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ABSTRACT

We introduce iMotion-LLM, a Multimodal Large Language Model (LLM) in-
tegrated with trajectory prediction, designed to guide interactive motion predic-
tion scenarios. Unlike conventional multimodal trajectory prediction approaches,
iMotion-LLM generates diverse and feasible future trajectories conditioned on tex-
tual instructions as a guidance signal. By augmenting real-world driving scenarios
in the Waymo Open Motion Dataset (WOMD) with textual motion instructions,
we propose InstructWaymo data augmentation. Leveraging this data augmentation,
iMotion-LLM integrates a pretrained LLM, fine-tuned with LoRA, to map scene
features into the LLM input space. Key results demonstrate that making the trajec-
tory prediction model conditional improves its instruction-following capabilities.
Specifically, the integration of the LLM enables a 11.07x ratio of actual-scenario
feasible to infeasible recall instruction following, compared to 5.92x when us-
ing the Conditional GameFormer alone. These findings highlight the ability of
iMotion-LLM to generate trajectories that not only align with feasible instructions
but also reject infeasible ones, enhancing overall safety. Despite its improvements
in instruction following, iMotion-LLM inherits the strong trajectory prediction per-
formance of the baseline model, making it versatile across different driving modes.
This combination of skills positions iMotion-LLM as a powerful augmentation
technique for trajectory prediction models, empowering autonomous navigation
systems to better interpret the motion prediction. This work lays the groundwork
for future advancements in instruction-based motion prediction.

1 INTRODUCTION

In autonomous driving, accurate trajectory prediction is critical for ensuring safe and efficient
navigation in dynamic environments. Given a window of observed history, the task is to predict
multi-modal trajectories of multiple agents surrounding the ego vehicle in addition to the ego vehicle.
A significant challenge in this field is the inherently diverse nature of driving behaviors in real-world
scenarios, where an agent’s future trajectory is not deterministic but can follow multiple feasible
paths due to various factors such as traffic rules, interactions with other agents, and environmental
conditions. Hence, developing models that can effectively predict diverse trajectories is crucial for
autonomous systems to anticipate and adapt to potential hazards, make informed decisions, and
ultimately achieve reliable and safe operation.

Recent challenges, e.g., Waymo Open Motion Dataset (WOMD) challenges (Ettinger et al.| 2021b),
introduce a track specifically designed to concentrate on motion prediction where 1.1 seconds of the
past motion is observed, and 8 seconds to be predicted into the future. Various methodologies (Huang
et al.} |2023a; Shi et al.| 2022a; Seff et al., [2023) have been developed to tackle this challenge.
Although previous models can predict multi-modality trajectories, the predicted paths are not diverse
enough and mainly focus on one driving behavior (e.g., the trajectory of only one feasible direction.).
The reason is that previous prediction models are trained to imitate real-driving scenarios, fitting
the driving behavior recorded future ground truth trajectory. Therefore, they lack comprehension of
different driving behaviors in a given scenario.

To address the aforementioned challenge, we introduce a novel task called Text-Guided Intention
Trajectory Prediction that aims to generate trajectories conditioning on a driving instruction for a
selected vehicle. Additionally, the task provides a textual description predicting the feasibility of
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Ground truth caption: The ego vehicle can move straight, where it will first move straight with a very slow speed and a moderate acceleration, then move
straight with a slow speed and a mild acceleration. Agent-2 is 12.72m far on the left. There are no traffic lights. The closest stop sign is 6.27m in front

Figure 1: Our iMotion-LLM model can process three types of instructions and predict the corre-
sponding trajectories. First, it can handle ground truth instructions that align with the direction of
the recorded real-scenario trajectory (e.g., Waymo Open Motion Dataset), correctly accepting the
instruction and providing an explanation and trajectory. Second, iMotion-LLM can follow other
feasible non-ground truth directions and predict the correct explanation and trajectory. Finally, when
given an infeasible direction, iMotion-LLM correctly rejects the instruction.

a given action and explains how it would be executed in terms of different driving behaviors. We
categorize driving behaviors based on two primary components: direction and acceleration, which
together form the basis for diverse driving styles.

The proposed Text-Guided Intention Trajectory Prediction task offers several key advantages over
traditional trajectory prediction models. First, it allows examining trajectory prediction modeling
capability in covering different feasible driving behaviors for a given scenario. Second, by generating
text-guided driving scenarios that are safety-critical or more challenging, the task can be used to
train or test trajectory prediction and planning frameworks under diverse and demanding conditions,
improving the robustness of autonomous systems. Furthermore, this approach enhances the inter-
pretability of prediction models by providing explicit descriptions of driving intentions and how they
translate into vehicle movements, making it easier to understand and trust the model’s decisions.

To instantiate a dataset and model for this task, we augment WOMD (Ettinger et al.| [2021a) with
vehicle direction instructions. Additionally, we did evaluation experiments to show the generalizability
on the NuPlan dataset (H. Caesar, |[2021). The instruction details and statistics are explained in
Section [3] For the evaluation, we propose two novel metrics. The Instruction Following Recall
(IFR) measures how well the predicted trajectories adhere to the specified driving instruction, while
the Direction Variety Score (DVS) captures the diversity of predicted directions. Subsequently, we
introduce the iMotion-LLM: an instructable motion prediction model based on Large Language
Models (LLMs). iMotion-LLM, harnesses pretrained models’ multi-modal trajectory prediction
capabilities through integrating their encoder to map scene vector features and their decoder to decode
trajectories. As shown in Figure [3] it employs an LLM Projection to project encoded scene context
embeddings from the Scene Encoder into the LLM input space. The LLM generates an instruction
token [I] and N [S] tokens representing the scene context embeddings. The instruction token is
mapped to represent an additional intention query used by the decoder, while the scene tokens are
used as keys and values. Our design of the encoder-decoder for the trajectory prediction model
introduces an additional instruction query, alongside the learnable queries present in the original
model design, which act as decoding seeds.

Our experiments, using GameFormer (Huang et al.|,2023a)) as a backbone, show that iMotion-LLM
empowers autonomous navigation systems to interpret and predict the dynamics of agents, while
almost matching the performance of the base model.
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Our contributions can be summarized as:

* We augmented WOMD with instruction categories, enabling the motion prediction task to
be instructed. This augmentation, named InstructWaymo, is easily expandable to include
more detailed driving scenarios and will benefit future research in this direction.

* We enable traditional trajectory prediction modeling through the design integration of
iMotion-LLM to generate text-guided instructable trajectory predictions, allowing the model
to cover diverse feasible driving behaviors in a given scenario.

* We integrate LLMs with traditional trajectory prediction models to reason about predicted
trajectories and determine how they should be executed in steps, while also training iMotion-
LLM to accept or reject instructions based on feasibility.

* We introduced two evaluation metrics: Instruction Following Recall (IFR) and Direction
Variety Score (DVS), to measure the model’s ability to follow instructions and the diversity
of predicted modalities across different directional categories, which cannot be captured by
conventional metrics used in motion prediction.

2 RELATED WORK

Multimodal Large Langauge Models. Large Language Models (LLMs) have significantly advanced
in recent years (Radford et al.| 2019; Devlin et al.| 2018; [Brown et al.,[2020; [Touvron et al.,|2023b;a}
Achiam et all 2023), with models like GPT-4 (Achiam et al., 2023)) demonstrating remarkable
abilities in generating coherent, contextually relevant text across numerous domains. With the strong
performance of LLMs, there is an emergence of multi-modal LLMs (MLLMs) (Alayrac et al., 2022),
which extend the LLMs with reasoning abilities across diverse modalities. Notable works includes
Flamingo (Alayrac et al., 2022), InstructBLIP (Dai et al., 2023b), MiniGPT-4 (Chen et al., [2023; Zhu
et al.;, 2023), LLaVA (Liu et al.| 2024; 2023)), and Vicuna (Chiang et al.|[2023)). These works used
visual instruction tuning to align with human intentions. There are some extensions that focus on
detection and segmentation (Zhu et al., 2023} [Wang et al., 2024} |Lai et al., 2023} [Bai et al., [2023)),
videos (Li et al.,[2023} Zhang et al., 2023} [Maaz et al.,2023)), and 3D (Hong et al.|, [2023} Xu et al.
2023;|Guo et al.} 2023)). Our work focuses on MLLMs for motion prediction tasks.

Trajectory Prediction Models for Driving Scenarios. The task of trajectory prediction involves
analyzing the historical tracks of agents on a corresponding map to predict their joint future positions
several seconds into the future. LSTMs (Alahi et al.| 2016; Hochreiter & Schmidhuber, [1997) have
been used to encode the historical states of agents, while CNNs (Cui et al., [2019; |Gilles et al., |2021}
Salzmann et al.| [2020) have been employed to encode the rasterized images of the scene. Recently,
GNNs (Chen et al.l 2022; Huang et al., [ 2022b; Mo et al.| 2022) have been employed to depict agent
interactions effectively. The advent of Transformer-based models, like SceneTransformer (Ngiam
et al., [2021) and WayFormer (Nayakanti et al. 2023)), has further enhanced prediction through
their efficient structure, though they primarily focus on the encoding process of driving scenarios
vectorized representation. Motion Transformer (Shi et al.,|2022b};[2024) and GameFormer (Huang
et al.,|2023b)) innovates by improving the decoding stage, leading to better accuracy. MotionLM (Seff
et al.} 2023)) used similar structures of LLM for the modeling, but still did not introduce the language
reasoning ability to motion prediction task.

Multimodal Large Language Models for autonomous driving. With the emergence of Large
Language Models (LLMs), there is a growing trend to adapt LLMs for autonomous driving scenar-
ios (Chen et al.|[2024; |Dewangan et al., 2023} |Hu et al., [2023; |Huang et al.,2022a). Innovations like
GPT-Driver (Mao et al.,[2023) and SurrealDriver (Jin et al., 2023) exemplify the transformative impact
of LLMs on motion planning and driving maneuver generation, marking significant advancements in
autonomous vehicle technology. However, most existing methods primarily focus on text or image
inputs, overlooking the benefits of vector representation in motion prediction. Vector representation
offers an abstraction of driving scenarios, directly capturing the necessary information for motion
prediction. Similar to Driving with LLMs (Chen et al.| 2024), we integrate LLMs with vector-based
data for motion prediction. While (Chen et al.l|2024) introduced a benchmark focused mainly on QA
tasks for driving scenarios, with motion only represented as a single quantized action (acceleration,
braking, and steering), our work differs by focusing on motion represented as multi-modal multi-agent
trajectories. This approach aligns more closely with existing trajectory prediction modules, making it
more suitable for safe and reliable motion prediction.
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3 INSTRUCTWAYMO: INSTRUCTION AUGMENTATION OF WAYMO OPEN
DATASET

InstructWaymo offers a new perspective on the WOMD by making motion prediction instructable
and language descriptive. Inspired by WOMD mAP calculation, which evaluates model performance
across various driving behaviors, we designed a module that categorizes future motion into different
directions, speeds, and acceleration. InstructWaymo uses future direction information as instruc-
tions, alongside future motion details—two-step direction, speed, and acceleration—as captions.
Additionally instruction (direction) feasibility is calculated adding an extra layer of comprehension
by identifying feasible and infeasible directions for each driving scenario. InstructWaymo will be
provided as a publicly available script to augment WOMD. The script extracts additional useful infor-
mation for future research, such as transcribed agents and object-relative locations to the focal agent,
including neighboring agents, nearby stop signs, and traffic lights (e.g., Agent-2 is 13 meters to the
right, Agent-3 is 3 meters ahead moving in the opposite direction, and there are 3 nearby stop signs,
with the closest 1 meter in front). While this information exists in the dataset, the InstructWaymo
script makes it easily accessible for future research requiring driving scenarios transcribed data.
This data augmentation was applied to different driving scenarios. The scenarios are preprocessed
similarly to GameFormer preprocessing, where each scenario includes up to 32 neighboring agents,
with a total of 33 agents including the ego agent. Each agent in the scene is considered the focal
agent (the ego-view agent), resulting in 4,228,499 samples. Of these, 2,011,265 samples involve the
focal agent being a vehicle with valid detected instructions.

Direction. Direction is fundamental for instructing navigation, we adopted WOMD direction
bucketing script to obtain eight conceivable direction conditions encompassing 8 classes listed in
Table [T with their statistics. The table shows a bias toward some behaviors like moving straight. See
the details of the calculation of the directions in Section [B]in the appendix. We use driving directions
as instructions in this work.

Table 1: Direction categories with their corresponding presence proportion in the train set.
Category | Stationary | Straight | Straight-right | Straight-left | Right | Left | Rightu-turn | Left u-turn |
Train | 16% | 558% | 33% | 37% |167% | 175% | 01% | 14% |

Speed and Acceleration. Following the intuition used in (Mohamed et al.,|2022), we categorize
trajectories of moving vehicles based on speeds and relative change in speeds. For that, we defined
5-speed categories and 9-acceleration categories; the suggested upper threshold and the categories
are listed in the appendix in Table[6]

Feasibility of directions. We define the feasibility of directions into
three categories: 1) actual-scenario direction (AS), which is based on
the ground truth future trajectory and hence is always assumed to be a
feasible direction; 2) Other feasible directions (OF), which are derivable

directions but not the actual-scenario direction; 3) Infeasible directions
(INF), which is the complement set of feasible directions. To assess 4 \ i

feasibility, we consider a set of candidate destinations relative to the ego
vehicle’s current location and heading. These candidate destinations are
possible locations on associated lanes within a range determined by the
vehicle’s speed (minimum range r1, maximum range r3). This range is
calculated based on a minimum and maximum speed change of 45 km/h
within 8 seconds and within a maximum range of 60 meters. Figure [2]
illustrates this concept with two feasible directions. For the feasibility
of staying stationary, the minimum range is considered to detect if the
vehicle can slow down to stop in a range of 5 meters.

Figure 2: Illustration of
feasibility detection of
"move straight" and "turn
right" within a range of
(rl, r2).

LLM Instruction and caption. Based on the previously extracted attributes, we generate a template
of input instruction and output caption that the LLM can process. The input instruction is the final
direction the vehicle should arrive in. The output caption that the LLM aligns to generate auto-
regressively includes the final direction, with two-step directions, speeds, and accelerations achieving
the final direction as an interpretation of how an instruction is followed.
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Figure 3: The proposed pipeline, referred to as iMotion-LLM, leverages the multi-modal trajectory
prediction capabilities of pretrained models, employing an encoder-decoder transformer architecture.
Given a textual instruction and scene context embeddings, iMotion-LLM utilizes an LLM Mapper to
project the encoded scene context embeddings from the Scene Encoder into the LLM input space.
Subsequently, the LLM generates an instruction token [I] and a sequence of [S] tokens representing
the scene context embeddings. The [I] token is projected to a query, and the scene context-generated
tokens are projected to be the keys and values utilized by the multi-modal trajectory prediction
decoder.

4 IMOTION-LLM

4.1 REVISITING EXISTING MODELS

Recent successful transformer-based interactive trajectory prediction models (Huang et al.,[20234;
2022a) commonly employ a schema comprising two main blocks. Initially, a scene
encoder encodes the observed map and agent information into embeddings representing scene context
information S € REXdeen where dgcene 1S the embedding dimension. This context information is
crucial for understanding the dynamics of the environment. The second component is a multimodal
trajectory prediction decoder. This decoder employs cross-attention, using the scene context .S as the
keys and values (denoted as K &V). The decoder also utilizes K learnable queries ¢motion € RE X dscene
to predict a Gaussian Mixture Model (GMM) of the potential future multi-modal trajectory of multiple
agents. Based on this, the GameFormer model (Huang et al.|[20234) consists of two core blocks, the
Scene Encoder and Trajectory Decoder, which are visually represented in purple in Figure[3] In the
scene encodet,

* Vectorized motion data is encoded using a Long Short-Term Memory (LSTM) network.
* Map features are processed via Multi-Layer Perceptrons (MLPs) for continuous data, such

as the geometric layout of center lanes, or through embedding layers for categorical data

like the state of traffic lights.
* Once encoded, the scene encoder serves as a feature fusion layer, combining all the processed

features to form scene representatlon.

After feature fusion, each token retains a specific correspondence to its map components. For example,
in GameFormer’s two-agent joint prediction model:

* The ego agent state is represented by two tokens, with one token being self-referential (when

the ego agent is the focal agent), and the other token corresponding to the interaction with

another agent (when the other agent becomes the focal agent).
* This pattern extends across all map features, where each map feature has two versions:

one normalized with respect to the ego agent and another normalized with respect to the
interacting agent.
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4.2 CONDITIONAL MULTIMODAL TRAJECTORY PREDICTION DECODER

To generate a conditional output, cGAN (Mirza & Osindero}, |2014) uses a conditioning signal in the
generator model’s input. Inspired by this, we fuse an additional learnable query, ginstruction, With the
motion generation queries, gmotion- FOr making the base model conditional (conditional GameFormer),
Ginstruction 18 learned using a simple embedding layer with a categorical class as input. When integrating
an LLM with the base model, gipstruction 18 derived from the LLM’s output embeddings as described
in the next subsection. The details of the conditional GameFormer training are provided in the
pseudo-code in appendix

4.3 INTEGRATION OF IMOTION-LLM

In our proposed design we integrate, align, and instruct fine-tune the LLM with a pretrained Game-
Former (Huang et al) |2023a) consisting of a Scene Encoder and the Multi-modal Trajectory
Prediction Decoder. The LLM lies between them, and enables instructability and interpretability.
To enable this integrational design, illustrated in Figure[3] five main blocks are required: 1) LLM
Projection module. 2) LLM itself. 3) Scene Mapper. 4) Instruction Mapper. 5) Output Caption. The
details of iMotion-LLM can be found in the pseudo-code in appendix [E|

LLM Projection. Inspired by Vision-LLMs (Dai et al.,[2023a; Zhu et al.|[2024), we employ a simple
MLP-based projection layer to map input scene embeddings S € RFEXdscene to § ¢ REXdrrnm
aligning with the LLM embeddings dimension d,15s. R is the number of scene tokens, two of which
correspond to the ego vehicle.

LLM. All projected scene embeddings S and input instruction 77 are fed to the LLM to generate
output tokens, [I;S7;52], where I represents instruction embedding and S,, represents the ego
corresponding embeddings after grounding the instruction 77.

Scene Mapper. To ensure seamless integration, we freeze the motion prediction model’s encoder and
decoder. Consequently, we map instruction-grounded ego tokens [S;] € R2X4LLM back to R2Xdscene |
that are used with the rest of keys and values of other scene information coming directly from the
scene encoder bypassing the LLM (R(F=2)Xdscene)  combined serving as keys and values in the
Multimodal Trajectory Prediction Decoder. The scene mapping can be defined as in Eq. [I}

Ki&Vi; = MLP([S:));i € 1,2. (1)

Instruct Mapper. Following the Scene Mapper, we project instruction token I back to the motion
prediction model’s embedding space (dgscene), Which is fused with g,,01i0n through a simple addition
operation, as shown in Eq. [2]

Q = Gmotion + M LP([I]). )

Output Caption. Along with generating scene and instruction tokens, the LLM outputs a text that
describes how the instruction is executed, and a textual decision of ("<Accept>" or "<Reject>") to
indicate whether an instruction is feasible or not.

5 INSTRUCTION FOLLOWING AND DIVERSITY METRICS

Our primary objective is to render current motion prediction models interactive and instructable.
Hence, conventional metrics like Average Displacement Error (ADE) and Final Displacement Error
(FDE) alone may not suffice to adequately evaluate the instruction-following capabilities of the
proposed model. To address this, we introduce two metrics: Instruction Following Recall (I F'R) and
Direction Variety Score (DV'.S).

Instruction Following Recall (IFR). To gauge the model’s ability to adhere to instructions, we
compare given instructions direction D;j,;ryuct, With the directions of the generated multimodal
trajectories. For each of the M modalities, we calculate its direction Dy,.q,, using the same module
used to extract the actual-scenario ground truth future direction. Based on that I F'R is computed as
the average recall across N samples of multimodal trajectory predictions:

M

1o 1 : ‘
IFR = & ; i ; Recall (Dpredj | Dmtruct) ; @)
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100% IFR & 0% DVS 33.3% IFR & 50% DVS 16.7% IFR & 100% DVS

Figure 4: Illustrative examples of IFR and DVS of 6 modalities given a direction instruction of "move
straight”.

Where a higher 1 F'R indicates higher adherence to a given instruction signal. For an unconditional
model that takes no instruction signal, we can still measure the I RF’ where D¢yt 1S considered
the actual-scenario ground truth’s future direction.

Direction Variety Score (DVS). To assess the directional diversity of predicted modalities, we
measure the ratio of unique direction categories predicted over the total number of modalities M.
This metric is calculated irrespective of the actual or given instruction as:

N . ;
1 Unique(D},.q)
DVS =~ ; — O]

Where a higher DV S indicates more diversity of predicted directions.

Figure [ shows three illustrative examples given an input instruction or an actual-scenario instruction
of “move straight.”. The left example shows the highest possible I F'R, where all modalities are
precisely in the "move straight" direction. The middle example has only two true positives while
covering 3 unique directions, resulting in a 2/6 I FFR and 3/6 DV S. The right example shows the
highest possible directional diversity of a maximum possible number of unique directions, with only
one true positive resulting in 1/6 I F'R. In our experiments, we report the values in percentages.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Implementation Details. We started by reproducing the checkpoint of GameFormer (Huang et al.,
2023a) using 4,228,499 training samples (using the same training setup and hyperparameters as
suggested). Similarly, we trained the conditional GameFormer model with 2,011,265 training
samples augmented with categorical instructions. We use this as our pretrained trajectory forecasting
backbone. For iMotion-LLM, which integrates the pretrained conditional GameFormer with Llama-
2-7B (Touvron et al.,[2023b) and extends the vocabulary to include 3 additional tokens ([I], [S1], and
[S2] tokens), the LLM mapping modules are fully fine-tuned, and LoRA weights are fine-tuned with
LoRA parameters of » = 8 and a = 16 for 3,510 training steps. The training involved 39 iterations
per inner epoch, a batch size of 64 per GPU, using 4x A100-80GB GPUs, effectively covering
900,000 training samples over 90 epochs. We utilized the Adam optimizer with an initial learning
rate (LR) of le-4, incorporating a linear warmup for the first 100 steps starting from a warmup LR
of le-6, followed by a cosine LR scheduler. Training takes approximately 8 hours to complete 90
epochs.

Training Scenarios. The model was trained with Actual-Scenario (AS) instructions and Infeasible
(INF) instructions. During training, the selection of a driving scenario (AS or INF) sample was
random. For AS samples, the loss is calculated using both the LLM output text cross-entropy loss
(feasibility detection text, and transcription of how the action is performed) and the trajectory negative
log-likelihood loss (the same training objective as GameFormer). For INF instructions, since there
are no reference ground-truth trajectories, the loss solely consists of the cross-entropy of the LLM
output text for feasibility detection.

Metrics. In addition to the proposed metrics, i.e., I F R and DV'S, which are discussed in Section
E], we employ the conventional motion metrics; minADE and minFDE (Ettinger et al., [2021a). The
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minADE and minFDE are evaluated using the same examples used to evaluate the actual-scenario
instructions setup.

Evaluation. Each model is evaluated with three instruction types: actual-scenario, other feasible,
and infeasible. We use 2,311 evaluation examples. We compare different models with the exact
set of evaluation examples, we considered using equal number of examples across each category
except "right u-turn" because it is rarely presented. Evaluation takes around 40 minutes on a single
A100-80GB GPU.

6.2 RESULTS & DISCUSSION

(a) IFR Performance: IFR performance of different models under different instruction types and the ratio of
AS-to-INF IFR and OF-to-INF IFR, higher ratios indicate better performance.

Feasibility  (AS) (OF) (INF) (AS /INF) (OF / INF)

Model Instruct. " pyotect.  IFR! IFR| IFR ¥ IFR Ratio | IFR Ratio |
GameFormer 68.60%  3.36% 1.47% 46.67 2.29
Conditional GameFormer (ours) v 81.39% 30.13% 13.74% 5.92 2.19
iMotion-LLM (ours) v 81.37% 24.53% 10.61% 7.67 2.31
iMotion-LLM (ours) v v 73.94% 13.72%  6.68% 11.07 2.05
(b) DVS Results: DVS results of the models with no feasi- (c) Feasibility Detection: accuracy of iMotion-
bility detection. Lower DVS combined with high feasible LLM feasibility detection on all three types of
instructions IFR indicates higher directional precision. input instructions.
(AS)  (OF)  (INF) Model iMotion-LLM
Model Instruct. DVS DVS DVS
GameFormer 15.78% 12.96% 12.98% (AS) Acc. 87'35;%
Conditional GameFormer (ours) v 8.74% 19.75% 21.80% (OF) Acc. 40.75%
iMotion-LLM (ours) v 6.04% 15.42% 17.96% (INF) Acc. 75.96%

Table 2: Main Results. Evaluating models with/out instruction input during inference (Instruct.),
models with/out feasibility classification capability (Feasibility Detect.), and under three instruction
types (AS: Actual-Scenario, OF: Other Feasible, INF: Infeasible).

GameFormer. Although GameFormer does not take any conditions and cannot classify feasibility,
we evaluated it across all three categories. As expected, the model performs reasonably at generating
predictions that fit the actual scenario and struggles to produce predictions that follow instructions for
other directions; see Table @ (top-row).

Conditional GameFormer. As shown in Table [2a] making GameFormer conditional on a discrete
direction enhances its ability to follow actual-scenario instructions, as indicated by a 12.8% increase
in IFR (AS). The recall for following other feasible and infeasible instructions also improves. The
details of the conditional GameFormer can be found in Section4.2]and in the pseudo-code in appendix

El

iMotion-LLM without feasibility detection. Even though iMotion-LLM was trained with feasibility
classification capability, we show in Table [2a| how the model performs, assuming all generated
trajectories are valid. With this setup, iMotion-LLM without feasibility detection, despite the overall
drop in IFR, outperforms the Conditional GameFormer in the feasible to infeasible (both AS/INF and
OF/INF) IFR ratios.

iMotion-LLM with feasibility detection. Given iMotion-LLM’s ability to detect whether an
instruction should be accepted or rejected, any prediction with rejected feasibility is assigned an IFR
of 0. The model did not perform the best on other feasible instructions. More notably can be seen
where iMotion-LLLM achieves a lower (OF/INF) ratio when considering feasibility detection (the last
IrowW).

Insignificance of other feasible instructions following. For other feasible instructions besides the
actual-scenario instruction, as shown in Table [2| both the conditional GameFormer and iMotion-LLM
exhibit lower IFR and higher DVS compared to the actual-scenario case. Intuitively, this behavior
correlates with infeasibility of instructions rather than feasibility. Even though iMotion-LLM detects
the feasibility of actual-scenario and infeasible instructions with a high rate, it does not detect
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other feasible instructions’ true positives with such significance. We attribute this to two factors.
First, driving behaviors for other feasible instructions may diverge from real scenarios, making the
task more complex and requiring better generalizability. Interestingly, iMotion-LLM rejects this
instruction. Figure[5]shows a successful case of accepting feasible instructions and rejecting infeasible
instructions; stationary was labeled as infeasible due to the vehicle’s current velocity. The feasibility
detection accuracy is shown in Table[2c] We show additional results in appendix [C} In the appendix n
in Figure [/|we show that feasible directions might not always align with safety, laws, or convenience.

Evaluation on minADE and minFDE. Although this work primarily focuses on instruction-
following ability in the proposed new metrics, we also evaluate the models using the traditional
minADE and minFDE metrics in two scenarios: with and without the condition instruction during
testing. In Table (3| we show the state of existing leading trajectory prediction models, as reported by
the original authors on the WOMD interaction prediction challenge test set, as a reference to ensure
our development does not deteriorate the performance of the base task we are building on. Table[d]
demonstrates that our model’s performance does not diverge significantly from the baseline in the
traditional metrics. The GameFormer model used is a retrained checkpoint, and its performance on
the validation set aligns closely with the reported results on the WOMD test set. The Conditional
GameFormer is an additional model we trained, which incorporates a conditional direction label as
input. In Table[d] the iMotion-LLM and the iMotion-LLM (Drop instruct.) represent the same model,
but are evaluated in two ways: using the actual scenario instruction and without the input instruction.

Table 3: WOMD Test Set minADE & minFDE. Table 4: WOMD Validation Subset minADE
Joint prediction performance reported by differ- & minFDE: Our reported Joint prediction perfor-

ent SOTA models. mance.
Model minADE | minFDE | Model Cond. minADE minFDE
GameFormer (Huang et al.]2023b]  0.9161 1.9373 GameFormer (reproduced) 0.8888  1.9293
MTR (Shi et al.J2022b) 0.9181 2.0633 iMotion-LLM (Drop instruct.) (ours) 1.1642  2.7477
MotionLM (Seff et al. ‘2023~ 0.8911 2.0067 Conditional GameFormer (OLII’S) v 0.8223 1.7001

! - iMotion-LLM (ours) v' 09758 2.1257

Generalizability to NuPlan Dataset. To investigate the model capability to generalize to other
datasets, we investigated three setups in Table[5] Even though the basline modules that are integrated
into iMotion-LLM are pretrained on Waymo Open Dataset, we show the model generalizability by
1) zero-shot evaluation, 2) fine-tuning the LLM and mapping modules, 3) End-to-end finetuning
(including the baseline modules). For finetuning, we consider 2,212 examples from the Pitssburg
Train split. And evaluation was performed cross-city, where all the reported results are from the
"Boston Train" split. As many of the features the GameFormer model uses from Waymo Open
Dataset cannot be matched to features available from NuPlan, those features were set to default values
to avoid changing the design of the pretrained GameFormer modules. Intrestingly, the model showed
good IFR, combined with larger DVS that indicate some level of uncertinatiy, which is expected.
The displacement errors show a lack of accuracy of the model, yet it gets improved when finetuned
on a small fold of the data. These generalizability results were conducted using the actual-scenario
instructions extracted from the ground truth future motion only. These experiments were done based
on iMotion-LLM which generates all scene tokens, not only the ego agent tokens.

Table 5: Model Generalizability to NuPlan Dataset. Comparison of finetuning strategies based on
IFR, DVS, and vehicle minADE/minFDE metrics.

Finetuning Strategy IFR DVS Vehicle minADE Vehicle minFDE

zero-shot 839 76 2.66 5.48
Finetuned 86.9 6.3 2.09 4.76
End-to-End Finetuned 85.8 7.3 1.90 4.50

7 LIMITATIONS AND FUTURE DIRECTIONS

Our study provides a key step by focusing on direction-based instructions, illustrating the potential
of the LLM in executing driving tasks. By showing that the model can effectively interpret and act
on these instructions, we have established a baseline that future research can build upon. As the



Under review as a conference paper at ICLR 2025

Human: Make the ego vehicle turn right. e e

The ego vehicle can turn right, where it will first move straight with a slow speed and a
. mild acceleration, then turn right with a slow speed and a mild acceleration. Agent-2
is 14.97m far behind. The closest traffic light (green/go) is 14.16m in front The

closest stop sign is 66.12m but not in front. Decision:
iMotion

-LLM-
Human: Make the ego vehicle move straight veering left.

The ego vehicle can move straight veering left, where it will first move straight with a
« slow speed and a aggressive acceleration, then move straight with a moderate speed
and a moderate acceleration. Agent-2 is 18.1m far behind. The closest traffic light [*¥
(green/go) is 32.82m in front The closest stop sign is 98.59m but not in front. Decision: |,
(Other feasible direction|

(Infeasible direction]

iMotion
-LLM-

Human: Make the ego vehicle stay stationary.

The ego vehicle cannot stay stationary, because there are no lanes that allow this |*
. direction based on the current location, heading, and speed of the ego vehicle.
Decision: <Rejected>.

iMotion
-LLM-

Ground truth: The ego vehicle can turn right, where it will first move straight with a slow speed and a mild deceleration, then turn right with a very slow
speed and a constant velocity. Agent-2 is 11.62m far behind. The closest traffic light (green/go) is 13.5m in front The closest stop sign is 64.27m but not in
front.

Figure 5: Qualitative result showing the model ability in following feasible instructions (top two
figures), and making sense of surroundings. While also rejecting irrational scenarios like staying
stationary in the bottom figure. Yet it generates a trajectory where the ego is stopping, and the
interactive agent (Agent-2) is overtaking it.

baseline model by design allows multi-agent trajectory prediction, in Appendix [D] we show trials
to instruct multiple agents at the same time. While there is a noticeable performance drop when
extending instructions to multiple agents, we expect that further analysis can lead to a better design
to improve this direction in the future. Exploring more complex instructions that encompass greater
granularity and contextual information will further enhance the model’s nuanced understanding and
execution of multifaceted driving tasks. Furthermore, we employed relatively simple instructions and
output captions, demonstrating the feasibility and effectiveness of this approach. Our work paves
the way for incorporating more advanced and diverse input instructions and output captioning with
varying levels of reasoning based on the ego state and surroundings. Although these elements were
not included in this study, the attributes we extracted in InstructWaymo can facilitate their seamless
integration. This presents an exciting opportunity for future research to develop more sophisticated
and naturalistic implementations, extending the impact of our initial findings.

8 CONCLUSION

In conclusion, we introduce iMotion-LLM, a Large Multimodal Model powered by LLMs, tailored for
trajectory prediction in interactive multi-agent scenarios within autonomous navigation. By leveraging
textual instructions as key inputs, our model not only generates contextually relevant trajectory
predictions but also showcases an enhanced ability to interpret and act upon these instructions.
Through integration with a pretrained LLM fine-tuned with LoRA, iMotion-LLM effectively translates
scene features into the LLM input space, enabling accurate multimodal trajectory forecasts. Notably,
our model’s ability to generate trajectories aligned with provided instructions inherits the performance
of the underlying backbone model, marking a significant advancement in empowering autonomous
navigation systems to anticipate the dynamics of multi-agent environments. iMotion-LLM, combined
with InstructWaymo instructions and captions, provides the capability to align trajectories with
feasible instructions and reject infeasible ones, thereby enhancing operational safety. This work not
only advances the field of autonomous navigation by enabling systems to better anticipate and react
within multi-agent environments but also sets a solid foundation for further innovations in interactive
autonomous systems.
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Table 6: Speed and acceleration/deceleration categories and upper thresholds.

Speed category | Very slow | Slow | Moderate |  Fast | Very fast
Threshold (km/h) \ 20 |40 | 9 | 120 | >120
Accel./Decel. category | Constant velocity | mild | Moderate | aggressive | extreme
Threshold (km/h increase in 8s) | 6 | 25 | 46 | 65 | >65
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Figure 6: Illustrative examples of directions categories.

Human: Make the ego vehicle move straight. e -

[~ ]
The ego vehicle can move straight, where it will first move straight with a — =3 - -
¢ moderate speed and a mild acceleration, then move straight with a moderate | Egoss e e R
speed and a mild acceleration. Agent-2 is 13.03m far behind. The closest traffic o= =
T light (green/go) is 5.65m in front The closest stop sign is 10.15m but not in front. F==————=
ion i : fefiarae
LLM- The closest stop sign is 3.75m but not in front. Decision: o T\_\ ] m
. i i (Other feasible direction)
Human: Make the ego vehicle turn right. - ==

The ego vehicle cannot turn right, because there are no lanes that allow this

¢ direction based on the current location, heading, and speed of the ego vehicle. | Ego- E
Decision: <Rejected>. -_m—"_-ﬁ >
_ g\
iMotion
-LLM- \_\—'L\\ [[I m

Figure 7: Qualitative result showing in the top figure how iMotion-LLM accept and follow the
actual-scenario instruction of "move straight" and in the bottom figure how it rejects "turn right" even
though "turn right" is labeled as a feasible direction.

A SPEED AND ACCELERATION CATEGORIES

The set of 5 different speed categories ranging from very slow to very fast, and the set of acceleration
or deceleration ranging from mind to extreme, including a no acceleration (i.e., constant velocity).
We designed these thresholds heuristically, yet they can be easily adapted. Table[6]shows the used
thresholds.

B CALCULATION OF THE DIRECTIONS

Following the illustration shown in Figure [6] motion direction is measured based on the relative
heading angle between a time step and a future target step. We calculate direction solely based
on trajectory information; the heading angle is calculated using two consecutive trajectory discrete
samples. If the maximum future speed is within a threshold of Vgugionary = 2m/s, and the vehicle
traveled a distance within dguionary = 5m, the vehicle is considered stationary. Otherwise, the
vehicle is moving straight if the relative heading is within 6, = 30 degrees. But if the longitudinal
displacement is greater than d, = 5m, it is categorized as straight veering right/left. If the relative
heading exceeds 6, and the latitudinal shift is less than d, = 5m in the opposite direction, it is
considered as turning right/left. Otherwise, it is a U-turn. Right and left directions are distinguished
based on the sign of the relative heading. Figure[f]illustrates the different classes. Table[I] provides
detailed statistics on these eight categories.
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Human: Make the ego vehicle move straight. {Ground truth direction) -

The ego vehicle can move straight, where it will first move straight with a
¢ moderate speed and a constant velocity, then move straight with a moderate %

speed and a mild deceleration. Agent-2 is 35.73m far on the left. There are no
traffic lights. The closest stop sign is 124.57m but not in front. Decision: ==

iMotion
Metie A 1o
Human: Make the ego vehicle turn left. (Infeasible direction) —
The ego vehicle cannot turn left, because there are no lanes that allow this
9 direction based on the current location, heading, and speed of the ego vehicle.

Decision: <Rejected>. L*——v— - .
iMotion I m u
-LLM- =M

Ground truth: The ego vehicle can move straight, where it will first move straight with a moderate speed and a constant velocity, then move straight with a
moderate speed and a constant velocity. Agent-2 is 28.46m on the left. There are no traffic lights. The closest stop sign is 60.52m but not in front.

Figure 8: Qualitative Results.
Human: Make the ego vehicle turn right. (Actuat-scenario ditection] gy

\J
The ego vehicle can turn right, where it will first turn right with a very slow speed \ gt
¢ and a moderate acceleration, then move straight veering right with a |
moderate speed and a aggressive acceleration. Agent-2 is 15.75m far on the
il
q

right. The closest traffic light (red/stop) is 4.86m but not in front. The closest stop

iMotion sign is 8.51m but not in front. Decision:

-LLM-
Human: Make the ego vehicle stay stationary.

(Other feasible direction

The ego vehicle cannot stay stationary, because there are no lanes that allow this |
¢ direction based on the current location, heading, and speed of the ego vehicle.
Decision: <Rejected>.
iMotion
-LLM-

Ground truth caption: The ego vehicle can turn right, where it will first move straight with a very slow speed and a moderate
acceleration, then turn right with a slow speed and a aggressive acceleration. Agent-2 is 10.4m far on the right. The closest traffic light
(red/stop) is 0.79m but not in front. The closest stop sign is 88.5m but not in front.

Figure 9: Qualitative Results.

Human: Make the ego vehicle turn right. {Actual:scenario direction)

The ego vehicle can turn right, where it will first move straight with a slow speed
¢ and a aggressive deceleration, then turn right with a slow speed and a
moderate acceleration. Agent-2 is 45.58m far in front. The closest traffic light

(red/stop) is 18.4m in front The closest stop sign is 10.7m in front Decision:
iMotion

-LLM-
Human: Make the ego vehicle move straight.  *52eiay o™

The ego vehicle can move straight, where it will first move straight with a slow
¢ speed and a aggressive deceleration, then move straight with a very slow
speed and a moderate deceleration. Agent-2 is 26.55m far in front. The closest

traffic light (red/stop) is 5.31m in front The closest stop sign is 67.4m but not in
front. Decision: 5

iMotion
-LLM-
Ground truth caption: The ego vehicle can turn right, where it will first move straight veering right with a slow speed and a aggressive
deceleration, then turn right with a slow speed and a moderate acceleration. Agent-2 is 46.15m far in front. The closest traffic light
(red/stop) is 27.16m in front The closest stop sign is 14.25m but not in front.

Figure 10: Qualitative Results.

C ADDITIONAL QUALITATIVE RESULTS

D MULTI-AGENT SUPPORT

As the baseline model by design allows multi-agent trajectory prediction, iMotion-LLM can consider
instructing multiple agents by providing instructions for multiple agents in the scene. For 2-Agent
support, during training and evaluation, we sample combinations of different types of instructions,
for example feasible instruction for the ego based on actual-scenario, and infeasible instruction for
Agent-2, or infeasible instruction for the ego and on of the other feasible instructions of Agent-2. For
evaluation, we evaluate each agent separately while switching the combinations of instructions. Table
and 8] shows the performance for the Ego (Agent-1) and Agent-2 respectively. Performance for both
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. . (Actual-scenario direc ionl’ 1t
Human: Make the ego vehicle move straight. Actual dtection] o
ﬁ

The ego vehicle can move straight, where it will first move straight with a very slow R
¢ speed and a moderate deceleration, then stay stationary. Agent-2 is 18.59m far in p— — |

front. The closest traffic light (red/stop) is 4.46m in front The closest stop sign is

| —
86.02m in front Decision: o
iMotion
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(Other feasible direction) o

Human: Make the ego vehicle turn right. po—————————m==s
The ego vehicle cannot turn right, because there are no lanes that allow this EE Eé:g
¢ direction based on the current location, heading, and speed of the ego vehicle. -
Decision: <Rejected>. -
iMotion
-LLM- 17—
. f (Infeasible by InstructWaymo).
Human: Make the ego vehicle turn left. reasie e =
The ego vehicle cannot turn left, because there are no lanes that allow this ﬁ
¢ direction based on the current location, heading, and speed of the ego vehicle. = =
Decision: <Rejected>. - =i}

iMotion ﬁ
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Ground truth caption: The ego vehicle can move straight, where it will first move straight with a very slow speed and a mild deceleration,
then move straight with a very slow speed and a mild acceleration. Agent-2 is 22.29m far behind. The closest traffic light (red/stop) is
22.44m in front The closest stop sign is 94.64m in front

Figure 11: Qualitative Results.

is similar, yet shows a drop in performance compared to when instructing a single agent in both IFR
and accuracy.

Table 7: Two-agent iMotion-LLM evaluating the ego agent (Agent-1)

Instruction Type | Agent-1 Agent-2 | IFR DVS Acc. t
Actual-scenario Actual-scenario  Actual-scenario | 51.86% 3.07% 71%
Other feasible Other feasible  Actual-scenario | 15.93% 7.15% 61%
Other feasible Other feasible Other feasible 14.05% 6.85% 54%
Infeasible Infeasible Actual-scenario | 5.90% 5.85% 48%
Infeasible Infeasible Infeasible 544%  5.64% 56%

Table 8: Two-agent iMotion-LLM evaluating Agent-2

Instruction Type | Agent-2 Agent-1 | IFR DVS  Acc.?
Actual-scenario Actual-scenario  Actual-scenario | 42.77%  8.18% 63%
Other feasible Other feasible  Actual-scenario | 12.90% 15.79% 50%
Other feasible Other feasible Other feasible 16.47% 15.22% 45%
Infeasible Infeasible Actual-scenario | 6.81% 18.11% 49%
Infeasible Infeasible Infeasible 6.70% 16.43% 64%

E CONDITIONAL GAMEFORMER AND IMOTION-LLM TRAINING PSEUDO
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Algorithm 1: The pseudocode of Conditional-GameFormer (C-GameFormer).

Imput : Cinstruction € Z: Instruction category; N, : Num. agents; d,: Num. state features; /N, : Num. map lanes; N,:
Num. points per lane; dy,: Num. map features; dscene: latent dimension; ¢, = 11: Observed time steps; tpreq = 80:
To predict time steps; tseject = [29,49, 79]: Selected time steps; Npreq: Two Agents to predict; M:
Num. modalities (futures); Agents € RNaXtobs X da . history states ; Maps € RYpred X Nm X Npxdm 3 N:
Num. scene embeddings;

Output:Pred € RM*NpredXtpred x4, prediction GMM parameters (fiy, [y, Oz, Oy), Where (1o, 1) are the 2D trajectory

centers
queried_agents < [0, 1, ..., Nprea — 113 // Target agents, [0,1] for two agents
queried_modalities < [0,1,..., M — 1]; // M modalities
S« ] // Initialize scene tokens empty list of embeddings
for each agent_state in agents_history do
agent_emb <— Motion_Encoder(agent_state); // Encode agent state
S « S U {agent_emb}; // Bppend agent embedding to S
end
for each map_feature in map_features do
map_emb <— Map_Encoder(map_feature); // Encode map feature
S« S U {map_emb}; // BAppend map embedding to S
end
S < selfAttention(.S); // Apply fusion self-attention encoder (Scene Encoder)
K,V « S, // Use S as the keys and values of the trajectory decoder
Q<[ // Initialize Q
q_instruction <— Embedding(Cipnstruction) // Learnable instruction query (proposed)
for each agent_number in queried_agents do
g_agent <— Embedding(agent_number); // agent query
for each modality_number in queried_modalities do
q_modality <— Embedding(modality_number); // Modality query
q_motion < q_agent + q_modality; // Combine queries
q_motion <— q_motion + q_instruction; // Add instruction query (proposed)
Q + QU {g_motion}; // Append motion query to @
end
end
output_features <— Multimodal_Trajectory_Decoder(Q, K, V);
Pred, Scores <— MLP(output_features), MLP(output_features); // Get multimodal trajectories and modality

scores
NLL_loss <— NLL(Pred[best_mode, :, tseiect ], ground_truth_2D)
gmm_loss <— NLL_loss - CrossEntropy(Scores, best_mode)
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Algorithm 2: The pseudocode of iMotion-LLM.

Input : Same inputs as C-GameFormer (Algorithm-1);
T'r: Text input instruction;

Output : Same output as C-GameFormer (Algorithm-1);

Output Text

queried_agents < [0, 1, ..., Nprea — 1] // Target agents, [0,1] for two agents
queried_modalities + [0, 1, ..., M — 1]; // M modalities
S < Scene_Encoder(agents_history, map_features) // (3-12) in Algorithm-1
S« ]
for each Scmbedding in S do

‘ S+ Su LLM_Projection(Sembedding) // Projections from R!®dscene — RIXILLM
end
emb_T; + LLM_Tokenizer(Ty) ; // Embeddings of input text = RNtokensXdLLM
LLM_Input_emb < [emb_Ti; S // concatenating text and scene embeddings

if Training then
hidden_states, tokens, LLM_loss <— LLM(LLM_Input_emb) ; // Autoregressive output last hidden states,
corresponding tokens, and LLM cross-entropy loss
generation_hidden_states <— select_generation_states(hidden_states) ; // Selecting tokens that correspond to
(1), [S1], [Sa], -..[S]
end
Inference then
while /1] not detected do
next_token <— LLM(LLM_Input_emb); // Autoregressive next token generation until the first
trajectory generation token [I] is found.
LLM_Input_emb <— LLM_Input_emb U next_token_emb; // Include the next token to generate the
following one

—
=

end
hidden_states <— Masked_Generation_LLM(LLM_Input_emb) ; // Forcing the generation of all tokens
1], [S1], [S2], ---[SN]

end
K,V < Scene_Mapper([[S1], [S2],...[Sn]]); // Mapping each token independently, replaces (Line 13) in
Algorithm-1

q_instruction < Instruct_Mapper([I]) ; // Mapping instruction token to @instruct, replaces (15) in
Algorithm-1
@motion < Embedding(queried_agents, queried_modalities) ; // Combined agents-modalities queries,

(16-20) in Algorithm-1

Q  Gmotion + Tinstruction ; // Combine queries, (Line-22) in Algorithm-1
output_features <— Multimodal_Trajectory_Decoder(Q, K, V);

Pred, Scores <— MLP(output_features), MLP(output_features)

NLL_loss <— NLL(Pred[best_mode, :, tseiect]. ground_truth_2D)

gmm_loss <— NLL_loss - CrossEntropy(Scores, best_mode)

iMotion_loss = LLM_loss + gmm_loss




	Introduction
	Related Work
	InstructWaymo: Instruction Augmentation of Waymo Open Dataset
	iMotion-LLM
	Revisiting existing models
	Conditional Multimodal Trajectory Prediction Decoder
	Integration of iMotion-LLM

	Instruction Following and Diversity Metrics
	Experiments
	Experimental Setup
	Results & Discussion

	Limitations and Future Directions
	Conclusion
	Speed and acceleration categories
	Calculation of the directions
	Additional Qualitative Results
	Multi-Agent Support
	Conditional GameFormer and iMotion-LLM training pseudo codes

