoja et al., 2018) to set-
tings with multiple paths to the same state. However, re-
cent papers (Malkin et al., 2023; Zimmermann et al., 2022;
Zhang et al., 2023a) place GFlowNets in the family of vari-
ational methods, showing that they are more amenable to
stable off-policy training than policy gradient approaches
to minimizing divergences between distributions. Appli-
cations include biological molecule and sequence design
(Jain et al., 2022a;b), causal structure learning (Deleu et al.,
2022; Nishikawa-Toomey et al., 2022), and robust combi-
natorial optimization (Zhang et al., 2023b). Energy-based
GFlowNets (Zhang et al., 2022) solve the related problem
of fitting a GFlowNet to a nonstationary reward defined by a
generative model from which exact sampling is intractable;
however, the updates to the generative model are approxi-
mate contrastive divergence steps, and inference over latent
variables is not performed. GFlowNets were also used as
approximate posteriors for an ELBO maximization in Liu
et al. (2022).

6.2. Latent Variable Models and EM

Discrete LVMs, prominent before the deep learning revolu-
tion, continue to motivate research, including on posterior
regularization techniques (Ganchev et al., 2010), theoretical
properties of EM (Neath et al., 2013), augmenting classical
latent variable models with distributed neural representa-
tions (Dieng et al., 2020), adapting discrete LVMs to deep
learning-scale data for robust classification (Malkin et al.,
2020), and amortized inference (Agrawal & Domke, 2021).

6.3. Applications

Grammar induction. The literature on automatic gram-
mar induction, briefly described in §5.2, is most fo-
cused on probablistic context-free grammars and their vari-
ants, thanks to the efficient learning algorithm introduced
in Baker (1979) and Lari & Young (1990). Many variants
have increased the expressivity of PCFGs without relax-
ing the context-free assumption, such as Kim et al. (2019)
and Zhao & Titov (2021). While the learning of PCFGs can
be accelerated with careful implementations (Yang et al.,
2021; Rush, 2020), their time complexity remains cubic
in the length of the sequences and in the number of NT
and PT symbols. PCFG induction has been applied to

character-level multilingual language modeling (Jin et al.,
2021) and music modeling with the addition of continuous
symbols (Lieck & Rohrmeier, 2021).

Discrete VAEs. Discrete latent representations, as popu-
larized by VQ-VAEs (van den Oord et al., 2017), have been
shown to successfully capture both abstract and low-level
features (Esser et al., 2021; Baevski et al., 2020; Dhariwal
et al., 2020). In comparison to their continuous VAE coun-
terparts (Kingma & Welling, 2014), discrete latent variable
models utilize more efficiently the available latent degrees
of freedom due to their inherent ability to ignore impercep-
tible input details. The main limitations of discrete VAE
models arise from their use of a continuous relaxation to
allow for backpropagation (Ramesh et al., 2021) and the
fundamental limitation of having to learn the prior over the
latent variable separately. GFlowNet-EM overcomes both
of these limitations.

7. Conclusions
We presented a novel method for maximum-likelihood
estimation in discrete latent variable models that uses
GFlowNets as approximate samplers of the posterior for
intractable E-steps. Our experiments on non-context-free
grammar induction and discrete image representations –
both settings where the LVM has an intractable posterior
without additional independence assumptions – show that
GFlowNet-EM outperforms existing approaches. Future
work should broaden the applications of GFlowNet-EM
to other compositional latent variable models, particularly
those with continuous or hybrid latents.

Acknowledgements
The authors thank Matt Hoffman, Tuan Anh Le, Donna
Vakalis, and the anonymous ICML reviewers for their com-
ments on drafts of the paper, as well as Nebojsa Jojic, Paul
Soulos, and Dinghuai Zhang for some helpful discussions.
They are also grateful for the financial support from IBM,
Samsung, Microsoft and Google.

References
Agrawal, A. and Domke, J. Amortized variational infer-

ence for simple hierarchical models. Neural Information
Processing Systems (NeurIPS), 2021.

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. wav2vec
2.0: A framework for self-supervised learning of speech
representations. Neural Information Processing Systems
(NeurIPS), 2020.

Baker, J. K. Trainable grammars for speech recognition.

9

GFlowNet-EM for Learning Compositional Latent Variable Models

The Journal of the Acoustical Society of America, 65(S1):
S132–S132, 1979.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021.

Bengio, Y., Léonard, N., and Courville, A. C. Estimat-
ing or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint 1308.3432,
2013.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E., Tiwari, M., and
Bengio, E. GFlowNet foundations. Journal of Machine
Learning Research (JMLR), 2023. To appear.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer, 2006.

Bornschein, J. and Bengio, Y. Reweighted wake-sleep.
International Conference on Learning Representations
(ICLR), 2015.

Chomsky, N. Aspects of the Theory of Syntax. MIT Press,
1965.

Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 39(1):1–38,
1977.

Deng, L. The MNIST database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,
and Sutskever, I. Jukebox: A generative model for music.
arXiv preprint 2005.00341, 2020.

Dieng, A. B., Ruiz, F. J. R., and Blei, D. M. Topic modeling
in embedding spaces. Transactions of the Association
for Computational Linguistics, 8:439–453, 2020. doi: 10.
1162/tacl a 00325. URL https://aclanthology.
org/2020.tacl-1.29.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. Computer Vision and
Pattern Recognition (CVPR), 2021.

Frey, B. and Jojic, N. A comparison of algorithms for in-
ference and learning in probabilistic graphical models.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 27(9):1392–1416, 2005.

Ganchev, K., Graça, J., Gillenwater, J., and Taskar, B. Pos-
terior regularization for structured latent variable mod-
els. Journal of Machine Learning Research (JMLR), 11:
2001–2049, aug 2010.

Ghahramani, Z. Factorial learning and the 𝐸𝑀 algorithm.
Neural Information Processing Systems (NIPS), 1994.

Goyal, A. and Bengio, Y. Inductive biases for deep learn-
ing of higher-level cognition. Proceedings of the Royal
Society A, 478(2266):20210068, 2022.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

Hewitt, L. B., Le, T. A., and Tenenbaum, J. B. Learning
to learn generative programs with memoised wake-sleep.
Uncertainty in Artificial Intelligence (UAI), 2020.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. The
“wake-sleep” algorithm for unsupervised neural networks.
Science, 268 5214:1158–61, 1995.

Jain, M., Bengio, E., Hernandez-Garcia, A., Rector-Brooks,
J., Dossou, B. F., Ekbote, C., Fu, J., Zhang, T., Kilgour,
M., Zhang, D., Simine, L., Das, P., and Bengio, Y. Bio-
logical sequence design with GFlowNets. International
Conference on Machine Learning (ICML), 2022a.

Jain, M., Raparthy, S. C., Hernandez-Garcia, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective GFlowNets. arXiv preprint 2210.12765, 2022b.

Jin, L., Oh, B.-D., and Schuler, W. Character-based
PCFG induction for modeling the syntactic acquisition
of morphologically rich languages. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pp. 4367–4378, Punta Cana, Dominican Repub-
lic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.findings-emnlp.
371. URL https://aclanthology.org/2021.
findings-emnlp.371.

Kim, Y., Dyer, C., and Rush, A. Compound probabilis-
tic context-free grammars for grammar induction. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 2369–2385,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1228. URL
https://aclanthology.org/P19-1228.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. International Conference on Learning Represen-
tations (ICLR), 2014.

10

https://aclanthology.org/2020.tacl-1.29
https://aclanthology.org/2020.tacl-1.29
https://aclanthology.org/2021.findings-emnlp.371
https://aclanthology.org/2021.findings-emnlp.371
https://aclanthology.org/P19-1228

GFlowNet-EM for Learning Compositional Latent Variable Models

Koller, D. and Friedman, N. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

Lari, K. and Young, S. The estimation of stochastic context-
free grammars using the inside-outside algorithm. Com-
puter Speech and Language, 4(1):35–56, 1990.

Le, T. A., Kosiorek, A. R., Siddharth, N., Teh, Y. W., and
Wood, F. Revisiting reweighted wake-sleep for models
with stochastic control flow. Neural Information Process-
ing Systems (NeurIPS), 2019.

Lieck, R. and Rohrmeier, M. Recursive Bayesian net-
works: Generalising and unifying probabilistic context-
free grammars and dynamic Bayesian networks. Neural
Information Processing Systems (NeurIPS), 2021.

Liu, D., Jain, M., Dossou, B. F. P., Shen, Q., Lahlou, S.,
Goyal, A., Malkin, N., Emezue, C. C., Zhang, D., Hassen,
N., Ji, X., Kawaguchi, K., and Bengio, Y. GFlowOut:
Dropout with generative flow networks. arXiv preprint
2210.12928, 2022.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A., Bosc, T., Bengio, Y., and Malkin, N.
Learning GFlowNets from partial episodes for improved
convergence and stability. International Conference on
Machine Learning (ICML), 2023.

Malkin, N., Ortiz, A., and Jojic, N. Mining self-similarity:
Label super-resolution with epitomic representations. Eu-
ropean Conference on Computer Vision (ECCV), 2020.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
GFlowNets. Neural Information Processing Systems
(NeurIPS), 2022.

Malkin, N., Lahlou, S., Deleu, T., Ji, X., Hu, E., Everett,
K., Zhang, D., and Bengio, Y. GFlowNets and varia-
tional inference. International Conference on Learning
Representations (ICLR), 2023.

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., and
Taylor, A. Treebank-3. Linguistic Data Consortium,
Philadelphia, 14, 1999.

Neal, R. M. and Hinton, G. E. A view of the em algorithm
that justifies incremental, sparse, and other variants. In
Learning in graphical models, pp. 355–368. Springer,
1998.

Neath, R. C. et al. On convergence properties of the Monte
Carlo EM algorithm. Advances in modern statistical
theory and applications: a Festschrift in Honor of Morris
L. Eaton, pp. 43–62, 2013.

Nishikawa-Toomey, M., Deleu, T., Subramanian, J., Bengio,
Y., and Charlin, L. Bayesian learning of causal structure
and mechanisms with GFlowNets and variational bayes.
arXiv preprint 2211.02763, 2022.

Pan, L., Malkin, N., Zhang, D., and Bengio, Y. Better
training of GFlowNets with local credit and incomplete
trajectories. International Conference on Machine Learn-
ing (ICML), 2023.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. International Conference on Machine
Learning (ICML), 2021.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic backpropagation and approximate inference in deep
generative models. International Conference on Machine
Learning (ICML), 2014.

Rush, A. Torch-struct: Deep structured prediction li-
brary. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pp. 335–342, Online, July 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2020.acl-demos.38. URL https://aclanthology.
org/2020.acl-demos.38.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K.
Pixel recurrent neural networks. International Conference
on Machine Learning (ICML), 2016.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neu-
ral discrete representation learning. Neural Information
Processing Systems (NIPS), 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. Neural Information Processing Systems
(NIPS), 2017.

Wang, Y., Blei, D. M., and Cunningham, J. P. Posterior
collapse and latent variable non-identifiability. Neural
Information Processing Systems (NeurIPS), 2021.

Yang, S., Zhao, Y., and Tu, K. PCFGs can do better: In-
ducing probabilistic context-free grammars with many
symbols. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp.
1487–1498, Online, June 2021. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2021.naacl-main.
117. URL https://aclanthology.org/2021.
naacl-main.117.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville,
A., and Bengio, Y. Generative flow networks for dis-
crete probabilistic modeling. International Conference
on Machine Learning (ICML), 2022.

11

https://aclanthology.org/2020.acl-demos.38
https://aclanthology.org/2020.acl-demos.38
https://aclanthology.org/2021.naacl-main.117
https://aclanthology.org/2021.naacl-main.117

GFlowNet-EM for Learning Compositional Latent Variable Models

Zhang, D., Chen, R. T. Q., Malkin, N., and Bengio, Y.
Unifying generative models with GFlowNets and beyond.
arXiv preprint 2209.02606v2, 2023a.

Zhang, D., Rainone, C., Peschl, M., and Bondesan, R. Ro-
bust scheduling with GFlowNets. International Confer-
ence on Learning Representations (ICLR), 2023b.

Zhao, Y. and Titov, I. An empirical study of compound
PCFGs. In Proceedings of the Second Workshop on Do-
main Adaptation for NLP, pp. 166–171, Kyiv, Ukraine,
April 2021. Association for Computational Linguis-
tics. URL https://aclanthology.org/2021.
adaptnlp-1.17.

Zimmermann, H., Lindsten, F., van de Meent, J.-W., and
Naesseth, C. A. A variational perspective on generative
flow networks. arXiv preprint 2210.07992, 2022.

12

https://aclanthology.org/2021.adaptnlp-1.17
https://aclanthology.org/2021.adaptnlp-1.17

GFlowNet-EM for Learning Compositional Latent Variable Models

A. On GFlowNet optimization techniques
For the sake of completeness, we review the SubTB loss from Madan et al. (2023) and the forward-looking parametrization
from Pan et al. (2023).

Subtrajectory balance (SubTB). In addition to the forward and backward policy models 𝑃𝐹 (𝑠′ |𝑠) and 𝑃𝐵 (𝑠 |𝑠′), one
trains a state flow estimator 𝐹 (𝑠), which outputs a scalar for any state in the GFlowNet state space. If 𝜏 = (𝑠0 → · · · → 𝑠𝑛)
is a complete trajectory and 𝜏𝑖: 𝑗 = (𝑠𝑖 → 𝑠𝑖+1 → · · · → 𝑠 𝑗) is its subtrajectory, the SubTB loss 𝜏𝑖: 𝑗 is defined as

LSubTB (𝜏𝑖: 𝑗) =
𝐹 (𝑠𝑖)𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖)𝑃𝐹 (𝑠𝑖+2 |𝑠𝑖+1 . . . 𝑃𝐹 (𝑠 𝑗 |𝑠𝑖−1)
𝐹 (𝑠 𝑗)𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1)𝑃𝐵 (𝑠𝑖+1 |𝑠𝑖+2) . . . 𝑃𝐵 (𝑠 𝑗−1 |𝑠 𝑗) ,

where we enforce 𝐹 (𝑠) = 𝑅(𝑠) if 𝑠 is terminal. Thus LSubTB reduces to the TB loss if 𝑠𝑖 is initial and 𝑠 𝑗 is terminal, where
𝐹 (𝑠0) is identified with 𝑍 .

The SubTB objective for a complete trajectory 𝜏 = (𝑠0 → · · · → 𝑠𝑛) with 𝜆 = 1, as defined in Madan et al. (2023), is the
average of SubTB losses for all of its partial trajectories:

L(𝜏) = 1(𝑛+1
2
) ∑︁

0≤𝑖< 𝑗≤𝑛
LSubTB (𝜏𝑖: 𝑗).

Forward-looking loss. The state flow estimator 𝐹 (𝑠) used in SubTB is typically parametrized in the log domain, i.e., a
neural network taking 𝑠 as input outputs log 𝐹 (𝑠). In the case where one has available a partial reward accumulated up to state
𝑠 – denoted 𝑅̃(𝑠) – the forward-looking parametrization from Pan et al. (2023) parametrizes log 𝐹 (𝑠) = log 𝑅̃(𝑠) + 𝑔(𝑠; 𝜃),
where 𝑔 is a neural network.

Note that 𝑅̃ can be an arbitrary estimate of the negative ‘partial energy’ of a state 𝑠, and 𝑅̃ ≡ 0 yields the regular SubTB
objective. However, natural partial log-rewards exist in cases where the low-reward is close to additive over steps taken in
a trajectory. For example, in the case of a parser for a context-free grammar, if 𝑠 is a partially constructed tree, we take
log 𝑅̃(𝑠) to be the sum of log-likelihoods under the grammar of the production rules that occur in 𝑠.

B. Hierarchical mixture
This section describes the experiment setup for the hierarchical mixture experiments in §5.1. We sample 20 datasets and one
initialization of the supercluster means per dataset, where the initial supercluster means are selected to be random points
from the data. For each dataset and initialization, we run exact EM, variational EM, and GFlowNet-EM and compute the
log-likelihood under the the estimated supercluster means after the final iteration. We run all methods for 60 iterations,
which induces convergence in all methods.

The GFlowNet takes 1000 gradient steps in each E-step, samples one latent assignment per data point from the posterior, and
takes one gradient step in each M-step. Note that such an optimization method is chosen simply for illustration; the objective
in the M-step is quadratic in the parameters and can be optimized in closed form, a case of a more general algorithm for
Gaussian multiple cause models (Ghahramani, 1994).

We implemented several of the optimization techniques in §4.1 (loss thresholding and epsilon-uniform sampling), but the
empirical impacts are negligible on this problem as the basic GFlowNet-EM method easily matches the optimal solution
found by exact EM.

C. Grammar induction
C.1. Experiment setup

In our setup, following Kim et al. (2019), there are 30 NT symbols and 60 PT symbols in addition to T symbols. In addition,
among these NT symbols is a special root symbol, which we call ROOT, that is fixed to be the root of each parse tree. For
convenience, we shall use NT to refer to non-terminal symbols that are not the special ROOT token. The root symbol has
only one child, which is allowed to be any NT symbols, i.e., ROOT→ NT. There are |𝑁𝑇 |, i.e., number of NT symbols,
such rules. Each NT symbol is allowed to branch in two symbols, each belonging to the union of all NT and PT symbols,

13

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 3. Hyperparameters for training the GFlowNet-EM for grammar induction.

Hyperparameter Value

Encoder Transformer: Layers 6
Hidden Dimension 512
Adam 𝛽 (0.9, 0.99)
Batch Size 32
𝑃𝐹 , 𝑃𝐵: Learning Rate 10−4

𝑍: Learning Rate 0.03
MCMC Step 10
Sleep phase weight 10
SubTB 𝜆 1
EBM Prior temperature start 1
EBM Prior temperature end 1000
EBM Prior temperature schedule horizon 10000
Adaptive threshold max 6
Adaptive threshold min 3
Adaptive threshold schedule horizon 10000
Grammar: MLP Hidden Dimension 256
Grammar: Learning Rate 0.001
Grammar: Adam 𝛽 (0.75, 0.999)

i.e., NT→ {NT, PT} {NT, PT}. There are |𝑁𝑇 |3 |𝑃𝑇 |2 such rules. Finally, each PT symbol is allowed to turn into a T
symbol, i.e., a vocabulary item. There are |𝑃𝑇 | |𝑉 | such rules of the form PT→ V, where |𝑉 | is the size of the vocabulary.

A naive parametrization would use a table to store individual rule probabilities without assuming any dependencies among
them. This, however, is not conducive to learning expressive and linguistically meaningful grammars as described in Kim
et al. (2019). Kim et al. (2019) propose a distributed representation, where each symbol is assigned an embedding and
rule probabilities are computed using an MLP. See the Neural PCFG in Kim et al. (2019) for the specifics of this grammar
parametrization.

C.2. GFlowNet parametrization

Given an input 𝑥 represented as a sequence of tokens, we would like to sample a parse tree 𝑧 according to 𝑝(𝑧 |𝑥). We
construct the parse tree 𝑧 bottom-up as illustrated in Fig. 1. The state space of the GFlowNet is the space of ordered forests,
where a tree represents a sub-tree in the final 𝑧. The action space is all pairs of adjacent trees in an ordered forest. At every
time step, we choose one such pair and join them with a new parent to form a new tree. We use a Transformer (Vaswani
et al., 2017) with full attention, which processes only the root nodes of trees in the ordered forest. The information from
non-root nodes are encoded using an aggregator. For every binary branching, we recursively compute the embedding of the
parent node using the static embedding for the symbol at that node combined with the recursively computed embeddings of
its children using an MLP. The embeddings of root nodes, which now encode whole trees, are passed to the Tranformer
encoder. The policies 𝑃𝐹 and 𝑃𝐵 and the flow estimator 𝐹 are implemented as MLP heads on top of the Transformer
encoder. We use a sum-pooling operation for the flow estimator, which gives a scalar for every GFlowNet state regardless of
how many trees it contains.

Training hyperparameters are listed in Table 3.

C.3. Marginalizing preterminals

The construction of a parse tree 𝑧 given a sentence 𝑥 is conventionally done in two steps: 1) tagging and 2) parsing. The
tagging step assigns each terminal (T) symbol a preterminal (PT) symbol, and the parsing steps join nonterminal (NT)
symbols and PT symbols alike using NT symbols. Using a GFlowNet to tag T symbols doubles the number of time steps it
needs to construct 𝑧 for a sentence. This is especially wasteful considering that tagging step can be easily marginalized over
in linear time. As a result, we use the GFlowNet to join T symbols directly and produce parse trees without any PT symbols.

14

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 4. Hyperparameters for training the EBM prior on tree shapes.

Hyperparameter Value

MLP Hidden Dimension 16
Learning Rate 10−5

Adam 𝛽 (0.9, 0.99)
𝐿2 Regularization 10−4

Batch Size 32
Sequence Length 40

When evaluating the reward of such trees, we perform a marginalization over all PT symbols in each position, which can be
done in linear time for both the context-free grammar and the non-context-free grammar we introduced.

C.4. Training energy-based model prior

In §5.2.2, we use an energy-based model (EBM) as a prior on tree shapes. This EBM is trained with a persistent contrastive
divergence objective on gold trees from the training set, where the MCMC proposal used in PCD is a random tree rotation
(i.e., replacement of a random subtree of the form [𝑋 [𝑌𝑍]] by [[𝑋𝑌]𝑍] or vice versa) and the buffer reset ratio is 0.1. The
EBM architecture was a recursive aggregator similar to that described in Appendix C.2: the embedding of a node is a MLP
evaluated on a concatenation of the embeddings of its children, the embeddings of leaf nodes are fixed to zero vectors, and
the output energy is a pooled embedding of the root. This ensures that the energy depends only on the tree shape and not on
the symbols. The hyperparameter for training the EBM are listed in Table 4. The make the EBM compatible with the Sleep
phase, we temper the EBM term in the GFlowNet reward with a schedule that decays it linearly.

C.5. Non-context-free grammar parameterization

We consider a simple extension to the context-free grammar in which the expansion rules for a NT symbol can depend on its
parent. We assume a product model structure for this dependence, i.e., if 𝑃 is a parent of 𝑋 , then production probabilities
from 𝑋 – likelihoods of rules 𝑋 → 𝐿 𝑅 – have a form

𝑝𝜃 (𝐿, 𝑅 | 𝑋, 𝑃) ∝ 𝑓1 (𝐿, 𝑅, 𝑋; 𝜃) 𝑓2 (𝐿, 𝑅, 𝑃; 𝜃).
A context-free grammar corresponds to the case of 𝑓2 being identically 1.

We note that a generative grammar of this form with |𝑁𝑇 | nonterminal symbols can be shown to equivalent to a context-free
grammar with |𝑁𝑇 |2 nonterminal symbols by a standard construction. However, directly training grammars with, e.g.,
302 nonterminal symbols is prohibitive, while exact sampling from the posterior over parse trees in this non-context-free
grammar has quintic time complexity (see Table 5).

This intractability also makes calculating the marginal likelihood difficult. As a result, we use a variational lower bound for
that quantity by noting that

𝑝𝜃 (𝑥) =
∑︁
𝑧

𝑝𝜃 (𝑥, 𝑧) ≥
∑︁

𝜏∼𝑃𝐹 ;𝜏∋𝑧
𝑝𝜃 (𝑥, 𝑧) = 𝐹 (𝑠0 | 𝑥) (7)

where 𝐹 is the flow estimator. Overall, we have 𝑝𝜃 (𝑥) ≥ 𝐹 (𝑠0 | 𝑥) when the GFlowNet has converged. Thus, we use
𝐹 (𝑠0 | 𝑥), i.e., the flow of the initial state, as an estimate of a lower bound of the marginal likelihood.

C.6. Time complexity analysis

Replacing a highly optimized algorithm used for exact learning of CFGs with an amortized posterior estimator, e.g.,
parametrized by a Transformer, inevitably increases the run-time cost. However, there are asymptotic advantages to
GFlowNet-EM compared to exact baselines, i.e., Marginalization and Exact-sampling EM.

Table 5 compares their theoretical time complexity. We use 𝑛 to denote the length of input sequences and |𝑆 | the number of
possible symbols in 𝑧. This work focuses on presenting the method of GFlowNet-EM, and we do optimize for run time
efficiency. For example, we use a Transformer with full attention, which has a time complexity of O(𝑛2) per forward pass in

15

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 5. Theoretical time complexity of GFlowNet-EM and exact baselines for both the CFG and the Non-CFG we introduce as a function
of 𝑛, the number of NT symbols, and |𝑆 |, the length of the terminal symbol sequence. GFlowNet-EM is more efficient asymptotically due
to amortization. The exact baselines become intractable on the Non-CFG.

Grammar Method Time complexity

CFG Marginalization O(𝑛3 |𝑆 |3)Exact-sampling EM

GFlowNet-EM O(𝑛2 |𝑆 |)

Non-CFG Marginalization O(𝑛5 |𝑆 |5)Exact-sampling EM

GFlowNet-EM O(𝑛2 |𝑆 |)

Table 6. Ablation on training a GFlowNet to sample from the posterior of a fixed grammar using a variational upper bound on the marginal
NLL per word. All configurations are run with 5 random seeds.

GFlowNet loss Exploration Sleep NLL / word ↓
SubTB ✓ ✓ ≤ 5.97 ± 0.01
SubTB ✓ × ≤ 8.56 ± 1.74

TB ✓ × ≤ 8.95 ± 1.36
TB × × ≤ 9.40 ± 1.44
HVI × × ≤ 13.14 ± 1.55
× × ✓ ≤ 6.03 ± 0.01

Exact NLL / word 5.65

sequence length, making the complexity per trajectory O(𝑛3), even though the theoretical complexity is just quadratic. This
can be solved by simply using an architecture like a Transformer with linear attention.

C.7. Ablation studies

To understand the impact of the optimization techniques for GFlowNet-EM introduced in §4.1, we perform three ablation
studies.

Effect of E-step optimization techniques. In the first study, we focus on the E-step. We fix a grammar learned with
Marginalization to compute the reward for the GFlowNet. As the metric of comparison we use an upper bound on the
negative marginal log-likelihood per word under the GFlowNet, given by log 𝑝𝜃 (𝑥 |𝑧) 𝑝𝜃 (𝑧)𝑃𝐵 (𝑠0→···→𝑧 |𝑥)

𝑃𝐹 (𝑠0→···→𝑧 |𝑥) . The results are
summarized in Table 6.

There are a few takeaways from this experiment. It is clear that a combination of all the optimization techniques is necessary
for the best performance. Further, we also compare to a hierarchical VI (HVI) baseline due to its close connection with
GFlowNets (Malkin et al., 2023). We observe that HVI performs the worst.

Joint learning. To understand the full impact of the techniques, we consider the full joint learning scenario in Table 8.
Again, we observe that all techniques are required to get the best performance. Notably, despite strong performance on the
fixed grammar, only using the Sleep phase performs much worse in the case of joint learning. This is potentially due to the
fact that reward in joint learning is non-stationary and thus hard to model without exploration.

In a separate experiment, we consider the of the threshold used in the adaptive E-step. The results are summarized in Table 7.
In summary, although thresholding is necessary – without it, the generative model tends to collapse, i.e., most symbols of
the grammar receive almost zero mass in the posterior – if the threshold is sufficiently low, then its exact value controls the
convergence rate, trading off between speed and accuracy of fitting the posterior. All thresholds result in convergence to
similar final NLL and F1 scores, but we observe faster convergence to these values with higher values of the threshold.

16

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 7. Ablation on training GFlowNet-EM on a context-free grammar with different threshold schedules. We vary the threshold at the
start and end of training, with linear decay in between. A higher threshold results in more frequent M-steps. All configurations are run
with 5 random seeds.

Threshold NLL / word ↓ Sentence F1 ↑
12→ 6 5.77 ± 0.02 32.12 ± 2.93
8→ 4 5.78 ± 0.02 32.23 ± 3.25
6→ 3 5.76 ± 0.02 34.49 ± 2.81
4→ 2 5.79 ± 0.02 30.56 ± 4.42

Table 8. Ablations on joint learning in GFlowNet-EM for CFG. All configurations are run over 5 random seeds.

Method NLL / word ↓ Sentence F1 ↑
GFlowNet-EM 5.70 ± 0.03 34.85 ± 3.39
−MCMC 6.02 ± 0.01 28.56 ± 0.55
−Sleep 5.91 ± 0.04 28.13 ± 0.43
−SubTB 5.84 ± 0.08 26.56 ± 7.82
−Exploration 5.70 ± 0.02 31.87 ± 1.06

Sleep Only 6.08 ± 0.06 48.41 ± 1.38

C.8. Sample parses from grammars learned by GFlowNet-EM

GFlowNet-EM is able to learn diverse tree structures for both the CFG (without EBMs) (Table 9) and the NCFG case (Ta-
ble 11) but collapses to right-deep trees when guided by an EBM (Table 10). The learned latent structures that lead to better
modeling of the data don’t necessarily agree with our linguistic intuition. The GFlowNet parser does not use diverse tags for
top of the parse trees. This may indicate either that high-level rules are harder to learn because they depend on meaningful
low-level tags, or that a greater improvement in likelihood can be achieved by better hierarchical modeling of low-level
structure (e.g., having latent tags responsible for frequent bigrams). Both observations can motivate future work on more
interpretable latents and better exploring the latent space using GFlowNet-EM.

D. Discrete VAE
D.1. Experiment setup

In all our experiments we use a 4 × 4 discrete latent representation and increase the number of categorical entries 𝐾 in the
dictionary from 4 to 8 to 10. We omitted larger dictionary sizes as we observed the VQ-VAE NLL worsen for 𝐾 ≥ 10. In
total there are 𝐾16 possible latent configurations.

We used a similar architecture as the one described in (van den Oord et al., 2017), adding batch normalization and additional
downsizing and upsizing convolutional layers to obtain the smaller 4 × 4 latent representation. The GFlowNet encoder
network extends the VQ-VAE convolutional image encoder by adding state encoding and state prediction MLPs. The
decoder network is the same for both models. The prior distribution is modeled using a PixelCNN (van den Oord et al.,
2016) with 8 masked convolution layers.

For 𝐾 = {4, 8} we trained the VQ-VAE model for 50 epochs with a learning rate of 2 × 10−4, reduced to 5 × 10−5 at
epoch 25. For 𝐾 = 10, we trained for 80 epochs with the same learning rate, which was now reduced at epoch 50. The
GFlowNet-EM + Greedy Decoder model was trained in all settings for 250 epochs, with a learning rate of 2 × 10−4, reduced
to 5 × 10−5 at epoch 180. For the experiments where the decoder is not trained with greedily-drawn samples, the training
steps were doubled. Lastly, in the GFlowNet-EM + Prior experiments the models were trained trained for 400 epochs with
similar learning rate schedules, and the reduction at epoch 300. We clarify that each GFlowNet-EM epoch is inherently
slower since the encoder network requires multiple forward passes to construct the latent representation. We disabled all
batch normalization layers for the GFlowNet experiments and used a batch size of 128 in all our tests.

17

GFlowNet-EM for Learning Compositional Latent Variable Models

z0x

PF(zi | x, z0,...,i-1)

p(x | z)

xrec

z1 z2 ...

z15

Figure 4. Visualization of the procedure of encoding an image 𝑥 into a discrete representation 𝑧 using a GFlowNet encoder with an
autoregressive policy and reconstructing the original image.

D.2. GFlowNet-EM visualizations

In Fig. 4 we visualize the steps of encoding an input image into a discrete representation and reconstructing it. We limited
the GFlowNet policy to be autoregressive, which we found to strike an appropriate balance between posterior expressiveness
and model complexity. At every step the GFlowNet encoder ’looks’ at the image and existing state and samples the next
entry in the latent representation. In Figures 5 and 6 we present results of the GFlowNet-EM model with dictionary size
𝐾 = 8 and a jointly learned prior. Despite the minimal limited latent representation, the model has captured the variety in
the data which we showcase in the samples drawn from the learned prior.

E. Computation cost in practice
Grammar induction Our experiments with the context-free grammar take 23 hours to run to completion on a single V100
GPU, while the baseline from Kim et al. (2019) takes 21 hours to run on similar hardware. For completeness’ sake, we note
that a specialized library called torch-struct was later developed on the basis of Kim et al. (2019)’s work, introducing several
optimization tricks that reduce the computation time 8-fold. We can expect software optimizations to similarly help speed
up GFlowNet-EM.

However, in the non-context-free case, a GFlowNet-EM run still takes roughly 23 hours, while exact parsing using the
(generalization of) inside algorithm will take orders of magnitude longer in the absence of conditional independence
assumptions. With the EBM prior on tree shape, exact parsing is completely intractable (no longer even polynomial in

18

GFlowNet-EM for Learning Compositional Latent Variable Models

Figure 5. Images from the static MNIST test set and their reconstructions using the GFlowNet-EM model with 𝐾 = 8.

Figure 6. Samples drawn from the learned prior of the GFlowNet-EM model with dictionary size 𝐾 = 8.

sequence length).

Discrete VAE We used a fixed number of updates for both the E and M steps. An E-step (training the GFlowNet encoder)
takes approximately 25s for 400 updates, whereas the M-step (training the convolutional decoder) requires 10s for 400
updates on one A5000 GPU. In the base experiment, training takes rougly 3 hours, which is halved when the greedy decoder
is used. When also learning the prior, the E and M steps take 26s and 18s respectively. Training requires again approximately
3 hours. In comparison, training any of the VQ-VAE models requires about 15m, indicating a overhead for GFlowNet-EM
with greedy decoder training. Future work should consider ways to accelerate GFlowNet-EM training, such as by better
selection of learning rates and update schedules for the E, sleep, and M steps, which we did not extensively tune for the
experiments in this paper.

19

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 9. Sample parses generated with GFlowNet-EM on a context-free grammar.

Parse Tree log 𝑍 (𝑥) log 𝑝(𝑧 |𝑥)
Q15

¡unk¿

Q15

Q7

alsohave

Q15

Q14

studiosportrait −43.68 −49.19
Q15

aroundQ15

Q15

Q18

turnto

Q15

Q23

beganit

Q15

Q22

fallenhad

Q15

Q3

Q12

dowthe

as

Q15

Q4

quicklyas

then

but

−112.76 −126.26
Q28

Q9

Nequaling

Q28

Q9

Nof

Q28

Q22

Q11

closethe

on

Q28

Q13

Q13

Q13

basedis

Q27

indexeach

Q6

comparabledirectly

Q10

them

Q3

maketo

−85.03 −94.73

20

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 10. Sample parses generated with GFlowNet-EM on a context-free grammar with an annealed EBM prior.
Parse log 𝑍 (𝑥) log 𝑝(𝑧 |𝑥)

Q3

Q25

Q14

Q25

Q25

Q25

damagedbadly

very

been

has

market

this

−48.21 −51.02
Q3

Q25

Q25

Q14

Q13

Q14

Q3

Q25

Q14

Q3

Q14

Q14

Q14

Q3

Q3

Q25

edtp.m.

N:N

about

at

opened

which

japan

in

trading

overnight

in

higher

were

bonds

treasury

u.s.

−118.52 −114.69
Q3

Q25

Q3

Q14

Q25

Q3

Q25

Q14

Q25

Q14

Q3

Q25

Q14

Q23

Q12

Nequaling

N

of

close

the

on

based

is

index

each

comparable

directly

them

make

to

−94.38 −96.89

21

GFlowNet-EM for Learning Compositional Latent Variable Models

Table 11. Sample parses generated with GFlowNet-EM on a non-context-free grammar.
Parse log 𝑍 (𝑥) log 𝑝(𝑧 |𝑥)

Q9

Q9

Q9

Q5

Q11

trendthe

onto

Q25

¡unk¿

Q25

alsohave

studios

portrait

−42.11 −50.74
Q9

Q9

Q9

Q5

Q5

around

Q25

Q28

turn

Q10

tobegan

it

Q25

fallenhad

Q25

Q11

dowthe

as

Q16

quicklyas

Q11

thenbut

−117.60 −153.98
Q17

Q17

Q17

Q17

Q10

Nequaling

Q15

Q10

Q20

Nof

Q12

Q7

closethe

on

Q15

basedis

index

Q3

Q12

eachcomparable

directly

Q7

them

Q27

maketo

−91.77 −105.96

22

