
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

RADIANT TRIANGLE SOUP WITH SOFT CONNECTIVITY
FORCES FOR 3D RECONSTRUCTION AND NOVEL VIEW
SYNTHESIS

Anonymous authors
Paper under double-blind review

Figure 1: Optimizing Radiant Triangle Soup (RTS) produces high quality 3D models from captured images.
Above, from left to right, are the rendered normal map, rendered depth map, rendered image, and the direct
rasterization of the triangle primitives, as if they were opaque.

ABSTRACT

We introduce an inference-time scene optimization algorithm utilizing triangle
soup, a collection of disconnected translucent triangle primitives, as the repre-
sentation for the geometry and appearance of a scene. Unlike full-rank Gaussian
kernels, triangles are a natural, locally-flat proxy for surfaces that can be connected
to achieve highly complex geometry. When coupled with per-vertex Spherical
Harmonics (SH), triangles provide a rich visual representation without incurring
an expensive increase in primitives. We leverage our new representation to incor-
porate optimization objectives and enforce spatial regularization directly on the
underlying primitives. The main differentiator of our approach is the definition
and enforcement of soft connectivity forces between triangles during optimization,
encouraging explicit, but soft, surface continuity in 3D. Experiments on represen-
tative 3D reconstruction and novel view synthesis datasets show improvements
in geometric accuracy compared to current state-of-the-art algorithms without
sacrificing visual fidelity.

1 INTRODUCTION

Gaussian Splatting (GS) methods are effective at Novel View Synthesis (NVS). However 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023) fails to accurately model the geometry of scene surfaces. 3D
Gaussians are by design smooth, unbounded volumetric primitives, which are inherently ill-suited for
representing flat surfaces and sharp boundaries. Optimization for novel view synthesis involves alpha-
blending several overlapping Gaussians, none of which have to be located on the underlying surfaces.
As a result, optimizing a representation of 3D Gaussian kernels for image synthesis commonly causes
floaters or blurry artifacts in the scene.

Several authors (Huang et al., 2024; Guédon & Lepetit, 2024; Chen et al., 2024a; Dai et al., 2024)
have proposed flattening the kernels, with either strict 2D Gaussians (Huang et al., 2024) or flattened
3D Gaussians via loss regularization (Guédon & Lepetit, 2024; Chen et al., 2024a), to better model
thin surfaces. These methods have shown that modifying the underlying primitives and enforcing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

optimization objectives on rendered geometry leads to improvements in geometric accuracy. While
flat primitive help with surface alignment, diffuse ellipsoids still fail to accurately model depth
discontinuities (see Fig. 8).

Triangles are the fundamental primitives in computer graphics because they are necessarily planar
and convex. They can approximate any surface as piecewise planar at any tolerance level, can directly
model sharp discontinuities, and can be rendered rapidly without approximations.

We present a new methodology for 3D reconstruction, which we named Radiant Triangle Soup (RTS)
that enables gradient-based optimization of a Radiance Field (RF) using translucent triangle primitives
as the scene representation (see Fig. 1). We provide a complete framework, including differentiable
mechanisms for rasterization, as well as non-differentiable mechanisms for initialization, pruning, and
densification. Our experiments show RTS achieves competitive results in terms of both appearance
and geometry (see Fig. 7).

Conceptually, RTS provides a feature that is not supported by any other GS scene representation: an
avenue for explicit information sharing among 3D among primitives. Conventional Gaussian kernels
interact via alpha-blending when rendered onto common pixels. Back-propagating from the loss
at each pixel to the primitives is the only means of coordination across Gaussians. Using multiple
images from various viewpoints gives rise to several indirect constraints on the primitives, but direct
constraints are currently absent.

Conversely, RTS is the first framework to enable direct information exchange among neighboring
primitives. We formulate connectivity losses between neighboring triangle edges, allowing for a more
direct and effective coordination of, and constraint on, primitive behavior throughout the optimization
process. Even though using triangles as primitives alone achieves better geometric accuracy compared
to Gaussian surfels, encouraging connectivity during optimization leads to more accurate surfaces
with less floating artifacts (see Table 3).

Color expressivity on a per-primitive basis is another dimension where the RTS representation excels.
It is common practice to use a single color parametrization for each primitive. However, this may
require large numbers of overlapping primitives in order to reconstruct details in the surfaces of the
scene. Using triangles as the representation allows for each vertex to encode a separate color (in the
form of Spherical Harmonics), leading to more expressive primitives through bilinear interpolation.

To summarize, the work presented here:

• Develops a new scene representation through alpha-blending of triangle primitives.

• Introduces explicit 3D forces between primitives to encourage soft connectivity.

• Increases primitive expressivity via multi-color encoding.

2 RELATED WORK

We begin this section with Gaussian splatting formulations that favor surfaces and continue with
methods that rely on non-Gaussian primitives. Surveys on other aspects of Gaussian splatting, omitted
due to space limitations, include (Bao et al., 2025; Dalal et al., 2024; Luo et al., 2024; Wu et al.,
2024). The seminal work of Kerbl et al. (2023) on 3D Gaussian Splatting introduced an explicit
alternative to NeRF (Mildenhall et al., 2020) that is able to achieve high-quality rendering at much
higher speed. 3DGS relies on interleaved differentiable optimization and non-differentiable density
control of the explicit representation. The optimization process decreases view synthesis errors for
one of the training images at each iteration and density control guides the placement of primitives.

2D Gaussian Splatting (2DGS) (Huang et al., 2024) modified 3DGS to prioritize the reconstruction of
surfaces, rather than volumetric material. This was accomplished by collapsing the 3D GS to 2D discs
by setting the minimum eigenvalue of the Gaussian to 0. The authors of SuGaR (Guédon & Lepetit,
2024) and PGSR (Chen et al., 2024a) devised similar techniques for aligning 2D Gaussian with the
surfaces via regularization and a multi-view loss, respectively. Gaussian Surfels (Dai et al., 2024) rely
on monocular surface normal estimates and a normal-depth consistency loss. Gaussian Opacity Fields
(GOF) (Yu et al., 2024) extract surfaces as the zero-level set of 3D Gaussians. 3D-Half-Gaussian
Splatting (3D-HGS) (Li et al., 2024) enables the representation of perfectly planar surfaces and hard

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 2: We begin with a set of sparse points. From these points we initialize a set of triangles
and compute nearest neighbor connections for each triangle edge. During optimization, we render
an image, depth map, and normal map for each view. We compute both 2D loss (over all output
renderings), as well as 3D loss (directly over the primitive connections). Adaptive densification
is non-differentiable and is performed at set intervals throughout the optimization. Triangle edge
neighbors are recomputed following adaptive densification.

edges by attaching a splitting plane to each Gaussian, aligning it to the local surface, and setting the
density of one of the half-spaces to 0.

Representations based on NeRF and 3DGS have found great success, but have also inspired re-
searchers to seek alternatives. NeuRBF (Chen et al., 2023) utilizes Radial Basis Functions (RBFs) to
overcome limitations of NeRF due to the global nature of its MLP and features. GES (Hamdi et al.,
2024) is based on an explicit representation which replaces the Gaussian kernel with a Generalized
Exponential Function, overcoming the low-pass effect of the Gaussian and thus requiring fewer
primitives to represent the scene. Similar approaches based on smooth, non-Gaussian kernels include
DARB-Splatting (Arunan et al., 2025), SolidGS (Shen et al., 2024), Beyond Gaussians (Chen et al.,
2024b) and Deformable Beta Splatting (Liu et al., 2025).

Besides the methods that force their Gaussians to be planar (Huang et al., 2024; Guédon & Lepetit,
2024; Chen et al., 2024a), but still diffuse, there are others that represent the scene with collections
of planar primitives. Zanjani et al. (2025) initially use Gaussian splats to model the scene and then
merge them into 3D planes, which are abundant in indoor scenes. PlanarSplatting (Tan et al., 2025)
is also designed for indoor scenes using planes, initialized via monocular depth estimation, as the
only primitives. TRIPS (Franke et al., 2024) is based on the principle that point primitives can be
rasterized into an image pyramid from which the appropriate layer can be selected according to the
size of the projected point. Holes can be filled by a small network yielding accurate, crisp renderings.
Triangle Splatting (Held et al., 2025a) uses triangles with diffuse edges as primitives, but does not
support any mechanism for them to interact directly with each other.

Non-planar primitives were introduced by BG-Triangle (Wu et al., 2025) which uses Bézier Gaussian
triangles that are effective near boundaries, but comes at the cost of operating on complex, non-
planar primitives that are hard to render. Quadratic Gaussian Splatting (Zhang et al., 2025) uses
deformable quadratic surfaces as primitives and geodesic, instead of Euclidean, distance-based
density distributions that adapt to the curvature of the primitives.

Another class of methods rely on volumetric primitives. LinPrim (von Lützow & Nießner, 2025) is
based on linear solid primitives with triangular faces and performs volumetric rendering by computing
the entrance and exit points of each ray through the primitives. 3D Convex Splatting (3DCS) (Held
et al., 2025b) was inspired by the limitation of GS that requires very large numbers of primitives to
model hard edges and flat surfaces due to the diffuseness of the Gaussians. As the name suggests, the
scene is represented by a set of polyhedral convexes which undergo volumetric rendering, pruning
and splitting operations. The concepts of smoothness and sharpness introduced by 3DCS have
inspired our diffuseness (see Section 3). Radiant Foam (Govindarajan et al., 2025) enables modeling
light transport phenomena, like reflection and refraction, by tessellating the space into Voronoi
cells and iteratively optimizing the positions of the Voronoi vertices. All methods in this paragraph

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

rely on different forms of volumetric elements with planar faces. Computing the intersections of
each primitive with a ray requires multiple ray-triangle intersections, compared to the single
ray-triangle intersection required by RTS.

A recent trend in the literature has been joint optimization of two representations: one for synthesizing
novel views and one that is more faithful to the surfaces (Choi et al., 2024; Jiang et al., 2025). MILo
(Guédon et al., 2025) maintains Gaussians that are alpha-blended for view synthesis and a watertight
mesh without texture that captures the geometry of the scene.

A few common themes emerge by analyzing the above methods. Most advocate the use of bounded
primitives to enhance their ability to represent sharp edges and flat surfaces with small numbers of
primitives. Our primitives are bounded but have diffuse boundaries to facilitate optimization. No
other method, however, has a mechanism for direct inter-primitive communication like RTS.

3 METHOD

Figure 3: Triangle parameteriza-
tion. Each triangle is parameter-
ized by the incenter µ, and three
scales

[
s0 s1 s2

]
. These parame-

ters, along with the rotation matrix R,
define the coordinates of each vertex
V j .

Given a set of images together with camera poses and a
set of sparse points S computed via Structure-From-Motion
(Schönberger & Frahm, 2016), we construct an explicit scene
representation using triangle primitives, the parameterization
and initiliazation of which we discuss in Sections 3.1 and 3.2,
respectively. The triangles are endowed with diffuse bound-
aries, similar to 3DCS (Held et al., 2025b) (Section 3.3). To
model the surfaces in the scene, we render into each camera
the image, depth, and normal map of the triangles through
alpha-blending (see Section 3.4). The triangle parameters
are directly updated via back-propagation after computing
losses between the rendering of the scene and the ground
truth image from each view. We also include 2D losses on
the rendered depth and normal maps (see Section 4). In our
representation, primitives maintain soft connectivity with
their neighbors, discussed in Section 3.5, for which we com-
pute additional loss directly over the connection orientations (see Section 4). Similar to previous
works (Kerbl et al., 2023; Huang et al., 2024; Guédon & Lepetit, 2024; Chen et al., 2024a; Yu et al.,
2024), we develop a strategy for adaptive density control in order to facilitate the addition and removal
of primitives in the scene (see Section 3.6). We show an overview of our algorithm in Fig. 2.

3.1 PARAMETERIZATION

From the set S of sparse points, we first create an initial set of triangles T . The triangle primitives
tn ∈ T in our scene representation are parametrized with,

tn = {µ,∆, s, R, α, σ} (1)

where µ is the incenter of the triangle, ∆ =
[
δ0 δ1 δ2

]
are the per-vertex Spherical Harmonics,

s =
[
s0 s1 s2

]
are the scales, R is the 3× 3 rotation matrix, α is the opacity, and σ is the diffuse

scalar, discussed in Section 3.3. This parameterization uniquely defines each triangle primitive.

3.2 INITIALIZATION

The coordinates of each sparse SfM point are used as the initialization for the incenter, and the point
colors as the initialization for the zero-component of the Spherical Harmonics for all three vertices,
which are then optimized separately. Similar to previous works (Huang et al., 2024; Kerbl et al.,
2023), the scales for our primitives are computed based on the average distance to the three nearest
neighboring points. Each triangle starts as equilateral, using the scales to parameterize the distance
of each vertex from the incenter of the triangle µ along the bisectors of the angles (see Fig. 3). The
diffuse scalar σ is also set as a function of the average distance to the three nearest neighboring points
(Please see Eq. S.2). The rotation of each triangle is initialized with a random rotation matrix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

−→ increasing σ

Figure 4: Controlling triangle diffuseness with σ. Small values of σ (left) result in diffuse triangles
with extended range of influence. Large values of σ (right) result in sharp triangles with no blurring
across edges.

3.3 DIFFUSE PRIMITIVE BOUNDARIES

Alpha-blending is the primary driving force of optimization for all splatting frameworks. Blending
across primitives facilitates optimization via gradient descent and encourages, among other behaviors,
movement in primitive position and orientation. It is challenging in practice to optimize a scene
with fully opaque primitives that do not smoothly blend with one another. It is therefore desirable
to make the triangle primitives diffuse near the edges. Taking inspiration from 3DCS (Held et al.,
2025b), we parameterize the response from each triangle as a function of the signed distance from
the ray-triangle intersection to the nearest edge,

wσ =
1

1 + e(σl)
(2)

where wσ is the diffuse weight, l is the signed distance between the intersection and the nearest
triangle edge in the plane of the triangle, and the scalar σ is an optimizable parameter of each triangle
that controls the level of diffuseness. As σ increases, the boundary of the triangle becomes less
diffuse, creating sharper primitive renderings (see Fig. 4). For the signed distance, l < 0 occurs when
the intersection point lies outside of the triangle boundary. This formulation slightly deviates from
that of 3DCS, as the signed distance is computed directly, compared to their smooth approximation.

3.4 RASTERIZATION

Throughout this paper, we use barycentric coordinates, λ = [λ0, λ1, λ2]T , to rasterize triangles.
Please see Section S.1 for more details. With the barycentric coordinates of the ray-triangle intersec-
tions and the diffuse weight computed, we interpolate the color for the current pixel w.r.t. the colors
of each vertex weighted by the barycentric coordinates, cn =

[
c0 c1 c2

]
λ, where c0, c1, and

c2 ∈ R3 are computed from the SH components of each vertex, and λ are the barycentric coordinates
of the intersection point.

We aggregate the contribution to the current output pixel, i, from each intersected primitive, ci =∑
wncn, where wn = αwσT , and T = Πi−1

j=1(1− αj) is the transmittance for the current primitive
(Kerbl et al., 2023).

Previous works (Huang et al., 2024; Chen et al., 2024a; Yu et al., 2024) provide two methods for
rendering per-pixel depth; (1) computing the average weighted intersection depth of all traversed
primitives (mean depth), and (2) using only the depth of the primitive that causes the transmittance T
to exceed 0.5 (median depth). In our work, we use median depth. Using the mean depth encourages
the formation of many translucent layers of primitives. Rendering median depth removes this blending
and helps guide the formation of surfaces. We directly use d from Eq. S.2 for the depth of each
intersection.

Additionally, we compute the surface normal, n̂n, for each triangle as the cross-product between
two edges. Unlike the rendered depth, to render per-pixel surface normals, we follow previous work
(Huang et al., 2024; Chen et al., 2024a) and alpha-blend all the surface normals of all intersected
primitives. The intuition is that through a normal consistency loss (see Section 4), the blended
normals must align with the normals computed from the median depth map. This encourages all

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

the intersected triangles to align (and eventually collapse onto) the median surface. Thus, we render
per-pixel surface normals through alpha-blending, −→ni =

∑
wnn̂n.

3.5 CONNECTIVITY

Figure 5: Examples of edge associa-
tion for connecting nearby triangles.
For simplicity, it is assumed the tri-
angles are co-planar in this figure.

To enable soft connectivity among primitives and encourage
flat, connected surfaces, we add a connectivity term to the
optimization objective. For each triangle edge, we assign, and
periodically update, a connection to the nearest neighboring
triangle edge. Taking inspiration from the energy functions
introduced in 3D scene flow estimation (Vogel et al., 2015),
the connectivity term of the loss increases according to the
distance between their vertices and the inner product between
their normals, discussed in Section 4.

Naively connecting with the nearest edge without considering
the relative orientations may cause connections that would
require large changes in rotation to either triangle, leading to
undesirable behaviors during optimization. To prevent this behavior, connections are only established
if the triangle edges are "facing" each other. In practice, we use the inner product between the unit
vectors orthogonal to the triangle edges (in the plane of each triangle) as the criterion for establishing
connections. We provide an example in Fig. 5 where a connection to the highlighted edge of triangle
D is valid, while the other two connections would cause large rotations.

3.6 ADAPTIVE DENSITY CONTROL

We perform adaptive density control through the process of cloning, splitting and pruning triangles.
Previous works (Kerbl et al., 2023; Huang et al., 2024; Guédon & Lepetit, 2024; Chen et al., 2024a)
perform the cloning and splitting procedures by duplicating primitives conditioned on scale and
position gradients. In order to properly split large triangles, we must split them into four sub-
triangles. During early iterations in the optimization, when triangles are split, the sub-triangles
move independently to better align with surfaces in the scene. During the later stages when most
of the surfaces have formed, the triangles split to enable more detailed surface color representation,
remaining relatively attached via the connectivity forces. See Fig. 6 for a visualization of the splitting
procedure.

Figure 6: Triangles are split
with interpolated colors per-
vertex.

Similar to previous work, we directly clone small primitives selected
for densification. Much like 2DGS (Huang et al., 2024), our method
does not directly rely on the gradient of the projected 2D primitive
center. Instead of computing an approximation via projecting 3D
gradients into the camera plane (Huang et al., 2024), we directly
condition densification on the magnitude of the incenter gradient
∇µ in 3D.

To remove uninformative triangles, we prune primitives that meet
the following criteria: (i) triangles that are transparent (α < 0.05), (ii) triangles with one or fewer
edge connections, (iii) triangles that do not intersect the camera frustum of at least three views after
each epoch.

4 OPTIMIZATION

Our objective function comprises terms computed in 2D (on the images plane), and in 3D (on the
triangles).

4.1 RENDERING LOSSES

Following previous work (Kerbl et al., 2023; Huang et al., 2024), we compute the SSIM between the
rendered and input images, Lssim, and apply a normal consistency loss (Huang et al., 2024), Lnorm,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Ground Truth Rendered Image Rendered Depth Rendered Normal Point Cloud

Figure 7: Qualitative results on the DTU dataset (Aanæs et al., 2016). RTS estimates high-quality
geometry, maintaining thin structures, such as the carrot noses and branches (middle row) and the
book edges (bottom row), while effectively modeling smooth surfaces, such as the Buddha (top row).

to help locally align the triangles with the rendered surface. Please see Section S.3 the supplement
for further details.

From the unsupervised depth estimation literature (Chang et al., 2022; Godard et al., 2017; Mahjourian
et al., 2018), we adopt a smoothness term on the rendered depth map conditioned on the gradient
of the input image. This penalizes large gradients in the rendered depth map where we have small
gradients in the input image,

Lsmooth =
1

N

∑
i,j

||∂xDi,j ||e||∂xIi,j || + ||∂yDi,j ||e||∂yIi,j || (3)

4.2 SCENE LOSS

To encourage connectivity between primitives, we penalize the mean of the L2 distance between the
connected vertex pairs of neighboring triangle edges,

Lconn =
∑
a∈Ω

1

2
(||V 1

a − V 1
b ||2 + ||V 2

a − V 2
b ||2) + (1− n̂T

a n̂b) (4)

where V j
a and V j

b are the jth vertex pair of connected edges a and b, respectively. n̂a and n̂b are the
normals of the connecting triangles and Ω is the set of all triangles that intersect the current camera
frustum. The normal regularization is a soft penalty that encourages connected triangles to
have similar normals to better align with the surfaces in the scene. Applying this loss to invisible
triangles without rendering losses leads to over-smoothing.

The final objective is a weighted summation of all terms:

L = ω0Lssim + ω1Lnorm + ω2Lsmooth + ω3Lconn (5)

Table 1: Chamfer distance evaluation on scenes from DTU (Aanæs et al., 2016). Following previous
literature, we average the accuracy and completeness Chamfer distances on the widely used evaluation
set. Chamfer distances are measured in millimeters. The best results are in boldface and the second
best are underlined.

Method DTU
24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean (mm)↓

3DGS (Kerbl et al., 2023) 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96
SuGaR (Guédon & Lepetit, 2024) 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33
2DGS (Huang et al., 2024) 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80
GOF (Yu et al., 2024) 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74
Gaussian Surfels (Dai et al., 2024) 0.66 0.93 0.54 0.41 1.06 1.14 0.85 1.29 1.53 0.79 0.82 1.58 0.45 0.66 0.53 0.88
PGSR (Chen et al., 2024a) 0.36 0.57 0.38 0.33 0.78 0.58 0.50 1.08 0.63 0.59 0.46 0.54 0.30 0.38 0.34 0.52
TriangleSplatting (Held et al., 2025a) 0.98 1.07 1.07 0.51 1.67 1.44 1.17 1.32 1.75 0.98 0.96 1.11 0.56 0.93 0.72 1.06
RTS 0.42 0.61 0.74 0.39 0.53 0.86 0.70 0.84 0.72 0.37 0.68 0.87 0.34 0.58 0.44 0.61

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Ground Truth RTS 2DGS (Huang et al., 2024)

Figure 8: Qualitative comparison between RTS and 2DGS (Huang et al., 2024) on; Top - scan024
from the DTU dataset (Aanæs et al., 2016), Bottom - kitchen from the mip-NeRF 360 dataset (Barron
et al., 2022). RTS is substantially more precise at estimating the geometry at discontinuities and
rendering fine details, shown in the areas marked by the blue rectangles.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We implement the majority of our RTS framework in Python using PyTorch (Paszke et al., 2019).
For rasterization, we develop custom CUDA kernels for both the forward and backward pass.
We run all our experiments on a single NVIDIA RTX A6000. For our loss weights, we choose
ω = [1.0 0.05 50.0 1000.0] empirically.

Following state-of-the-art Multi-View Stereo methods (Yao et al., 2018; Yang et al., 2022; Mi et al.,
2022), we directly generate a 3D point cloud for geometric evaluation from the rendered depth maps
without performing any TSDF fusion. To generate each point cloud, we use simple heuristic filtering
on each depth map, similar to the post-processing presented in GBiNet (Mi et al., 2022). For each
depth map, we measure the reprojection error of the depth values at every pixel using neighboring
views and filter pixels based on this error. All depth estimates with a low reprojection error are
back-projected to 3D points, forming the combined point cloud.

5.2 EVALUATION

We test our framework on the DTU dataset (Aanæs et al., 2016), an indoor dataset that contains
images of 124 scenes taken from a camera mounted on an industrial robot arm. All scenes share the
same camera trajectories, with ground-truth point clouds captured via structured light.

We evaluate our new approach on the DTU dataset and record the Chamfer distance in Table 1.
We show competitive results alongside the leading state-of-the-art planar GS methods. Across the
test set, RTS is the most geometrically accurate in several scenes and second most overall. While

Table 2: Novel View Synthesis on all scenes from the mip-NeRF 360 dataset (Barron et al., 2022).
Method Outdoor Indoor

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF (Mildenhall et al., 2020) 21.46 0.458 0.515 26.84 0.790 0.370
Deep Blending (Hedman et al., 2018) 21.54 0.524 0.364 26.40 0.844 0.261
Instant NGP (Müller et al., 2022) 22.90 0.566 0.371 29.15 0.880 0.216
MipNeRF360 (Barron et al., 2022) 24.47 0.691 0.283 31.72 0.917 0.180
SuGaR (Guédon & Lepetit, 2024) 22.93 0.629 0.356 29.43 0.906 0.225
3DGS (Kerbl et al., 2023) 24.64 0.731 0.234 30.41 0.920 0.189
2DGS (Huang et al., 2024) 24.34 0.717 0.246 30.40 0.916 0.195
GOF (Yu et al., 2024) 24.82 0.750 0.202 30.79 0.924 0.184
PGSR (Chen et al., 2024a) 24.76 0.752 0.203 30.36 0.934 0.147
3DCS (Held et al., 2025b) 24.07 0.700 0.238 31.33 0.927 0.166
TriangleSplatting (Held et al., 2025a) 24.27 0.722 0.217 30.80 0.928 0.160
RTS 21.41 0.657 0.349 30.28 0.921 0.130

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: Ablation study on the contribution of the 3D loss terms using the entire DTU evaluation set.
Here, λc is the loss weight for the connectivity term, Lconn, and λs is the loss weight for the depth
smoothness term Lsmooth. The best results are in boldface and the worst are underlined.

Method Acc.(mm) ↓ Comp.(mm) ↓ SSIM ↑ PSNR ↑ LPIPS ↓ Primitives (K) ↓
w/o Lsmooth & Lconn 0.66 0.68 0.912 30.58 0.227 218
w/o Lsmooth 0.65 0.71 0.921 32.13 0.212 244
w/o Lconn 0.67 0.69 0.908 30.15 0.231 224
full (λc = 10.0, λs = 0.8) 0.64 0.70 0.918 31.68 0.213 249
full (λc = 300.0, λs = 20.0) 0.61 0.63 0.910 30.87 0.232 244
full (λc = 1000.0, λs = 50.0) 0.59 0.62 0.909 30.57 0.232 297

PGSR demonstrates impressive reconstruction results, the algorithm utilizes a full suite of multi-view
objective functions that significantly improve the geometric reconstruction quality. We provide
qualitative results on the DTU dataset in Fig. 7, showing visualizations of the rendered images, depth
maps, normal maps, and final point clouds for three scenes. In Fig. 8 (top), we provide a comparison
of depth map renderings between RTS and 2DGS (Huang et al., 2024). RTS is able to reconstruct
fine details on the surfaces of objects that are typically blurred with Gaussian representations.

We show additional results on the mip-NeRF 360 dataset (Barron et al., 2022). Following the protocol
specified by Barron et al. (2022), we separate the images in each scene, taking every eighth image as a
test image and training on the remaining. As standard evaluation, we report PSNR, SSIM, and LPIPS
(Zhang et al., 2018) metrics. We show results on all indoor and outdoor scenes in Table 2, as well as
per-scene results in Table S.2. For indoor scenes, RTS shows results on par with the state-of-the-art
methods, having the leading LPIPS score, the fourth overall SSIM score, and a highly competitive
PSNR score among all listed methods. On two outdoor scenes (treehill and flowers), RTS is limited
in reconstructing extremely distant background foliage, impacting the overall metrics (please see
Fig. S.5 for qualitative results on these scenes). In Fig. 8 (bottom), we provide a comparison of novel
view synthesis between RTS and 2DGS. RTS is able to render fine textures in low visibility regions
in scenes as opposed to blurring with Gaussian representations.

5.3 ABLATIONS

We show an ablation evaluating the contributions of proposed loss terms in Table 3. Removing the
soft connectivity leads to a decrease in overall accuracy of the output models, while removing the
depth supervision negatively affects the completeness. The two supervision signals complement
each other, and we show that increasing the loss weights allows for tuning the framework for either
better novel view synthesis or geometry. Additionally, the results corresponding to the changes in
magnitude of the loss weights demonstrates the stability of RTS to changes in hyper-parameters.

To evaluate geometry, all previous planar GS algorithms utilize a GT foreground-background seg-
mentation mask when generating the final models. Using this mask to generate the final models for
evaluation removes the effects of floaters and inaccurate estimation near the surfaces being evaluated.
To portray a more grounded evaluation of geometry, we provide an ablation study in Table S.3 in
which we compute Chamfer distance of models without the use of any GT masks.

6 LIMITATIONS & CONCLUSIONS

In this work, we introduce a new scene representation, namely Radiant Triangle Soup (RTS). To the
best of our knowledge, we are the first to introduce explicit 3D forces between primitives in a splatting
framework, helping to coordinate the positioning of primitives to directly form surfaces. Modifying
the weights of these forces allows for tuning between 3D reconstruction quality and novel-view
synthesis quality. The main limitation of our current algorithm is its inability to extract watertight
meshes. Furthermore, due to the periodic nearest-neighbors search, there is a minor increase in
run-time proportional to the number of primitives. Please see Section S.2 for more details.

The introduction of Triangle Soup as the underlying representation for Radiance Fields is amenable
to future work in surface optimization. We plan to extend RTS with modified primitive connectivity
strategies and perform optimization over watertight meshes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 REPRODUCIBILITY

In order to ensure reproducibility, we supplement the description of our method in Section 3 with
broad implementation details in Section 5.1, as well as a complete account of hyper-parameter values
used in our experiments in Section S.2 of the Supplemental Material. We will make our code publicly
available to the research community, if the paper is accepted.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-Scale Data for Multiple-View Stereopsis. IJCV, 2016.

Vishagar Arunan, Saeedha Nazar, Hashiru Pramuditha, Vinasirajan Viruthshaan, Sameera Ramas-
inghe, Simon Lucey, and Ranga Rodrigo. DARB-Splatting: Generalizing Splatting with Decaying
Anisotropic Radial Basis Functions. arXiv preprint arXiv:2501.12369, 2025.

Yanqi Bao, Tianyu Ding, Jing Huo, Yaoli Liu, Yuxin Li, Wenbin Li, Yang Gao, and Jiebo Luo. 3D
Gaussian Splatting: Survey, Technologies, Challenges, and Opportunities. IEEE Transactions on
Circuits and Systems for Video Technology, 2025.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-NeRF
360: Unbounded Anti-Aliased Neural Radiance Fields. In CVPR, 2022.

Di Chang, Aljaž Božič, Tong Zhang, Qingsong Yan, Yingcong Chen, Sabine Süsstrunk, and Matthias
Nießner. RC-MVSNet: Unsupervised Multi-View Stereo with Neural Rendering. In ECCV, 2022.

Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie, Shangjin Zhai, Nan Wang, Haomin
Liu, Hujun Bao, and Guofeng Zhang. PGSR: Planar-based Gaussian Splatting for Efficient and
High-Fidelity Surface Reconstruction. IEEE TVCG, 2024a.

Haodong Chen, Runnan Chen, Qiang Qu, Zhaoqing Wang, Tongliang Liu, Xiaoming Chen, and
Yuk Ying Chung. Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels.
ArXiv, 2024b.

Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi Xu. NeuRBF:
A Neural Fields Representation with Adaptive Radial Basis Functions. In ICCV, 2023.

Jaehoon Choi, Yonghan Lee, Hyungtae Lee, Heesung Kwon, and Dinesh Manocha. MeshGS:
Adaptive Mesh-aligned Gaussian Splatting for High-quality Rendering. In ACCV, pp. 3310–3326,
2024.

Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin Wang, and Weiwei Xu. High-quality
Surface Reconstruction using Gaussian Surfels. In SIGGRAPH, 2024.

Anurag Dalal, Daniel Hagen, Kjell G Robbersmyr, and Kristian Muri Knausgård. Gaussian Splatting:
3d Reconstruction and Novel View Synthesis, a Review. IEEE Access, 2024.

Linus Franke, Darius Rückert, Laura Fink, and Marc Stamminger. TRIPS: Trilinear Point Splatting
for Real-Time Radiance Field Rendering. Computer Graphics Forum, 43(2), 2024.

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised Monocular Depth
Estimation with Left-Right Consistency. In CVPR, 2017.

Shrisudhan Govindarajan, Daniel Rebain, Kwang Moo Yi, and Andrea Tagliasacchi. Radiant Foam:
Real-Time Differentiable Ray Tracing. ArXiv, 2025.

Antoine Guédon and Vincent Lepetit. SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D
Mesh Reconstruction and High-Quality Mesh Rendering. In CVPR, 2024.

Antoine Guédon, Diego Gomez, Nissim Maruani, Bingchen Gong, George Drettakis, and Maks
Ovsjanikov. MILo: Mesh-In-the-Loop Gaussian Splatting for Detailed and Efficient Surface
Reconstruction. In SIGGRAPH Asia, 2025.

Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng Qian, Ruoshi Liu, Carl Vondrick,
Bernard Ghanem, and Andrea Vedaldi. GES : Generalized Exponential Splatting for Efficient
Radiance Field Rendering. In CVPR, pp. 19812–19822, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow.
Deep Blending for Free-Viewpoint Image-Based Rendering. ACM TOG, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jan Held, Renaud Vandeghen, Adrien Deliege, Abdullah Hamdi, Silvio Giancola, Anthony Cioppa,
Andrea Vedaldi, Bernard Ghanem, Andrea Tagliasacchi, and Marc Van Droogenbroeck. Triangle
Splatting for Real-Time Radiance Field Rendering. ArXiv, 2025a.

Jan Held, Renaud Vandeghen, Abdullah Hamdi, Adrien Deliege, Anthony Cioppa, Silvio Giancola,
Andrea Vedaldi, Bernard Ghanem, and Marc Van Droogenbroeck. 3D Convex Splatting: Radiance
Field Rendering with 3D Smooth Convexes. In CVPR, 2025b.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2D Gaussian Splatting
for Geometrically Accurate Radiance Fields. In SIGGRAPH, 2024.

Changjian Jiang, Kerui Ren, Linning Xu, Jiong Chen, Jiangmiao Pang, Yu Zhang, Bo Dai, and Mulin
Yu. HaloGS: Loose Coupling of Compact Geometry and Gaussian Splats for 3D Scenes. arXiv
preprint arXiv:2505.20267, 2025.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian
Splatting for Real-Time Radiance Field Rendering. ACM TOG, 2023.

Haolin Li, Jinyang Liu, Mario Sznaier, and Octavia Camps. 3D-HGS: 3D Half-Gaussian Splatting.
ArXiv, 2024.

Rong Liu, Dylan Sun, Meida Chen, Yue Wang, and Andrew Feng. Deformable Beta Splatting. In
SIGGRAPH, 2025.

Jie Luo, Tianlun Huang, Weijun Wang, and Wei Feng. A Review of Recent Advances in 3D Gaussian
Splatting for Optimization and Reconstruction. Image and Vision Computing, pp. 105304, 2024.

Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsupervised Learning of Depth and
Ego-Motion from Monocular Video Using 3D Geometric Constraints. In CVPR, 2018.

Zhenxing Mi, Chang Di, and Dan Xu. Generalized Binary Search Network for Highly-Efficient
Multi-View Stereo. In CVPR, pp. 12991–13000, 2022.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV, pp.
405–421. Springer, 2020.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant Neural Graphics
Primitives with a Multiresolution Hash Encoding. ACM TOG, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An Imperative Style,
High-Performance Deep Learning Library. NeurIPS, 2019.

Johannes L. Schönberger and Jan-Michael Frahm. Structure-From-Motion Revisited. In CVPR, 2016.

Zhuowen Shen, Yuan Liu, Zhang Chen, Zhong Li, Jiepeng Wang, Yongqing Liang, Zhengming Yu,
Jingdong Zhang, Yi Xu, Scott Schaefer, Xin Li, and Wenping Wang. SolidGS: Consolidating Gaus-
sian Surfel Splatting for Sparse-View Surface Reconstruction. arXiv preprint arXiv:2412.15400,
2024.

Bin Tan, Rui Yu, Yujun Shen, and Nan Xue. PlanarSplatting: Accurate Planar Surface Reconstruction
in 3 Minutes. In CVPR, 2025.

Christoph Vogel, Konrad Schindler, and Stefan Roth. 3D Scene Flow Estimation with a Piecewise
Rigid Scene Model. IJCV, 2015.

Nicolas von Lützow and Matthias Nießner. LinPrim: Linear Primitives for Differentiable Volumetric
Rendering. arXiv preprint arXiv:2501.16312, 2025.

Minye Wu, Haizhao Dai, Kaixin Yao, Tinne Tuytelaars, and Jingyi Yu. BG-Triangle: Bézier Gaussian
Triangle for 3D Vectorization and Rendering. In CVPR, pp. 16197–16207, 2025.

Tong Wu, Yu-Jie Yuan, Ling-Xiao Zhang, Jie Yang, Yan-Pei Cao, Ling-Qi Yan, and Lin Gao. Recent
Advances in 3D Gaussian Splatting. Computational Visual Media, 10(4):613–642, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jiayu Yang, Jose M. Alvarez, and Miaomiao Liu. Non-Parametric Depth Distribution Modelling
Based Depth Inference for Multi-View Stereo. In CVPR, pp. 8626–8634, 2022.

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. MVSNet: Depth Inference for Unstruc-
tured Multi-view Stereo. In ECCV, 2018.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian Opacity Fields: Efficient Adaptive Surface
Reconstruction in Unbounded Scenes. ACM Transactions on Graphics (TOG), 43(6):1–13, 2024.

Farhad G Zanjani, Hong Cai, Hanno Ackermann, Leila Mirvakhabova, and Fatih Porikli. Planar
Gaussian Splatting. In WACV, 2025.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In CVPR, 2018.

Ziyu Zhang, Binbin Huang, Hanqing Jiang, Liyang Zhou, Xiaojun Xiang, and Shunhan Shen.
Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction. In ICCV, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

SUPPLEMENTAL MATERIAL

Here we include additional material on background geometry used for computing barycentric coordi-
nates, further implementation details, and additional results.

S.1 BACKGROUND

In this section, we introduce the necessary background geometry used to parameterize a ray-triangle
intersection in barycentric coordinates. The barycentric coordinates of a point on a triangle λ =

[λ0, λ1, λ2]T , s.t.
∑3

j=1 λ
j = 1, provide a means for expressing the coordinates of the point as a

linear combination of the coordinates of the three vertices, [V 0, V 1, V 2]. This parameterization is
important for graphics applications to be able to efficiently rasterize triangles onto screen space and
interpolate the color of a pixel from each vertex.

In rendering, we compute the ray-triangle intersections using,

P = C + (r̂d) (S.1)

where C ∈ R3 is the camera center, r̂ ∈ R3 is the unit vector for the ray through pixel i, and d ∈ R
is the depth along the ray from the camera center to the intersection point, computed as follows,

d =
n̂ ·

−−→
CB

n̂ · r̂
(S.2)

where B ∈ R3 is the barycenter of the triangle and n̂ ∈ R3 is its normal.

We compute the barycentric coordinates for point P using the triple products between the normal, a
triangle edge, and the vector from each vertex to the point,

λ =
1

n̂ · (
−−→
V0V1 ×

−−→
V0V2)

n̂ · (
−−→
V1V2 ×

−−→
V1P)

n̂ · (
−−→
V2V0 ×

−−→
V2P)

n̂ · (
−−→
V0V1 ×

−−→
V0P)

 (S.3)

Intuitively, the contribution of each vertex is proportional to the area of the sub-triangle formed by
the intersection point P and the other two vertices of the triangle. This weight becomes larger as P
approaches the vertex.

S.2 IMPLEMENTATION DETAILS

In this section, we describe our experimental setting and optimization parameters in detail. To
begin optimization, similar to previous work (Huang et al., 2024; Chen et al., 2024a), all geometric
supervision is disabled, with optimization only being guided initially by the SSIM loss Lssim. We
enable the normal consistency loss Lnorm at iteration 7, 000 and enable both the smoothness loss
Lsmooth and connectivity loss Lconn at iteration 10, 000, both chosen empirically. All triangles start
with an initial opacity (α) value set to 0.1, with opacity for all primitives being reset every 3, 000
iterations. We run optimization on the scenes from the DTU and Mip-NeRF 360 datasets for 25, 000
and 30, 000 iterations, respectively. Densification and pruning is run every 250 iterations starting
after iteration 2, 000. The maximum incenter gradient threshold for densification is set to 7.5e−5 in
all experiments.

The learning rates for each respective parameter are set as follows:

• Spherical Harmonics (∆): 2.5e−3

• Opacity (α): 5e−2

• Incenter (µ):
[
1.5e−4, 2e−6

]
• Rotation (R): 1e−3

• Scale (s): 4e−3

• Diffuse Scalar (σ): 1e−3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table S.1: Run-time comparison between baseline works and RTS on the DTU dataset (Aanæs
et al., 2016).

Method FPS Run-Times
2DGS (Huang et al., 2024) 1400 0.41 hr
PGSR (Chen et al., 2024a) 1200 1.05 hr
RTS 400 1.50 hr

where the incenter learning rate follows an exponential decay scheduler starting with 1.5e−4 and
ending with 2e−6 conditioned on the total number of iterations. We also tested a linear decay
scheduler leading to similar results.

The initial diffuse scalar, σ0, is inversely proportional to the mean distance, d, between each
primitive and the three nearest neighboring primitives,

σ0 =
log

(
(α0

γ)− 1
)

d
(S.4)

where α0 is the initial opacity value and γ corresponds to the minimum αwσ value necessary
for a triangle to be rasterized in the forward pass of the network.

Edge Connectivity Overhead To compute neighboring edge connections, we construct a single
KD-Tree containing the midpoints of all triangle edges which is then queried for each edge once. The
connected edge indices are the only structure that is stored during optimization. Since the parameters
of the primitives are modified during optimization, we need to recompute the KD-Tree and connected
edge indices every 250 iterations (aligned with Adaptive Density Control), which ultimately leads to
a minimal overhead for moderate size scenes. To be concrete, building the KD-Tree and computing
the neighboring indices takes on average 4 seconds for around 300,000 primitives, which is more
than the average number of primitives needed to reconstruct the scenes for the DTU dataset. Since
this operation only happens every 250 iterations starting after iteration 10,000 (when the connectivity
loss is activated), the overhead of this operation only adds roughly 5 minutes to the optimization
process, which is about a 6% increase in runtime. Reconstructing larger scenes, or more precisely,
scenes that require more primitives, will naturally demand a larger overhead.

Run-Time The run-times for our approach are roughly 1.5 hours on DTU and 4.5 hours on Mip-
NeRF 360, with scenes from DTU and scenes from Mip-NeRF 360 having on average 249, 941 and
1, 275, 985 primitives, respectively, using 0.5 resolution for the DTU dataset and 0.25 resolution for
the Mip-NeRF 360 dataset. Please see Table S.1 for a comparison with baselines.

Related Work Extension In their concurrent work, TriangleSplatting, Held et al. (2025a) also
propose a shift towards using triangle primitives as the explicit representation for inference-
time optimization of a scene. In contrast to our work, each triangle in their approach is
parameterized by a set of 3D points, similar to their previous work in 3D Convex Splatting
(3DCS) (Vogel et al., 2015). The primitives in our work are parameterized by an incenter,
scalar offsets to each vertex, and a rotation quaternion. Parameterizing the primitives in these
separate terms allows for a more selective propagation of gradients with different learning rates,
which in our experimentation, showed more favorable convergence toward a higher quality
reconstruction. The activation function used in TriangleSplatting also differs from ours, as they
use the normalized ReLU of the Signed Distance Function (SDF) for each triangle, whereas we
apply a Sigmoid function to the SDF for each triangle. This is similar to the formulation used in
3DCS, however, we compute the exact SDF, compared to the approximation used in 3DCS. The
primitives in our approach are also more expressive than that of TriangleSplatting. Each vertex
encodes a separate color instead of using a single color for an entire triangle. As mentioned
in the main paper, a key differentiator between the two works is the optimization criteria, in
which our approach provides an avenue for primitive-to-primitive interactions through our soft
connectivity forces. As shown in Table 1, RTS shows a major increase in geometric accuracy
compared to TriangleSplatting. Both works have similar motivations, in which using triangles

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure S.1: Output point cloud visualization of RTS for all scenes from the evaluation set from
the DTU dataset(Aanæs et al., 2016). The points are colored according to their normals.

Table S.2: Novel View Synthesis per-scene on all scenes from the mip-NeRF 360 dataset (Barron
et al., 2022).

Scene SSIM PSNR LPIPS
room 0.919 31.25 0.156
counter 0.900 28.27 0.139
kitchen 0.936 30.69 0.083
bonsai 0.930 30.93 0.142
bicycle 0.637 20.31 0.365
flowers 0.617 19.99 0.351
garden 0.742 24.89 0.250
stump 0.658 23.25 0.410
treehill 0.631 18.64 0.371

as the primitive in an alpha-blending optimization framework provides a direct route to the
estimation of a mesh with high-quality appearance that can directly be rendered in novel views.

S.3 LOSS FUNCTIONS

For completeness, we define the loss terms used in this paper that were introduced in previous work
(Kerbl et al., 2023; Huang et al., 2024). The SSIM loss is computed as follows:

Lssim =
1

N

∑
i,j

(1− γ)L1 + γLD-SSIM (S.5)

The normal consistency loss is computed as follows:

Lnorm =
1

N

∑
i,j

(1− n̂T n̂d) (S.6)

This encourages alignment between the rendered normal n̂ with the normal computed from the
rendered depth map n̂d,

S.4 ADDITIONAL EVALUATIONS

In Table S.2, we show the per-scene novel view synthesis evaluation for RTS on the mip-NeRF 360
dataset (Barron et al., 2022) using the standard metrics of PSNR, SSIM, and LPIPS. As von Lützow
& Nießner (2025) note, using primitives with explicit boundaries can begin to introduce hard edges

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table S.3: Chamfer distance evaluation on scenes from DTU (Aanæs et al., 2016). Following previous
literature, we average the accuracy and completeness Chamfer distances on the widely used evaluation
set. Chamfer distances are measured in millimeters. Top: Chamfer distance evaluation using the GT
mask. Bottom: Chamfer distance evaluation without using the GT mask.

Method DTU
24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean (mm)↓

2DGS (Huang et al., 2024) 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80
PGSR (Chen et al., 2024a) 0.36 0.57 0.38 0.33 0.78 0.58 0.50 1.08 0.63 0.59 0.46 0.54 0.30 0.38 0.34 0.52
RTS 0.42 0.61 0.74 0.39 0.53 0.86 0.70 0.84 0.72 0.37 0.68 0.87 0.34 0.58 0.44 0.61
2DGS (Huang et al., 2024) [no mask] 1.22 1.69 0.88 0.43 0.96 0.77 0.85 1.23 1.87 1.69 0.91 2.01 0.82 0.82 1.07 1.15
PGSR (Chen et al., 2024a) [no mask] 1.10 1.59 0.97 0.45 1.98 0.64 0.59 1.70 1.69 1.57 0.74 0.63 0.44 0.71 0.74 1.04
RTS [no mask] 0.52 0.92 0.94 0.55 0.91 1.01 0.74 1.09 1.05 0.67 0.88 1.07 0.42 0.79 0.80 0.82

Ground Truth RTS 2DGS (Huang et al., 2024) PGSR (Chen et al., 2024a)

Figure S.2: Qualitative results between RTS and two baselines on the DTU dataset (Aanæs et al.,
2016). RTS is much more effective at removing floaters. This is especially helpful in extreme
viewpoints with low camera overlap.

in regions with poor visibility while smoother primitives degrade more gracefully. While the diffuse
boundaries of our triangles help prevent much of this behavior, its effects are noticeable in some of
the reconstructed images, especially in outdoor scenes with distant background foliage. See Fig. S.5

As mentioned in Section 5.3, we compare the Chamfer distances of RTS and two competitive GS
algorithms in Table S.3 with and without the use of the GT segmentation masks. While the distances
increase for all methods, this experiment demonstrates how RTS is more effective at floater removal
and background modeling.

Qualitative comparisons to competitive baselines on the DTU dataset (Aanæs et al., 2016) are
shown in Fig. S.2, and on the mip-NeRF 360 dataset (Barron et al., 2022) are shown in Fig. S.3.
Additionally, we provide renderings of novel views on challenging indoor and outdoor scenes with
fine details and non-Lambertian surfaces. Output renderings and 3D models for all scenes will be
made publicly available to the research community if the paper is accepted. We show qualitative
geometric reconstruction results on all scenes from the DTU dataset in Fig. S.1 and novel view
synthesis results on all indoor and outdoor scenes from the Mip-NeRF 360 datasets in Fig. S.4 and
Fig. S.5, respectively.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Ground Truth RTS 2DGS (Huang et al., 2024) PGSR (Chen et al., 2024a)

Figure S.3: Qualitative results between RTS and two baselines on the mip-NeRF 360 dataset (Bar-
ron et al., 2022). RTS can better represent texture-less areas and recover sharp details from
surfaces seen in few views.

(a) GT Image (b) Rendered Image (c) Rendered Depth

Figure S.4: Visualizations of all indoor scenes, (top-down) [bonsai, counter, kitchen, room], from the
mip-NeRF 360 dataset (Barron et al., 2022).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

(a) GT Image (b) Rendered Image (c) Rendered Depth

Figure S.5: Visualizations of all outdoor scenes, (top-down) [bicycle, flowers, garden, stump, treehill],
from the Mip-NeRF 360 dataset (Barron et al., 2022). In the top-right section of the rendered image
of treehill, RTS imprecisely approximates the appearance of the background foliage, while GS-based
algorithms typically blur this region.

19

	Introduction
	Related Work
	Method
	Parameterization
	Initialization
	Diffuse Primitive Boundaries
	Rasterization
	Connectivity
	Adaptive Density Control

	Optimization
	Rendering Losses
	Scene Loss

	Experiments
	Implementation Details
	Evaluation
	Ablations

	Limitations & Conclusions
	Reproducibility
	Background
	Implementation Details
	Loss Functions
	Additional Evaluations

