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Abstract

Designing protein sequences with specific biological functions and structural stabil-
ity is of paramount importance in both biology and chemistry. Generative models
have demonstrated their potential for reliable protein design. However, previous
models have been constrained by their inability to generate protein sequences in a
controlled manner, a capability that is crucial for various biological applications.
In this work, we propose TaxDiff, a taxonomic-guided diffusion model for con-
trollable protein sequence generation that combines biological species information
with the generative capabilities of diffusion models to generate structurally stable
proteins within the sequence space. Specifically, taxonomic control information is
inserted into each layer of the transformer block to achieve fine-grained control.
The combination of global and local attention ensures the sequence consistency
and structural foldability of taxonomic-specific proteins. Extensive experiments
demonstrate that TaxDiff can consistently achieve better performance on multiple
protein sequence generation benchmarks in both taxonomic-guided controllable
generation and unconditional generation. Notably, the sequences generated by
TaxDiff even surpass those produced by direct-structure-generation models in terms
of confidence based on predicted structures and require only a quarter of the time
of models based on the diffusion model.

1 Introduction

Protein design [1, 2, 3] aims to generate protein variants with targeted biological functions, which is
significant in multiple biological areas, including enzyme reaction catalysis [4, 5], vaccine design [6,
7, 8], and fluorescence intensity [9, 10].

Protein design contains two paradigms: sequence generation [11, 12, 4, 13] and structure genera-
tion [14, 15]. Recently, EvoDiff [11] proposed a universal designing paradigm, combining structure
and sequence generation using the diffusion framework [16], which improves the protein design
efficiency. Despite the success of EvoDiff [11] and other sequences generative models [4, 17, 12] that
are widely used for designing biologically plausible protein sequences, these protein design models
are limited to unconditional generation. As shown in Figure 1.(a), in practical scenes, biological
researchers need to filter the randomly generated proteins to fulfil the desired criteria [18], which is
time-consuming and labor-intensive. Thus, unconditional protein generation, which can not control
protein properties, is still some way from practical application.
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Figure 1: (a). Traditional protein sequence generation models operate without control signals, thus
researchers can only randomly generate sequences and subsequently filter them until they fulfill the
desired criteria. (b). Our TaxDiff takes species features as guidance for controllable protein sequence
generation, meeting the need of biology downstream tasks.

To address the uncontrollable challenge, we propose a taxonomic-guided diffusion model, TaxDiff, to
design target proteins with the biological-species control signals. Specifically, TaxDiff inserts the
taxonomic control features into each Denoise Transformer block of the diffusion model to achieve
controllable generation. Unlike the protein family in ProGen [19], which focuses on sequence and
structural similarities, TaxDiff utilizes a broader taxonomic classification to reflect evolutionary
lineage and shared characteristics among all living organisms. For fine-grained protein sequence
generation, we also propose the patchify attention mechanism in the denoise transformer block to
capture the protein feature on global and local scales. Furthermore, we reclassify protein sequences at
the family and species levels to consolidate the overly detailed classification units within UniProt [20].
Our TaxDiff follows the protein design paradigm of EvoDiff [11]. Thus, TaxDiff is capable of
generating both protein sequences and structures in a shared space.

We carry out extensive experiments to evaluate TaxDiff across multiple benchmarks, encompassing
both unconditional and taxonomic-guided controllable protein sequence generation. In unconditional
protein sequence generation, the sequence-based TaxDiff demonstrated comparable structural mod-
eling capabilities to structure-based protein generation models, even significantly outperforming
them in common metrics such as TM-score, RMSD, and Fident, with improvements of 11.93%,
5.4552, and 7.13% respectively. In taxonomic-guided controllable protein sequence generation, the
pLDDT scores from protein structure prediction model OmegaFold [21] far surpassed other sequence
generation models, nearing the levels of natural protein sequences. Empirical studies also indicated
that due to the patchify attention mechanism, the efficiency of TaxDiff was markedly enhanced,
requiring as little as 24 minutes to generate 1,000 protein sequences, which is only 1/4 to 2/3 of the
time required by other models. All experimental results demonstrate that TaxDiff possesses superior
capabilities in exploring protein sequence space and producing structurally coherent proteins. The
main contributions of our study are outlined as follows:

• To the best of our knowledge, our TaxDiff is the first controllable protein generation model utilizing
guidance from taxonomies.

• Our TaxDiff proposes a taxonomic-guided framework that fits all diffusion-based protein design
models. We propose a patchify attention mechanism that enhances protein design by reducing training
and inference time while improving model performance.

• Experiments demonstrate that our TaxDiff achieves state-of-the-art results in both taxonomic-guided
controllable and unconditional protein sequence generation, excelling in structural modeling scores
and sequence consistency.

2 Related Work

Diffusion Models Recently, diffusion models [22, 16] have demonstrated impressive applications
and results across various domains, including computer vision [23], natural language generation [24],
multi-modal learning [25], molecular modeling [26], and protein structure generation [15]. The
inherent suitability of diffusion models for processing protein structures, coupled with the discrete
representation of protein sequences, has led to a predominant focus on structural generation in most
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current protein studies based on diffusion models, with relatively less attention paid to sequence
generation.

Protein Structures Generation In recent developments, SMCDiff [27], FrameDiff [28], and Liu [29]
employ the graph neural network to generate functional proteins or molecules. Meanwhile, RFd-
iffusion [15] acquires a generative model by fine-tuning the RoseTTAFold structure prediction
network [30], achieving notable performance across various fields. FoldingDiff [14] describes protein
structures through consecutive angles, generating novel structures by denoising from a random, un-
folded state. However, a significant limitation in the structure generation paradigm [31, 32, 33, 34, 35],
equivalent to the sequence data, there is limited data on protein structures, which restricts the potential
exploration of the functional space of proteins. Meanwhile, sequence-based TaxDiff bypasses the
bottleneck of limited training data.

Protein Sequences Generation Hawkins-Hooker [12] and Repecka [4] respectively used VAE and
GAN to synthesize functionally active enzyme sequences. Addressing the challenge of nanobod-
ies’ complementarity determining region, Shin [17] employed autoregressive models to solve this
problem. Wu [36] and Cao [37] adopted the Transformer model to design protein sequences. Never-
theless, existing sequence-based models predominantly exhibit limitations to unconditional or specific
species [2, 12] generation. Such constraints underscore a notable gap in the capacity for conditional
generation in these models. Through taxonomic guidance, TaxDiff can generate proteins with the
biological-species control signals.

3 Preliminary

In this section, we first introduce the problem setting of controllable protein sequence generation in
Section 3.1, then describe the Diffusion Models (Section 3.2), which is utilized as our main generation
framework.
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Figure 2: Overall architecture of the proposed TaxDiff. This framework delineates how we fuse
the Denoise Transformer into the denoising process of the Diffusion model. For a taxonomic-guided
controllable generation, we additionally accept a Tax-id y and embed it with Timestep t into the
Patchify Blocks. The bottom middle of this framework elaborates on the details in Patchify Block. Σ
is the predicted diagonal covariance.

3.1 Protein Sequence Generation

In this paper, we consider generating protein sequences under the guidance of taxonomies. Protein
sequence space can be represented as S = {x,y} where x = (x1, . . . ,xN) ∈ RN×L are the protein
sequences of length L and y = (y1, . . . ,yM) ∈ RM×1 represents the biological taxonomic category
to which the protein belongs, such as Bacteria, Eukaryota, Archaea and so on. N and M , respectively
represent the total number of protein sequences and categories.

We consider the following two generative tasks:

(I) Controllable generation. With a collection of protein sequences x with label y, we build a
conditional generative model pθ(x|y) that is capable of controllable protein sequences generation
given desired biological taxonomic category y.
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(II) Unconditional generation. Using the set of proteins x, unconditional generation train parame-
terized generative models pθ(x) which can randomly generate diverse and realistic protein sequences
without other additional labels. In a sense, unconditional generation also belongs to controllable
generation, it just requires us to set the control signal to null: pθ(x|∅).

3.2 Diffusion Model

We introduce the Diffusion Models (DMs) [38, 22], which is the generation framework of our TaxDiff.
DMs are latent variable models [39] that model the pure data x0 as Markov chain x0 . . . xT , In TaxDiff,
the x0 represents the initial and pure protein sequence, while xT is the noisy protein sequence formed
after adding Gaussian noise. DMs can be described with two Markovian processes: a forward
diffusion process q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) and a reverse denoising process pθ(x0:T ) =

p(xT )
∏T

t=1 pθ(xt−1|xt). The variables xt and xt−1 represent the protein sequence data with noise
at timestep t and timestep t− 1, respectively. The forward process gradually adds Gaussian noise to
data xt:

q(xt|xt−1) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

The hyperparameter ᾱt in Eq. 1 controls the amount of noise added to the pure protein sequence
x0 at each timestep t. The ᾱt are chosen so that the samples xt can approximately converge to
standard Gaussians N (0, I). Typically, this forward process q is a pure noise adder without trainable
parameters.

The generation process of DMs is defined as learning a parameterized reverse denoising process
pθ, which aims to incrementally denoise the noisy variables xT :1 to approximate initial data x0

in the target data distribution, The denoising process pθ in TaxDiff is represented by the Denoise
Transformer, as illustrated in Figure 2, and can be formally expressed as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)
where the noise distribution p(xt) is defined as standard Gaussians N (0, I). The means µθ and
variances Σθ typically are neural networks such as U-Nets [40] for images or Transformers for
text [41]. However, TaxDiff uses a Denoise Transformer based on Patchify attention (described in 5.3)
to predict the means and variances.
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Figure 3: Taxonomic distribution and comparison of taxonomic-guided models. Left: We display
the distribution of species classification from the second and third taxonomic levels, showcasing the
top 10 categories. Right: We compare the performance of different models in terms of TM-score
under the condition of the second taxonomic level.

4 Methodology

We begin by introducing the framework and data flow of TaxDiff in Section 4.1. Next, we elucidate
the taxonomic-guided controllable generation process in Section 4.2, followed by a discussion of
the optimization of the denoising capability of the diffusion model using the patchify attention
mechanism in Section 4.3. Finally, we describe the training procedure, with a specific focus on
the design of the loss function, in Section 4.4. The overall architecture of the proposed TaxDiff is
illustrated in Figure 2.
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4.1 TaxDiff Framework

In recognition of the diversity of amino acids, we introduce an additional dimension D to enrich
features at the amino acid level. Through Encoder, feature-augmented x can thus be represented as
x ∈ RL×D. In the Denoise Transformer block, three different types of inputs are processed: the data
xT formed by the forward process in DMs that gradually adds Gaussian noise, the timestep t, and the
protein taxonomic identifier y (tax-id). xT undergoes standard Transformer-based frequency position
embedding (sine-cosine version) [42], while the timestep t and tax-id y are individually embedded,
resulting in two distinct conditional tokens that are concatenated with the xT . Conditional tokens are
designed for seamless integration, rendering them indistinguishable from protein sequence tokens.
After passing through the terminal Patchify block, these conditional tokens are removed from the
sequence. This approach enables the use of standard Transformer blocks without modification.

After the patchify block, the sequence tokens must be decoded into a predicted noise and diagonal
covariance (Σ). Both of them retain the shape equivalent to that of the original input. To facilitate
this, adaptive layer normalization (adaLN) [43] is applied, and each token is linearly decoded into a
tensor of dimensions L× 2D. In the decoder, the denoised final result x0 ∈ RL×D is subjected to
an argmax layer: argmax(x0) ∈ RL. The output is then parsed and segmented at each padding or
stopping sign, thereby generating the protein sequences.
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Figure 4: The Patchify Attention Mechanism. Left: The division between Local-Attention and
Global-Attention. Right: we present five different approaches to combining them. The division of the
feature dimension in Global-Attention is determined by the number of heads H , while the number of
tokens generated by Patchify is determined by the patchify size P .

4.2 Taxonomic-guided Generation

Traditional conditional diffusion models take the class labels or text as extra information [44, 45], but
our TaxDiff model encodes tax-id y as a condition for controllable generation. In this case, the reverse
process is formalized as pθ(xt−1|xt, y), with both means µθ and variances Σθ being conditional by
y. In this way, the taxonomic-guided encourages the sampling procedure towards maximizing the
conditional log-likelihood log p(y|x) [46]. Invoking Bayes’ Rule, we have log p(y|x) ∝ log p(x|y)−
log p(x) and hence ∇x log p(y|x) ∝ ∇x log p(x|y) −∇x log p(x). DMs based on score functions
guides model sample x with an increased probability p(x|y) by adjusting noise prediction:

µ̂θ(xt, y) = µθ(xt, ∅) + s · ∇x log p(x|y)
∝ µθ(xt, ∅) + s · (µθ(xt, y)− µθ(xt, ∅))

(3)

where the scalar s > 1 determines the scale of guidance. Notably, setting s = 1 reverts the process to
standard sampling.

For diffusion models where y = ∅, this is achieved by randomly dropping out y with a certain proba-
bility and replacing it with a ’null’ embedding ∅. This technique of controllable guidance significantly
improves samples over generic sampling techniques [46, 47]. This observed improvement is also
demonstrated in Figure 3 and discussed in Experiments 5.3.

The classification of taxonomic identifiers (tax-id) y within UniProt is highly detailed, often resulting
in exceedingly fine-grained categories that encompass only a limited number of sequences. Such
fine-grained categories hinder effective feature extraction across the broader Taxonomic domain. To
address this issue, we reclassified the ninth layer of original taxonomic lineages, which corresponds to
the family and species levels [48, 49]. Specifically, we align the protein sequences from UniProt with
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the taxonomic data from NCBI [50] by recursive tracing from the terminal child nodes up to the root.
Utilizing the nine layers of classification subordinate to the root node, we assigned a novel tax-id y to
each sequence. This reorganization effectively condenses the categories to a total of 23,427. Within
this refined classification, cellular organisms constitute a dominant 98% of the protein sequences,
with the remaining 2% attributed to viruses and other entities. Predominant domains within cellular
organisms include Bacteria (63%), Eukaryota (33%), and Archaea (3%). To further examine the
impact of taxonomic guidance, we calculated the average performance of different models under
the guidance of these three taxonomic domains. The performance of the different models in the
TM-score is shown in Figure 3 Right. Further subdivisions and their respective visual representations
are detailed in A.1.

4.3 Patchify Attention

To enhance the model’s capacity to extract global features from protein sequences while simulta-
neously preserve the salient of amino-acid local features, we have implemented patchify attention
mechanism upon the input protein sequences. This procedure is delineated in Figure 4.

At the protein sequence level, Global-Attention is employed to capture the intricate relationships
between different amino acids. For each head i within the Global-Attention, with a total of H heads,
we calculate the Qi = x×WQ

i , Ki = x×WK
i and Vi = x×WV

i as linear transformations of the
input matrix x ∈ RL×D, where WQ

i , WK
i and WV

i are the weight matrices unique to each head. The
attention weights are then computed using the scaled dot-product attention mechanism:

Attentionhead(Qi,Ki, Vi) = softmax

(
QiK

T
i√

dk

)
Vi (4)

Here, dk is the dimension of the Ki. The final output of the Global-Attention obtained by concatenat-
ing the individual heads’ outputs and applying a subsequent linear transformation:

Global−Attention(x) = concat(head1, . . . , headH)WO (5)

where each headi represents an attention block, and WO serves as an output weight matrix to
synthesize all Heads.

At the amino-acids level, Local-Attention divides the sequences of length L based on the patchify-size
P . For each patch j , the queries (Qj), keys (Kj) and values (Vj) are deduced by:

Qj = Patchj(x)×WQ (6)

Kj = Patchj(x)×WK (7)

Vj = Patchj(x)×WV (8)

where Patchj(x) denotes the partitioning of x into its corresponding patch, and WQ, WK and WV

are the shared weight matrices. Attention weights within each patch are similarly computed utilizing
the scaled dot-product attention:

Attentionpatch(Qj ,Kj , Vj) = softmax

(
QjK

T
j√

dk

)
Vj (9)

where dk is the key’s dimension within the patch. The Local-Attention’s ultimate output is derived by
concatenating the outputs from all patches:

Local−Attention(x) = concat(Patch1, . . . ,PatchP ) (10)

where Patchj equating to Attentionpatch(Qj ,Kj , Vj).

Additionally, we derive the scaling parameter α from residual connections within the Patchify block,
while the scaling parameter γ and bias parameter β are regressed from the conditioning embedding
vectors of t and y. The adaptive layer normalization (adaLN) uniformly applies the same function
across all tokens.

To effectively integrate Global and Local-Attention, we explored five methodologies and subjected
them to extensive experiments. The combinatorial strategies are illustrated on the left side of Figure 4:
(A) Global-Attention and Local-Attention are used in parallel, followed by concatenation and fusion
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of the extracted features via a Pointwise Feedforward network; (B) and (C) Global-Attention and
Local-Attention are deployed in a sequential format, capped with Pointwise Feedforward to predict
noise and variance; (D) and (E) isolate the utilization to either Global-Attention or Local-Attention
exclusively. The comparison of these five methods, as well as the impact of varying patchify size on
local feature extraction capabilities, are examined in Section 5.4.

4.4 Training Procedure

The training of diffusion models is aimed to learn the reverse process, which is expressed as
pθ(xt−1|xt) = N (µθ(xt),Σθ(xt)), while the Denoise Transformer is used to estimate pθ. The
model training within the variational lower bound of the log-likelihood of x0, with the exclusion of
an additional term irrelevant for training, the loss function can be represented to:

L(θ) =− p(x0|x1) +
∑
t

DKL(q
∗(xt−1|xt, x0)||pθ(xt−1|xt)) (11)

Given that both q∗ and pθ are Gaussian distributions, the Kullback–Leibler divergence (DKL) can be
evaluated by the means and covariances of these distributions.

For simple model training, µθ is reparameterized as a noise prediction network ϵθ, then the model
can be trained using a simple mean-squared error function (MSE loss) between the predicted noise
ϵθ(xt) and the actual sampled Gaussian noise ϵt:

LMSE(θ) = ||ϵθ(xt)− ϵt||2 (12)

However, for training diffusion models with a learned reverse process covariance Σθ, it becomes
imperative to optimize the entire DKL term. Followed DiT [41], we train ϵθ with LMSE and Σθ

with the full loss function L(θ). Upon the successful training of pθ, new protein sequences can
be generated by initializing xt ∼ N (0, I) and subsequently sampling xt−1 ∼ pθ(xt−1|xt) via the
reparameterization trick.

5 Experiments

In this section, we demonstrate the advantages of TaxDiff through a series of comprehensive experi-
ments. We begin by presenting our experimental setup in Section 5.1. Following this, we present
and analyze the results of unconditional and controllable generation in Section 5.2 and Section 5.3,
respectively. Finally, We explore various methods of combining Global and Local-Attention, and
examine the impact of different patchify-size in Section 5.4.

5.1 Experiment Setup

Datasets: For our model training, we utilized the Uniref50(2023-04 release) dataset from Uniprot [20].
In TaxDiff, protein sequences shorter than 256 amino acids were retained and zero-padded to a fixed
length of L = 256, standardizing the sequence representation. The focus on sequences shorter than
256 amino acids, covering 62% of sequences in Uniref50 (approximately 37.88 million out of 60
million sequences), was deliberate. This range not only represents a dominant subset of sequences
but also encompasses small molecules [51] and peptides [52] that are pivotal in life sciences and
pharmaceutical research, providing targeted relevance to our study. It is noteworthy that the evaluation
datasets AFDB and PDB, which are derived from the Foldseek [53]. We used directly these two
original databases without any selection or filtering steps.

Setting: we employ a linear beta scheduler, adhering to the original DDPM [22] sampling strategy
across 1,000 steps. Results in 1 and 2 have the same setup with patchify-size P = 16, the layer of
patchify block N = 12. To verify the scaling ability of Taxdiff, we do some comparative experiments.
More details about the setting and comparative experiments are provided in A.2.

Evaluation: We choose natural protein structures from the Protein Data Bank (PDB) [54] to verify
the natural-like degree of generated sequences and high-confidence protein structures predicted by
Alphafold (AFDB) [1, 55] to expand the comparison range and verify the broad validity of our model.
Settings for results in 1 and 2 are consistent. More Details are provided in the A.3

Baselines: LRAR and CARP [56] were trained using dilated convolutional architectures on the
UniRef50 dataset. FoldingDiff [14] and RFdiffusion [15] are recent diffusion models for protein
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structure generation. EvoDiff [11] leverages evolutionary-scale data for sequence-first design. ESM-
1b [57] and ESM-2 [58] are protein masked language models trained on different UniRef50 releases.
Finally, ProtGPT2 [59] and ProGen2 [19] are autoregressive models based on GPT2. Further details
on model configurations are provided in the A.4.

5.2 Unconditional Sequence Generation

In the unconditional generation, TaxDiff sets the condition y to be ∅ and generates 1,000 protein
sequences within the length range of 10 to 256 residues. For sequences lengths shorter than 10, we
consider them to be invalid protein sequences and, therefore remove them, which is a practice also
applicable to sequences generated by all other models.

Table 1: Unconditional generation result comparison on AFDB and PDB datasets. Metrics are
calculated with 1,000 samples generated from each model.

Architecture Method pLDDT↑ AFDB Dataset PDB Dataset

TM-score(%)↑ RMSD↓ Fident(%)↑ TM-score(%)↑ RMSD↓ Fident(%)↑

CNN CARP 34.66 25.31 18.6365 14.29 31.02 12.6905 15.23
LRAR 48.88 26.33 18.6102 14.91 30.50 13.6436 15.45

Encoder ESM-1b 59.25 32.69 19.9506 16.82 36.67 16.1619 17.58
ESM-2 51.01 24.56 23.7637 17.18 28.92 20.3257 17.56

Diffusion EvoDiff 44.29 24.22 20.0326 15.01 29.58 13.9564 15.64
FoldingDiff 67.44 34.96 12.2538 19.04 37.32 9.8115 19.91

Decoder ProGen2 61.26 21.93 27.8802 18.21 28.97 17.0160 15.05
ProtGPT2 57.44 26.67 18.8129 14.36 31.99 12.8339 14.75

Diffusion TaxDiff(Our) 68.89 48.26 5.9075 26.60 46.02 4.5736 24.13

As shown in Table 1, TaxDiff outperforms competitive baseline methods across all metrics with
a noticeable margin. Notably, the sequences generated by our model have exceeded those of the
structure generation model RFdiffusion and FoldingDiff in terms of pLDDT. This result underscores
the model’s efficacy in extracting structural information from protein sequences, validating the
effectiveness of our sequence-based modeling approach. Moreover, in the structural alignment with
AFDB and PDB datasets, TaxDiff significantly improves TM-score and RMSD, substantially outper-
forming other models, especially RMSD, which is less than half that of other models. Furthermore,
the sequence consistency Fident also surpasses other models on both two datasets, showcasing the
comprehensiveness and generalization capability of our model. Overall, the superior performance
demonstrates TaxDiff’s enhanced ability to simulate protein sequence distributions and generate
authentic and highly consistent protein sequences.

5.3 Taxonomic-Guided Sequences Generation

Table 2: Controllable generation on AFDB and PDB datasets. Metrics are calculated with 1,000
samples generated from each model. The sampling time was recorded on a single 4090.

Method pLDDT↑ Time(mins)↓ AFDB Dataset PDB Dataset

TM-score(%)↑ RMSD↓ Fident(%)↑ TM-score(%)↑ RMSD↓ Fident(%) ↑
CARP 46.84 ± 13.35 96.6 33.62 12.5753 12.5 32.38 10.8296 11.82
LRAR 47.33 ± 14.26 79.31 26.94 17.9833 15.83 30.41 13.9929 16.33
Evodiff 56.28 ± 16.52 99.75 30.22 15.8664 16.17 33.02 12.3685 16.29
ESM-1b 67.91 ± 11.59 37.4 37.13 13.6791 16.76 41.90 9.8445 17.27
Taxdiff(Our) 69.00 ± 9.13 24.53 49.27 5.6518 25.02 48.80 4.8453 24.85

Under the taxonomic-guided, our objective is to perform controllable protein sequence generation to
meet specific needs for proteins of particular species. This can be useful in realistic settings of protein
and drug design where we are interested in discovering proteins with specific taxonomic preferences.
For a valid comparison, we fine-tune a subset of representative networks with taxonomic-guided and
same-label embedding architecture, enabling them to learn the distribution of taxonomic categories.
Then, We set the conditional tax-id y to a fixed random variable representing the taxonomic group
to which the protein belongs and generate 1,000 protein sequences to test the model’s controllable
generation ability.
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We report the numerical results in Table 2. As shown in the table, TaxDiff significantly outperforms
baseline models on all the metrics, including the previous diffusion model named EvoDiff, running
on the whole Uniref50. The results demonstrate that by taxonomic-guided, not only TaxDiff, almost
all models acquired a higher capacity to incorporate given taxonomic information into the generation
process. Furthermore, we compared the time to generate 1,000 protein sequences with these models.
TaxDiff, fusing transformer into diffusion architectures, not only requires less inference time than
models relying solely on either the Transformer architecture like ESM-1b or solely on the Diffusion
architecture like Evodiff but also significantly outperforms other models in all metrics.

5.4 Sequences Global and Local Attention

Table 3: Contrast experiment of different patchify-size P in Local-Attention on AFDB and PDB
datasets. Metrics are calculated with 1,000 samples generated from each model.

Patchify-size pLDDT↑ Time(mins)↓ AFDB Dataset PDB Dataset

TM-score↑ RMSD↓ Fident(%)↑ TM-score↑ RMSD↓ Fident(%)↑
4 67.56 ± 10.35 20.57 46.70 6.8047 23.01 46.58 6.2253 20.57
8 68.88 ± 9.55 22.94 45.57 6.5407 23.94 46.04 5.4404 22.94
16 69.01 ± 9.03 24.85 48.88 5.4992 25.88 49.58 4.6262 24.95
32 65.25 ± 12.12 20.72 42.82 8.094 21.71 43.27 6.8687 20.72
64 70.83 ± 8.77 24.78 46.48 5.9851 26.16 45.88 5.3077 25.20

In this section, we investigate the impact of different attention mechanisms on model performance
and further analyze the effect of patchify-size at the amino acid level. Specifically, we examine the
influence of five different attention combinations in Figure 4 on the protein sequence generation
capability. To standardize comparison, except for the experimental variables, we keep other param-
eters consistent and fix the random seed. This allows the five attention combinations to generate
corresponding protein sequences under 1,000 fixed random taxonomic groups. The evaluation of the
generated sequences is the same as controllable sequence generation.

The visual comparison in Figure 5 and experimental results in 5 indicate that the parallel use of
Global-Attention and Local-Attention (Method A) achieves the best performance across all metrics,
significantly surpassing other combinations. However, it is noteworthy that the exclusive use of
Local-Attention (Method E) secures the second-best result, exceeding the performance of what we
initially anticipated as the sub-optimal (method B) and (method C). This suggests that, in contrast to
natural language, where global context is often critical, protein sequences benefit more from focusing
on local interactions using Local-Attention. It implies that protein sequences also contain short
sentence like local semantic structures.

Figure 5: Ablation result of different attention
combination on AFDB datasets. Metrics are
calculated with 1,000 samples generated from
each model.

To further analyze the impact of different
patchify-size on features representation at the
amino acid level, we divide sequences by length
into segments from 4 to 64, keeping other pa-
rameters constant, and use Method A to combine
Global-Attention and Local-Attention. We re-
port the numerical results in Table 3. The results
demonstrate that dividing protein sequences into
16 amino acids per local patch provides signifi-
cant advantages for protein structure modeling
metrics, such as TM-score and RMSD. In con-
trast, using a larger patchify size, like dividing
protein sequences into 64 amino acids per local
patch, has a more substantial impact on improv-
ing sequence-related metrics like Fident. More
result analysis showed in A.6

6 Conclusion and Future Work

While current models can only perform unconditional sequence generation, TaxDiff overcomes
this limitation by learning taxonomic-guided over protein sequences space. By combining the
Global-Attention to sequences and Local-Attention to amino acids, TaxDiff can effectively generate
sequences that are structurally reliable and consistent in sequence. Furthermore, TaxDiff requires
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only a quarter of the time needed by other diffusion-based models to achieve superior performance.
Various experimental results demonstrate its significantly better ability for modeling natural protein
sequences. As a versatile and principled framework, TaxDiff can be expanded for various protein
generation applications in future work. However, one limitation of TaxDiff is its current inability to
scale effectively to the more challenging task of generating protein complexes. At the same time,
proteins with high evaluation scores may be difficult to synthesize in practical experiments.
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A Appendix / supplemental material

A.1 Result and Visualization

To demonstrate the applicability of our model under different levels of taxonomic guidance, we
evaluated the model’s ability to generate protein sequences guided by the three predominant domains
within cellular organisms: Bacteria (63%), Eukaryota (33%), and Archaea (3%). The evaluation
metrics were consistent with those used in the main experiments, and the specific details of these
metrics can be found in the appendix A.3. More details of refined classification results will be
available in supplementary material.

Model Comparation on Bacteria Model Comparation on Eukaryota Model Comparation on Archaea

Figure 6: Taxonomic distribution and comparison of taxonomic-guided models. we compare the
performance of different models under the condition of the second taxonomic level within cellular
organisms: Bacteria (63%), Eukaryota (33%), and Archaea (3%).
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A.2 Experiment Setting

Following common practices in generative modeling literature, we maintained an exponential moving
average (EMA) of the TaxDiff weights during training, with a decay factor of 0.9999. The same
training hyperparameters were applied across all TaxDiff models and patch sizes. All reported results
are based on the EMA model. The same training hyperparameters were applied across all TaxDiff
model sizes and patch sizes, almost entirely retained from ADM, without adjustments in learning
rate, decay/warm-up schedule, Adam β1, β2, β3, or weight decay.

In order to verify the scaling ability of Taxdiff, we extend the original Taxdiff (layer=12) to layer=6
(Small) and layer=18(Large) in the DiT model scaling method in fellow. In addition, when the sample
number was expanded to 1,000, the experimental results in table 4 showed that our TaxDiff(layer=12)
was the best, especially in TM-score, RMSD and Fident.

Table 4: Comparative experiments result Taxdiff layers on AFDB and PDB datasets. Metrics are
calculated with 1,000 samples generated from each model.

Method pLDDT↑ AFDB Dataset PDB Dataset

TM-score↑ RMSD↓ Fident(%)↑ TM-score↑ RMSD↓ Fident(%)↑
Small 68.8507 43.82 6.7151 24.84 45.90 5.4525 24.36
Large 68.1949 45.62 6.4333 24.53 45.77 5.9830 23.70

TaxDiff 69.0000 49.27 5.6518 25.02 48.80 4.8453 24.85

A.3 Evaluation

We measure model performance through sequence consistency and structural foldability, which
indicates whether the model can learn the rules of protein sequences from the data. For assessing
the feasibility of the sequences, We employed OmegaFold [21] to predict their corresponding
structures and calculate the average predicted Local Distance Difference Test (pLDDT) across the
entire structure, which reflects OmegaFold’s confidence in its structure prediction for each residue
on sequences level. The pLDDT is calculated by a function based on the difference between the
inter-residue distances predicted by the model and the true distance. It has values ranging from
0 to 100 and indicates the confidence level of each residue in the prediction which was first used
in AlphaFold2 [55]. Omegafold performs structure prediction without the need for homologous
sequences or evolutionary information, relying solely on a single sequence for prediction. However,
due to inherent noise and errors in OmegaFold’s structure predictions, which only consider the
foldability of individual sequences, we further measure our results using Foldseek [53]. Foldseek
facilitates the pairing of the queried protein pquery with structurally similar proteins from an existing
protein database, yielding pairs represented as (pquery, ptarget). Here, ptarget denotes the protein in
the database with a significant structural similarity to pquery . The magnitude of the average template
modeling score (TM-score [60]) value and root-mean-square deviation (RMSD) reflects the degree
of structural similarity. TM-score takes into account the overall topological structure of proteins,
focusing more on the protein’s overall structure. RMSD calculates the square root of the average
position deviation of corresponding atoms between two protein structures, being highly sensitive
to the size of the protein structure and local variations. Additionally, Foldseek also calculates the
sequence identity (Fident) between pquery and ptarget, reflecting their sequence-level similarity. In
Foldseek, we choose natural protein structures from the Protein Data Bank (PDB) [54] to verify the
natural-like degree of our sequences and high-confidence protein structures predicted by Alphafold
(AFDB) [1] to expand the comparison range and verify the broad validity of our model.

TM-score is a quantitative measure used to assess the similarity between two protein structures. It is
defined as:

TM-score = max

 1

L

L∑
i=1

1

1 +
(

di

d0(L)

)2
 (13)

where L represents the length of the target protein, di denotes the distance between the ith pair of
aligned residues, and d0(L)is a length-dependent scale for normalization. The TM-score ranges
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from 0 to 1, with values closer to 1 indicating a higher degree of structural similarity. Typically, a
TM-score greater than 0.5 suggests that two protein structures share the same fold.

RMSD is a standard measure used to quantify the average distance between atoms (usually backbone
atoms) of superimposed proteins. The RMSD is calculated as:

RMSD =

√√√√ 1

N

N∑
i=1

(ri − r′i)
2 (14)

where N is the number of aligned atoms, ri represents the position vector of the ith atom in the
reference structure, and r′i is the corresponding position in the model structure. RMSD provides a
measure of the structural deviation between two protein conformations, with lower values indicating
higher similarity.

Fident quantifies the proportion of residues that are identical between the sequences, providing
insight into the degree of homology. The Fident value is calculated as follows:

Fident =
Number of identical residues

Total number of aligned residues
× 100% (15)

where the numerator represents the number of residues that are identical between the aligned se-
quences, and the denominator is the total number of residues that have been aligned.

A.4 Baselines

We compare TaxDiff to several competitive baseline models. The left-to-right autoregressive (LRAR)
model and convolutional autoencoding representations of proteins(CARP) [56] were both trained
using the same dilated convolutional neural network architectures on the UniRef50 dataset. For
LRAR, a causal mask is applied to the convolutional modules to prevent information leakage.
FoldingDiff [14] and RFdiffusion [15] are recent progress on diffusion models for protein structure
generation. Notably, the RFdiffusion and FoldingDiff directly produce protein structures; hence, we
first unconditionally select structures generated by these two and then use ESM-IF to design their
corresponding sequences. EvoDiff [11] is a diffusion model that leverages evolutionary-scale data
based on programmable, sequence-first design. The results reported in our result are based on the
config640M configuration. ESM-1b [57] and state-of-the-art ESM-2 [58] are the protein masked
language models, which were trained on different releases of UniRef50. Specifically, ESM-2 version
is ESM2-t33-650M-UR50D and ESM1b is ESM1b-t33-650M-UR50S. Additional details about the
ESM models are provided in Section A.5. ProtGPT2 [59] and ProGen2 [19] are autoregressive large
protein language models based on GPT2 [61], which have undergone pre-training in UniRef50 and
UniRef90 respectively. ProGen2 refers specifically to ProGen2-large.

A.5 ESM Model

Using ESM models to predict sequences is not common. However, there are already some applications
in EvoDiff [11] and human antibodies [62] due to the strong protein sequence understanding capability
of the ESM method. Recognizing the importance of clarity in explaining non-standard methodologies,
we have included the relevant content in our work to elucidate our approach. To be specific, the
process begins with a series of <mask>_seqlen tokens as input to simulate a completely unknown
sequence of the desired length. This method allows the model to iteratively predict the missing amino
acids at each position. To ensure the biological relevance of the generated sequences, we implement
penalties on specific tokens (e.g., X, pad, eos, and cls) to prevent their generation, addressing the
unique considerations necessary for protein sequence design. The sequence generation is facilitated
by employing torch.multinomial to perform random sampling based on the predicted probability
distribution of amino acids, thus ensuring variability and fidelity to plausible protein sequences.
Finally, the tokens are converted back into amino acid sequences, culminating in the designed protein
sequences.

A.6 Result Analysis

It is worth noting that the performance of patchify − size = 32 is inferior to that of 16 and 64.
We attribute this performance disparity to several biologically relevant factors concerning protein
structure and function, as outlined below:
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Secondary Structure Formation [63]: Specific length sequences favor forming essential secondary
structures such as α-helices and β-sheets, which are crucial for protein function and can significantly
influence biological activity. A 32 amino acid length might not support these structures well, affecting
performance.

Functional Domain Integrity: The function of proteins often relies on specific functional domains,
which require a certain amino acid sequence length to maintain their structural and functional integrity.
A partition length of 32 amino acids may inadvertently disrupt these critical functional domains,
resulting in deactivation or diminished function.

Hydrogen and Disulfide Bond Formation [64]: Hydrogen and disulfide bonds are pivotal for the
stability of protein tertiary structures. The length of 32 amino acid sequences may influence the
formation of these bonds, especially at sequence partition boundaries.

A.7 Ablation Result

Table 5: Ablation result of different attention combination on AFDB and PDB datasets. Metrics
are calculated with 1000 samples generated from each model.

Method pLDDT↑ AFDB Dataset PDB Dataset

TM-score↑ RMSD↓ Fident(%)↑ TM-score↑ RMSD↓ Fident(%)↑
E 68.77 ± 10.67 44.84 7.2685 23.43 44.00 5.9162 24.1
D 61.50 ± 13.55 39.65 9.2808 20.33 39.30 7.6774 19.53
C 61.57 ± 12.99 39.55 9.6091 19.87 40.21 7.6458 20.12
B 61.62 ± 12.99 39.36 9.1560 19.95 40.52 7.551 19.77
A 69.01 ± 9.03 48.88 5.4992 25.88 49.58 4.6262 24.95
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