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Abstract
Physics-informed neural networks (PINNs) are
computationally efficient alternatives to tradi-
tional partial differential equation (PDE) solvers.
However, their reliability is dependent on the ac-
curacy of the trained neural network. In this work,
we introduce a mechanism for leveraging the sym-
metries of a given PDE to improve PINN perfor-
mance. In particular, we propose a loss function
that informs the network about Lie point symme-
tries, similar to how traditional PINN models try
to enforce the underlying PDE. Intuitively, our
symmetry loss ensures that infinitesimal gener-
ators of the Lie group preserve solutions of the
PDE. Effectively, this means that once the net-
work learns a solution, it also learns the neighbour-
ing solutions generated by Lie point symmetries.
Our results confirm that Lie point symmetries of
the respective PDEs are an effective inductive bias
for PINNs and can lead to a significant increase
in sample efficiency.

1. Introduction
As machine learning advances accelerate a data-driven ap-
proach to science, the role of ML for solving differential
equations is also becoming more pronounced. Since tra-
ditional numerical solvers can be prohibitively expensive,
learning to solve PDEs, as an alternative to existing nu-
merical solvers, can significantly impact various areas of
science, ranging from biology to climate science to cosmol-
ogy, (Wang et al., 2020a; Kochkov et al., 2021; Kashinath
et al., 2021).

Like any other machine learning problem, learning to solve
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Figure 1. All solutions of the harmonic oscillator ODE can be
reached via symmetry transformations of a single solution. Its
Lie-point symmetry group is SL(3), corresponding to eight one-
parameter subgroups transforming a given solution, identified us-
ing a different colour in this figure. While, in general, Lie-point
symmetries form more than one orbit, their use can still signifi-
cantly narrow down the solution space.

PDEs can benefit from inductive biases to boost sample
efficiency and generalization capabilities. As such, the PDE
itself and its respective Lie point symmetries are two natural
inductive biases for neural PDE solvers. While Physics-
Informed Neural Networks (PINNs) constrain the solution
network to satisfy the underlying PDE via the PINN loss
terms (Raissi et al., 2019), the latter objective of using Lie
point symmetries has so for been used for data augmentation
(Brandstetter et al., 2022a), and to construct equivariant
neural operators by incorporating single symmetry groups
(Wang et al., 2021a). In this work, we show how to create
additional loss functions for PINNs that locally enforce Lie
point symmetries and demonstrate the effectiveness of this
symmetry regularization on generalization capabilities.

2. Background
PDEs are used to describe the dynamics of various physical
systems mathematically. In a PDE, the evolution of a func-
tion that involves several variables is described in terms of
local updates expressed by partial derivatives. We consider
PDEs of the following general form:

� = ut +Dx[u] = 0, t ∈ [0, T ],x ∈ ⌦ (1)
u(0,x) = f(x), x ∈ ⌦

u(t,x) = g(t,x), x ∈ @⌦, t ∈ [0, T ]

where u(t,x) ∈ Rdu is the solution to the PDE that we seek,
t denotes the time, and x a vector of spatial coordinates.
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⌦ ⊂ RD is the domain and Dx[.] is a non-linear differential

operator. f(x) is known as the initial condition function
and g(t,x) describes the boundary conditions.

For many systems, obtaining an analytical solution to the
PDE is impossible; hence, numerical methods are tradi-
tionally used to obtain approximate solutions. Numerical
solvers, such as finite element methods (FEM) or finite dif-
ference methods (FDM) rely on discretizing the space T ×⌦
(Quarteroni, 2009). The topology of the space has to be
taken into account when constructing the mesh, and the
resolution of the discretization will affect the accuracy of
the predicted solutions. Additionally, these solvers are often
computationally expensive, especially for complex dynam-
ics, and each time the initial or boundary conditions of the
PDE change the solver must be rerun. These considerations
and constraints make designing numerical solvers difficult,
and scientists often need to handcraft a specific solver for
an application (Quarteroni, 2009).

Two main approaches exist to use deep learning to solve
PDEs: Neural Operator Methods (NO), which are trained
with numerical PDE solutions as targets, and Physics-
Informed Neural Networks (PINNs), which assume knowl-
edge of the governing equation of the PDE. For examples of
NO methods see (Lu et al., 2021; Kovachki et al., 2023; Li
et al., 2020; 2021; Bhattacharya et al., 2021; Patel et al.,
2021; Bar-Sinai et al., 2019; Brandstetter et al., 2022b;
Sanchez-Gonzalez et al., 2020). This work presents an ex-
tension to PINNs, which we review in detail in Section 3.1.

2.1. Symmetries of a Partial Differential Equation

The exposition in this section mainly follows (Olver, 1986),
and we refer the reader to this original text for more details
on the topic.

Symmetries are transformations of the object that leave
an aspect of it invariant. In the context of PDE, these are
transformations that map a solution of the PDE to another
solution. For example, in Section 1, the solutions of a
simple harmonic oscillator can be obtained via symmetry
transformations of a given solution.

Consider the PDE �, involving p independent variables
x = (x1, . . . , xp) ∈X and q dependent variables (solutions)
u = (u1, . . . , uq) ∈ U . The symmetry group G, of �, is
the local group of transformations on an open subset of the
space of dependent and independent variables, M ⊂X ×U ,
which transforms solutions � to other solutions of �.

Prolongations. To formalize this abstract definition of
PDE symmetries, Lie proposed viewing � as a concrete
geometric object and introduced the concept of prolongation

(Olver, 1986).

Definition 1. The n-th order prolongation (or n-th order

jet space) of X × U is denoted as X × U (n) = X × U1 ×

⋅ ⋅ ⋅ ×Un, whose coordinates represent the independent and

dependent variables as well as all the partial derivatives of

the dependent variables up to order n.

Equivalently we have the notion of prolongation of u as
u(n) = (ux,uxx, . . . ,unx) where uix is all the unique ith

derivatives of u, for i = 1, . . . , n. For example, if x = (x, y),
then uxx = (@xxu,@xyu,@yyu). Using this notion of pro-
longation, we can represent a PDE as an algebraic equation,
�(x,u(n)) = 0, where � is the map that determines the
PDE, i.e., � ∶X ×U (n) → R. In other words, the PDE tells
us where the map � vanishes on X ×U (n).
For example, for the one-dimensional heat equation de-
scribing the heat conduction in a one-dimensional rod, with
viscosity ⌫, we have:

�((x, t),u(2)) = ut − ⌫uxx (2)
Prolongations of the Infinitesimal Generators. Let v be
the vector field on the subspace M ⊂X×U with correspond-
ing one-parameter subgroup exp (✏v) (see Appendix B for
the definition of one-parameter subgroups). In other words,
the vector field v is the infinitesimal generator of the one-
parameter subgroup. Intuitively, this vector field describes
the infinitesimal transformations of the group to the inde-
pendent and dependent variables, and we can write it as:

v =
p

�

i=1
⇠i(x,u)

@

@xi
+

q

�
↵=1�↵(x,u)

@

@u↵
(3)

where ⇠i(x,u) and �↵(x,u) are coordinate-dependent co-
efficients. To study how symmetries transform one solution
to another, we need to know how they transform the partial
derivatives and, therefore, the jet space.

A symmetry transformation of the independent (x) and de-
pendent (u) variables will also induce transformations in
the partial derivatives ux,uxx, . . . . The prolongation of the

infinitesimal generator, pr(n)v is a generalization of the
generator v which describes this induced transformations.
This prolongation is defined on the jet-space X ×U (n) and
is given by:

pr(n)v =
p

�

i=1
⇠i(x,u)

@

@xi
+

q

�
↵=1�J

�(J)↵ (x,u)
@

@u↵
J

(4)

where we have used the notation J = (i1, . . . , ik) for the
multi-indices, with 0 ≤ ik ≤ p and 0 ≤ k ≤ n and u↵

J =

@ku↵

@xi1 ...@xik
Calculating �(J)↵ , the coefficients of @u↵

J
, can

be done using the prolongation formula, given in Eq. (12),
which involves the total derivative operator D. See Ap-
pendix A for an example of this calculation.

The upshot is that we can mechanically calculate the pro-
longed vector field using partial derivatives of u, which
are produced by automatic differentiation. In practice, pro-
longed vector fields are implemented as vector-valued func-
tions (or functionals) of x and u. The implementation of
this process is generic and can be applied to any PDE.
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Lie Point Symmetry.
Definition 2. For symmetry group G acting on M , the pro-
longation of action of G on the open subset M ⊂X ×U is

the induced action on M (n)
=M ×U (n) which transforms

derivatives of u = f(x) into corresponding derivatives of

u′ = f ′(x′). We can write this as: pr(n)g ⋅ (x,u(n)) =
(g ⋅ x,pr(n)g ⋅ u(n))
Using this definition, we provide a new criterion for G being
a symmetry group of �, under a mild assumption on the
PDE.1

Theorem 2.1. G is the symmetry group of the n-th order

PDE �(x,un
), if G acts on M , and its prolongation leaves

the solution set S� invariant: pr(n)g ⋅ (x,u(n)) ∈ S�,∀g ∈
G. (for a formal definition of the solution set, refer to Ap-

pendix B, Eq. (11)).

Finally, we can express the symmetry condition in terms
of the infinitesimal generators v of G and refer to the Ap-
pendix A for an example of applying the infinitesimal crite-
rion to the heat equation.

Theorem 2.2 (Infinitesimal Criterion). G is a symmetry

group of the PDE �(x,un
) if for every infinitesimal gener-

ator v of G, we have that pr(n)v[�] = 0 when � = 0

3. Methods
3.1. Introduction to PINNs

NO methods are trained with a supervised loss, which is
infeasible in many situations. Therefore, as an alternative,
PINNs have been proposed (Raissi et al., 2019). In this
framework, the neural surrogate model for the PDE solution
is trained directly with the PDE itself. The simplicity of
the PINNs idea has made it the subject of many follow-up
improvements; see (Krishnapriyan et al., 2021; Wang et al.,
2020b; 2022)

In PINNs, the PDE solution u(t,x) of Eq. (1) is a neural
network u✓(t,x) with parameters ✓. The loss function is:

L(✓) = LPDE +Ldata−fit (5)

The first term is the physics-informed objective, ensuring
that the function learned by the network satisfies Eq. (1):

LPDE =
1

Nr

Nl

�

i=1
�
@

@t
u✓(ti,xi) +Dx[u✓(ti,xi)�

2
2 (6)

where the derivatives of the solution network u✓ are calcu-
lated using automatic differentiation (Raissi et al., 2019),

1This assumption is that � is of maximal rank. We refer to
Olver (1986) for the definition of this condition. However, we note
that this assumption does not pose a restriction since for any PDE
not satisfying this condition, it is possible to find an equivalent
PDE which does.

and the penalty is then imposed on a finite set of points
(t,x)1∶Nr , sampled from inside the domain [0, T ] ×⌦.

The second term in Eq. (5), is a supervised loss, ensuring
that the function learned by the neural network satisfies the
initial and boundary conditions of the problem:

Ldata−fit = 1

N0

N0

�

i=1
�u✓(0,x

0
i ) − f(x

0
i )�

2
2

+
1

Nb

Nb

�

i=1
�u✓(t

b
i ,x

b
i) − g(t

b
i , x

b
i)�

2
2

(7)

where (x0
)1∶N0 are N0 samples from ⌦ at which the initial

condition function f is sampled. (tb,xb
)1∶Nb are Nb points

sampled on the boundary (from [0, T ] × @⌦).

3.2. Solving PDEs with Different Initial/Boundary
Conditions with PINNs

Wang et al. (2021b) combines the NO method approach
introduced in (Lu et al., 2021) with the PINN loss. We will
also use their framework to examine the effect of enforcing
the symmetry condition of the PDE on the model. The
model consists of two neural networks: e✓1 embeds the
initial condition function, and g✓2 embeds the independent
variables, [t,x] ∈ Rp.

In particular, to embed the initial condition function f(x) =
u(0,x) ∈ Rp, it is sampled at fixed points {x1, . . . ,xn}, and
the concatenated values are fed to f✓1 . Using the notation
✓ = (✓1, ✓2), the final prediction is the inner product of these
embedding vectors:

O✓(f)(x, t) = e
�
✓1
�u(0,x1), . . . ,u(0,xn)� g✓2(x, t) (8)

3.3. Imposing the Symmetry Criterion

To further inform PINNs about the symmetries of the PDE,
we use an additional loss term Lsym.

The infinitesimal criterion of Theorem 2.2 requires that
by acting on a solution (x,un

) in the jet space using the
prolonged infinitesimal generator pr(n)v, the PDE should
remain satisfied. Our symmetry loss encourages the orthog-
onality of pr(n)v and the gradient of �.

Assume that the Lie algebra of the symmetry group of the n-
th order PDE, �, is spanned by K independent vector fields,
{v1, . . . ,vK}, where each vk is defined as in Eq. (3). For
each vk, we can obtain their prolongations using automatic
differentiation and create a vector of the corresponding co-
efficients, which we call coef(pr(n)).2 We also use the
notation J� for the gradient of � wrt all independent and
dependent variables: J� = � @�@xi ,

@�
@u↵

J
�.

2Using coef in the equation above is to differentiate the abstract
definition of Eq. (3) and a vector of its coefficients.
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The symmetry loss encourages the orthogonality of the K
prolonged vector fields and the gradient vector:

Lsym =

K

�

k=1
J��coef(pr(n)vk) (9)

Therefore, the total loss consists of the PINN loss, Eq. (5),
and the symmetry loss: L = ↵LPDE + �Ldata−fit + �Lsym,
for ↵, � and � hyperparameters. However, as we see through
examples, one or more symmetries of a PDE often simplify
to a constant times theLPDE , removing the need to separate
treatment of the PDE loss. Algorithm 1 in Appendix D
summarizes our training algorithm.

4. Experiment: Heat Equation
We study the effectiveness of imposing the symmetry con-
straint on the heat equation, described in Eq. (2). Additional
results for Burgers’ equation are included in Appendix E.

Symmetries. The following 6-dimensional lie algebra spans
the symmetry group of the heat equation:

v1 = @x v6 = 4⌫tx@x − 4⌫t
2@t − (x

2
+ 2⌫t)u@u

v2 = @t v4 = x@x + 2t@t

v3 = @u v6 = 4⌫tx@x − 4⌫t
2@t − (x

2
+ 2⌫t)u@u

(10)

For example, the infinitesimal generator v1 corresponds to
space translation, and v5 to Galilean boost. We refer the
reader to (Olver, 1986) for the derivation of these generators
and their corresponding one-parameter groups.

Training and Experiments. We want to confirm that the
symmetry loss helps improve the model’s prediction capabil-
ity, especially in a low-data regime. Therefore, we train the
model with and without symmetry and evaluate the predic-
tions on the test dataset as we increase the number of sam-
ples inside the domain, Nr. To illustrate the effectiveness
of the symmetries in a low-data regime, we use Nf = 100
different initial conditions and test the performance as we
increase Nr from 500 to 2000 and 10000. We refer to Ap-
pendix C for details on the data generation process and to
Appendix D for the architectures and hyperparameters.

Results. Table 1 compares the performance of the two
models on the test dataset of unobserved initial conditions
as Nr increases. When trained with few samples, the model
trained with the symmetry loss performs significantly better
than the baseline model. Fig. 2 also illustrates this point as it
shows the performance of both models on a single instance
from the test dataset. We note that the improvement in pre-
diction results in the model trained with Lsym is especially
significant at larger values of time, t.
Importantly we highlight that by using the infinitesimal
criterion for enforcing symmetries, not all symmetries will
help improve the training. There are instances when the

Figure 2. The effect of training the PDE solver for the heat equation
with and without the symmetry loss for one of the PDEs in the test
dataset. (a) shows the ground truth solution and the predictions
of the two models as the number of samples inside the domain
increases from 500 to 2000 and 1000.(b) shows the corresponding
predictions and the ground truth solution at different time slices.

Table 1. The average test set mean-squared error for the Heat equa-
tion.

Number of Points
(Nr)

No Symmetry Symmetry

500 1.12 ± 0.58 0.30 ± 0.15
2000 0.36 ± 0.19 0.24 ± 0.14
1000 0.22 ± 0.14 0.21 ± 0.13

gradient of � along the vector field is trivially zero, and in
others, we obtain c� for c a constant. In the case of the heat
equation, only v5 and v6 provide training signals different
from the LPDE. This means that in our experiments, we can
eliminate the PDE loss and use the symmetry loss instead.

Conclusion and Limitations
Our work presents the foundations for leveraging Lie point
symmetry in a large family of Neural PDE solvers that do
not require access to simulated data. In this work, we show
that local symmetry constraints can improve PDE solutions
found using PINN models.

Our proposed method has some limitations: 1) while the
Lie point symmetries of important PDEs are well-known, in
general, one needs to analytically derive them to use our ap-
proach; 2) as we mentioned in Section 4, not all symmetries
of the equation will necessarily be useful for constraining
the PINN. Fortunately, the usefulness of symmetries is obvi-
ous from the corresponding infinitesimal generator, and one
could limit the symmetry loss to useful symmetries; 3) while
symmetries can significantly improve performance, based
on our observations (see Table 1) one could achieve a simi-
lar effect with PINN by increasing the sample size. These
limitations motivate our future direction, which builds on
our current understanding, to impose symmetry constraints
through equivariant architectures.
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