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Abstract

Active learning is usually applied to acquire labels of informative data points in supervised
learning, to maximize accuracy in a sample-efficient way. However, maximizing the accuracy
is not the end goal when the results are used for decision-making, for example in personalized
medicine or economics. We argue that when acquiring samples sequentially, separating
learning and decision-making is sub-optimal, and we introduce an active learning strategy
which takes the down-the-line decision problem into account. Specifically, we adopt a
Bayesian experimental design approach, and the proposed criterion maximizes the expected
information gain on the posterior distribution of the optimal decision. We compare our
targeted active learning strategy to existing alternatives on both simulated and real data,
and show improved performance in decision-making accuracy.

1 Introduction

Supervised learning techniques aim at learning a function that maps the input x ∈ X to the outcome (or
label) y ∈ Y, based on a collection of examples D = {(xi, yi)}N

i=1. Whereas having access to thousands of
unlabeled data is nowadays easy, obtaining the associated labels is expensive in many applications, such as
those involving human experts (e.g., image annotating), or running additional experiments. In this context,
active learning (AL) aims at iteratively querying for the most informative data point among a pool of
unlabeled data (Settles, 2012). In the machine learning literature, the term “active learning” often implies a
classification task, but the concept straightforwardly extends to regression, and the same problem arises in
the statistics literature under the names “optimal experimental design” or “Bayesian experimental design”
(BED) (Chaloner & Verdinelli, 1995; Ryan et al., 2016).

Active learning boils down to the selection criterion for the next point to label. Popular strategies include
uncertainty sampling (Lewis & Catlett, 1994), expected error reduction (Roy & McCallum, 2001), or expected
information gain on the model parameters (MacKay, 1992). All these strategies aim at learning a model as
accurate as possible with as few queries as possible. However, the accuracy of the model is not the end goal in
all scenarios. In this paper, we consider the setting where the model is subsequently used for decision-making,
i.e., where a user has to choose an action among a set of K available ones. Each action (or decision) is
assessed by its so-called utility, and the optimal decision is the one which yields the highest expected utility.

Such a scenario arises for instance in the topical field of personalized medicine. Based on the history of
previous patients, described by patient covariates, the treatment they received, and the observed outcome,
a model is built to infer the so-called individualized treatment effect (Wager & Athey, 2018; Shalit et al.,
2017; Alaa & van der Schaar, 2017; Yao et al., 2018; Bica et al., 2020). A doctor will then use the model
predictions to choose the best treatment for a new patient.

Traditionally, model learning and decision-making are carried out separately, i.e., the learning phase is blind
to the decision-making problem. This is not optimal when data can be collected actively, and as such, there
is a need for active learning strategies which take into account this downstream decision-making task. This
problem of decision-making-aware active learning has recently received attention by Sundin et al. (2019),
who proposed a heuristic strategy for a binary decision-making problem. However, their criterion does not
extend to more complex situations, such as multiple-decision problems, which limits applications.
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Figure 1: Illustrative example of a decision-making task: choose one decision from d = {1, 2, 3} at point
x̃ = −1 (black dashed line). (Left): Based on a learning dataset, outcome prediction functions fk have been
computed (colored lines with uncertainty intervals). The learning dataset consists of labeled (× marker)
and unlabeled (⋆ marker) data points. (Center): The posterior distribution of the optimal decision helps in
making the decision (the Bayes-optimal decision is d = 1), and assessing its uncertainty. (Right): Evolution
of that distribution after querying one additional point. Using the standard EIG criteria (Sec. 2.3) does
not help the decision-making (top, middle), while the proposed targeted AL criterion greatly improves it by
reducing its uncertainty (bottom).

In this paper, we propose a principled selection criterion for decision-making-aware active learning. More
precisely, we adopt a BED approach, where it is a well-known fact that the optimal strategy is to perform
expected information gain on the quantity of interest (Chaloner & Verdinelli, 1995). In our setting, we identify
that quantity as the epistemic uncertainty on the optimal decision; in other words, the proposed criterion will
aim at maximally reducing the uncertainty of the posterior distribution of the optimal decision. This is unlike
classical BED approaches, which either target model parameters, or outcomes. The effect of the proposed
methodology versus classical ones is illustrated on Figure 1. We consider performance improvement at first t
additional acquisitions for small t, which is a key measure for scenarios where acquisitions are costly, such
as personalized medicine and generally having a human in the loop. Specifically, our method is applicable
when a) the test population of the decision-making task is known: a single individual x̃ (as in personalized
medicine), or a set of individuals, and b) it is possible to collect more data on-demand, for example once the
model has been deployed, but c) these queries are costly due to, e.g., requesting new experiments, involving
experts, or fulfilling privacy constraints. We empirically demonstrate the advantages of the proposed method
with respect to existing AL baselines, both on simulated and real-world experiments.

2



Under review as submission to TMLR

2 Problem formulation

2.1 Modeling of outcomes

We consider a regression setting with covariates x ∈ Rp and outcomes y ∈ R. We further assume that the
outcome also depends on a decision variable d ∈ {1, . . . K}. Typically, the outcome is observed after an action
has been taken. In the healthcare application, this corresponds to observing the effect of treatment d on a
patient. We therefore have a training set D comprising triplets, i.e., D = {(xi, di, yi)}N

i=1.

Denoting by yk the variable y|(d = k), the goal is therefore to learn the functions fk which map x to yk. In
this work, we assume that the yk are conditionally independent given x, and write

yk = fk(x) + ϵk, (1)

where ϵk ∼ N (0, σ2
k).

Moreover, we assume that we are equipped with a functional prior distribution on fk, such as a Gaussian
process (GP) or a Bayesian neural network, which in turn allows us to deal with posterior uncertainty. Indeed,
given Dk = {(xi, di, yi) ∈ D | di = k}, and using the notation fk,x to denote fk(x), we may characterize the
posterior distribution p(fk,x|Dk) for all x. Lastly, we treat σ2

k as an hyperparameter, to be estimated with,
e.g., maximum marginal likelihood.

2.2 Decision-making problem

For clarity of presentation, when introducing the method we will focus on a single test input, which we
denote by x̃, rather than a test population. Nevertheless, the developments presented in the paper can
straightforwardly be extended to a test population, we refer the reader to Section 3.2.

The input x̃ is a previously unseen data point for which the end-user of the model has to make a decision, i.e.,
has to choose one among the set of the K available decisions. In our introductory example, x̃ corresponds to
the covariates of a patient for whom the doctor has to choose a treatment.

In this context, decisions are assessed through a scalar utility: the higher the better. Utilities can be computed
from the outcomes ỹk; we write uk = rk(ỹk), where the rk are known, deterministic functions that map the
outcomes to the utilities. In the remainder of the paper we will assume, without loss of generality, that u = y.

Given that the models have been trained on D = ∪kDk, we assume that the user behaves optimally in the
sense of (evidential) decision theory, i.e., chooses the decision which yields the greatest expected utility at x̃.
The Bayes-optimal decision is

dBAYES = arg max
k∈{1,...,K}

∫∫
ỹkp(ỹk|fk,x̃)p(fk,x̃|Dk)dfk,x̃dỹk. (2)

2.3 Bayesian active learning

We assume access to a pool of unlabeled data U = {(xj , dj)}J
j=1, from which the associated outcomes can

be actively queried. We wish to select queries from U which are maximally useful for the decision-making
problem, i.e., queries which reduce uncertainty on the optimal decision for x̃.

Conventional Bayesian experimental design strategies

Let us consider a standard Bayesian regression formulation, i.e., when the relationship between the input x
and the outcome y is modeled by a likelihood p(y|x, θ), where θ are latent parameters with a prior distribution
p(θ). We wish to decide on the next point to query. The principled strategy from an information-theoretic
perspective is to look for the query which maximizes the so-called expected information gain (EIG) on a
quantity of interest, which is defined as the expected reduction of the entropy of the posterior distribution of
the quantity of interest.
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Typically, the parameters θ are chosen to be that quantity, we refer to that strategy as P-EIG. In that case,
the optimal query is such that

x⋆
P-EIG = arg max

xj∈X

(
H[p(θ|D)] − Ep(yj |xj ,D)

[
H[p(θ|D ∪ {(xj , yj)})]

])
, (3)

where we used the notation H[p(.)] to denote the differential entropy of a probability distribution (Shannon,
1948). This idea was first suggested by Lindley (1956), and has then been considered by several authors,
see for example Bernardo (1979); MacKay (1992); Houlsby et al. (2011); Hernández-Lobato et al. (2014).
Moreover, the criterion of Eq. (3) can be rearranged in a form which computes entropies in the outcome
space rather than the parameter space (this has been coined “BALD” by Houlsby et al. (2011)), which allows
to define it in a non-parametric setting (i.e., when y = f(x) + ϵ):

x⋆
P-EIG = arg max

xj∈X

(
H[p(yj |xj , D)] − Ep(f |D)

[
H[p(yj |xj , f)]

])
, (4)

see details on the equivalence in Appendix B. Nonetheless, the EIG remains a challenging criterion to compute,
as it involves so-called nested Monte Carlo estimation (Rainforth et al., 2018), and several recent works have
aimed at mitigating this issue (Foster et al., 2019; Zheng et al., 2020).

The other standard option is to consider the quantity of interest to be ỹ, the outcome at a specific x̃ (i.e., not
belonging to the unlabeled set) (Krause et al., 2008; Daee et al., 2017; Sundin et al., 2018). Let us refer to
that strategy as O-EIG. The optimal query becomes

x⋆
O-EIG = arg max

xj∈X

(
H[p(ỹ|x̃, D)] − Ep(yj |xj ,D)

[
H[p(ỹ|x̃, D ∪ {(xj , yj)})]

])
. (5)

Shortcomings for the decision-making problem

The conventional Bayesian AL criteria of Eqs. (4) and (5) can easily be adapted to our setting, and would
select the element of U which yields the highest information gain over any of the fk, or over any of the ỹk,
respectively. However, such queries are not necessarily helpful to improve the quality of the decision-making.
Indeed, they may have little to no impact on the posterior predictive distributions at x̃, or, may improve
predictions only for a decision that has very little probability of being the optimal one. Such phenomena are
displayed on the right panel of Figure 1.

Thus, we present in the next section a novel active learning strategy, which takes the decision-making problem
into account by considering the posterior distribution of the optimal decision for x̃, and which therefore
overcomes the aforementioned shortcomings.

3 Targeted active learning criterion

3.1 Posterior uncertainty on the optimal decision

The optimal decision is, by definition, the one with the highest expected utility. If we knew the value of fk,x̃
exactly for all k, then the optimal decision would be known with 100% certainty. However, since we work
with a finite sample size, we cannot have access to the value of fk,x̃, but instead, we characterize posterior
distributions p(fk,x̃|Dk), which in turn leads to the Bayes-optimal recommendation of Eq. (2). As it turns
out, by fully taking advantage of the Bayesian framework, we can go beyond that mere recommendation and
come up with the posterior uncertainty that decision k is the optimal decision (at x̃).

Let us denote by πk the posterior probability that decision k is the optimal decision. We further define
Dbest(x̃) to be the discrete random variable whose probability mass function is given by the (πk)K

k=1. In
other words, Dbest(x̃) contains the posterior uncertainty on the optimal decision for x̃. We have

πk = P
(
E(ỹk|fk,x̃) = max

k′
E(ỹk′ |fk′,x̃)

)
. (6)
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In the equation above, the conditional expectations are to be understood as random variables, and fk,x̃ ∼
p(fk,x̃|Dk). Given the model assumptions, it turns out that E(ỹk|fk,x̃) = fk,x̃. We can further write

πk = P
(

fk,x̃ = max
k′

fk′,x̃

)
, (7)

= P

 ⋂
k′ ̸=k

{fk,x̃ > fk′,x̃}

 . (8)

The events inside Eq. (8) are not independent, and as such this cannot be broken down into a product of
probabilities. An illustrative problem with 3 decisions is displayed on Figure 1, with the current models in
the left panel, and the associated probabilities πk in the middle panel.

It is important to note that the randomness of fk,x̃ only comes from lack of information. Such uncertainty
is said to be epistemic, and adding more points to the dataset will reduce this uncertainty (Hüllermeier &
Waegeman, 2021). Therefore, it is more precise to characterize Dbest(x̃) as the random variable containing
the epistemic uncertainty on the optimal decision. We argue that this is the variable of interest in our setting.

3.2 Decision-targeted active learning criterion

Now that we have characterized the posterior distribution of interest (the distribution of the variable we
called Dbest(x̃)), we propose to sequentially select the data point from U which maximizes the expected
information gain about this posterior distribution. We write

(x⋆, d⋆) = arg max
(xj ,dj)∈U

(
H[p(Dbest(x̃)|D)] (9)

− Ep(ydj
|xj ,Ddj

)
[
H[p(Dbest(x̃)|D ∪ {(xj , dj , ydj

)})]
] )

,

which means that these queries aim at reducing the uncertainty on the optimal decision of x̃. The criterion
of Eq. (9) may be rewritten in a simpler form as

(x⋆, d⋆) = arg min
(xj ,dj)∈U

Ep(ydj
|xj ,Ddj

)
[
H[p(Dbest(x̃)|D ∪ {(xj , dj , ydj

)})]
]

. (10)

The full decision-making-aware active learning process is illustrated on Figure 2.

Extension to a test population

We briefely consider here the scenario where there is a collection of previously unseen testing points (x̃i)Nt
i=1,

for which we wish to improve the decision-making. The optimal decision for x̃i is to be understood, as before,
as the one which yields the highest expected utility at x̃i. Similarly, we can define Dbest(x̃i) the discrete
random variable which contains the (epistemic) uncertainty on the optimal decision for each xi.

The extension of Eq. (10) simply consists in considering the entropy of the joint posterior distribution of
Dbest(x̃1), . . . , Dbest(x̃Nt). However, this quickly leads to computational issues, as the cardinal of space is
now KNt . To alleviate this issue, we propose to minimize an upper bound of the entropy instead, which leads
to the following criterion

(x⋆, d⋆) = arg min
(xj ,dj)∈U

Ep(ydj
|xj ,Ddj

)

[
Nt∑
t=1

H[p(Dbest(x̃i)|D ∪ {(xj , dj , ydj )})]
]

. (11)

3.3 Practical implementation

Computing the criterion Eq. (10) requires to solve two computational challenges:
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Figure 2: Decision-making-aware active learning. Agents are in blue boxes. The active learner is aware of
the the down-the-line decision-making problem, and selects targeted queries for the problem, by taking into
account the posterior distribution of the optimal decision. Once the learning phase is over, we here assume
that the end-user takes the action which yields the highest expected utility.

1. The expectation w.r.t. p(ydj |xj , Ddj ) is intractable and needs to be approximated;

2. The probabilities πd are not known in closed form either. They need to be estimated in order to
compute the entropy of Dbest(x̃).

To approximate the expectation, we resort to Monte Carlo approximation. This means that given Ns samples
y

(l)
dj

drawn from p(ydj |xj , Ddj ), we have

Ep(ydj
|xj ,Ddj

)
[
H[p(Dbest(x̃)|D ∪ {(xj , dj , ydj

)})]
]

≃ 1
Ns

Ns∑
l=1

H[p(Dbest(x̃)|D ∪ {(xj , dj , y
(l)
dj

)})]. (12)

Note that when p(ydj
|xj , Ddj

) is Gaussian, as is the case in GP regression, we may use a Gauss-Hermite
approximation scheme (see Appendix C).

Next, to compute the entropy H[p(Dbest(x̃)|D)], we need to know the posterior probabilities πk (given by
Eq. (8)). Unfortunately, closed-form solutions do not exist in general. However, we resort to a straightforward
approximation scheme. We take sets of posterior draws from p(fk,x̃|Dk) for all k to generate posterior samples
of Dbest(x̃), which are then used to estimate the entropy. For simplicity, we estimate the entropy of the
multinomial distribution by using empirical estimates of the πk from the posterior samples of Dbest(x̃).

Pseudo-code of the algorithm computing the proposed targeted AL criterion is given in Algorithm 1. All the
computational burden resides in the model retraining step, which has to be carried out Ns × card(U) times
to solve Eq. (10). The computational complexity is high, but many operations are trivially parallelizable, for
example over all elements of U , or even over all Monte Carlo samples. Moreover, pre-selection strategies may
be implemented to avoid computing the criterion for all elements of U , or the selection problem itself could
be cast as a Bayesian optimization problem.

Lastly, we emphasize that working with a test population, i.e., dealing with Eq. (11) instead of Eq. (10),
brings negligible additional computational complexity. Indeed, the only difference is that we would have to
estimate several entropy values instead of one, which has a negligible cost compared to retraining the model,
as previously stated.
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Algorithm 1 Estimating the criterion Eq. (10) for (xj , dj) ∈ U
C = 0; ▷ Current estimate of Eq. (10)
▷ Monte Carlo approximation
for l = 1, . . . , Ns do

y
(l)
dj

∼ p(ydj
|xj , Ddj

)
Add (xj , y

(l)
dj

) to the training set Ddj

Retrain GP associated with decision dj

▷ Estimate entropy of Dbest(x̃) with augmented dataset
for k = 1, . . . , K do

Get samples from p(fk,x̃|Dk)
end for
Compute estimates of the πk

Compute entropy H from the πk

C = C + N−1
s H

Remove (xj , y
(l)
k,j) from the training set Ddj

end for

4 Related work

Decision-making-aware strategies in machine learning. We begin by discussing such strategies in
a passive learning context. Lacoste-Julien et al. (2011) introduced the so-called loss-calibrated inference
framework. The decision-making problem is there characterized by a loss (i.e., negative utility), which is
taken into account to alter the learning objective of variational inference. This work has been extended,
e.g., to Bayesian neural networks (Cobb et al., 2018) and to continuous decisions (Kuśmierczyk et al., 2019).
Another line of work, which tackles the computation of expected functions (w.r.t. a posterior distribution), is
discussed by Rainforth et al. (2020). The authors argued that when these functions are known in advance, it
is beneficial to take them into account and subsequently proposed a framework coined TABI (target-aware
Bayesian inference), which enables efficient estimation of such quantities.

Surprisingly enough, the literature is quite sparse when it comes to similar strategies in for active learning.
Saar-Tsechansky & Provost (2007) proposed two heuristics to help choosing which customers to target in
marketing campaigns. More recently, Sundin et al. (2019) proposed a novel active learning criterion based on
the Type-S error to improve binary decisions. Several recent works tackled goal-oriented active learning, but
none of those consider the decision-making step that comes after the learning process. For instance, Yan
et al. (2018) proposed a debiasing query strategy based on disagreement-based active learning, when learning
classifiers from logged data (where the labels have been revealed according to a logging policy, leading to
biased training sets). Their work is also limited to binary decisions. Kandasamy et al. (2019) introduced
a reward function and a method based on posterior sampling, and Xu & Kazantsev (2019) introduced a
utility function and the use of so-called influence functions, but the words “reward” or “utility” there refer to
different metrics of model evaluation. Finally, Zhao et al. (2021) proposed an uncertainty-aware AL criterion
for classification with 0-1 loss, which focuses only on the reduction of the uncertainty that pertains to the
classification error.

Bayesian optimization and active learning. Bayesian optimization (BO) refers to a class of algorithms
for global optimization of black-box functions, where a probabilistic surrogate model such as a Gaussian
process is placed on the objective function (Jones et al., 1998; Brochu et al., 2010). BO algorithms sequentially
select points where the objective function is evaluated, based on some acquisition function which typically
balances exploration and exploitation. As such, BO is closely related to AL, see for example Ling et al.
(2016) for a unifying framework of some standard AL and BO algorithms. Conceptually, BO can be seen as a
goal-oriented AL strategy, but for the specific decision-making problem of finding the global optimizer of some
black-box function. Only in this setting (and assuming that our framework could be extended to continuous
decision variables) would the proposed method amount to BO. In general, there is no obvious formulation of
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BO which solves our AL problem. If the black-box function was the utility, BO would then find the pair (x, d)
with maximum utility, e.g., a patient with a treatment that has maximum utility in personalized medicine.

Best arm identification in multi-armed bandits. The decision-making problem we consider can
equivalently be presented as the problem of identifying which of the K arms, described by the distributions
of the utilities of each decision at x̃, is the best (i.e., yields the highest expected utility, or reward). This is
known in the multi-armed bandits literature as the “best arm identification” problem, or “pure exploration”
problem, which has been studied both from frequentist and Bayesian perspectives (Audibert et al., 2010;
Kaufmann et al., 2016; Russo, 2016). A generalization of this problem has recently been introduced under the
name “transductive bandits” (Fiez et al., 2019). The objective of such problems differs from the traditional
setting of multi-armed bandits, which is to maximize the cumulative sum of rewards.

However, the setting of best arm identification problems differs from ours in the possible arms that can be
sampled. In contrast to these problems, we cannot sample from the different arms at x̃. We can only sample
once from a specific set arms defined by the pairs (x, d) ∈ U . This prevents us from using strategies from the
multi-armed bandits literature. Instead, by adding new points to the regression models, we aim at better
characterizing the distributions of the expected utilities at x̃.

5 Experiments

5.1 Use-cases and datasets

Fully synthetic data. We proceed to generate a dataset of 400 points of dimension 5. The covariates are
drawn from the standardized Gaussian distribution. We generate four different outcomes as independent
realizations of GPs with squared exponential kernels whose variance and lengthscales are different. These
outcomes are then corrupted by Gaussian white noise. Finally, the decision variable associated to each point
is drawn randomly, but not uniformly, to mimic imbalance in treatment assignment.

Treatment recommendation. The first use-case focuses on the topical personalized medicine research
question of using electronic health records (EHR) to augment data from randomized controlled trials (RCT).
In this setting, the training set contains individuals x, and the outcome y of the treatment d that they
received. In addition, we assume a record of patients and treatments, for which the outcomes can be acquired.
An example case is EHR that contain information about prescription of a treatment without follow-up, in
which case a new appointment or call needs to be scheduled with the patient in order to acquire the outcome.
The objective is to improve the decision of which treatment to give to a new patient x̃, as in Sundin et al.
(2019).

Experiments are run on the IHDP dataset1 (Hill, 2011), a semi-synthetic dataset which consists of 747
patients with 25 covariates. The patient covariates come from a real randomized medical study from the 80s,
however the outcomes have been artificially generated, implying that all potential outcomes are available. We
combine the responses A1, B1 and C1 to obtain a 3-decision problem.

Knee osteoarthritis diagnosis. The second use-case focuses on symptomatic patients who have a suspicion
of knee osteoarthritis (OA) progression in the medial compartment of the right knee. OA is a degenerative
disorder of the joints, which reveals itself through symptomatic and structural changes. To date, this disease
has no cure, but if detected early, its progression could be slowed down via behavioral interventions (Katz
et al., 2021). We thus consider the problem of optimizing the diagnostic path for a new patient x̃. More
precisely, the decision-making problem is to decide when to perform the next follow-up: at 12, 24, 36 or 48
months, or after 48 months. We assume that the doctor is able to query for additional data about previous
patients, but that requires a laborious authorization process due to privacy concerns.

We construct a dataset from the Osteoarthritis Initiative (OAI) database2, which is a multi-center 10-year
observational longitudinal study of 4796 subjects (consent obtained from all the subjects; data are de-

1Available online as part of the supplementary material of Hill (2011).
2https://nda.nih.gov/oai/
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identified). After pre-processing, we obtain our final dataset with 8 covariates (clinical data and an initial
imaging-based assessment) from 606 patients. The outcome is the joint space width loss over 0.7mm by the
time of the follow-up (Neumann et al., 2009; Eckstein et al., 2015). A detailed description of the dataset is
given in Appendix D.

5.2 Model of the outcomes

All experiments are run with GP regression (Rasmussen & Williams, 2006), i.e., we assume a zero-mean GP
prior for the function fk, with kernel κk:

fk ∼ GP(0, κk(x, x′)). (13)

Note that in this case, posterior distributions p(fk,x̃|Dk) turn out to be Gaussian (standard results are
recalled in the Appendix A). We use for all models the squared exponential kernel with automatic relevance
determination (ARD-SE). GP hyperparameters (variance, lengthscales), as well as the noise variance are
estimated with maximum marginal likelihood. Python implementation is carried out with the framework
GPy3 (open-source, under BSD licence).

5.3 Protocol and evaluation metrics

Our experimental protocol is as follows: each considered dataset is randomly split into a training set D,
query set U , and a test set. Experiments mainly focus on the scenario where the test set is a single point x̃;
nonetheless we also provide additional results for a test population. We then proceed to sequentially acquire
Nacq points using the proposed Algorithm 1 and the active learning baselines presented in the next subsection.
All experiments are run with Nacq = 10.

We track the evolution of two metrics, computed both before the active learning phase and after each
acquisition, over M different splits of the original dataset. More precisely, given a split m we track whether
the correct decision is returned, with binary accuracy score

Am = I(dm
BAYES, dm

⋆ ), (14)

where dm
BAYES is the Bayes-optimal decision for x̃m returned by the model (i.e., according to Eq. (2)), and dm

⋆

is the ground truth best decision for x̃m. We have I(dm, d∗
m) = 1 if and only if dm = d∗

m (and zero otherwise).
Our second metric is the entropy of the posterior of the optimal decision of the testing point x̃m

Hm = H[p(Dbest(x̃m)|Dm)]. (15)

All experiments are run with M = 200 replications.

5.4 Baseline active learning methods

The proposed method (acronym D-EIG) is compared with several active learning methods:

• Random sampling (RS) – Chooses (xj , dj) uniformly at random from U ;

• EIG on the parameters (P-EIG) – Presented in Section 2.3. Chooses the (xj , dj) which yields the
greatest expected information gain on its associated GP.

• EIG on the outcome (O-EIG) – Presented in Section 2.3. Chooses the (xj , dj) which yields the greatest
expected information gain on p(ỹdj

|x̃, Ddj
). This criterion is connected to the classical expected error

reduction criterion, see details in Appendix E.

• Decision uncertainty sampling (D-US) – A baseline that we introduce. Chooses the (xj , dj) whose
optimal decision (i.e., associated to xj) is the most uncertain, evaluated with the entropy of Dbest(xj);

• Uncertainty sampling (US) – Chooses the (xj , dj) whose posterior predictive distribution p(ydj
|xj , Ddj

)
has the greatest variance;

3https://sheffieldml.github.io/GPy/
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(a) (b) (c)

Figure 3: Mean and standard error of the mean of the accuracy score Am over M = 200 replications of
the experiment, with a single test point, w.r.t. the number of AL acquisitions. The proposed targeted
active learning criterion D-EIG outperforms all considered AL methods in improving the accuracy of the
decision-making. From left to right: (a) Synthetic data. (b) IHDP dataset. (c) OAI dataset.

5.5 Results

Experiments are run with a starting training set of size 100 for the synthetic dataset and the OAI dataset,
and of size 50 for the IHDP dataset. All experiments were run on a high-performance computing cluster.

For the scenario with a single test point (x̃), Figure 3 displays the evolution of the average binary accuracy
score Am over all replications (i.e., the evolution of the proportion of correct decisions). Figure 4 displays the
evolution of the average entropy of the posterior of the optimal decision (the Hm score). For all considered
datasets, the proposed method gives the best results both in terms of improving the decision-making accuracy
and reducing the uncertainty on the optimal decision. This is particularly striking in the OAI dataset,
where the problem is the hardest (real data and five possible decisions): all alternatives barely improve
the decision-making, whereas the proposed method greatly improved it. More precisely, the baselines do
not yield good performance, with the notable exception of US which has the second-best performance in
entropy reduction on the IHDP and OAI datasets. Lastly, despite being targeted to the outcome x̃, O-EIG
has overall poor performance. This demonstrates the value of taking into account the posterior uncertainty
on the optimal decision.

For completeness, we also include results with a test population with Nt = 50 test points. Figure 5 displays
the evolution of the average binary accuracy score Am over all replications. We draw similar conclusions to
the single test point scenario; the proposed method outpeforms all other considered baselines.

10
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(a) (b) (c)

Figure 4: Mean and standard error of the mean of the entropy score Hm (entropy of the posterior of the
optimal decision) over M = 200 replications of the experiment, with a single test point, w.r.t. the number
of AL acquisitions. The proposed targeted active learning criterion D-EIG reduces the uncertainty on the
optimal the fastest among all considered AL methods. From left to right: (a) Synthetic data. (b) IHDP
dataset. (c) OAI dataset.
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Figure 5: Mean and standard error of the mean of the accuracy score Am over M = 200 replications of the
experiment, with a test set of 50 points, w.r.t. the number of AL acquisitions. Here The proposed targeted
active learning criterion D-EIG outperforms all considered AL methods in improving the accuracy of the
decision-making. From left to right: (a) Synthetic data. (b) IHDP dataset. (c) OAI dataset.
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6 Discussion

In this paper, we tackled the problem of decision-making-aware active learning, that is, sample-efficient
performance improvement in a down-the-line decision-making problem. To this end, we have proposed to
directly reduce the uncertainty on the posterior distribution of the optimal decision. Experimental work
demonstrated the advantages of the proposed technique compared to classical Bayesian experimental design
baseline methods in personalized medicine settings.

The main limitation of the proposed method is its computational complexity, as the current implementation
involves many model retraining steps. Computational complexity is tolerable in applications where both the
utility of correct decisions and cost of acquiring novel data points are high, such as in personalized medicine.
Nevertheless, future work is needed to design lower-complexity and still accurate approximations of the
proposed criterion. Extending the proposed criterion to batch selection, in contrast with the current sequential
selection method, will also help. The second limitation of our method is that we considered decisions to be
available to the algorithm, and in many real-life situations this may not be the case, for instance due to
privacy concerns. However, our criterion can be straightforwardly extended to tackle this limitation, and we
also see this as a direction for the future work.

In the personalized medicine scenario, it would of course be unethical to conduct experiments on other subjects
only to gain information for a specific individual. Our perspective in this paper is to retrieve information from
other databases, such as RCTs (meaning that such experiments have already been carried out), or to conduct
non-invasive experiments such as asking experts about counterfactuals (Sundin et al., 2019). Nonetheless,
building fair active data collection is a crucial direction for research in that field (Andrus et al., 2021).

To conclude, we anticipate that our method will have a significant impact in interactive AI with healthcare
applications. Specifically, we have shown that the proposed technique can be applied in personalized diagnosis
and treatment applications. Both of these clinical problems require accurate and reliable decision-making
tools, which are, however, costly to build. Our method is sample-efficient, and has decision-making capabilities
by design.
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A Gaussian process regression

The elements of this section are taken from Rasmussen & Williams (2006), Chapter 2. A Gaussian process
(GP) is a stochastic process, i.e., a collection of random variables, such that any finite combination of this
collection has a Gaussian distribution. A GP is completely specified by its mean function m, and covariance
function (or kernel) κ, and we write

f ∼ GP(m(x), κ(x, x′)). (16)

It is often assumed that m(x) = 0.

We now consider a GP regression model

f ∼ GP(0, κ(x, x′)), (17)
y = f(x) + ϵ, (18)

where ϵ ∼ N (0, σ2). That is to say that a GP prior is placed on f . In the following, we use the notation fx
to denote f(x). Given a collection of observations D = {(xi, yi)}N

i=1, we wish to characterize the posterior
distribution at a test point x̃, p(fx̃|D). The definition of a GP implies that[

y
fx̃

]
∼ N

(
0,

[
κ(X, X) + σ2I κ(X, x̃)

κ(x̃, X) κ(x̃, x̃)

])
, (19)

and as such, by using basic manipulations of the Gaussian distribution, it can be shown that

p(fx̃|D) = N (µx̃, σ2
x̃), (20)

where

µx̃ = κ(x̃, X)[κ(X, X) + σ2I]−1y (21)
σ2

x̃ = κ(x̃, x̃) − κ(x̃, X)[κ(X, X) + σ2, I]−1κ(X, x̃). (22)

Consequently, p(y|x̃, D) is also Gaussian with mean µx̃ and variance σ2 + σ2
x̃.

B Notes on the expected information gain (EIG)

Let us first consider a standard Bayesian regression model, with likelihood p(y|x, θ) and prior p(θ), which
leads to the characterization of the posterior distribution p(θ|D). We take the example of the EIG on θ. We
have

EIG(x) = H[p(θ|D)] − Ep(y|x,D)
[
H[p(θ|D ∪ {(x, y)})]

]
. (23)

This expression can be rearranged to show that the EIG is equal to the mutual information between y and θ
(given x and D), defined as

I(y; θ|x, D) =
∫∫

p(y, θ|x, D) log p(y, θ|x, D)
p(y|x, D)p(θ|x, D)dydθ. (24)

The symmetry of the mutual information leads in turn to an alternative formulation of the EIG, namely

EIG(x) = H[p(y|x, D)] − Ep(θ|D)[H[p(y|x, θ)]]. (25)

which now computes entropies in the output space (and not the parameter space). Most notably, this does
not involve model retraining. This is the form most often used in practice.

If we now consider a non-parametric regression model of the form y = f(x) + ϵ, where ϵ ∼ N (0, σ2), we can
easily adapt the expression of Eq. (25) as

EIG(x) = H[p(y|x, D)] − Ep(f |D)
[
H[p(y|x, f)]

]
. (26)
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This can be further simplified when dealing with GP regression. In that case, the predictive posterior
distribution p(y|x, D) is Gaussian, with mean µx and variance σ2 + σ2

x. Considering that the value of σ2 is
fixed, or estimated, the expression of Eq. (26) becomes

EIG(x) = 1
2

(
log(σ2

x + σ2) − log(σ2)
)

. (27)

As such, the higher σ2
x, the higher the EIG.

C Gauss-Hermite quadrature

We consider computing expectations of the form

E[f(y)] =
∫

f(y)p(y)dy, (28)

where Y is a Gaussian random variable with mean µ and variance σ2. The Gauss-Hermite approximation of
order N of the previous expression is given by

1√
π

N∑
i=1

ωif(
√

2σxi + µ), (29)

where the xi are the roots of the Hermite polynomial of order N (denoted by Hn), and the weights ωi are
given by

2n−1n!
√

π

n2(Hn−1(xi))2 . (30)

D Knee osteoarthritis follow-up data details

We considered all the data from the Osteoarthritis Initiative Dataset (OAI; https://nda.nih.gov/oai/)
with total WOMAC score over 9 (symptomatic subjects). Subsequently, we selected those subjects, which
have early, doubtful, or early radiographic Osteoarthritis at the baseline according to the Kellgren Lawrence
grading scoring system.

In our experiments, we used a commonly accepted measure – joint space width (JSW) loss over 0.7mm as
an indicator of progression. The JSW was measured from knee X-rays at a fixed location (x = 0.250), thus
focusing on OA only in the medial compartment of the knee.

The following is the list of variables, which we selected from the OAI dataset (per knee):

• Age;

• Sex;

• Body-mass-index (BMI);

• Total WOMAC score;

• Indication of varus, valgus, or neither;

• Indication of past injury;

• Indication of past surgery;

• Kellgren-Lawrence grade;

• JSW at fixed location (x = 0.250).
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E O-EIG and expected error reduction

Let us consider that the error measure is the log-loss. Then, in a Bayesian AL framework, the expected error
reduction query writes

xEER = arg min
x∈U

Ep(y|x,D)

 ∑
xj∈Xt

H[p(yj |xj , D ∪ {(x, y)})]

 , (31)

where Xt is a test population. In the setting considered in the paper, we have Xt = {x̃}, which reduces to

xEER = arg min
x∈U

Ep(y|x,D) [H[p(ỹ|x̃, D ∪ {(x, y)})]] , (32)

which is exactly the O-EIG criterion.
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