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Abstract

Neural message passing is a basic feature extraction unit for graph-structured data
considering neighboring node features in network propagation from one layer to
the next. We model such process by an interacting particle system with attractive
and repulsive forces and the Allen-Cahn force arising in the modeling of phase
transition. The dynamics of the system is a reaction-diffusion process which can
separate particles without blowing up. This induces an Allen-Cahn message passing
(ACMP) for graph neural networks where the numerical iteration for the particle
system solution constitutes the message passing propagation. ACMP which has a
simple implementation with a neural ODE solver can propel the network depth up
to one hundred of layers with theoretically proven strictly positive lower bound of
the Dirichlet energy. It thus provides a deep model of GNNs circumventing the
common GNN problem of oversmoothing. GNNs with ACMP achieve state of the
art performance for real-world node classification tasks on both homophilic and
heterophilic datasets.

1 Introduction

Graph neural networks (GNNs) have received a great attention in the past five years due to its powerful
expressiveness for learning graph structured data, with broad applications from recommendation
systems to drug and protein designs [4, 6, 11, 12, 24, 53]. Neural message passing [26] serves
as a fundamental feature extraction unit for graph-structured data that aggregates the features of
neighbors in network propagation. We develop a GNN message passing, called the Allen-Cahn
message passing (ACMP), using interacting particle dynamics, where nodes are particles and edges
representing the interactions of particles. The system is driven by both attractive and repulsive forces,
plus the Allen-Cahn double-well potential from phase transition modeling. This model is motivated
by the behavior of the particle system of collective behaviors common in nature and human society,
for example, insects forming swarms to work; birds forming flocks to immigrate; humans forming
parties to express public opinions. Various mathematical models have been proposed to model these
behaviors [1, 38, 14, 47, 20]. The phase transition of the particle evolution of ACMP clusters particles
into desired flocks, which guarantees the Dirichlet energy for ACMP-based GNNs has a lower bound
strictly above zero–which will be proven mathematically– thus avoids oversmoothing.
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Figure 1: An illustration for one-step ACMP. Graph Gt with features x(t) in the purple and green
blocks have different treatment of attraction or repulsion. The same color indicates similar node
features. The node x(t) is updated by one step to x(t + ∆t) via ODE solver. Nodes in the green
block tend to attract each other and in the other block, nodes in different colors repel each other, and
thus both colors are strengthened during propagation. It gives rise to forming bi-cluster flocking. The
double-well potential turns features darker under gradient flow to circumvent blowup of energy.

The new system can be viewed as the graph version of the bi-cluster Cucker-Smale swarming model
introduced in [23]. This naturally induces a GNN model to simulate the message passing dynamics.
There are two major components in this model. First, while the attractive force forces all particles
into one cluster, the repulsive forces allow particles to separate into two different clusters, which
is essential to avoid oversmoothing. However, repulsive forces could make the Dirichlet energy
diverge. We augment the model with the Allen-Cahn [2] term (or Rayleigh friction [48]), which is
crucial in preventing the Dirichlet energy in the evolution from becoming unbounded, allowing us to
prove mathematically that the lower bound of the Dirichlet energy is strictly bigger than zero, hence
avoiding oversmoothing. Specifically, we will prove that under suitable conditions on the parameters,
the dynamics of the ACMP particle system will time-asymptotically form 2d different clusters and
the Dirichlet energy has a strictly positive lower bound.

One of our main contribution is introducing a repulsive force into message passing framework from
the many-particle system perspective. Most existing message passing neural networks are driven by
attractive forces associated with the Dirichlet energy, and the corresponding graph neural network
suffers from oversmoothing, and fails in heterophilic dataset prediction. The repulsion makes particles
separate into two different clusters, hence provides a simple and neat solution for prediction tasks
on heterophilic datasets. However, the presence of repulsive force would lead to feature blow-up
when the networks go deep. Our second main idea is to include the Allen-Cahn potential which can
circumvent the Dirichlet energy and node features to go to infinity, as can be proven mathematically.

Overall, the benefit of the Allen-Cahn message passing with repulsion is manifold. 1) It circumvents
oversmoothing issue, namely the Dirichlet energy is bounded from below. 2) The network is stable in
the sense that features and Dirichlet energy are bounded from above. 3) Feature smoothness (energy
decreasing) and the balance between nodes features and edge features can be adjusted easily by
network parameters that control the attraction, repulsion and phase transition. The model can then
reach an acceptable trade-off on self-features and neighbor effect, as shown in Figure 1. Our model
can thus handle node classification tasks for both homophilic and heterophilic datasets by using only
one-hop neighbour information. 4) The proposed model can be easily implemented by neural ODE
solvers for the system with attractive and repulsive forces via Allen-Cahn potential.

In theory, we prove that Dirichlet energy of GNNs with ACMP has a lower bound above zero (limiting
oversmoothing), as well as an upper bound (circumventing blow-up) under specific conditions. This
agrees with the experimental results (Section 6). We also prove that ACMP is a process for the
features to generate clusters thanks to the double-well potential, which provides an interpretable
theory for node classification.

2 Background

Message Passing in Graph Neural Networks Graph neural networks are a kind of deep neural
networks which take graph data as input. Neural Message Passing (MP) [26, 7] is a most widely
used propagator for node feature update in GNNs, which takes the following form: for the undirected
graph G = (V, E) is with sets of nodes V and edges E , with x

(k−1)
i ∈ Rd denoting features of node i
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in layer (k − 1) and aj,i ∈ RD edge features from node j to node i,

x
(k)
i = γ(k)

(
x
(k−1)
i ,□j∈Ni

ϕ(k)
(
x
(k−1)
i ,x

(k−1)
j , aj,i

))
,

where □ denotes a differentiable, (node) permutation invariant function, e.g., sum, mean or max,
and γ and ϕ denote differentiable functions such as MLPs (MultiLayer Perceptrons), and Ni is
the set of one-hop neighbors of node i. The message passing updates the feature of each node
by aggregating the self-feature with neighbors’ features. Many GNN feature extraction modules
such as GCN [30], GAT [52] and GIN [55] can be written as message passing. For example, the
MP of GCNs reads, with learnable parameter matrix Θ, x′

i = Θ⊤∑
j∈Ni∪{i}

aj,i√
d̂j d̂i

xj , where

d̂i = 1 +
∑

j∈N (i) aj,i and D̂ = diag(d̂1, . . . , d̂N ) is the degree matrix for A+ I . Graph attention
network (GAT) uses attention coefficients αi,j as similarity information between nodes in the MP
update x′

i = αi,iΘxi +
∑

j∈Ni
αi,jΘxj , with

αi,j =
exp

(
LeakyReLU

(
a⊤[Θxi ∥Θxj ]

))∑
k∈Ni∪{i} exp (LeakyReLU (a⊤[Θxi ∥Θxk]))

. (1)

The MP framework was also developed as PDE solvers in [10] by embedding differential equations
as a parameter into message passing like [9]. This paper regards particle system evolution (ODE)
as message passing propagation, and the appropriate design of the particle system offers desired
properties for the resulting GNN.

Graph neural diffusion Neural diffusion equations on graphs (GRAND) are proposed by [15],
which provides a unified mathematical framework for some message passings:

∂

∂t
x(t) = div[G(x(t), t)∇x(t)], (2)

where G = diag(a(xi(t), xj(t), t)) where a is a function reflecting similarity between nodes i and
j, and xi is the scale-valued feature for node i, and x = ⊕xi.

3 Motivations

3.1 Attractive and repulsive forces

The equation (2) itself can be interpreted in a formulation different from diffusion. In this paper, we
study the neural equations of interacting particle system, which has a similar structure to (2). We
rewrite (2) into a component-wise version and obtain a particle system

∂

∂t
xi(t) =

∑
j∈Ni

a(xi, xj)(xj − xi). (3)

In the formulation of particle systems, one can easily discover the evolution trend of the features.
If a(xi, xj) > 0, the direction of xi’s velocity is towards xj , which means that xi is attracted by
xj . In the contrast, if a(xi, xj) < 0, xi has a trend to move away from xj . Hence, a(xi, xj) serves
as the attractiveness or repulsiveness of the force between xi and xj . In the diffusion model above,
all a(xi, xj)’s are positive, therefore all the node features in one connected component attract each
other. If the weight matrix (a(xi, xj))N×N is right-stochastic, one can prove that the convex hull
of the features will not dilate in time (see [39, 15]). Such feature aggregation means that message
propagates along the edges of the graph and some potential consensus forms in the process.

However, the message propagation does not limit to consensus (corresponding to diffusion).
Information interaction can derive polarization of final judgement when negative message matters
in some problems rather than positive message. For instance, in a node classification task on a
bipartite, the neighbour message is negative since connected nodes belong to different classes. In the
formulation of particle systems, the mechanism of positive and negative messages can be modelled
by adding bias βi,j into (3)

∂

∂t
xi(t) =

∑
j∈Ni

(a(xi, xj)− βi,j)(xj − xi). (4)
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Figure 2: We compare the evolution of node features in GCN and ACMP. We show GCN in the
first row and ACMP in the second row. The initial position is represented by the 2-dimensional
position of the nodes, which is shown in the first column. The GCN aggregates all node features by
taking the weighted average of its neighbors’ features. With the propagated steps increasing, all the
nodes’ features shrink to a point, which gives rise to oversmoothing. When it comes to ACMP, nodes’
features are grouped by four attractors, which helps to circumvent oversmoothing.

The coefficient term a(xi, xj) − βi,j corresponds to the interactive force. By adjusting βi,j , both
in the system attractive and repulsive forces co-exist. If a(xi, xj) − βi,j > 0, xi is attracted by
xj . While if a(xi, xj) − βi,j < 0, xi is repelled by xj . If the coefficient equates zero, there is no
interaction between xi and xj . Then, the dynamics is enabled to adapt both positive and negative
message passing. In this way, the neural message passing can handle either homophilic or heterophilic
datasets (see Section 6 for detailed discussion).

3.2 Pseudo-Ginzburg-Landau energy

However, adding the term of repulsive force may cause the particles being pushed away to infinite,
thus the Dirichlet energy becomes unbounded. To avoid this problem, we add a forcing term
δxi(1− x2

i ), which we call an Allen-Cahn term. Here, the coefficient α > 0 is multiplied just for
technical convenience.

∂

∂t
xi(t) = α

∑
j∈Ni

(a(xi, xj)− βi,j)(xj − xi) + δxi(1− x2
i ). (5)

Gradient Flow The variational principle governing many PDE models states that the equilibrium
state is actually the minimizer of one specific energy. The equilibrium state carries meaningful
information and can therefore be used as embedded features in the context of machine learning.
We first introduce the Dirichlet energy and show that (3) can be characterized by looking into the
corresponding Euler-Lagrange equation of the Dirichlet energy. Let adjacent matrix A represent
the undirected connectivity between nodes xi and xj , with ai,j = 1 for (i, j) ∈ E and ai,j = 0 for
(i, j) ̸∈ E . The Dirichlet energy E in terms of G = (V, E) and node features x ∈ RN×d takes the
form

E(x) =
1

N

∑
i∈V

∑
j∈Ni

ai,j∥xi − xj∥2. (6)

By calculus of variation, we can formulate the corresponding particle equation

∂x

∂t
= −∇xE,

∂xi

∂t
= − ∂E

∂xi
=

2

N

∑
j∈Ni

ai,j(xj − xi). (7)

On the RHS of (7), the summation takes over the one-hop neighbors Ni of node i, which aggregates
the impact from the neighboring nodes. Equation (7) is (5) when one takes adjacent matrix A as the
weight matrix (a(xi, xj))N×N .
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Particle equation with Allen-Cahn potential To avoid blowing-up of the solution, one can design
an external potential to control the solutions so they are bounded. Here, we define the pseudo-
Ginzburg-Landau energy on graph G denoted by Φ : L2(V) → R, as a combination of the interacting
energy and double-well potential W : R → R+, with

W (x) = (δ/4)(1− ∥x∥2)2, Φ(x) =
1

2
α
∑
i∈V

∑
j∈Ni

(ai,j − βi,j)∥xi − xj∥2 +
∑
i∈V

W (xi),

where parameters α, δ > 0 are used to balance the two types of energy. From now on, we denote
a(xi, xj) by ai,j for simplicity. The pseudo-Ginzburg-Landau energy is not a true energy because
the matrix (ai,j − βi,j)N×N can be non-positive definite. If βi,j’s all equate zero, it then becomes
the Ginzburg-Landau energy defined in [8, 34]. Using this combined energy, we can obtain the
Allen-Cahn equation with repulsion on graph as ∂x

∂t = −∇xΦ, which is equivalent to (5).

4 Allen-Cahn Message Passing

We propose the Allen-Cahn Message Passing (ACMP) neural network based on equation (5), where
the message is updated by the evolution of the equation via a neural ODE solver. To our best
knowledge, this is the first time to introduce a type of message passing to amplify the difference
between connected nodes by repulsive force.

Network Architecture Suppose d-dimensional node-wise features represented by a matrix xin

where row i represents feature of node i. Our scheme first embeds the node feature x(0) = MLP(xin)
by a simple multi-layer perceptron (MLP), which is treated as an input for ACMP propagation
A : Rd → Rd, by x(0) 7→ x(T ), where x(T ) = x(0) +

∫ T

0
∂x(t)
∂t dt, x(0) = MLP

(
xin
)
, where

∂X(t)
∂t is estimated by ACMP defined on G based on (5). The node features x(T ) at the ending time

are fed into an MLP based classifier. Then, we define the Allen-Cahn message passing by
∂

∂t
xi(t) = α⊙

∑
j∈Ni

(a(xi(t),xj(t))− β)(xj(t)− xi(t)) + δ ⊙ xi(t)⊙ (1− xi(t)⊙ xi(t)). (8)

Here α, δ ∈ Rd are learnable vectors of the same length as the node feature xi. While we can use
a more general case when each edge (i, j) uses different trainable βi,j , we have simplied to single
hyper-parameter β ∈ R+ ∪ {0}, which makes the network and optimization easier. The β in our
model is a crucial parameter, which can be adjusted such that the attractive and repulsive forces both
present to enrich the message passing effect. If one chooses δ = 0, β = 0, our model is reduced to
the graph neural diffusion network (GRAND) in [15]. In experiments, we would make significant use
of nontrivial δ and β.

The operations of all terms are channel-wise, involving d channels, except a(xi(t),xj(t)), and ⊙
represents channel-wise multiplication for d feature channels. Figure 1 illustrates the one-step ACMP
mechanism (8): Nodes with close colors attracts each other otherwise repel. Nodes in the same block
tend to attract each other and both colors are strengthened during message passing propagation. The
double-well potential prevents the features and Dirichlet energy from blowup. In this process, node
feature x(t) is updated to x(t+∆t) for a time increment ∆t. Ultimately, a bi-cluster flock is formed
for node classification.

In the propagation of ACMP in (8), we need to specify how the neighbors are interacted, that is
how the a(xi(t),xj(t)) is evolved with time. There are many kinds of methods to update the edge
weights. Two typical types of ACMP are GCN based [30] and graph attention (GAT) based [52].

ACMP-GCN: this model uses deterministic a(xi(t),xj(t)), which is given by the adacency matrix
A = (ai,j) of the original input graph G and does not change with time. That is, the coefficients in

GCNs aGCN
i,j := ai,j/

√
d̂id̂j . The message passing of (8) is reduced to

∂

∂t
xi(t) = α⊙

∑
j∈Ni

(aGCN
i,j − β)(xj(t)− xi(t)) + δ ⊙ xi(t)⊙ (1− xi(t)⊙ xi(t)) . (9)

ACMP-GAT: we can replace aGCN
i,j in (9) by the attention coefficients (1) of GAT, which with extra

trainable parameters measures the similarity between two nodes by taking account of both node and
structure features. The system then drives edges to update in each iteration of message passing.
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Neural ODE Solver Our method uses an ODE solver to numerically solving the equation ((8) and
(9)) for ACMP. To obtain the node features x(T ), we need a stable numerical integrator for solving
the ODE efficiently and backpropagation of gradients. Since our model is stable in terms of evolution
time, most explicit and implicit numerical methods such as explicit Euler, Runge-Kutta 4th-order,
midpoint, Dormand-Prince5 [17, 32, 41, 15] work well as long as the step size τ is small enough. In
experiments, we implement ACMP using Dormand-Prince5 method which provides a fast and stable
numerical solver. The number of runs of our message passing, or the network depth of ACMP-GNN
is equal to the numerical iteration number nt set in the solver.

Computational Complexity The computational complexity of the ACMP is O(NEdnt), where
nt, N, E and d are number of time steps in time interval [0, T ], number of nodes, number of edges
and number of feature dimension, respectively. Since our model only considers nearest (one-hop)
neighbors, E is significantly smaller than that of graph rewiring [25, 3] and multi-hop [57] methods.

Channel Mixer Channel mixing can be spontaneously introduced from the perspective of diffusion
coefficients though our model is previously written in the channel-wise form. Whether channel
mixing happens depends on the specific GNN driver we choose for ACMP. When the coefficients
a(xi(t),xj(t)) in (8) that do not update with time are a scalar or vector, like in ACMP-GCN, the
operations of the message passing propagator are channel-wise and channel mixing is not incorporated.
On the other hand, the ACMP-GAT with graph attention driver incorporates a learnable channel
mixing when the coefficients are tensors. The channel mixer can be introduced by generalizing the
Dirichlet energy to high dimension, for example, E(x) := 1

N

∑
i∈V

∑
j∈Ni

(xi − xj)
Tai,j(xi − xj),

when ai,j ∈ Rd×d are connectivity tensors.

5 Dirichlet Energy

The dynamics (5) can circumvent the oversmoothing issue of GNNs [42, 44, 31]. Oversmoothing
phenomenon means that all node features converge to the same constant – consensus forms – as the
network deepens, and equivalently, the Dirichlet energy will decay to zero exponentially. This idea
was first introduced in [13]. [31] gives an explicit form for oversmoothing.

In our model, as we will show below, the node features in each channel tend to evolve into two
clusters departing from each other under certain conditions. This implies a strictly positive lower
bound of the Dirichlet energy. In addition, the system will not blow up thanks to the Allen-Cahn term.
We put all the proofs and some related supplementary results in the appendix.

Proposition 1 If δ > 0, the node features xi in (5) is bounded in terms of ∥ · ∥ and energy for all
t > 0, i.e., E(x(t)) ≤ C, and ∥x∥ ≤ C, where the constant C only depends on N and λmax.

In the following propositions, we imitate the emergent behavior analysis in [23] (see Appendix for
details). For a graph G with N nodes, its vertices are said to form bi-cluster flocking if there exist two
disjoint sets of vertex subsets {x(1)

i }N1
i=1 and {x(2)

i }N2
j=1 satisfying

(i) sup
0≤t<∞

max
1≤i,j∈N1

|x(1)
i (t)− x

(1)
j (t)| < ∞, sup

0≤t<∞
max

1≤i,j∈N2

|x(2)
i (t)− x

(2)
j (t)| < ∞;

(ii) ∃ C ′, T ∗∗ > 0 such that min
1≤i∈N1,1≤j∈N2

{
|x(1)

i (t)− x
(2)
j (t)|

}
≥ C ′, ∀t > T ∗∗,

(10)

where x
(1)
i , x

(2)
i denote any component of x(1)

i ,x
(2)
i .

We now show the long-time behaviour of model (5) following the analysis of [23] for strength
coupling (α, δ) that satisfies the following condition: there exists {βi,j} such that I := {1, . . . , N}
can be divided into two disjoint groups I1, I2 with N1 and N2 particles respectively:

0 < S ≤ ai,j with ai,j := ai,j − βi,j for i, j ∈ I1,
0 < S ≤ ai,j with ai,j := ai,j − βi,j for i, j ∈ I2,
0 ≤ ai,j ≤ D with ai,j := −(ai,j − βi,j) otherwise,

(11)

where S,D are independent of time t. The S and D in (11) are the repulsive and attractive forces.
We prove that if the repulsive force between the particles is stronger than the attractive force, that
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Figure 3: Evolution of Dirichlet energy E(X
n
)

of layer-wise node features Xn propagated by
GCN, GAT, GRAND, ACMP-GCN.

Figure 4: Significance plot for β in terms of
test accuracy on Cora (orange) and Texas (blue)
with 10 fixed random splits.

is, S > D, the system is guaranteed to have bi-cluster flocking, as shown in Proposition 2 below.
For time t ≥ 0, suppose x

(1)
c (t) and x

(2)
c (t) are the feature centers of the two groups of the particles

{x(1)
i (t)}N1

i=1 and {x(2)
j (t)}N2

j=1 which are partitioned as above from the whole vertex set V, given by

x(1)
c (t) :=

1

N1

N1∑
i=1

x
(1)
i (t), x(2)

c (t) :=
1

N2

N2∑
i=1

x
(2)
i (t).

Suppose x
(s)
c (t) has the d-dimensional feature, and let x(s)

c,k(t), k = 1, . . . , d, be the kth (dimension)

component of the feature x
(s)
c (t), s = 1, 2.

Proposition 2 The system (5) has a bi-cluster flocking if for each k = 1, . . . , d, the initial |x(1)
c,k(0)−

x
(2)
c,k(0)| ≫ 1, and if there exists a positive constant η such that

α(S −D)min{N1, N2} ≥ δ + η, (12)

where the δ is the weight factor for the double-well potential in the equation (5).

Proposition 3 For system (5) with bi-cluster flocking, there exists a constant C > 0 and some time
T ∗ such that ∀t ≥ T ∗,

|x(1)
i (t)− x

(2)
j (t)| ≥ C > 0, ∀i, j.

Thus, if the non-zero ai,j are all positive, the Dirichlet energy for ACMP is lower bounded by a
positive constant.

6 Experiments

Dirichlet Energy We first illustrate the evolution of the Dirichlet energy of ACMP by an undirected
synthetic random graph. The synthetic graph has 100 nodes with two classes and 2D feature which
is sampled from the normal distribution with the same standard deviation σ = 2 and two means
µ1 = −0.5, µ2 = 0.5. The nodes are connected randomly with probability p = 0.9 if they are in
the same class, otherwise nodes in different classes are connected with probability p = 0.1. We
compare the performance of GNN models with four message passing propagators: GCNs [30], GAT
[52], GRAND [15] and ACMP-GCN. In Figure 3, we show the Dirichlet energy of each layer’s
output in logarithm scales. Traditional GNNs such as GCNs and GAT suffer oversmoothing as the
Dirichlet energy exponentially decays to zero in the first ten layers. GRAND relieves this problem by
multiplying a small constant which can delay all nodes’ features to collapse to the same value. For
ACMP, the energy stabilizes at the level that relies upon the roots of the Allen-Cahn potential in (8)
after slightly decaying in the first two layers.
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Node Classification We compare the performance of ACMP with several popular GNN model
architectures on various node classification benchmarks, containing both homophilic and heterophilic
datasets. Graph data is considered as homophilic [45] if similar nodes in the graph tend to connect
together. Conversely, the graph data is said heterophilic if it has a small homophily level, when
most neighbors do not have the same label with source nodes. We aim to demonstrate that ACMP is
a flexible GNN model which can learn well both kinds of datasets by balancing the attractive and
repulsive forces. The GCN for examples cannot perform well for heterophilic dataset as its message
passing aggregates only the neighbor (1-hop) nodes. The neural ODE is solved by Torchdiffeq
package with Dormand–Prince adaptive step size scheme.

Homophilic datasets The results of our study are presented for the most widely used citation
networks: Cora [35], Citeseer [50] and Pubmed [40]. Moreover, we evaluate our model on the
Amazon co-purchasing graphs Computer and Photo [40], and CoauthorCS [51]. We compare our
model with traditional GNN models: Graph Convolutional Network (GCN) [30], Graph Attention
Network (GAT) [52], Mixture Model Networks [37] and GraphSage [29]. We also compare our
results with recent ODE-based GNNs, Continuous Graph Neural Networks (CGNN) [54], Graph
Neural Ordinary Differential Equations (GDE) [46] and Graph Neural Diffusion (GRAND) [15]. To
address the limitations of this evaluation methodology proposed by [51], we report results for all
datasets using 100 random splits with 10 random initialization’s, and show the node classification
result with mean and standard deviation in Table 1.

Table 1: Test accuracy and std for 10 initialization and 100 random train-val-test splits on six node
classification benchmarks. Red (First), blue (Second), and violet (Third) are the best three methods.

Random Split Cora CiteSeer PubMed Coauthor CS Computer Photo
Homophily level 0.83 0.71 0.79 0.80 0.77 0.83

GCN [30] 81.5± 1.3 71.9± 1.9 77.8± 2.9 91.1± 0.5 82.6± 2.4 91.2± 1.2
GAT [52] 81.8± 1.3 71.4± 1.9 78.7± 2.3 90.5± 0.6 78.0 85.7
GAT-ppr [52] 81.6± 0.3 68.5± 0.2 76.7± 0.3 91.3± 0.1 85.4± 0.1 90.9± 0.3
MoNet [37] 81.3± 1.3 71.2± 2.0 78.6± 2.3 90.8± 0.6 83.5± 2.2 91.2± 2.3
GraphSage-mean [29] 79.2± 7.7 71.6± 2.0 77.4± 2.2 91.3± 2.8 82.4± 1.8 91.4± 1.3
GraphSage-max [29] 76.6± 1.9 67.5± 2.3 76.1± 2.3 85.0± 1.1 N/A 90.4± 1.3
CGNN [54] 81.4± 1.6 66.9± 1.8 66.6± 4.4 92.3± 0.2 80.29± 2.0 91.39± 1.5
GDE [46] 78.7± 2.2 71.8± 1.1 73.9± 3.7 91.6± 0.1 81.9± 0.6 92.4± 2.0
GRAND-l [15] 83.6± 1.0 73.4± 0.5 78.8± 1.7 92.9± 0.4 83.7± 1.2 92.3± 0.9

ACMP-GCN (ours) 84.9± 0.6 75.0± 1.0 78.9± 1.0 93.0± 0.5 83.5± 1.4 91.8± 1.1
ACMP-GAT (ours) 82.3± 0.5 75.5± 1.0 79.4± 0.4 91.8± 0.1 84.4± 1.6 91.1± 0.7

Heterophilic datasets We evaluate ACMP-GCN on the heterophilic graphs; Cornell, Texas and
Wisconsin from the WebKB dataset3. In this case, the assumption of common neighbors does not
hold. The poor performance of GCN and GAT models shown in Table 2 indicates that many GNN
models struggle in this setting. Introducing repulsion can improve the performance of GNNs on
heteroplilic datasets significantly. ACMP-GCN scores 30% higher than the original GCN for the
Texas dataset which has the smallest homophily level among the datasets in the table.

Attractive and Repulsive interpretation As shown in Table 2 and Table 1, ACMP-GCN and
ACMP-GAT achieve better performance than GCN and GAT on both homophilic and heterophilic
datasets. The majority of ai,j − β in the homophilic are positive, which means most nodes are
attracted to each other. Conversely, most ai,j − β for the heterophilic are negative, which means
that most nodes are repelled by their neighbors. Several GNNs exploiting multi-hop information can
achieve high performance in node classification [57, 33]. However, high-order neighbor information
will make the adjacency matrix dense and therefore can not be extended to large graphs, due to
heavier computational cost. In our model, we take only one-hop information into account and add
repulsive force (β ≥ 0) to message passing, which has achieved the same or higher level of accuracy
as multi-hop models in heterophilic datasets.

3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 2: Node classification results on heterophilic datasets. We use the 10 fixed splits for training,
validation and test from [45] and show the mean and std of test accuracy. Red (First), blue (Second),
and violet (Third) are the best three methods.

Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

GPRGNN [18] 78.4± 4.4 82.9± 4.2 80.3± 8.1
H2GCN [57] 84.9± 7.2 87.7± 5.0 82.7± 5.3
GCNII [16] 77.6± 3.8 80.4± 3.4 77.9± 3.8
Geom-GCN [45] 66.8± 2.7 64.5± 3.7 60.5± 3.7
PairNorm [56] 60.3± 4.3 48.4± 6.1 58.9± 3.2
GraphSAGE [29] 82.4± 6.1 81.2± 5.6 76.0± 5.0
MLP 80.8± 4.8 85.3± 3.3 81.9± 6.4
GAT [52] 52.2± 6.6 49.4± 4.1 61.9± 5.1
GCN [30] 55.1± 5.2 51.8± 3.1 60.5± 5.3
GraphCON [31] 85.4± 4.2 87.8± 3.3 84.3± 4.8

ACMP-GCN (ours) 86.2± 3.0 86.1± 4.0 85.4± 7.0

Performance of ACMP to β Hyperparameter β is the key to introduce the repulsive force in GNN,
meaning that when aij − β is negative, the two nodes repel one another. To illustrate β’s impact on
different datasets, we use GCN as a diffusion term as aij do not change during the ODE process and
all the changes are related to β. As shown by Figure 4, ACMP performs best in Cora (orange curve)
when all nodes are attracted to one another i.e., all aij − β is positive. As the beta increases, the
performance of the model degrades. In contrast, for the Texas dataset, when all force is attractive,
ACMP achieves only 70% accuracy (blue curve). As β increases, most aij − β is negative, and the
model’s performance gets better. When all the force is repulsive, ACMP achieves highest accuracy on
Texas datasets, which is in accordance with our claim that repulsive force is important for heterophilic
datasets.

7 Related work

Neural differential equations The topic of neural ODEs becomes an emerging field since [21]
and [17], with many follow-up works in the GNN field: [5] used continuous residual modules for
graph kernels; [46] extended the framework of GNN to continuous time. [49] applied Hamiltonian
mechanics to graph networks to predict future states. GRAND [15] approached graph deep learning
as a continuous diffusion process and propagated GNNs by the graph diffusion equation. [22]
combined diffusion and wave PDEs for GNNs, and GraphCON [31] generalized this method. The
latter employed a second-order system to conquer oversmoothing of deep graph neural networks.

Allen-Cahn based variational graph models In [8, 34, 36] and references therein, authors
extended Allen-Cahn related potential to graphical framework and developed a class of variational
algorithms to solve the clustering, semisupervised learning and graph cutting problems. The new
ingredient of graph neural network which enables us to combine learnable attraction and repulsion
separates our method from the classical variational graph models.

8 Conclusion

We develop a new message passing method with simple implementation. The method is based on
the Allen-Cahn particle system with repulsive force. The proposed ACMP inherits the characteristic
dynamics of the particle system and thus shows adaption for node classification tasks with high
homophily difficulty. Also, it propels networks to dozens of layers without getting oversmoothing. A
strictly positive lower bound of the Dirichlet energy is shown by theoretical and experimental results
which guarantees non-oversmoothing of ACMP. Experiments show excellent performance of the
model for various real datasets.
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The Appendix is stuructured as follows:

• In Appendix A we state more related works on flocking or consensus model.
• In Appendix B we introduce several model variants with different damping term with (8).
• In Appendix C we give more analysis on the GRAND model and the attraction-only case of

equation 5. In addition, we prove the statements in Section 5, i.e. Proposition 1, Proposition
2 and Proposition 3.

• In Appendix D we show additional experimental details and an ablation study for ACMP.

A Flocking and consensus

The microscopic (agent-based particle systems) modeling of flocking and consensus has been
extensively studied. [39] reviews a general class of models for self-organized dynamics and shows
the relationship between heterophily and consensus. [14] presents a series of social and dynamics
under the formulation of statistical physics. The flocking problem is to some degree similar to the
general consensus problem [43] which studies the emergent behaviours for multi-agent systems. The
Cucker-Smale (in short C-S) model [19] is a famous model in this field considering a second-order
system adopting to classical dynamics. [28] and [27] discuss asymptotic flocking for the C-S model
with the Rayleigh friction. [23] furthermore studies frameworks leading to bi-cluster flocking for the
C-S model with the Raleigh friction and attractive-repulsive coupling.

B Model variants

More clusters We can simply replace the double well potential W by a multi-well potential to
generate more equilibria. We provide two alternatives here. One can use a higher-order polynomial to
construct additional wells. In general, a (2k+1)th order polynomial can produce k+1 stable equilibria
in a proper form, which gives rise to more stable clusters. One can also use sin(( 32 + l)πx+ π

2 ), l =
0, · · · , k, defined on the interval [−1, 1] as the multi-well potential, which has l + 2 stable equilibria.

Stronger trapping force As the consensus state (i.e., xi = xj for all i, j) might not be a global
equilibrium of (9), particles could escape from one well of the potential of W to another well. We
can circumvent this instability by enhancing the attraction of the wells, which can be achieved by
reducing the diffusion power around wells:

∂

∂t
xi(t) = α⊙

∑
j∈Ni

(aGNN(xi(t),xj(t))−β)(xj(t)−xi(t))
(
1− xi(t)

⊙2
)⊙2

+δ⊙xi(t)⊙
(
1− xi(t)

⊙2
)
.

(13)
where ‘GNN’ in aGNN can be GCN or attn, and z⊙2 is z ⊙ z. With this modification in (13), in any
channel k, if any particle x

(k)
i gets caught in one potential well, then it is not likely to escape:

Proposition 4 For (13), there exists a proper δ′ > 0 such that x(k)
i ∈ [−1,−1 + δ′) ∪ (1− δ′, 1],

then particle x
(k)
i cannot transition into another well.

Proof. For the β = 0 case, assume xi = −1 + ϵ for ϵ ≤ δ′ < 1 at a certain time t0, that is,
xi ∈ [−1,−1 + δ′). We want to show dxi

dt

∣∣
t=t0

< 0, which means

α
∑
j∈Ni

ai,j(xj − xi)(1− x2
i )

2 < −δxi(1− x2
i ).

By
∑

j∈Ni

ai,j = 1 from (25), the above inequality is equivalent to

∑
j∈Ni

ai,jxj <
δ

α

1− ϵ

2− ϵ

1

ϵ
+ ϵ− 1 ≤ δ

2α

1

ϵ
+ ϵ− 1 ≤ δ

2αϵ
. (14)

Since {xj}Nj=1 are bounded (See Proposition 1.), (14) is satisfied for a sufficiently small δ′. The other
case xi = 1− ϵ can be similarly proved.
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For the β ̸= 0 case, we also assume xi = −1 + ϵ for ϵ ≤ δ′ < 1 at a certain time t0. Similarly with
(14), we have∑

j∈Ni

(ai,j − β)xj <
δ

α

1− ϵ

2− ϵ

1

ϵ
+ (1− diβ)(ϵ− 1) ≤ δ

2αϵ
+ diβ − 1 + ϵ(1− diβ).

By the boundedness of {xj}Nj=1, a properly small δ′ can be found. ■

C Supplementary Results and Proofs of Propositions in Section 5

We assume that ai,j is symmetric, and ai,j > 0 if ai,j ̸= 0. This condition means that graph is
undirected. Since we deal with each channel independently, we abuse the notation to let xi denote
one feature component of node xi to simplifying the notation in proofs.

C.1 The GRAND model

First, we consider the oversmoothing phenomenon if there is only the diffusion process with diffusion
coefficients independent of xi, which is a specific model of graph diffusion network (GRAND) [15],

ẋi = α
∑

j:(i,j)∈E

ai,j(xj − xi). (15)

Proposition 5 Let D denote the degree matrix, i.e., D := diag(d1, · · · , dN ), where di =
∑

j ai,j .
Then D−A is symmetric positive semi-definite with the eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λmax <
∞. Let λmin > 0 be the smallest positive eigenvalue, then for all t ≥ 0, there exists a constant C > 0
such that E(x(t)) ≤ C exp(−λ2

mint).

Proof. Let L := D−A, we have,
x(t) = x(0)e−L.

Using eigenvalue decomposition, the solution x(t) writes

x(t) = U⊤e−ΛtUx(0) (16)

Since the Dirichlet energy can also be written as

E(x(t)) = x(t)⊤Lx(t), (17)

Taking (16) to (17) gives

E(x(t)) = x(0)⊤U⊤e−ΛtΛe−ΛtUx(0). (18)

Therefore, E(x(t)) ≤ C exp(−λ2
mint) for some constant C > 0. ■

Proposition 6 We also consider a more general case,

d

dt
xi(t) =

∑
j:(i,j)∈E

a(xi, xj)(xj − xi), (19)

with a(xi, xj) = a(xj , xi) ≥ amin > 0, for any xi, xj .

Let the mass center xc =
1
N

∑
i∈V xi. From the symmetry of a(xi, xj) and (19), we obtain dxc/dt =

0 for any t > 0. Without loss of generality, we may assume

xc(0) = 0, (20)

and graph G is connected, i.e., ∀(i, j) ∈ V × V, G contains a path from i to j. Then we have,
∥x(t)∥2 ≤ ∥x(0)∥2e−2aminλmint and E(x(t)) ≤ λmax∥x(0)∥2e−2aminλmint. Note that the above
estimates hold true for any initial condition xc(0) = c, since x satisfies the ODE system (19) up to
a constant. If xc(0) = c, xi will converge to c in time. If G is not connected, then we just need to
consider each connected sub-graph separately with the assumption xc′(0) =

1
N ′

∑
i∈V′ xi = c′ for

each sub-graph G′ = (V ′, E ′). x′
i in each sub-graph will converge to constant c′ independently.
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Proof. We multiply xi on both sides of the equation (19) and sum over xi to obtain

xi
dxi

dt
=

∑
j∈N(j)

a (xi, xj) (xj − xi)xi (21)

⇒ d

dt
∥x∥2 = −2

∑
(i,j)∈E

a (xi, xj) (xj − xi)
2 (22)

⇒ d

dt
∥x∥2 ⩽ −2amin

∑
(i,j)∈E

(xj − xi)
2 (23)

The RHS in (23) can be written in matrix form with L := D−A,∑
(i,j)∈E

(xj − xi)
2
=

∑
(i,j)∈V×V

ai,j (xj − xi)
2
= x⊤Lx.

Since G is a connected graph, 1 is the only eigenvector consisting of the kernel space of L, therefore,
xTLx ≥ λmin∥x∥2 for any x satisfying

∑
i∈V xi = 0. Then, (23) leads to

d

dt
∥x∥2 ⩽ −2aminλmin∥x∥2. (24)

This yields the decay estimates for ∥x∥ and E(x(t)):

∥x(t)∥2 ≤ ∥x(0)∥2e−2aminλmint, E(x(t)) ≤ λmax∥x(0)∥2e−2aminλmint.

■

C.2 The model with Allen-Cahn term

Next, we consider the case β = 0 but with Allen-Cahn term:
d

dt
xi(t) = α

∑
j:(i,j)∈E

a(xi, xj)(xj − xi) + δxi

(
1− x2

i

)
,

a(xi, xj) = a(xj , xi) ≥ 0, ∀i, j ∈ V
∑
i

a(xi, xj) = 1, ∀j ∈ V.
(25)

Proposition 7 Suppose x∗ = (x∗
1, . . . , x

∗
N ) is a global equilibrium (or steady state solution) of (25)

on R and x, then x∗
i ∈ [−1, 1].

Proof. Suppose x∗ achieves the equilibrium of (25), and x∗
k ≥ x∗

i ∀i. If x∗
k > 1, then

α
∑

j:(k,j)∈E
a(x∗

k, x
∗
j )(x

∗
j − x∗

k) ≤ 0 and x∗
k(1 − x∗2

k ) < 0, which contradicts with ∂
∂tx

∗
k = 0.

■

The emergence of clusters depends on the distribution of initial features. If all the initial features are
in only one potential well, then intuitively it is impossible to produce more than one cluster in the
dynamics (25). As a simple transference of Lemma 3.2 in [27], we can prove this. Set

xM (t) := max
i

xi(t), xm(t) := min
i

xi(t), (26)

where xi is still some component of node feature xi. Assume xm, xM are both Lipschitz continuous
and therefore they are almost differentiable everywhere in time t.

Proposition 8 Let {xi} be the solutions of (25), then the following holds.
(i) If xm(0) > 0, then xm(t) ≥ 0 for all t > 0.

(ii) If xM (0) < 0, then xM (t) ≤ 0 for all t > 0.

Proof. The proof was essentially given by [27]. For the sake of completeness, we give a proof here.
(i) If xm(0) > 0, we assert there exists a time sequence {tj}∞j=0 satisfying t0 = 0 < t1 < · · · <
tj < . . . , xm(t) is differentiable in each time interval (tj−1, tj) and xm

i ≥ 0 when t ∈ [0, t1]. By
induction, firstly we set

xm(t) ≥ 0, t ∈ [0, tl].
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If xm becomes negative in the time interval (tl, tl+1) there exists t∗ ∈ (tl, tl+1) such that xm(t∗) = 0
by the continuity of xm(t). One can assume xm(t) ≡ xi(t) for some node xi in some time interval
subset to (tl, tl+1). At that moment,

dxi

dt
(t∗) = α

∑
j

a(xj , xi)(xj(t
∗)− xi(t

∗)) + δxi(t
∗)(1− x2

i (t
∗))

= α
∑
j

a(xj , xi)xj(t
∗)

≥ 0.

(27)

Hence, the trajectory xm becomes non-decreasing at t = t∗. By induction, we derive (i).

(ii) can be proved by the same argument as those for (i). ■

Now we consider the second kinetic model (13). We can prove that if any particle xi gets caught in
one potential well, then it will not escape from that well.

C.3 The Attractive-repulsive Model

We first show that the solution features of graph in Allen-Cahn model below is bounded. For
simplicity of the proof, we rewrite (9) in component form where we let a(xi, xj) := ai,j − βi,j :

d

dt
xi(t) = α

∑
j:(i,j)∈E

a(xi, xj)(xj − xi) + δxi

(
1− x2

i

)
. (28)

Model (28) allows negative a(xi, xj) which is different from the condition in (25).

Proof of Proposition 1.

We multiply xi on both sides of the following equation and sum over xi to obtain

dxi

dt
=
∑
j∈Ni

a(xi, xj) (xj − xi)− x3
i + xi

⇒1

2

dx2
i

dt
=
∑
j∈Ni

a(xi, xj) (xj − xi)xi − x4
i + x2

i

⇒1

2

∑
i∈V

dx2
i

dt
= −

∑
i∈V

∑
j∈Ni

a(xi, xj) (xj − xi)xi − x4
i + x2

i

 .

(29)

By grouping a(xi, xj) (xj − xi)xi, then

1

2

d

dt
∥x∥2 = −1

2

∑
i∈V

∑
j∈Ni

a(xi, xj) (xj − xi)
2 −

∑
i∈V

x4
i + ∥x∥2. (30)

Note that a(xi, xj) are bounded for any (xi, xj). Let the |a(xi, xj)| < D1 for a constant D1

depending on hyper-parameters βi,j . By the Cauchy-Schwarz inequality,

|a(xi, xj)(xj − xi)
2| ≤ 2D1(x

2
i + x2

j ).

Hence,
−
∑
i∈V

∑
j∈Ni

a(xi, xj) (xj − xi)
2 ≤ c4∥x∥2.

Also,
∑
i∈V

x4
i ≥ c3∥x∥4 for a constant c3 depending only on N. Taking the above estimates to (30)

gives
d

dt
∥x∥2 ≤ −2c3∥x∥4 + (c4 + 2)∥x∥2.

16



If ∥x∥ blows up for t > 0, the ∥x∥ → ∞ as time t increases, and d
dt∥x∥

2 > 0 for all t before the
blowing-up time Tend. However, one can find a t∗ < Tend such that ∥x(t∗)∥ is large enough and

−2c3∥x(t∗)∥4 + (c4 + 2)∥x(t∗)∥2 < 0,

which produces a contradiction. Thus, ∥x∥ ≤ c5 for a constant c5 only depending on N and D1 and

E(x) ≤ λmax∥x∥2 ≤ λmaxc5,

where λmax is the largest eigenvalue of L := D−A. Thus, we proved the assertion in Proposition 1.

■

Recall (5) under (11) and rewrite it as
d

dt
x
(1)
i = α

N1∑
k=1

ak,i(x
(1)
k − x

(1)
i )− α

N2∑
k=1

ak,i(x
(2)
k − x

(1)
i ) + δx

(1)
i (1− (x

(1)
i )2), i = 1, . . . , N1

d

dt
x
(2)
j = α

N2∑
k=1

ak,j(x
(2)
k − x

(2)
i )− α

N1∑
k=1

ak,j(x
(1)
k − x

(2)
j ) + δx

(2)
j (1− (x

(2)
j )2), j = 1, . . . , N2.

(31)

For the attractive-repulsive model (31), we can refer to the the proof of its Theorem 5.1. in [23].

We define the following notations for further proof:

V := {nodes indexed by I1}, W := {nodes indexed by I2},
N1 := |V |, N2 := |W |,

x̂(1) := x
(1)
i − x(1)

c , x̂(2) := x
(2)
i − x(2)

c ,

x(1)
c :=

1

N1

N1∑
i=1

x
(1)
i , x(2)

c :=
1

N2

N2∑
i=1

x
(2)
i ,

M2(V ) :=
1

N1

N1∑
i=1

(x
(1)
i )2, M2(W ) :=

1

N2

N2∑
i=1

(x
(2)
i )2,

M2 := M2(V ) +M2(W ),

M̂2 := M2(V̂ ) +M2(Ŵ ).

Remark 1 (12) indicates that the repulsive force between the particles should be weaker than the
attractive force(S > D).

To prove Proposition 2, we need the following two lemmas, which we would postpone to prove.

Lemma 1 Let {xi} be a solution to (31). Then M̂2 satisfies

d

dt
M2 =− α

N1

N1∑
i,k=1

ak,i(x
(1)
k − x

(1)
i )2 − 2α

N1

N2∑
k=1

N1∑
i=1

ai,k(x
(2)
k − x

(1)
i )x

(1)
i

+
2δ

N1

N1∑
i=1

(x
(1)
i )2(1− (x

(1)
i )2)

− α

N2

N2∑
j,k=1

ak,j(x
(2)
k − x

(2)
j )2 − 2α

N2

N1∑
k=1

N2∑
j=1

aj,k(x
(1)
k − x

(2)
j )x

(2)
j

+
2δ

N2

N2∑
j=1

(x
(2)
j )2(1− (x

(2)
j )2).

(32)

Suppose that the system parameters satisfy

S ≥ 0, D > 0, δ > 0,
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then there exists a positive constant M∞
2 such that

sup
0≤t<∞

M2(t) ≤ M∞
2 < ∞. (33)

Proof of Lemma 1.

d

dt
M2(V ) =

2

N1

N1∑
i=1

x
(1)
i

˙
x
(1)
i

= − α

N1

N1∑
i,k

ak,i(x
(1)
k − x

(1)
i )2 − 2α

N1

N2∑
k=1

N1∑
i=1

ai,k(x
(2)
k − x

(1)
i )x

(1)
i

+
2δ

N1

N1∑
i=1

(x
(1)
i )2(1− (x

(1)
i )2).

(34)

Similarly,

d

dt
M2(W ) =

2

N2

N2∑
i=1

x
(2)
i

˙
x
(2)
i

= − α

N2

N2∑
j,k=1

ak,j(x
(2)
k − x

(2)
j )2 − 2α

N2

N1∑
k=1

N2∑
j=1

aj,k(x
(1)
k − x

(2)
j )x

(2)
j

+
2δ

N2

N2∑
j=1

(x
(2)
j )2(1− (x

(2)
j )2).

(35)

Sum the M2(V ) and M2(W ). Note that aij = aji. Then

d

dt
M2 ≤Dα

N1

N2∑
k=1

N1∑
i=1

(
(x

(2)
k − x

(1)
i )2 + (x

(1)
i )2

)
+

Dα

N2

N1∑
k=1

N2∑
j=1

(
(x

(1)
k − x

(2)
j )2 + (x

(2)
j )2

)

+
2δ

N1

N1∑
i=1

(x
(1)
i )2(1− (x

(1)
i )2) +

2δ

N2

N2∑
i=1

(x
(2)
i )2(1− (x

(2)
i )2).

(36)
By the Cauchy-Schwarz inequality,(

N1∑
i=1

(x
(1)
i )2

)2

≤ N1

N1∑
i=1

(x
(1)
i )4,

(
N1∑
i=1

(x
(1)
i )2

)2

≤ N2

N2∑
i=1

(x
(2)
i )4,

(x
(1)
i − x

(2)
j )2 ≤ 2((x

(1)
i )2 + (x

(2)
j )2).

These relations and (36) yield a Riccati-type differential inequality:

d

dt
M2 ≤2DαN2M2(W ) + 3DαN2M2(V ) + 2DαN1M2(V ) + 3DαN2M2(W )

+ 2δM2 − δ(M2)
2

≤(αCm + 2δ)M2 − δ(M2)
2.

(37)

Let y be a solution of the following ODE:

y′ = αCmy − δy2. (38)

Then, the solution y(t) to (38) satisfies

M2(t) ≤ y(t) ≤ max

{
αCm

δ
+ 2,M2(0)

}
=: M∞

2 . (39)

■
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Lemma 2 Let {xi} be a solution to (31) with δ > 0. Then M̂2 satisfies

d

dt
M̂2 ≤ −2ηM̂2 + 2αDζ|x(1)

c − x(2)
c |
√
M̂2, (40)

where ζ = max{N1, N2} and η is the positive constant in Proposition 2.

Proof of Lemma 2. By computation,

˙
x
(1)
c =

1

N1

N1∑
i=1

˙
x
(1)
i

=
α

N1

N1∑
i,k=1

ak,i(x
(1)
k − x

(1)
i )− α

N1

N2∑
k=1

N1∑
i=1

ak,i(x
(2)
k − x

(1)
i ) +

δ

N1

N1∑
i=1

x
(1)
i (1− (x

(1)
i )2)

= − α

N1

N2∑
k=1

N1∑
i=1

ak,i(x
(2)
k − x

(1)
i ) +

δ

N1

N1∑
i=1

x
(1)
i (1− (x

(1)
i )2).

Note that
˙̂

x
(1)
i =

˙
x
(1)
i − ˙

x
(1)
c . Take the inner product 2x̂(1)

i with the above equation and sum it over

all i = 1, . . . , N1, combining with
∑

x̂
(1)
i = 0. Then,

d

dt
M2(V̂ ) =

1

N1

−α

N1∑
i,k=1

ak,i(x̂
(1)
k − x̂

(1)
i )2 − 2α

N2∑
k=1

N1∑
i=1

ak,i(x
(2)
k − x

(1)
i )x̂

(1)
i + 2δ

N1∑
i=1

x̂
(1)
i x

(1)
i (1− (x

(1)
i )2)


=

1

N1

−α

N1∑
i,k=1

ak,i(x̂
(1)
k − x̂

(1)
i )2 − 2α

N1∑
i=1

N2∑
k=1

ak,i(x
(2)
c − x(1)

c + x̂
(2)
k − x̂

(1)
i )x̂

(1)
i


+

1

N1
2δ

N1∑
i=1

x̂
(1)
i x

(1)
i (1− (x

(1)
i )2).

Similarly,

d

dt
M2(Ŵ ) =

1

N2

−α

N2∑
i,k=1

ak,i(x̂
(2)
k − x̂

(2)
i )2 − 2α

N1∑
k=1

N2∑
j=1

ak,j(x
(1)
c − x(2)

c + x̂
(1)
k − x̂

(2)
j )x̂

(2)
j


+

1

N2
2δ

N2∑
i=1

x̂
(2)
i x

(2)
i (1− (x

(2)
i )2).

Combine the two equations, d
dtM̂2 =

6∑
i=1

Ii, where

I1 :=
1

N1

−α

N1∑
i,k=1

ak,i(x̂
(1)
k − x̂

(1)
i )2

 ≤ −2αSN1M2(V̂ ),

I2 :=
1

N2

−α

N2∑
i,k=1

ak,i(x̂
(2)
k − x̂

(2)
i )2

 ≤ −2αSN2M2(Ŵ ),

I1 + I2 ≤ −αSmin{N1N2}M̂2,

(41)
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I3 := −2α

N2∑
k=1

N1∑
i=1

ak,i(x̂
(2)
k − x̂

(1)
i )x̂

(1)
i

1

N1
− 2α

N1∑
k=1

N2∑
j=1

aj,k(x̂
(1)
k − x̂

(2)
j )x̂

(2)
j

1

N2

≤ max

{
1

N1
,
1

N2

}
2α

N1∑
i=1

N2∑
j=1

ai,j(x̂
(1)
i − x̂

(2)
j )2

≤ max

{
1

N1
,
1

N2

}
2αD

N1∑
i=1

N2∑
j=1

(x̂
(1)
i − x̂

(2)
j )2

= 2αDmax

{
1

N1
,
1

N2

}
N1N2M̂2

= 2αDζM̂2,

I4 := −2α

N2∑
k=1

N1∑
i=1

ak,i(x
(2)
c − x(1)

c )x̂
(1)
i

1

N1
− 2α

N1∑
k=1

N2∑
j=1

aj,k(x
(1)
c − x(2)

c )x̂
(2)
j

1

N2

≤ 2αDζ|x(1)
c − x(2)

c |
√
M̂2,

(42)

I5 := 2δ

N1∑
i=1

x̂
(1)
i x

(1)
i (1− (x

(1)
i )2)

1

N1
,

I6 := 2δ

N2∑
i=1

x̂
(2)
i x

(2)
i (1− (x

(2)
i )2)

1

N2
.

(43)

Using x
(1)
i = x̂

(1)
i + x

(1)
c and

∑
i

x̂
(1)
i = 0, we obtain

I5 =
2δ

N1

N1∑
i=1

(1− (x
(1)
i )2)x̂

(1)
i

2

+
2δ

N1

N1∑
i=1

x(1)
c x̂

(1)
i

= 2δM2(V̂ )− (− 2δ

N1

N1∑
i=1

(x
(1)
i )2x̂

(1)
i

2

− 2δ

N1
(x

(1)
i )2x(1)

c x̂
(1)
i

= 2δM2(V̂ )− (− 2δ

N1

N1∑
i=1

(x
(1)
i )2x̂

(1)
i

2

≤ 2δM2(V̂ ).

(44)

The last inequality is based on

N1∑
i=1

(x
(1)
i )2x̂

(1)
i

2

=

N1∑
i=1

(x
(1)
i )2((x

(1)
i )2 − x(1)

c x̂
(1)
i )

=
1

2

N1∑
i=1

(x
(1)
i )2((x

(1)
i )2 − (x(1)

c )2 + (x
(1)
i − x(1)

c )2)

≥ 1

2

N1∑
i=1

(x
(1)
i )2((x

(1)
i )2 − (x(1)

c )2)

=
1

2

N1∑
i=1

(x
(1)
i )4 − 1

2

N1∑
i=1

(x
(1)
i )2((x(1)

c )2

≥ 1

2

N1∑
i=1

(x
(1)
i )4 − 1

2N1

(
N1∑
i=1

(x
(1)
i )2

)2

≥ 0.
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Similarly on I6, one has I6 ≤ 2δM2(Ŵ ). Thus, I5 + I6 ≤ 2δM̂2.
Note that

I1 + I2 + I3 + I5 + I6 ≤ −2αSmin{N1, N2}M̂2 + 2αDζM̂2 + 2δM̂2

≤ −2 [α(S −D)min{N1, N2} − δ] M̂2

≤ −2ηM̂2.

(45)

■

Proof of Proposition 2
(a) (Uniform upper bound of |x(1)

c − x
(2)
c |) By Cauchy’s inequality and Lemma 1,

|x(1)
c − x(2)

c | =

∣∣∣∣∣ 1

N1

N1∑
i=1

x
(1)
i − 1

N2

N2∑
i=1

x
(2)
i

∣∣∣∣∣
≤ 1

N1

N1∑
i=1

|x(1)
i |+ 1

N2

N2∑
i=1

|x(2)
i |

≤ 2

√√√√ 1

N1

N1∑
i=1

(x
(1)
i )2 +

1

N2

N2∑
i=1

(x
(2)
i )2

= 2
√
M2(t) ≤ 2

√
M∞

2 .

(46)

(b) (Uniform boundedness of M̂2) By Lemma 2 and (46),

d

dt

√
M̂2 ≤ −η

√
M̂2 + αDζ|x(1)

c − x(2)
c |

≤ −η

√
M̂2 + 2Dαζ

√
M∞

2 .

(47)

Use Gronwall’s lemma to obtain

√
M̂2(t) ≤

√
M̂2(0)e

−ηt +
2Dαζ

√
M∞

2

η
(1− e−ηt)

≤ max

{√
M̂2(0),

2Dαζ
√

M∞
2

η

}
:= C3.

(48)

(c) (Separation of the particle centers)

By (31), we have

d

dt
|x(1)

c − x(2)
c | = α

N1

N1∑
i=1

N2∑
k=1

ak,i(x
(1)
k − x

(1)
i )− α

N2

N2∑
j=1

N1∑
k=1

ak,j(x
(2)
k − x

(2)
j )

− α

N1

N1∑
i=1

N2∑
k=1

ak,i(x
(2)
k − x

(1)
i )− α

N2

N2∑
j=1

N1∑
k=1

ak,i(x
(1)
k − x

(2)
j )

+
δ

N1

N1∑
i=1

(x
(1)
i (1− ((x

(1)
i )2)− 2δ

N2

N2∑
i=1

(x
(2)
i (1− ((x

(2)
i )2)

(49)
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By the symmetry of (ai,j),
Np∑
i=1

Np∑
k=1

ak,i(x̂
(p)
k − x̂

(p)
i ) = 0 for p = 1, 2. Thus,

d

dt
|x(1)

c − x(2)
c | = α

N1

N1∑
i=1

N2∑
k=1

ak,i(x̂
(2)
k + x(2)

c − x̂
(1)
i − x(1)

c )

+
α

N2

N2∑
j=1

N1∑
k=1

ak,j(x̂
(1)
k + x(1)

c − x̂
(2)
i − x(2)

c )

+
δ

N1

N1∑
i=1

(x̂
(1)
i + x(1)

c )− 2δ

N2

N2∑
i=1

(x̂
(2)
i + x(2)

c )

− 2δ

N1

N1∑
i=1

(x
(1)
i )3 +

2δ

N2

N2∑
i=1

(x
(2)
i )3

(50)

By a similar estimate with Lemma 2, we have

d

dt
|x(1)

c − x(2)
c |2 =− 2(x(1)

c − x(2)
c )

α

N1

N1∑
i=1

N2∑
k=1

ak,i(x̂
(2)
k + x(2)

c − x̂
(1)
i − x(1)

c )

+ 2(x(1)
c − x(2)

c )
α

N2

N2∑
j=1

N1∑
k=1

ak,j(x̂
(1)
k + x(1)

c − x̂
(2)
i − x(2)

c )

+

(
2δ

N1

N1∑
i=1

x̂
(1)
i − 2δ

N2

N2∑
i=1

x̂
(2)
i

)
(x(1)

c − x(2)
c )

+

(
2δ

N1

N1∑
i=1

x(1)
c − 2δ

N2

N2∑
i=1

x(2)
c

)
(x(1)

c − x(2)
c )

− 2δ

N1

N1∑
i=1

(x
(1)
i )3(x(1)

c − x(2)
c ) +

2δ

N2

N2∑
i=1

(x
(2)
i )3(x(1)

c − x(2)
c )

=
2α

N1

N1∑
i=1

N2∑
k=1

ak,i(x
(2)
c − x(1)

c )2 +
2α

N1

N2∑
j=1

N1∑
k=1

ak,i(x
(2)
c − x(1)

c )2

+
2α

N1

N1∑
i=1

N2∑
k=1

ak,i(x̂
(2)
k − x̂

(1)
i )(x(2)

c − x(1)
c ) +

2α

N1

N2∑
j=1

N1∑
k=1

ak,i(x̂
(2)
k − x̂

(1)
i )(x(2)

c − x(1)
c )

+ 2(x(2)
c − x(1)

c )

 δ

N1

N1∑
i=1

x̂
(1)
i − δ

N2

N2∑
j=1

x̂
(2)
j


+ 2(x(2)

c − x(1)
c )

 δ

N1

N1∑
i=1

x(1)
c − δ

N2

N2∑
j=1

x(2)
c

 .

(51)

d

dt
|x(1)

c − x(2)
c |2 ≥ 2

α

(
1

N1
+

1

N2

) N1∑
i=1

N2∑
j=1

ai,j + 2δ

 (x(1)
c − x(2)

c )2 + Ic1 + Ic2. (52)

where

Ic1 := 2α

(
1

N1
+

1

N2

) N1∑
i=1

N2∑
j=1

ai,j(x̂
(2)
j − x̂

(1)
i )(x(2)

c − x(1)
c ), (53)
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Ic2 := − 2δ

N1

N1∑
i=1

(x
(1)
i )3(x(1)

c − x(2)
c ) +

2δ

N2

N2∑
i=1

(x
(2)
i )3(x(1)

c − x(2)
c ). (54)

By the Cauchy-Schwarz inequality,

|Ic1| ≤ 2α

(
1

N1
+

1

N2

)
D
√

N1N2|x(1)
c − x(2)

c |

√√√√N1,N2∑
i,j

(x̂
(2)
j − x̂

(1)
i )2

≤ 2α

(
1

N1
+

1

N2

)
DN1N2|x(1)

c − x(2)
c |
√
M̂2.

(55)

For Ic2, note that ∣∣∣∣∣ 2δN1

N1∑
i=1

(x
(1)
i )3

∣∣∣∣∣ ≤ δ|x(1)
i |M2(V ) ≤ δ

√
N1M2(V )

3
2 ,∣∣∣∣∣ 2δN2

N2∑
i=1

(x
(2)
i )3

∣∣∣∣∣ ≤ δ|x(2)
i |M2(V ) ≤ δ

√
N1M2(W )

3
2 .

Then, one gets

Ic2 ≥ −2
∣∣∣x(1)

c − x(2)
c

∣∣∣ ∣∣∣∣∣ δ

N1

N1∑
i=1

(x
(1)
i )3 +

δ

N2

N2∑
i=1

(x
(2)
i )3

∣∣∣∣∣
≥ −2

∣∣∣x(1)
c − x(2)

c

∣∣∣ δ√max{N1, N2}M2(t)
3
2 .

(56)

Hence,

d

dt
|x(1)

c − x(2)
c |2 ≥

2α(
1

N1
+

1

N2
)

N1∑
i=1

N2∑
j=1

ai,j

+ 4δ

 |x(1)
c − x(2)

c |2

− 2αD(N1 +N2)
∣∣∣x(1)

c − x(2)
c

∣∣∣√M̂2 − 2δ
√
max{N1, N2}

∣∣∣x(1)
c − x(2)

c

∣∣∣M 3
2
2 .

(57)

Combining with Lemma 1 and (48), one obtains the estimate

d

dt
|x(1)

c − x(2)
c | ≥

α

(
1

N1
+

1

N2

) N1∑
i

N2∑
j=1

ai,j + 2δ

 |x(1)
c − x(2)

c |

−αD(N1 +N2)C3 − δ
√
max{N1, N2}(M∞

2 )
3
2 .

(58)

By Gronwall’s lemma, if the initial data satisfy:

|x(1)
c (0)− x(2)

c (0)| ≥
αD(N1 +N2)C3 + δ

√
max{N1, N2}(M∞

2 )
3
2

2δ
:=

C4

δ
, (59)

then,

|x(1)
c (t)− x(2)

c (t)| ≥ C4

δ
+ (|x(1)

c (0)− x(2)
c (0)| − C4

δ
)eδt ≥ C4

δ
. (60)

(d)(Spatial separation of the two sub-ensembles) For any i = 1, . . . N1, j = 1, . . . , N2,

|x(1)
i (t)− x

(1)
j (t)| ≥ |x(1)

c (t)− x(2)
c (t)| − |x̂(1)

i(t)− x̂(2)
j(t)|

≥ |x(1)
c (t)− x(2)

c (t)| −
√
2max{N1, N2}M̂2

≥ C4

δ
+

(
|x(1)

c (0)− x(2)
c (0)| − C4

δ

)
eδt

−
√
2max{N1, N2}

(√
M̂2(0)e

−ηt +

√
M∞

2

η
(1− e−ηt)

)
.
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Then, there exists some time T ∗ such that ∀t ≥ T ∗,

|x(1)
i (t)− x

(2)
j (t)| ≥ C ′ > 0, ∀i, j. (61)

Combing with Proposition 1, we finish the proof. ■

Remark 2 The proof of Proposition 3 is included in part (d) of proof of Proposition 2.

Now denote η2 :=
∑

i∈I1,j∈I2

ai,j > 0 in some channel, then the Dirichlet energy in this channel has a

lower bound:

E(x) =
1

N

∑
i,j

ai,j(xi − xj)
2

=
1

N

 ∑
i,j∈I1

ai,j(x
(1)
i − x

(1)
j )2 +

∑
i,j∈I2

ai,j(x
(2)
i − x

(2)
j )2 +

∑
i∈I1,j∈I2

ai,j(x
(1)
i − x

(2)
j )2


≥ 1

N

∑
i∈I1,j∈I2

ai,j(x
(1)
i − x

(2)
j )2

≥ C2η2
N

.

(62)

D Experiments

The code for the experiments is available at:
https://anonymous.4open.science/r/ACMP-092A

We will replace this anonymous link with a non-anonymous GitHub link after the acceptance. We
implement all experiments in Python 3.8.13 with PyTorch Geometric on one NVIDIA ® Tesla A100
GPU with 6,912 CUDA cores and 80GB HBM2 mounted on an HPC cluster.

In addition, we take the official implementation of the Graph Neural Diffusion (GRAND) as diffusion
term in (8) from the repository:

https://github.com/twitter-research/graph-neural-pde

D.1 Details for Experiments

Datasets We consider two types of datasets: Homophilic and Heterophilic. They are differentiated
by the homophily level of a graph [45]:

H =
1

|V |
∑
v∈V

Number of v’s neighbors who have the same label as v
Number of v’s neighbors

.

In the experiments, we have used six homophilic datasets, including Cora [35], Citeseer [50] and
Pubmed [40], Computer and Photo [40], and CoauthorCS [51], and three heterophilic datasets:
Cornell, Texas and Wisconsin from the WebKB dataset4. For completeness, we list the numbers of
classes, features, nodes and edges of each dataset, and their homophily level in Table 3. The low
homophily level means that the dataset is more heterophilic when most of neighbours are not in the
same class, and the high homophily level indicates that the dataset close to homophilic when similar
nodes tent to be connected. The datasets we used in Table 3 covers various homophily levels.

Experiment setup For homophilic datasets, we use 10 random weight initializations and 100
random splits, which contains 1,000 tests. Each combination randomly select 20 numbers for each
class. For heterophilic data, we use the original fixed 10 split datasets. We fine-tune our model within
hyper-parameter search space, as detailed in Table 4. We use the Dormand–Prince adaptive step size
scheme (DOPRI5) as the neural ODE solver for all datasets. Hyperparameter search used Ray Tune
with a hundred trials using an asynchronous hyperband scheduler with a grace period of 50 epochs.
All the details to reproduce our results have been included in the submission and will be publicly
available after publication.

4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 3: Information for Graph Datasets Used in Experiments

Dataset Classes Features #Nodes Edges Homophily level

Cora 7 1433 2485 5069 0.83
CiteSeer 6 3703 2120 3679 0.71
PubMed 3 500 19717 44324 0.79

CoauthorCS 15 6805 18333 81894 0.80
Computer 10 767 13381 245778 0.77

Photo 8 745 7487 119043 0.83
Texas 5 1703 183 309 0.11

Wisconsin 5 1703 183 499 0.21
Cornell 5 1703 183 499 0.30

Table 4: Hyperparameter Search Space

Hyperparameters Search Space Distribution

learning rate [10−6, 10−1] log-uniform
weight decay [10−3, 10−1] log-uniform
dropout rate [0.1, 0.8] uniform
hidden dim {64, 128, 256} categorical
time (T) [2, 25] uniform
β [0, 1] uniform

D.2 Ablation study for ACMP

Message Passing Performance vs Depths We compare ACMP with various GNN models such as
GRAND, GCN, GAT, and GraphSage with different depths on the planetoid datasets. Table 5 lists the
nodes classification accuracy on Cora, Citeseer and Pubmed. We observe that ACMP can maintain
its model performance as the network deepens and achieve top test accuracy among all listed models
using the same depth. ACMP can thus overcome the oversmoothing.

Table 5: Test Accuracy of Models with Different Depth

Model depth Cora CiteSeer PubMed

4 82.80± 1.62 73.87± 2.12 78.71± 1.19
16 82.75± 1.17 72.61± 2.42 78.79± 0.93

GRAND-1 32 82.19± 1.73 72.65± 3.15 78.70± 1.08
64 80.87± 2.28 69.84± 2.66 NA

128 77.22± 2.88 NA NA

4 81.35± 1.27 70.54± 6.61 77.15± 3.00
GCN 16 19.70± 7.06 24.78± 1.45 41.36± 1.77

32 21.86± 6.09 24.23± 1.65 40.66± 1.86

4 80.95± 2.28 72.31± 2.82 77.37± 1.32
GAT 16 29.14± 1.02 24.84± 1.45 39.21± 0.43

32 29.75± 1.57 24.83± 1.45 39.02± 0.12

4 79.83± 2.43 50.00± 14.27 76.01± 2.35
GraphSage 16 25.52± 6.45 24.84± 1.45 37.55± 3.92

32 29.14± 1.02 28.38± 2.54 39.21± 4.39

4 83.87± 0.52 74.61± 1.04 79.74± 0.24
16 83.19± 0.67 73.13± 0.85 79.16± 0.36

ACMP (ours) 32 83.11± 0.81 72.76± 1.05 79.81± 1.61
64 80.48± 1.21 68.92± 1.37 78.01± 0.01

128 80.30± 1.18 67.83± 0.02 77.98± 0.01
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Figure 5: Example of how adding Allen-Cahn terms can prevent the nodes feature from becoming
infinite. We choose the first channel in the node’s feature of dimension 150. In the first row, the
repulsive force is added to message passing without Allen-Cahn term, and in the second row, Allen-
Cahn term is added to message passing. The first, second and third columns show the neural ODE’s
initial state, and the states when T = 10 and T = 30.

Allen-Cahn term We now show in Figure 5 how Allen-Cahn term can stabilize training and
prevent node features from blowing up. The first row is the evolution of the diffusion equation
without Allen-Cahn term while the second row has Allen-Cahn term added. We can observe that
introducing the repulsive term is essential for bounding GNN outputs, particularly when learning
heterophilic datasets. However, naively adding β to message passing will result in all node’s features
becoming infinite. In the first row of Figure 5 when Allen-Cahn term is not incorporated, the node’s
features have increased to 3× 103 when T = 10, from 0.1 when T = 1. By the time T equals 30,
the node’s largest feature becomes 1× 1020, which the neural ODE solver and message passing can
hardly handle numerically corrected. When we introduce Allen-Cahn term, the system contains two
strong attractors of ±1, and the nodes are attracted to the two ends of 1 and −1 by their own features.
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