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ABSTRACT

We introduce iMotion-LLM, a Multimodal Large Language Model (LLM) in-
tegrated with trajectory prediction, designed to guide interactive motion predic-
tion scenarios. Unlike conventional multimodal trajectory prediction approaches,
iMotion-LLM generates diverse and feasible future trajectories conditioned on tex-
tual instructions as a guidance signal. By augmenting real-world driving scenarios
in the Waymo Open Motion Dataset (WOMD) with textual motion instructions,
we propose InstructWaymo data augmentation. Leveraging this data augmentation,
iMotion-LLM integrates a pretrained LLM, fine-tuned with LoRA, to map scene
features into the LLM input space. Key results demonstrate that making the trajec-
tory prediction model conditional improves its instruction-following capabilities.
Specifically, the integration of the LLM enables a 11.07x ratio of actual-scenario
feasible to infeasible recall instruction following, compared to 5.92x when us-
ing the Conditional GameFormer alone. These findings highlight the ability of
iMotion-LLM to generate trajectories that not only align with feasible instructions
but also reject infeasible ones, enhancing overall safety. Despite its improvements
in instruction following, iMotion-LLM inherits the strong trajectory prediction per-
formance of the baseline model, making it versatile across different driving modes.
This combination of skills positions iMotion-LLM as a powerful augmentation
technique for trajectory prediction models, empowering autonomous navigation
systems to better interpret the motion prediction. This work lays the groundwork
for future advancements in instruction-based motion prediction.

1 INTRODUCTION

In autonomous driving, accurate trajectory prediction is critical for ensuring safe and efficient
navigation in dynamic environments. Given a window of observed history, the task is to predict
multi-modal trajectories of multiple agents surrounding the ego vehicle in addition to the ego vehicle.
A significant challenge in this field is the inherently diverse nature of driving behaviors in real-world
scenarios, where an agent’s future trajectory is not deterministic but can follow multiple feasible
paths due to various factors such as traffic rules, interactions with other agents, and environmental
conditions. Hence, developing models that can effectively predict diverse trajectories is crucial for
autonomous systems to anticipate and adapt to potential hazards, make informed decisions, and
ultimately achieve reliable and safe operation.

Recent challenges, e.g., Waymo Open Motion Dataset (WOMD) challenges (Ettinger et al., 2021b),
introduce a track specifically designed to concentrate on motion prediction where 1.1 seconds of the
past motion is observed, and 8 seconds to be predicted into the future. Various methodologies (Huang
et al., 2023a; Shi et al., 2022a; Seff et al., 2023) have been developed to tackle this challenge.
Although previous models can predict multi-modality trajectories, the predicted paths are not diverse
enough and mainly focus on one driving behavior (e.g., the trajectory of only one feasible direction.).
The reason is that previous prediction models are trained to imitate real-driving scenarios, fitting
the driving behavior recorded future ground truth trajectory. Therefore, they lack comprehension of
different driving behaviors in a given scenario.

To address the aforementioned challenge, we introduce a novel task called Text-Guided Intention
Trajectory Prediction that aims to generate trajectories conditioning on a driving instruction for a
selected vehicle. Additionally, the task provides a textual description predicting the feasibility of
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Human: Make the ego vehicle move straight. (Actual-scenario direction)

Ground truth caption: The ego vehicle can move straight, where it will first move straight with a very slow speed and a moderate acceleration, then move 
straight with a slow speed and a mild acceleration. Agent-2 is 12.72m far on the left. There are no traffic lights. The closest stop sign is 6.27m in front

The ego vehicle can move straight, where it will first move straight with a very slow 
speed and a moderate acceleration, then move straight with a slow speed and a 
moderate acceleration. Agent-2 is 3.26m far on the left. There are no traffic lights. The 
closest stop sign is 3.76m but not in front. Decision:  <Accepted>.

iMotion
-LLM-

:

Human: Make the ego vehicle turn right.

The ego vehicle can turn right, where it will first move straight with a very slow speed 
and a mild acceleration, then turn right with a slow speed and a moderate 
acceleration. Agent-2 is 11.22m far on the left. There are no traffic lights. The closest 
stop sign is 4.49m in front Decision:  <Accepted>.

iMotion
-LLM-

:

Human: Make the ego vehicle take right U-turn.

The ego vehicle cannot take right U-turn, because there are no lanes that allow this 
direction based on the current location, heading, and speed of the ego vehicle. 
Decision: <Rejected>.

iMotion
-LLM-

:

(Other feasible direction)

(Infeasible direction)

Figure 1: Our iMotion-LLM model can process three types of instructions and predict the corre-
sponding trajectories. First, it can handle ground truth instructions that align with the direction of
the recorded real-scenario trajectory (e.g., Waymo Open Motion Dataset), correctly accepting the
instruction and providing an explanation and trajectory. Second, iMotion-LLM can follow other
feasible non-ground truth directions and predict the correct explanation and trajectory. Finally, when
given an infeasible direction, iMotion-LLM correctly rejects the instruction.

a given action and explains how it would be executed in terms of different driving behaviors. We
categorize driving behaviors based on two primary components: direction and acceleration, which
together form the basis for diverse driving styles.

The proposed Text-Guided Intention Trajectory Prediction task offers several key advantages over
traditional trajectory prediction models. First, it allows examining trajectory prediction modeling
capability in covering different feasible driving behaviors for a given scenario. Second, by generating
text-guided driving scenarios that are safety-critical or more challenging, the task can be used to
train or test trajectory prediction and planning frameworks under diverse and demanding conditions,
improving the robustness of autonomous systems. Furthermore, this approach enhances the inter-
pretability of prediction models by providing explicit descriptions of driving intentions and how they
translate into vehicle movements, making it easier to understand and trust the model’s decisions.

To instantiate a dataset and model for this task, we augment WOMD (Ettinger et al., 2021a) with
vehicle direction instructions. Additionally, we did evaluation experiments to show the generalizability
on the NuPlan dataset (H. Caesar, 2021). The instruction details and statistics are explained in
Section 3. For the evaluation, we propose two novel metrics. The Instruction Following Recall
(IFR) measures how well the predicted trajectories adhere to the specified driving instruction, while
the Direction Variety Score (DVS) captures the diversity of predicted directions. Subsequently, we
introduce the iMotion-LLM: an instructable motion prediction model based on Large Language
Models (LLMs). iMotion-LLM, harnesses pretrained models’ multi-modal trajectory prediction
capabilities through integrating their encoder to map scene vector features and their decoder to decode
trajectories. As shown in Figure 3, it employs an LLM Projection to project encoded scene context
embeddings from the Scene Encoder into the LLM input space. The LLM generates an instruction
token [I] and N [S] tokens representing the scene context embeddings. The instruction token is
mapped to represent an additional intention query used by the decoder, while the scene tokens are
used as keys and values. Our design of the encoder-decoder for the trajectory prediction model
introduces an additional instruction query, alongside the learnable queries present in the original
model design, which act as decoding seeds.

Our experiments, using GameFormer (Huang et al., 2023a) as a backbone, show that iMotion-LLM
empowers autonomous navigation systems to interpret and predict the dynamics of agents, while
almost matching the performance of the base model.
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Our contributions can be summarized as:

• We augmented WOMD with instruction categories, enabling the motion prediction task to
be instructed. This augmentation, named InstructWaymo, is easily expandable to include
more detailed driving scenarios and will benefit future research in this direction.

• We enable traditional trajectory prediction modeling through the design integration of
iMotion-LLM to generate text-guided instructable trajectory predictions, allowing the model
to cover diverse feasible driving behaviors in a given scenario.

• We integrate LLMs with traditional trajectory prediction models to reason about predicted
trajectories and determine how they should be executed in steps, while also training iMotion-
LLM to accept or reject instructions based on feasibility.

• We introduced two evaluation metrics: Instruction Following Recall (IFR) and Direction
Variety Score (DVS), to measure the model’s ability to follow instructions and the diversity
of predicted modalities across different directional categories, which cannot be captured by
conventional metrics used in motion prediction.

2 RELATED WORK

Multimodal Large Langauge Models. Large Language Models (LLMs) have significantly advanced
in recent years (Radford et al., 2019; Devlin et al., 2018; Brown et al., 2020; Touvron et al., 2023b;a;
Achiam et al., 2023), with models like GPT-4 (Achiam et al., 2023) demonstrating remarkable
abilities in generating coherent, contextually relevant text across numerous domains. With the strong
performance of LLMs, there is an emergence of multi-modal LLMs (MLLMs) (Alayrac et al., 2022),
which extend the LLMs with reasoning abilities across diverse modalities. Notable works includes
Flamingo (Alayrac et al., 2022), InstructBLIP (Dai et al., 2023b), MiniGPT-4 (Chen et al., 2023; Zhu
et al., 2023), LLaVA (Liu et al., 2024; 2023), and Vicuna (Chiang et al., 2023). These works used
visual instruction tuning to align with human intentions. There are some extensions that focus on
detection and segmentation (Zhu et al., 2023; Wang et al., 2024; Lai et al., 2023; Bai et al., 2023),
videos (Li et al., 2023; Zhang et al., 2023; Maaz et al., 2023), and 3D (Hong et al., 2023; Xu et al.,
2023; Guo et al., 2023). Our work focuses on MLLMs for motion prediction tasks.

Trajectory Prediction Models for Driving Scenarios. The task of trajectory prediction involves
analyzing the historical tracks of agents on a corresponding map to predict their joint future positions
several seconds into the future. LSTMs (Alahi et al., 2016; Hochreiter & Schmidhuber, 1997) have
been used to encode the historical states of agents, while CNNs (Cui et al., 2019; Gilles et al., 2021;
Salzmann et al., 2020) have been employed to encode the rasterized images of the scene. Recently,
GNNs (Chen et al., 2022; Huang et al., 2022b; Mo et al., 2022) have been employed to depict agent
interactions effectively. The advent of Transformer-based models, like SceneTransformer (Ngiam
et al., 2021) and WayFormer (Nayakanti et al., 2023), has further enhanced prediction through
their efficient structure, though they primarily focus on the encoding process of driving scenarios
vectorized representation. Motion Transformer (Shi et al., 2022b; 2024) and GameFormer (Huang
et al., 2023b) innovates by improving the decoding stage, leading to better accuracy. MotionLM (Seff
et al., 2023) used similar structures of LLM for the modeling, but still did not introduce the language
reasoning ability to motion prediction task.

Multimodal Large Language Models for autonomous driving. With the emergence of Large
Language Models (LLMs), there is a growing trend to adapt LLMs for autonomous driving scenar-
ios (Chen et al., 2024; Dewangan et al., 2023; Hu et al., 2023; Huang et al., 2022a). Innovations like
GPT-Driver (Mao et al., 2023) and SurrealDriver (Jin et al., 2023) exemplify the transformative impact
of LLMs on motion planning and driving maneuver generation, marking significant advancements in
autonomous vehicle technology. However, most existing methods primarily focus on text or image
inputs, overlooking the benefits of vector representation in motion prediction. Vector representation
offers an abstraction of driving scenarios, directly capturing the necessary information for motion
prediction. Similar to Driving with LLMs (Chen et al., 2024), we integrate LLMs with vector-based
data for motion prediction. While (Chen et al., 2024) introduced a benchmark focused mainly on QA
tasks for driving scenarios, with motion only represented as a single quantized action (acceleration,
braking, and steering), our work differs by focusing on motion represented as multi-modal multi-agent
trajectories. This approach aligns more closely with existing trajectory prediction modules, making it
more suitable for safe and reliable motion prediction.
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3 INSTRUCTWAYMO: INSTRUCTION AUGMENTATION OF WAYMO OPEN
DATASET

InstructWaymo offers a new perspective on the WOMD by making motion prediction instructable
and language descriptive. Inspired by WOMD mAP calculation, which evaluates model performance
across various driving behaviors, we designed a module that categorizes future motion into different
directions, speeds, and acceleration. InstructWaymo uses future direction information as instruc-
tions, alongside future motion details—two-step direction, speed, and acceleration—as captions.
Additionally instruction (direction) feasibility is calculated adding an extra layer of comprehension
by identifying feasible and infeasible directions for each driving scenario. InstructWaymo will be
provided as a publicly available script to augment WOMD. The script extracts additional useful infor-
mation for future research, such as transcribed agents and object-relative locations to the focal agent,
including neighboring agents, nearby stop signs, and traffic lights (e.g., Agent-2 is 13 meters to the
right, Agent-3 is 3 meters ahead moving in the opposite direction, and there are 3 nearby stop signs,
with the closest 1 meter in front). While this information exists in the dataset, the InstructWaymo
script makes it easily accessible for future research requiring driving scenarios transcribed data.
This data augmentation was applied to different driving scenarios. The scenarios are preprocessed
similarly to GameFormer preprocessing, where each scenario includes up to 32 neighboring agents,
with a total of 33 agents including the ego agent. Each agent in the scene is considered the focal
agent (the ego-view agent), resulting in 4,228,499 samples. Of these, 2,011,265 samples involve the
focal agent being a vehicle with valid detected instructions.

Direction. Direction is fundamental for instructing navigation, we adopted WOMD direction
bucketing script to obtain eight conceivable direction conditions encompassing 8 classes listed in
Table 1 with their statistics. The table shows a bias toward some behaviors like moving straight. See
the details of the calculation of the directions in Section B in the appendix. We use driving directions
as instructions in this work.

Table 1: Direction categories with their corresponding presence proportion in the train set.
Category Stationary Straight Straight-right Straight-left Right Left Right u-turn Left u-turn

Train 1.6% 55.8% 3.3% 3.7% 16.7% 17.5% 0.1% 1.4%

Speed and Acceleration. Following the intuition used in (Mohamed et al., 2022), we categorize
trajectories of moving vehicles based on speeds and relative change in speeds. For that, we defined
5-speed categories and 9-acceleration categories; the suggested upper threshold and the categories
are listed in the appendix in Table 6.

Figure 2: Illustration of
feasibility detection of
"move straight" and "turn
right" within a range of
(r1, r2).

Feasibility of directions. We define the feasibility of directions into
three categories: 1) actual-scenario direction (AS), which is based on
the ground truth future trajectory and hence is always assumed to be a
feasible direction; 2) Other feasible directions (OF), which are derivable
directions but not the actual-scenario direction; 3) Infeasible directions
(INF), which is the complement set of feasible directions. To assess
feasibility, we consider a set of candidate destinations relative to the ego
vehicle’s current location and heading. These candidate destinations are
possible locations on associated lanes within a range determined by the
vehicle’s speed (minimum range r1, maximum range r2). This range is
calculated based on a minimum and maximum speed change of 45 km/h
within 8 seconds and within a maximum range of 60 meters. Figure 2
illustrates this concept with two feasible directions. For the feasibility
of staying stationary, the minimum range is considered to detect if the
vehicle can slow down to stop in a range of 5 meters.

LLM Instruction and caption. Based on the previously extracted attributes, we generate a template
of input instruction and output caption that the LLM can process. The input instruction is the final
direction the vehicle should arrive in. The output caption that the LLM aligns to generate auto-
regressively includes the final direction, with two-step directions, speeds, and accelerations achieving
the final direction as an interpretation of how an instruction is followed.
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LLM

[I]

LLM 
Projection

Scene Encoder

Predict the future multimodal trajectory 
embeddings of two agents … Make the ego 
vehicle Move straight / Turn right / … 

Multimodal Trajectory Prediction Decoder

Scene MapperInstruct Mapper

qmotion

TI

Motion Encoder

Map Encoder

Output Text
[S1]  [S2]

LoRA

qInstruct
[K&V] 1, [K&V] 2 , [K&V] 3 , … [K&V] N

[K&V] 1, [K&V] 2 , [K&V] 3 ,  … [K&V] N

ሚ𝑆

Figure 3: The proposed pipeline, referred to as iMotion-LLM, leverages the multi-modal trajectory
prediction capabilities of pretrained models, employing an encoder-decoder transformer architecture.
Given a textual instruction and scene context embeddings, iMotion-LLM utilizes an LLM Mapper to
project the encoded scene context embeddings from the Scene Encoder into the LLM input space.
Subsequently, the LLM generates an instruction token [I] and a sequence of [S] tokens representing
the scene context embeddings. The [I] token is projected to a query, and the scene context-generated
tokens are projected to be the keys and values utilized by the multi-modal trajectory prediction
decoder.

4 IMOTION-LLM

4.1 REVISITING EXISTING MODELS

Recent successful transformer-based interactive trajectory prediction models (Huang et al., 2023a;
Shi et al., 2022a) commonly employ a schema comprising two main blocks. Initially, a scene
encoder encodes the observed map and agent information into embeddings representing scene context
information S ∈ RR×dscene , where dscene is the embedding dimension. This context information is
crucial for understanding the dynamics of the environment. The second component is a multimodal
trajectory prediction decoder. This decoder employs cross-attention, using the scene context S as the
keys and values (denoted as K&V ). The decoder also utilizes K learnable queries qmotion ∈ RK×dscene

to predict a Gaussian Mixture Model (GMM) of the potential future multi-modal trajectory of multiple
agents. Based on this, the GameFormer model (Huang et al., 2023a) consists of two core blocks, the
Scene Encoder and Trajectory Decoder, which are visually represented in purple in Figure 3. In the
scene encoder,

• Vectorized motion data is encoded using a Long Short-Term Memory (LSTM) network.
• Map features are processed via Multi-Layer Perceptrons (MLPs) for continuous data, such

as the geometric layout of center lanes, or through embedding layers for categorical data
like the state of traffic lights.

• Once encoded, the scene encoder serves as a feature fusion layer, combining all the processed
features to form scene representation.

After feature fusion, each token retains a specific correspondence to its map components. For example,
in GameFormer’s two-agent joint prediction model:

• The ego agent state is represented by two tokens, with one token being self-referential (when
the ego agent is the focal agent), and the other token corresponding to the interaction with
another agent (when the other agent becomes the focal agent).

• This pattern extends across all map features, where each map feature has two versions:
one normalized with respect to the ego agent and another normalized with respect to the
interacting agent.
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4.2 CONDITIONAL MULTIMODAL TRAJECTORY PREDICTION DECODER

To generate a conditional output, cGAN (Mirza & Osindero, 2014) uses a conditioning signal in the
generator model’s input. Inspired by this, we fuse an additional learnable query, qinstruction, with the
motion generation queries, qmotion. For making the base model conditional (conditional GameFormer),
qinstruction is learned using a simple embedding layer with a categorical class as input. When integrating
an LLM with the base model, qinstruction is derived from the LLM’s output embeddings as described
in the next subsection. The details of the conditional GameFormer training are provided in the
pseudo-code in appendix E.

4.3 INTEGRATION OF IMOTION-LLM

In our proposed design we integrate, align, and instruct fine-tune the LLM with a pretrained Game-
Former (Huang et al., 2023a) consisting of a Scene Encoder and the Multi-modal Trajectory
Prediction Decoder. The LLM lies between them, and enables instructability and interpretability.
To enable this integrational design, illustrated in Figure 3, five main blocks are required: 1) LLM
Projection module. 2) LLM itself. 3) Scene Mapper. 4) Instruction Mapper. 5) Output Caption. The
details of iMotion-LLM can be found in the pseudo-code in appendix E.

LLM Projection. Inspired by Vision-LLMs (Dai et al., 2023a; Zhu et al., 2024), we employ a simple
MLP-based projection layer to map input scene embeddings S ∈ RR×dscene to S̃ ∈ RR×dLLM ,
aligning with the LLM embeddings dimension dLLM . R is the number of scene tokens, two of which
correspond to the ego vehicle.

LLM. All projected scene embeddings S̃ and input instruction TI are fed to the LLM to generate
output tokens, [I;S1;S2], where I represents instruction embedding and Sn represents the ego
corresponding embeddings after grounding the instruction TI .

Scene Mapper. To ensure seamless integration, we freeze the motion prediction model’s encoder and
decoder. Consequently, we map instruction-grounded ego tokens [Si] ∈ R2×dLLM back to R2×dscene ,
that are used with the rest of keys and values of other scene information coming directly from the
scene encoder bypassing the LLM (R(R−2)×dscene), combined serving as keys and values in the
Multimodal Trajectory Prediction Decoder. The scene mapping can be defined as in Eq. 1.

Ki&Vi = MLP ([Si]); i ∈ 1, 2. (1)

Instruct Mapper. Following the Scene Mapper, we project instruction token I back to the motion
prediction model’s embedding space (dscene), which is fused with qmotion through a simple addition
operation, as shown in Eq. 2.

Q = qmotion +MLP ([I]). (2)

Output Caption. Along with generating scene and instruction tokens, the LLM outputs a text that
describes how the instruction is executed, and a textual decision of ("<Accept>" or "<Reject>") to
indicate whether an instruction is feasible or not.

5 INSTRUCTION FOLLOWING AND DIVERSITY METRICS

Our primary objective is to render current motion prediction models interactive and instructable.
Hence, conventional metrics like Average Displacement Error (ADE) and Final Displacement Error
(FDE) alone may not suffice to adequately evaluate the instruction-following capabilities of the
proposed model. To address this, we introduce two metrics: Instruction Following Recall (IFR) and
Direction Variety Score (DV S).

Instruction Following Recall (IFR). To gauge the model’s ability to adhere to instructions, we
compare given instructions direction Dintruct, with the directions of the generated multimodal
trajectories. For each of the M modalities, we calculate its direction Dpredj

, using the same module
used to extract the actual-scenario ground truth future direction. Based on that IFR is computed as
the average recall across N samples of multimodal trajectory predictions:

IFR =
1

N

N∑
i=1

1

M

M∑
j=1

Recall
(
Di

predj | Di
intruct

)
, (3)
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Figure 4: Illustrative examples of IFR and DVS of 6 modalities given a direction instruction of "move
straight".

Where a higher IFR indicates higher adherence to a given instruction signal. For an unconditional
model that takes no instruction signal, we can still measure the IRF where Dintruct is considered
the actual-scenario ground truth’s future direction.

Direction Variety Score (DVS). To assess the directional diversity of predicted modalities, we
measure the ratio of unique direction categories predicted over the total number of modalities M .
This metric is calculated irrespective of the actual or given instruction as:

DV S =
1

N

N∑
i=1

Unique(Di
pred)

M
, (4)

Where a higher DV S indicates more diversity of predicted directions.

Figure 4 shows three illustrative examples given an input instruction or an actual-scenario instruction
of “move straight.”. The left example shows the highest possible IFR, where all modalities are
precisely in the "move straight" direction. The middle example has only two true positives while
covering 3 unique directions, resulting in a 2/6 IFR and 3/6 DV S. The right example shows the
highest possible directional diversity of a maximum possible number of unique directions, with only
one true positive resulting in 1/6 IFR. In our experiments, we report the values in percentages.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Implementation Details. We started by reproducing the checkpoint of GameFormer (Huang et al.,
2023a) using 4,228,499 training samples (using the same training setup and hyperparameters as
suggested). Similarly, we trained the conditional GameFormer model with 2,011,265 training
samples augmented with categorical instructions. We use this as our pretrained trajectory forecasting
backbone. For iMotion-LLM, which integrates the pretrained conditional GameFormer with Llama-
2-7B (Touvron et al., 2023b) and extends the vocabulary to include 3 additional tokens ([I], [S1], and
[S2] tokens), the LLM mapping modules are fully fine-tuned, and LoRA weights are fine-tuned with
LoRA parameters of r = 8 and α = 16 for 3,510 training steps. The training involved 39 iterations
per inner epoch, a batch size of 64 per GPU, using 4x A100-80GB GPUs, effectively covering
900,000 training samples over 90 epochs. We utilized the Adam optimizer with an initial learning
rate (LR) of 1e-4, incorporating a linear warmup for the first 100 steps starting from a warmup LR
of 1e-6, followed by a cosine LR scheduler. Training takes approximately 8 hours to complete 90
epochs.

Training Scenarios. The model was trained with Actual-Scenario (AS) instructions and Infeasible
(INF) instructions. During training, the selection of a driving scenario (AS or INF) sample was
random. For AS samples, the loss is calculated using both the LLM output text cross-entropy loss
(feasibility detection text, and transcription of how the action is performed) and the trajectory negative
log-likelihood loss (the same training objective as GameFormer). For INF instructions, since there
are no reference ground-truth trajectories, the loss solely consists of the cross-entropy of the LLM
output text for feasibility detection.

Metrics. In addition to the proposed metrics, i.e., IFR and DV S, which are discussed in Section
5, we employ the conventional motion metrics; minADE and minFDE (Ettinger et al., 2021a). The

7
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minADE and minFDE are evaluated using the same examples used to evaluate the actual-scenario
instructions setup.

Evaluation. Each model is evaluated with three instruction types: actual-scenario, other feasible,
and infeasible. We use 2,311 evaluation examples. We compare different models with the exact
set of evaluation examples, we considered using equal number of examples across each category
except "right u-turn" because it is rarely presented. Evaluation takes around 40 minutes on a single
A100-80GB GPU.

6.2 RESULTS & DISCUSSION

(a) IFR Performance: IFR performance of different models under different instruction types and the ratio of
AS-to-INF IFR and OF-to-INF IFR, higher ratios indicate better performance.

Model Instruct. Feasibility
Detect.

(AS)
IFR↑ (OF)

IFR↑ (INF)
IFR ↓ (AS / INF)

IFR Ratio ↑ (OF / INF)
IFR Ratio ↑

GameFormer 68.60% 3.36% 1.47% 46.67 2.29

Conditional GameFormer (ours) ✓ 81.39% 30.13% 13.74% 5.92 2.19
iMotion-LLM (ours) ✓ 81.37% 24.53% 10.61% 7.67 2.31
iMotion-LLM (ours) ✓ ✓ 73.94% 13.72% 6.68% 11.07 2.05

(b) DVS Results: DVS results of the models with no feasi-
bility detection. Lower DVS combined with high feasible
instructions IFR indicates higher directional precision.

Model Instruct. (AS)
DVS

(OF)
DVS

(INF)
DVS

GameFormer 15.78% 12.96% 12.98%
Conditional GameFormer (ours) ✓ 8.74% 19.75% 21.80%
iMotion-LLM (ours) ✓ 6.04% 15.42% 17.96%

(c) Feasibility Detection: accuracy of iMotion-
LLM feasibility detection on all three types of
input instructions.

Model iMotion-LLM

(AS) Acc. 87.35%
(OF) Acc. 40.75%
(INF) Acc. 75.96%

Table 2: Main Results. Evaluating models with/out instruction input during inference (Instruct.),
models with/out feasibility classification capability (Feasibility Detect.), and under three instruction
types (AS: Actual-Scenario, OF: Other Feasible, INF: Infeasible).

GameFormer. Although GameFormer does not take any conditions and cannot classify feasibility,
we evaluated it across all three categories. As expected, the model performs reasonably at generating
predictions that fit the actual scenario and struggles to produce predictions that follow instructions for
other directions; see Table 2a (top-row).

Conditional GameFormer. As shown in Table 2a, making GameFormer conditional on a discrete
direction enhances its ability to follow actual-scenario instructions, as indicated by a 12.8% increase
in IFR (AS). The recall for following other feasible and infeasible instructions also improves. The
details of the conditional GameFormer can be found in Section 4.2 and in the pseudo-code in appendix
E.

iMotion-LLM without feasibility detection. Even though iMotion-LLM was trained with feasibility
classification capability, we show in Table 2a how the model performs, assuming all generated
trajectories are valid. With this setup, iMotion-LLM without feasibility detection, despite the overall
drop in IFR, outperforms the Conditional GameFormer in the feasible to infeasible (both AS/INF and
OF/INF) IFR ratios.

iMotion-LLM with feasibility detection. Given iMotion-LLM’s ability to detect whether an
instruction should be accepted or rejected, any prediction with rejected feasibility is assigned an IFR
of 0. The model did not perform the best on other feasible instructions. More notably can be seen
where iMotion-LLM achieves a lower (OF/INF) ratio when considering feasibility detection (the last
row).

Insignificance of other feasible instructions following. For other feasible instructions besides the
actual-scenario instruction, as shown in Table 2 both the conditional GameFormer and iMotion-LLM
exhibit lower IFR and higher DVS compared to the actual-scenario case. Intuitively, this behavior
correlates with infeasibility of instructions rather than feasibility. Even though iMotion-LLM detects
the feasibility of actual-scenario and infeasible instructions with a high rate, it does not detect
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other feasible instructions’ true positives with such significance. We attribute this to two factors.
First, driving behaviors for other feasible instructions may diverge from real scenarios, making the
task more complex and requiring better generalizability. Interestingly, iMotion-LLM rejects this
instruction. Figure 5 shows a successful case of accepting feasible instructions and rejecting infeasible
instructions; stationary was labeled as infeasible due to the vehicle’s current velocity. The feasibility
detection accuracy is shown in Table 2c. We show additional results in appendix C. In the appendix n
in Figure 7 we show that feasible directions might not always align with safety, laws, or convenience.

Evaluation on minADE and minFDE. Although this work primarily focuses on instruction-
following ability in the proposed new metrics, we also evaluate the models using the traditional
minADE and minFDE metrics in two scenarios: with and without the condition instruction during
testing. In Table 3, we show the state of existing leading trajectory prediction models, as reported by
the original authors on the WOMD interaction prediction challenge test set, as a reference to ensure
our development does not deteriorate the performance of the base task we are building on. Table 4
demonstrates that our model’s performance does not diverge significantly from the baseline in the
traditional metrics. The GameFormer model used is a retrained checkpoint, and its performance on
the validation set aligns closely with the reported results on the WOMD test set. The Conditional
GameFormer is an additional model we trained, which incorporates a conditional direction label as
input. In Table 4, the iMotion-LLM and the iMotion-LLM (Drop instruct.) represent the same model,
but are evaluated in two ways: using the actual scenario instruction and without the input instruction.
Table 3: WOMD Test Set minADE & minFDE.
Joint prediction performance reported by differ-
ent SOTA models.

Model minADE ↓ minFDE ↓

GameFormer (Huang et al., 2023b) 0.9161 1.9373
MTR (Shi et al., 2022b) 0.9181 2.0633
MotionLM (Seff et al., 2023) 0.8911 2.0067

Table 4: WOMD Validation Subset minADE
& minFDE: Our reported Joint prediction perfor-
mance.

Model Cond. minADE minFDE

GameFormer (reproduced) 0.8888 1.9293
iMotion-LLM (Drop instruct.) (ours) 1.1642 2.7477
Conditional GameFormer (ours) ✓ 0.8223 1.7001
iMotion-LLM (ours) ✓ 0.9758 2.1257

Generalizability to NuPlan Dataset. To investigate the model capability to generalize to other
datasets, we investigated three setups in Table 5. Even though the basline modules that are integrated
into iMotion-LLM are pretrained on Waymo Open Dataset, we show the model generalizability by
1) zero-shot evaluation, 2) fine-tuning the LLM and mapping modules, 3) End-to-end finetuning
(including the baseline modules). For finetuning, we consider 2,212 examples from the Pitssburg
Train split. And evaluation was performed cross-city, where all the reported results are from the
"Boston Train" split. As many of the features the GameFormer model uses from Waymo Open
Dataset cannot be matched to features available from NuPlan, those features were set to default values
to avoid changing the design of the pretrained GameFormer modules. Intrestingly, the model showed
good IFR, combined with larger DVS that indicate some level of uncertinatiy, which is expected.
The displacement errors show a lack of accuracy of the model, yet it gets improved when finetuned
on a small fold of the data. These generalizability results were conducted using the actual-scenario
instructions extracted from the ground truth future motion only. These experiments were done based
on iMotion-LLM which generates all scene tokens, not only the ego agent tokens.

Table 5: Model Generalizability to NuPlan Dataset. Comparison of finetuning strategies based on
IFR, DVS, and vehicle minADE/minFDE metrics.

Finetuning Strategy IFR DVS Vehicle minADE Vehicle minFDE
zero-shot 83.9 7.6 2.66 5.48
Finetuned 86.9 6.3 2.09 4.76
End-to-End Finetuned 85.8 7.3 1.90 4.50

7 LIMITATIONS AND FUTURE DIRECTIONS

Our study provides a key step by focusing on direction-based instructions, illustrating the potential
of the LLM in executing driving tasks. By showing that the model can effectively interpret and act
on these instructions, we have established a baseline that future research can build upon. As the
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Human: Make the ego vehicle turn right. (Actual-scenario direction)

Ground truth: The ego vehicle can turn right, where it will first move straight with a slow speed and a mild deceleration, then turn right with a very slow 
speed and a constant velocity. Agent-2 is 11.62m far behind. The closest traffic light (green/go) is 13.5m in front The closest stop sign is 64.27m but not in 
front.

The ego vehicle can turn right, where it will first move straight with a slow speed and a 
mild acceleration, then turn right with a slow speed and a mild acceleration. Agent-2 
is 14.97m far behind. The closest traffic light (green/go) is 14.16m in front The 
closest stop sign is 66.12m but not in front. Decision:  <Accepted>.

iMotion
-LLM-

:

Human: Make the ego vehicle move straight veering left.

The ego vehicle can move straight veering left, where it will first move straight with a 
slow speed and a aggressive acceleration, then move straight with a moderate speed 
and a moderate acceleration. Agent-2 is 18.1m far behind. The closest traffic light 
(green/go) is 32.82m in front The closest stop sign is 98.59m but not in front. Decision: 
<Accepted>.iMotion

-LLM-

:

(Other feasible direction)

Human: Make the ego vehicle stay stationary.

The ego vehicle cannot stay stationary, because there are no lanes that allow this 
direction based on the current location, heading, and speed of the ego vehicle. 
Decision:  <Rejected>.

iMotion
-LLM-

:

(Infeasible direction)

Figure 5: Qualitative result showing the model ability in following feasible instructions (top two
figures), and making sense of surroundings. While also rejecting irrational scenarios like staying
stationary in the bottom figure. Yet it generates a trajectory where the ego is stopping, and the
interactive agent (Agent-2) is overtaking it.

baseline model by design allows multi-agent trajectory prediction, in Appendix D we show trials
to instruct multiple agents at the same time. While there is a noticeable performance drop when
extending instructions to multiple agents, we expect that further analysis can lead to a better design
to improve this direction in the future. Exploring more complex instructions that encompass greater
granularity and contextual information will further enhance the model’s nuanced understanding and
execution of multifaceted driving tasks. Furthermore, we employed relatively simple instructions and
output captions, demonstrating the feasibility and effectiveness of this approach. Our work paves
the way for incorporating more advanced and diverse input instructions and output captioning with
varying levels of reasoning based on the ego state and surroundings. Although these elements were
not included in this study, the attributes we extracted in InstructWaymo can facilitate their seamless
integration. This presents an exciting opportunity for future research to develop more sophisticated
and naturalistic implementations, extending the impact of our initial findings.

8 CONCLUSION

In conclusion, we introduce iMotion-LLM, a Large Multimodal Model powered by LLMs, tailored for
trajectory prediction in interactive multi-agent scenarios within autonomous navigation. By leveraging
textual instructions as key inputs, our model not only generates contextually relevant trajectory
predictions but also showcases an enhanced ability to interpret and act upon these instructions.
Through integration with a pretrained LLM fine-tuned with LoRA, iMotion-LLM effectively translates
scene features into the LLM input space, enabling accurate multimodal trajectory forecasts. Notably,
our model’s ability to generate trajectories aligned with provided instructions inherits the performance
of the underlying backbone model, marking a significant advancement in empowering autonomous
navigation systems to anticipate the dynamics of multi-agent environments. iMotion-LLM, combined
with InstructWaymo instructions and captions, provides the capability to align trajectories with
feasible instructions and reject infeasible ones, thereby enhancing operational safety. This work not
only advances the field of autonomous navigation by enabling systems to better anticipate and react
within multi-agent environments but also sets a solid foundation for further innovations in interactive
autonomous systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 961–971, 2016.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023.

Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karnsund, Andrew James Willmott, Danny
Birch, Daniel Maund, and Jamie Shotton. Driving with llms: Fusing object-level vector modality
for explainable autonomous driving. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), 2024.

Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Scept: Scene-consistent, policy-based trajectory
predictions for planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 17103–17112, 2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen, Tzu-Kuo
Huang, Jeff Schneider, and Nemanja Djuric. Multimodal trajectory predictions for autonomous
driving using deep convolutional networks. In 2019 International Conference on Robotics and
Automation (ICRA), pp. 2090–2096. IEEE, 2019.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
Pascale Fung, and Steven Hoi. InstructBLIP: Towards general-purpose vision-language models
with instruction tuning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023a.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. CoRR, abs/2305.06500, 2023b. doi: 10.48550/ARXIV.
2305.06500.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Vikrant Dewangan, Tushar Choudhary, Shivam Chandhok, Shubham Priyadarshan, Anushka Jain,
Arun K Singh, Siddharth Srivastava, Krishna Murthy Jatavallabhula, and K Madhava Krishna.
Talk2bev: Language-enhanced bird’s-eye view maps for autonomous driving. arXiv preprint
arXiv:2310.02251, 2023.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou, Z. Yang,
A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, and D. Anguelov. Large scale
interactive motion forecasting for autonomous driving : The waymo open motion dataset. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9690–9699, Los Alamitos,
CA, USA, oct 2021a. IEEE Computer Society. doi: 10.1109/ICCV48922.2021.00957. URL
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00957.

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large scale interactive motion forecasting
for autonomous driving: The waymo open motion dataset. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9710–9719, 2021b.

Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde.
Home: Heatmap output for future motion estimation. In 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), pp. 500–507. IEEE, 2021.

Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen,
Peng Gao, Xianzhi Li, Hongsheng Li, et al. Point-bind & point-llm: Aligning point cloud
with multi-modality for 3d understanding, generation, and instruction following. arXiv preprint
arXiv:2309.00615, 2023.

K. Tan et al. H. Caesar, J. Kabzan. Nuplan: A closed-loop ml-based planning benchmark for
autonomous vehicles. In CVPR ADP3 workshop, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. arXiv preprint arXiv:2307.12981,
2023.

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv preprint
arXiv:2309.17080, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

Zhiyu Huang, Xiaoyu Mo, and Chen Lv. Multi-modal motion prediction with transformer-based
neural network for autonomous driving. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 2605–2611. IEEE, 2022b.

Zhiyu Huang, Haochen Liu, and Chen Lv. Gameformer: Game-theoretic modeling and learning of
transformer-based interactive prediction and planning for autonomous driving. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3903–3913, October
2023a.

Zhiyu Huang, Haochen Liu, and Chen Lv. Gameformer: Game-theoretic modeling and learning
of transformer-based interactive prediction and planning for autonomous driving. arXiv preprint
arXiv:2303.05760, 2023b.

Ye Jin, Xiaoxi Shen, Huiling Peng, Xiaoan Liu, Jingli Qin, Jiayang Li, Jintao Xie, Peizhong Gao,
Guyue Zhou, and Jiangtao Gong. Surrealdriver: Designing generative driver agent simulation
framework in urban contexts based on large language model. arXiv preprint arXiv:2309.13193,
2023.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning
segmentation via large language model. arXiv preprint arXiv:2308.00692, 2023.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023.

12

https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00957


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Jiageng Mao, Yuxi Qian, Hang Zhao, and Yue Wang. Gpt-driver: Learning to drive with gpt. arXiv
preprint arXiv:2310.01415, 2023.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

Xiaoyu Mo, Zhiyu Huang, Yang Xing, and Chen Lv. Multi-agent trajectory prediction with heteroge-
neous edge-enhanced graph attention network. IEEE Transactions on Intelligent Transportation
Systems, 23(7):9554–9567, 2022.

Abduallah Mohamed, Deyao Zhu, Warren Vu, Mohamed Elhoseiny, and Christian Claudel. Social-
implicit: Rethinking trajectory prediction evaluation and the effectiveness of implicit maximum
likelihood estimation. In European Conference on Computer Vision, pp. 463–479. Springer, 2022.

Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S Refaat, and Benjamin
Sapp. Wayformer: Motion forecasting via simple & efficient attention networks. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2980–2987. IEEE, 2023.

Jiquan Ngiam, Vijay Vasudevan, Benjamin Caine, Zhengdong Zhang, Hao-Tien Lewis Chiang, Jeffrey
Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, et al. Scene transformer: A
unified architecture for predicting future trajectories of multiple agents. In International Conference
on Learning Representations, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pp. 683–700.
Springer, 2020.

Ari Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou, Nigamaa Nayakanti, Khaled S Refaat,
Rami Al-Rfou, and Benjamin Sapp. Motionlm: Multi-agent motion forecasting as language
modeling. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
8579–8590, 2023.

Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer with global intention
localization and local movement refinement. Advances in Neural Information Processing Systems,
2022a.

Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer with global intention
localization and local movement refinement. Advances in Neural Information Processing Systems,
35:6531–6543, 2022b.

Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mtr++: Multi-agent motion prediction with
symmetric scene modeling and guided intention querying. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Systems, 36, 2024.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. arXiv preprint arXiv:2308.16911,
2023.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing
vision-language understanding with advanced large language models. In The Twelfth International
Conference on Learning Representations, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Speed and acceleration/deceleration categories and upper thresholds.

Speed category Very slow Slow Moderate Fast Very fast

Threshold (km/h) 20 40 90 120 >120

Accel./Decel. category Constant velocity mild Moderate aggressive extreme

Threshold (km/h increase in 8s) 6 25 46 65 >65

Figure 6: Illustrative examples of directions categories.

Figure 7: Qualitative result showing in the top figure how iMotion-LLM accept and follow the
actual-scenario instruction of "move straight" and in the bottom figure how it rejects "turn right" even
though "turn right" is labeled as a feasible direction.

A SPEED AND ACCELERATION CATEGORIES

The set of 5 different speed categories ranging from very slow to very fast, and the set of acceleration
or deceleration ranging from mind to extreme, including a no acceleration (i.e., constant velocity).
We designed these thresholds heuristically, yet they can be easily adapted. Table 6 shows the used
thresholds.

B CALCULATION OF THE DIRECTIONS

Following the illustration shown in Figure 6, motion direction is measured based on the relative
heading angle between a time step and a future target step. We calculate direction solely based
on trajectory information; the heading angle is calculated using two consecutive trajectory discrete
samples. If the maximum future speed is within a threshold of vstationary = 2m/s, and the vehicle
traveled a distance within dstationary = 5m, the vehicle is considered stationary. Otherwise, the
vehicle is moving straight if the relative heading is within θs = 30 degrees. But if the longitudinal
displacement is greater than dv = 5m, it is categorized as straight veering right/left. If the relative
heading exceeds θs, and the latitudinal shift is less than du = 5m in the opposite direction, it is
considered as turning right/left. Otherwise, it is a U-turn. Right and left directions are distinguished
based on the sign of the relative heading. Figure 6 illustrates the different classes. Table 1 provides
detailed statistics on these eight categories.
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Figure 8: Qualitative Results.

Figure 9: Qualitative Results.

Figure 10: Qualitative Results.

C ADDITIONAL QUALITATIVE RESULTS

D MULTI-AGENT SUPPORT

As the baseline model by design allows multi-agent trajectory prediction, iMotion-LLM can consider
instructing multiple agents by providing instructions for multiple agents in the scene. For 2-Agent
support, during training and evaluation, we sample combinations of different types of instructions,
for example feasible instruction for the ego based on actual-scenario, and infeasible instruction for
Agent-2, or infeasible instruction for the ego and on of the other feasible instructions of Agent-2. For
evaluation, we evaluate each agent separately while switching the combinations of instructions. Table
7 and 8 shows the performance for the Ego (Agent-1) and Agent-2 respectively. Performance for both

2



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 11: Qualitative Results.

is similar, yet shows a drop in performance compared to when instructing a single agent in both IFR
and accuracy.

Table 7: Two-agent iMotion-LLM evaluating the ego agent (Agent-1)

Instruction Type Agent-1 Agent-2 IFR DVS Acc. ↑
Actual-scenario Actual-scenario Actual-scenario 51.86% 3.07% 71%
Other feasible Other feasible Actual-scenario 15.93% 7.15% 61%
Other feasible Other feasible Other feasible 14.05% 6.85% 54%
Infeasible Infeasible Actual-scenario 5.90% 5.85% 48%
Infeasible Infeasible Infeasible 5.44% 5.64% 56%

Table 8: Two-agent iMotion-LLM evaluating Agent-2

Instruction Type Agent-2 Agent-1 IFR DVS Acc. ↑
Actual-scenario Actual-scenario Actual-scenario 42.77% 8.18% 63%
Other feasible Other feasible Actual-scenario 12.90% 15.79% 50%
Other feasible Other feasible Other feasible 16.47% 15.22% 45%
Infeasible Infeasible Actual-scenario 6.81% 18.11% 49%
Infeasible Infeasible Infeasible 6.70% 16.43% 64%

E CONDITIONAL GAMEFORMER AND IMOTION-LLM TRAINING PSEUDO
CODES

3
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Algorithm 1: The pseudocode of Conditional-GameFormer (C-GameFormer).

Input : Cinstruction ∈ Z: Instruction category; Na: Num. agents; da: Num. state features; Nm: Num. map lanes; Np:
Num. points per lane; dm: Num. map features; dscene: latent dimension; tobs = 11: Observed time steps; tpred = 80:
To predict time steps; tselect = [29, 49, 79]: Selected time steps; Npred: Two Agents to predict; M :
Num. modalities (futures); Agents ∈ RNa×tobs×da : history states ; Maps ∈ RNpred×Nm×Np×dm ; N :
Num. scene embeddings;

Output :Pred ∈ RM×Npred×tpred×4: prediction GMM parameters (µx, µy, σx, σy), where (µx, µy) are the 2D trajectory
centers

1 queried_agents← [0, 1, ..., Npred − 1]; // Target agents, [0,1] for two agents
2 queried_modalities← [0, 1, ...,M − 1]; // M modalities

3 S ← [ ]; // Initialize scene tokens empty list of embeddings
4 for each agent_state in agents_history do
5 agent_emb←Motion_Encoder(agent_state); // Encode agent state
6 S ← S ∪ {agent_emb}; // Append agent embedding to S

7 end
8 for each map_feature in map_features do
9 map_emb←Map_Encoder(map_feature); // Encode map feature

10 S ← S ∪ {map_emb}; // Append map embedding to S

11 end
12 S ← selfAttention(S); // Apply fusion self-attention encoder (Scene Encoder)
13 K,V ← S; // Use S as the keys and values of the trajectory decoder

14 Q← [ ]; // Initialize Q
15 q_instruction← Embedding(Cinstruction) ; // Learnable instruction query (proposed)
16 for each agent_number in queried_agents do
17 q_agent← Embedding(agent_number); // agent query
18 for each modality_number in queried_modalities do
19 q_modality← Embedding(modality_number); // Modality query
20 q_motion← q_agent + q_modality; // Combine queries
21 q_motion← q_motion + q_instruction; // Add instruction query (proposed)
22 Q← Q ∪ {q_motion}; // Append motion query to Q

23 end
24 end
25 output_features←Multimodal_Trajectory_Decoder(Q,K, V );
26 Pred, Scores←MLP(output_features), MLP(output_features); // Get multimodal trajectories and modality

scores
27 NLL_loss← NLL(Pred[best_mode, :, tselect], ground_truth_2D)
28 gmm_loss← NLL_loss - CrossEntropy(Scores, best_mode)
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Algorithm 2: The pseudocode of iMotion-LLM.

Input : Same inputs as C-GameFormer (Algorithm-1);
TI : Text input instruction;

Output :Same output as C-GameFormer (Algorithm-1);
Output Text

1 queried_agents← [0, 1, ..., Npred − 1]; // Target agents, [0,1] for two agents
2 queried_modalities← [0, 1, ...,M − 1]; // M modalities

3 S ← Scene_Encoder(agents_history, map_features) // (3-12) in Algorithm-1

4 S̃ ← [ ]
5 for each Sembedding in S do
6 S̃ ← S̃ ∪ LLM_Projection(Sembedding) ; // Projections from R1xdscene ⇒ R1×dLLM

7 end
8 emb_TI← LLM_Tokenizer(TI) ; // Embeddings of input text ⇒ RNtokens×dLLM

9 LLM_Input_emb← [emb_TI; S̃] ; // concatenating text and scene embeddings
10 if Training then
11 hidden_states, tokens, LLM_loss← LLM(LLM_Input_emb) ; // Autoregressive output last hidden states,

corresponding tokens, and LLM cross-entropy loss
12 generation_hidden_states← select_generation_states(hidden_states) ; // Selecting tokens that correspond to

[I], [S1], [S2], ...[SN ]

13 end
14 if Inference then
15 while [I] not detected do
16 next_token← LLM(LLM_Input_emb) ; // Autoregressive next token generation until the first

trajectory generation token [I] is found.
17 LLM_Input_emb← LLM_Input_emb ∪ next_token_emb ; // Include the next token to generate the

following one
18 end
19 hidden_states←Masked_Generation_LLM(LLM_Input_emb) ; // Forcing the generation of all tokens

[I], [S1], [S2], ...[SN ]

20 end
21 K,V← Scene_Mapper([[S1], [S2], ...[SN ]]) ; // Mapping each token independently, replaces (Line 13) in

Algorithm-1
22 q_instruction← Instruct_Mapper([I]) ; // Mapping instruction token to qinstruct, replaces (15) in

Algorithm-1
23 qmotion ← Embedding(queried_agents, queried_modalities) ; // Combined agents-modalities queries,

(16-20) in Algorithm-1

24 Q← qmotion + qinstruction ; // Combine queries, (Line-22) in Algorithm-1
25 output_features←Multimodal_Trajectory_Decoder(Q,K, V );
26 Pred, Scores←MLP(output_features), MLP(output_features)
27 NLL_loss← NLL(Pred[best_mode, :, tselect], ground_truth_2D)
28 gmm_loss← NLL_loss - CrossEntropy(Scores, best_mode)
29 iMotion_loss = LLM_loss + gmm_loss
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