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ABSTRACT

Contrastive learning (CL) has emerged as a powerful framework for learning struc-
tured representations that enable a wide range of downstream tasks. Its applications
span sample-efficient reinforcement learning (RL), retrieval-augmented genera-
tion, and improved selection of model-generated samples, among others. Despite
these successes, its potential for combinatorial reasoning problems remains largely
untapped. In this paper, we take a step in this direction by using temporal con-
trastive learning to learn representations conducive to solving planning problems,
which will reduce our reliance on planning. Our analysis reveals that standard CL
approaches struggle to capture temporal dependencies over complex trajectories.
To address this, we introduce a novel method that leverages negatives from the
same trajectories. Across two complex reasoning tasks, our approach outperforms
traditional supervised learning.
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End

CR2 CRL

Figure 1: CR2 makes representations reflect the structure of the combinatorial task. t-SNE visualization
of representations learned by CR2 (left) and naive CRL (right) for Sokoban, with one trajectory highlighted
using arrows connecting consecutive points. Colors correspond to trajectories. Baseline representations (right)
cluster within trajectories, making them useless for planning.

†Equal advising contribution.
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1 INTRODUCTION

Representation learning has driven advances across AI, particularly in vision and language Bengio
et al. (2013); Devlin et al. (2019); Huang et al. (2019); Grill et al. (2020). In combinatorial reasoning
problems (e.g., Chess, Go, TSP), search remains a core component, often combined with learned
value functions or representations Silver et al. (2016); Brown et al. (2020); Yonetani et al. (2021);
Silver et al. (2017).

While learning-based approaches have improved performance in these domains, they still rely heavily
on search. This makes combinatorial reasoning an ideal setting to explore how learned representations
can better support search-based methods. Specifically, we investigate how learned representations
can induce a metric space that facilitates search, aiming to shift more of the reasoning workload
onto representations. Our core hypothesis is that deep learning is not only effective for capturing
high-dimensional data patterns but also for learning representations that facilitate geometric reasoning.

Our work builds on a long line of prior methods that integrate learned representations into reinforce-
ment learning and control (Lange & Riedmiller, 2010; Watter et al., 2015; Hafner et al., 2019). We
focus on recent work (Eysenbach et al., 2022b; 2024) using temporal contrastive learning (CL) to
learn representations where distances correspond to value functions. These methods optimize states
from the same trajectory to have similar representations while differentiating states from different
trajectories.

However, applying this approach to combinatorial reasoning presents unique challenges, which we
illustrate by the Sokoban puzzle (Fig.10). In this task, walls are randomized at the start of each
episode, making a naive CL objective trivial: it learns to encode superficial scene features (e.g.,
wall positions) while ignoring agent and block positions. Although this minimizes loss, the learned
representations are useless for decision-making, as they lack temporal structure – within a trajectory
they do not indicate which moves advance towards solution (Fig.1). We hypothesize that this issue is
more general: combinatorial reasoning tasks naturally decompose into semi-independent subtasks,
rendering standard CL objectives ineffective.

To address this problem, we propose Contrastive Representations for Combinatorial Reasoning (CR2).
Our key idea is to modify how temporal contrastive learning selects samples. Instead of a single
(start, goal) pair per trajectory, CR2 samples two such pairs. Intuitively, this provides a “repulsive
force” that prevents trivial solutions (Fig. 1). As a result, CR2 learns representations that reflect the
problem’s underlying structure.

We validate CR2 on three challenging combinatorial reasoning tasks: Sokoban, Rubik’s Cube, and
N-puzzle. Our results show that CR2 significantly improves search efficiency over standard CL and
other baselines. Ablation studies further confirm the importance of our negative sampling strategy in
learning high-quality representations.

Our main contributions are the following:

• We show that standard CL fails to capture temporal dependencies in combinatorial problems.

• We introduce Contrastive Representations for Combinatorial Reasoning (CR2), an algo-
rithm that uses in-trajectory negative sampling to learn high-quality representations for
combinatorial reasoning tasks.

• We empirically show that CR2 improves search efficiency compared to other approaches.

2 RELATED WORK

We build upon recent advances in self-supervised RL and contrastive representation learning, showing
that they can be applied successfully to complex combinatorial problems.

Contrastive Learning Contrastive learning has emerged as a widely adopted approach for model
pretraining (Jaiswal et al., 2020; Rethmeier & Augenstein, 2023). It facilitates the discovery of
rich representations (Chuang et al., 2020; Chen et al., 2020) from unlabeled data that improve
learning downstream tasks (Xiao et al., 2021), thereby reducing dependence on human annotations.
Importantly, contrastive learning enabled effective learning of large-scale models in fields such as
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computer vision (Zhang et al., 2022; Caron et al., 2021), VLMs (Radford et al., 2021; Liu et al.,
2024), NLP (Srivastava et al., 2023) and real-world applications including RAG (Gao et al., 2023).
The foundational idea of contrastive learning is to learn representations by pulling similar data
points, i.e. ones that belong to the same underlying concept, closer together and pushing dissimilar
ones further apart in the representation space (Wang & Isola, 2020). This idea is reflected in
various contrastive objectives, including Triplet Loss (Hoffer & Ailon, 2014), NCE (Gutmann &
Hyvärinen, 2012), or InfoNCE (Sohn, 2016). It has been shown that representations learned in
this way demonstrate discriminative power for downstream tasks and exhibit properties such as
generalization, robustness (Tian et al., 2020), and transferability (Islam et al., 2021).

Contrastive Representations for Sequential Problems Recently, self-supervised contrastive
learning has been also applied to sequential (or temporal) problems, including goal-conditioned
RL (Eysenbach et al., 2022b; Venkattaramanujam et al., 2019; Myers et al., 2024), skill-learning
algorithms (Park et al., 2023; Zheng et al., 2024b; Eysenbach et al., 2018), or exploration meth-
ods (Guo et al., 2022). It has also been tested in symbolic reasoning for simple mathematical
problems (Poesia et al., 2021). Most temporal-based contrastive algorithms are based on optimizing
InfoNCE objective (Sohn, 2016) to distinguish real future states in the trajectory from random states.
Interestingly, Eysenbach et al. (2024) demonstrate that inferring intermediate state representations
can be performed by linear interpolation between the initial and final representations. Based on
these findings, we hypothesize that such representations might facilitate planning in combinatorial
reasoning problems.

Combinatorial Problems Combinatorial environments are characterized by discrete, compact
observations that represent exponentially large configuration spaces, often associated with NP-
complete problems Karp (1972). Recent RL advancements address these challenges using neural
networks to learn efficient strategies, including policy-based heuristics Mazyavkina et al. (2021);
Bello et al. (2016), graph neural networks for structural exploitation Cappart et al. (2021); Kool et al.
(2019), and imitation learning with expert demonstrations Silver et al. (2016).

Planning in latent space. Planning in complex environments can be made more efficient by lever-
aging learned state representations that capture the underlying structure of the problem. Techniques
such as autoencoders have been employed to reduce the dimensionality of the state space and learn
compact world models Ha & Schmidhuber (2018); Hafner et al. (2023). Some approaches focus
on learning representations that preserve only the features relevant for planning Schrittwieser et al.
(2020); Fang et al. (2022). For robotic applications, latent representations are trained to guide
movement and decision-making Ichter & Pavone (2019); Fang et al. (2022). Furthermore, Eysenbach
et al. (2022a) frames goal-conditioned planning as a representation learning problem.

3 PRELIMINARIES

We focus on combinatorial problems, which can be formulated as deterministic goal-conditioned
controlled Markov processes (S,A, p, p0, rg, γ). In particular, at every timestep t, the agent observes
both state st ∈ S and goal g ∈ S , and performs action at ∈ A. We assume that the transition function
p : A× S → S is known and deterministic, while the initial states might differ as they are sampled
from the distribution p0(s0). We define reward function rg = 1 for st = g and rg = 0 otherwise.
The objective is to learn goal-conditioned policy π(a | s, g) that maximize the expected reward:

max
π

Ep0(s0),pg(g)

[ ∞∑
t=0

γtrg (st, at)

]
. (1)

Dataset properties. We study an offline learning setup with a dataset of successful yet suboptimal
trajectories τi = ((s1, a1), (s2, a2), . . . (g,−)). We define the distance function d : S2 → R as
follows: for s1, s2 ∈ S d(s1, s2) = n if s2 is reachable from s1 in n actions, and there does not exist
shorter path between s1 and s2. Formally, s2 is reachable from s1 if there exist a path a1, a2, . . . , an,
such that s2 = p(an, p(an−1, p(. . . , p(a1, s1)))).
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3.1 CONTRASTIVE REINFORCEMENT LEARNING

We employ a contrastive reinforcement learning (CRL) method (Eysenbach et al., 2022b) to train
a critic, f(s, a, g), which estimates the correlation between the current state-action pair and future
states. The critic consists of two embedding networks: one for state-action pairs, ϕ, and another
for goals, ψ. These networks generate representations ϕ(s, a) and ψ(g), respectively. The energy
function, fϕ,ψ(s, a, g), then measures a form of similarity between these representations that reflects
the structure of the task.

For training the critic, we use the InfoNCE objective (Sohn, 2016) as in previous CRL works (Eysen-
bach et al., 2022b; 2021; Zheng et al., 2023; 2024a; Myers et al., 2024; Bortkiewicz et al., 2024).
Specifically, we construct every batch B, by sampling n random trajectories from the dataset. For
each trajectory, we select a state-action pair (si, ai) uniformly and draw goal gi, using a Geom(1−γ)
distribution over future states. Negative pairs consist of state-action pairs (si, ai) and goals gj from
different trajectories. Thus, the InfoNCE loss is applied to rows of the batch matrix B where positive
pairs are on the diagonal:

min
ϕ,ψ

EB

[
−
∑|B|

i=1
log

(
efϕ,ψ(si,ai,gi)∑K
j=1 e

fϕ,ψ(si,ai,gj)

)]
. (2)

Adjusting Contrastive RL for Combinatorial Problems In this work, we adapt the standard CRL
setup to address combinatorial problems and learn a proxy of distance function d using the critic
f . We use a shared neural network, ϕ, to learn embeddings for both states and goals. The critic
output is defined as the squared l2-norm between these embeddings: f = ||ϕ(s)− ϕ(g)||2. Because
combinatorial problems are deterministic and we are interested in state similarities, we omit actions
(a) in the embeddings.

3.2 SEARCH

In reinforcement learning, search-based planning is a widely used approach for solving complex
environments Silver et al. (2016); Brown et al. (2020); Yonetani et al. (2021); Orseau et al. (2018). In
our study, we focus on the Best-First Search (BestFS) Pearl (1984) planner. BestFS builds the search
tree by greedily expanding nodes with the highest heuristic estimates, hence targeting paths that are
most likely to lead to the goal. While not ensuring optimality, BestFS provides a simple yet effective
strategy for navigating complex search spaces. The pseudocode for BestFS is outlined in Algorithm
2. In our work, we use distances in the latent space as the heuristic, as detailed in Section 3.1.

4 METHOD

The main contribution of this paper is a method for learning representations that facilitate search. We
will use an off-the-shelf search algorithm (BestFS) and focus on how learned representations can
serve as an effective value function for guiding the search. The rough design for our representations
will follow the contrastive approach described in Section 3.1. However, the following example will
highlight a key limitation of these representations, which will be addressed in the subsequent sections.
Section 4.4 will summarize our complete method, CR2, which combines this improved representation
learning with BestFS search.

4.1 A MOTIVATING EXAMPLE

Figure 2: Example
Sokoban Board

Consider the Sokoban game, where each problem instance is a maze
with a random wall pattern. Directly applying CRL (outlined in 3.1) to
this problem does not yield meaningful results. For the CRL objective,
positive pairs are sampled from the same trajectory and are close in time,
while negative are sampled from different trajectories. CRL samples a
batch of pairs. In practice, each batch element will have a different wall
pattern due to a huge number of possibilities. Therefore, the objective
has a local minimum, where the network learns to tell samples apart
by only looking at the wall patterns, completely ignoring the temporal
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Algorithm 1 Contrastive Representations for Combinatorial Reasoning (CR2) algorithm.
Input: Dataset D, Batch Size B, Repetition Factor R.
Output: Batch of pairs for contrastive learning.
T0 := a sample of BR trajectories from D
T := repeat(T0, R, axis = 0)
xi := a state sampled uniformly from Ti for i ∈ {1, . . . , B}
xit+ := a state sampled from the distribution pt+(·|xi) from Ti for i ∈ {1, . . . , B}
return (x, xt+)

aspect. Indeed, in practice, the standard objective is prone to that issue,
as demonstrated in Section 5.3.

4.2 CR2

We found that there are two types of negatives: global that capture the
high-level manifold of the environment, and local that capture temporal properties. CRL relies
only on global negatives, neglecting local structure crucial for planning. As a solution, we propose
Contrastive Representations for Combinatorial Reasoning (CR2), which ensures each batch includes
both global and local negatives by sampling B

R trajectories and drawing R pairs per trajectory. Our
proposed algorithm solves the problem and is a simple change on top of the usual CRL and hence
preserves its theoretical and practical properties. The approach is detailed in Algorithm 1, with
alternative strategies explored in Section 5.4. There, we also outline the intuition, for why our
approach works well, in contrast to more straightforward methods of incorporating in-trajectory
negatives. The impact of the repeat factor R is analyzed in Section 5.6. Our implementation uses
R = 2.

4.3 OTHER COMBINATORIAL REASONING PROBLEMS

The example of Sokoban is extreme because the global negatives are trivially separable. This
issue also impacts other environments. Consider the example of the Rubik’s cube, in which all the
trajectories τ ∈ D share the same solved state and all the states are reachable from one another. The
last (shuffled) state in the trajectory determines a large portion of the trajectory. When limiting the
view to the more shuffled half of the trajectory, using the Hamming distance for deciding whether two
states form a positive or negative pair results in 90% accuracy. This shows that the shuffled states in
the Rubik’s cube are also disjoint to a certain extent. Similar patterns can be found in other domains
as well.

4.4 ALGORITHM SUMMARY

Our complete method (CR2) works as follows. We take as input an offline dataset of trajectories
that solve the given problem, D = {τ = (s0, s1, · · · )}. We train an embedding network ϕ using
the InfoNCE loss (Eq. 2.) For a given problem instance, we embed the goal state g getting the
representation zg = ϕ(g). For a given state s, we embed it as zs = ϕ(s) and calculate the value
v = ||zg− zs||2. Values computed in this way (with the embedding network) are used in combination
with the BestFS search algorithm 2 to navigate from s to g. We stop the search when we arrive at the
solved state or when we exceed a set computational budget.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Environments. We evaluate the methods across three challenging combinatorial reasoning prob-
lems: Sokoban, Rubik’s Cube, and N-Puzzle. Since they are known to be NP-hard Demaine et al.
(2018); Culberson (1997); Ratner & Warmuth (1986), they are widely used for benchmarking RL
algorithms Agostinelli et al. (2019); Racanière et al. (2017); Zawalski et al. (2024). Sokoban is a
classic grid-based puzzle where an agent must push boxes to designated target locations, avoiding
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Figure 3: CR2 performs well in all the evaluated domains. Performance of CR2 compared to
baselines.

irreversible states. Rubik’s Cube is a 3D permutation puzzle where the goal is to align all faces of the
cube to a uniform color configuration. N- puzzle (or Sliding Tile Puzzle) involves sliding numbered
tiles within a 4× 4 grid to reach a specific order. Detailed descriptions of our environments can be
found in Appendix A.

Baselines. We evaluate CR2 against three baselines. The contrastive baseline follows a standard
contrastive reinforcement learning (CRL) approach Eysenbach et al. (2022b), training representations
for search without utilizing in-trajectory negatives. The supervised baseline directly predicts the
distance between two states using a value network trained on demonstration data through imitation.
We also compare against DeepCubeA Agostinelli et al. (2019), a well-established method for com-
binatorial reasoning that learns a value function through iterative one-step lookahead updates on
increasingly difficult states.

For a fair comparison, both the CRL-based and supervised baselines share the same architecture
as CR2. All methods, including DeepCubeA, use BestFS as the planner. When constructing the
search tree for Rubik’s Cube, N-Puzzle, and Sokoban, all available actions are considered during
node expansion. To measure efficiency, we define the search budget as the number of unique states
visited by the planner when solving a given problem instance.

Code to reproduce our results is available online.1 The training details are specified in Appendix C.

5.2 MAIN RESULTS

As shown in Figure 3, our CR2 method demonstrates consistently strong performance across all
evaluated domains. It ranks among the top-performing methods in each environment and is strictly
the best one in two cases. In contrast, each baseline fails to solve at least one task.

In Sokoban, CR2 significantly outperforms the CRL baseline. This aligns with our analysis in
Section 4.1, where we identified the issue of separable trajectories as a major limitation for naive
CL. By addressing this issue, CR2 achieves substantially better results, confirming the importance of
enforcing both global structure and local consistency in learned representations.

In other environments, CR2 maintains a smaller but consistent advantage over the CRL baseline. This
supports our conjecture that the issue of trivial separability is a common challenge. Even in cases
where it is less pronounced, addressing it brings benefits.

Furthermore, CR2 outperforms the supervised baseline and DeepCubeA, particularly in Rubik’s
Cube. In our evaluations, each method uses the same planning algorithm – BestFS. This suggests
that the advantage of CR2 stems from the structure of its learned representations, which provide
more effective guidance for planning compared to the direct value estimation approach used by those
baselines. While in Sokoban they achieve higher scores, the difference is small.
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5.3 SOKOBAN CASE STUDY

As discussed in Section 4.1, when training demonstrations are easily separable, the CRL baseline
collapses to a trivial local minimum, making its learned representations ineffective for planning. Our
experiments confirm that prediction. As shown in Figure 1, vanilla CRL produces densely clustered
representations, allowing easy trajectory distinction but failing to encode any temporal structure
within solutions. This is further reflected in its instant 100% accuracy during training (Figure 4),
despite the representations lacking correlation with actual state distances (Figure 5).

In contrast, CR2 successfully leverages local negatives to enforce temporal consistency in its repre-
sentations (Figure 1). This augmentation prevents trivial solutions (Figure 4), enabling the model to
capture the correct state-space geometry (Figure 5).

This improvement is also evident in the effective rank of learned representations (Figure 6). CR2

maintains a rank of 6. CRL collapses to just two significant singular values, while the remaining ones
are less pronounced. Such a dimensional collapse is often caused by excessive data augmentation or
implicit regularization in deep networks Jing et al. (2021).

Finally, this difference directly impacts performance. As shown in Figure 3 (Sokoban), CRL performs
only marginally better than random representations, while CR2 succeeds, confirming the importance
of learning structured, temporally consistent representations for effective planning.

5.4 DIFFERENT APPROACHES TO IN-TRAJECTORY NEGATIVES

We explore alternative ways to add local negatives. The first approach mirrors the standard addition of
hard negatives: given a batch B = (xi, xi+)i∈{1..B}, we sample additional negatives, (xi−)i∈{1..B},
and compute the loss as

L =
1

B

∑
i

log

(
exp (f(xi, xi+))∑

j ̸=i f(xi, xj+) + f(xi, xi−)

)
,

for f = || · ||2.
The second approach modifies the denominator:

L =
1

B

∑
i

log

(
exp (f(xi, xi+))

exp(f(xi, xi+)) + exp(f(xi, xi−))

)
.

We consider three strategies for sourcing in-trajectory negatives: sampling uniformly, selecting the
first state, or selecting the last state—excluding the last state for the Rubik’s cube since it is the same
for all trajectories. All these approaches perform significantly worse than CRL, yielding a success
rate below 0.1. We hypothesize that in-trajectory negatives start to dominate the in-batch negatives
- the gradient update coming from the in-batch negatives becomes very small early in the training,

1
Code: https://github.com/combinatorialreasoning/crcr
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while the update from the in-trajectory negative remains large. This causes the temporal structure to
be lost.

i j i+ j+

−

−

+

+
i i+ i−

+

−

+
Figure 7: CR2 prevents the points in a trajectory from drifting apart. Embeddings of a single
trajectory during a gradient update in CR2 (on the left) and when using normal in-trajectory negatives
(on the right). By +, we denote increasing the distance and by −, decreasing the distance between
embeddings.

How is CR2 different? Approach 1 is in principle similar to CR2, so why does Approach 1 fail?
The key difference lies in having at least two positive samples from the same trajectory per gradient
update. Figure 7 illustrates how our method preserves the trajectory’s structure compared to using
only in-trajectory negatives. In the standard setting, the loss encourages i and i+ to move together
while pushing i and i− apart–allowing i− to drift arbitrarily far. In contrast, CR2 ensures that j+
moves away from i, and i+ moves away from j. while simultaneously pulling i and i+, as well as j
and j+, together. preventing the structure of the trajectory from being lost. This interplay preserves
trajectory coherence, eliminating the need for additional regularization or gradient clipping.

5.5 IS SEARCH STILL NECESSARY?
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Figure 8: Contrastive representations must be used
alongside search.

One of our main questions was whether having
good representations allows to use no search, or
at least, decrease the amount of search needed.
We test the approach, where we always only con-
sider one action, predicted to be the best by our
heuristic. We do this until we arrive at the same
state for the second time, or exceed the budget
of 6000 nodes. Table 1 demonstrates the results
of not using search in CR2, our contrastive base-
line supervised baseline. While our approach
improves the performance without search, for
Rubik’s Cube and 15-puzzle it essentially solved
no of the boards. In Figure 8 we demonstrate
how the performance for the no-search, for the
Rubik’s cube that is increasingly shuffled. All
the methods’ performance decreases exponen-
tially, as the number of shuffles is increased.
This is expected, as the amount of states reach-
able within n shuffles follows an exponential
trend, for n ≤ 18. Rokicki et al. (2014) We therefore conclude, that search still is necessary for
achieving the optimal performance.

5.6 BALANCING GLOBAL AND LOCAL NEGATIVES FOR EFFECTIVE REPRESENTATION
LEARNING

As discussed in Section 4.2, CR2 leverages both global negatives, which capture the overall structure
of the environment, and local negatives, which induce the correct temporal consistency of state
sequences. Our experiments show that balancing these two components is essential for achieving
strong performance.
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Table 1: Performance of the supervised baseline, contrastive baseline and CR2 on Rubik’s Cube,
15-puzzle and Sokoban without using search.

Problem CR2 Contrastive
Baseline

Supervised
Baseline

Rubik’s Cube 0.03 0.02 0.0
15-puzzle 0.0 0.0 0.0
Sokoban 0.30 0.0 0.23
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Figure 9: Influence of the repetition factor depends on the environment type. Increasing the
repetition factor for Sokoban, N-Puzzle, and Rubik’s Cube, respectively. Factor 2.0 corresponds to
our CR2, while factor 1.0 corresponds to the CRL baseline.

Figure 9 shows the effect of increasing the fraction of local negatives in the training objective. In case
of Sokoban, where trajectories are fully separated, learning progresses only through local negatives,
making this parameter irrelevant. In contrast, increasing the fraction of local negatives in other tasks
degrades performance. However, relying exclusively on global negatives is also suboptimal across all
domains.

In complex problems, effective representations must find a balance between capturing the global
structure and maintaining local consistency, which is achieved by CR2 as shown in our experiments.

6 LIMITATIONS AND FUTURE WORK

Theoretical analysis We empirically demonstrate that in-trajectory negatives improve the perfor-
mance. In future work, we plan to build a theoretical framework explaining these benefits.

Real-world problems While solving combinatorial reasoning problems is interesting and show-
cases the potential of our method, considering more impactful problems, such as proving mathematical
equations or solving the problem of retrosythesis would give our method the opportunity to be tested
in a broader setting.

Multitask Reinforcement Learning Intuitively, in multitask reinforcement learning, CRL should
have similar performance issues as it has in combinatorial reasoning problems. Exploring that could
have an impact on practical RL algorithms.

7 CONCLUSIONS

In our work, we introduced CR2, an algorithm for learning high-quality representations in combinato-
rial reasoning tasks. Our analysis revealed a critical limitation of prior approaches: when training
demonstrations are separable, their learned representations become trivial and ineffective for planning.
CR2 addresses this by balancing global negatives, which capture overall task structure, with local
negatives, which enforce temporal consistency. Experimental results across four challenging domains
demonstrate that CR2 consistently outperforms baselines, highlighting its effectiveness and broad
applicability. We share the code for reproducibility.
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A ENVIRONMENTS

Sokoban. Sokoban is a well-known puzzle where the player must push boxes onto target locations
within a confined grid. Its high combinatorial complexity and PSPACE-hard nature Dor & Zwick
(1999) make it a benchmark for both classical planning and deep learning methods. Sokoban
challenges algorithms to balance search efficiency and long-term planning. In our experiments, we
use 12×12 Sokoban boards with four boxes.

Figure 10: An example instance of Sokoban. Figure 11: An example instance of Rubik’s Cube.

Rubik’s Cube. The Rubik’s Cube is a 3D combinatorial puzzle with over 4.3 × 1019 possible
configurations, making it an iconic testbed for algorithms tackling massive search spaces. Solving
the Rubik’s Cube requires sophisticated reasoning and planning, as well as the ability to navigate
high-dimensional state spaces efficiently. Recent advances in using neural networks for solving this
puzzle, such as Agostinelli et al. (2019), highlight the potential of deep learning in handling such
computationally challenging tasks.

N-Puzzle. The N-Puzzle is a sliding-tile puzzle with variants like the 8-puzzle (3×3 grid), 15-puzzle
(4×4 grid), and 24-puzzle (5×5 grid). The objective is to rearrange tiles into a predefined order by
sliding them into an empty space. It serves as a classic benchmark for testing algorithms’ planning
and search efficiency. The problem’s difficulty scales with puzzle size, requiring effective heuristics
for solving larger instances.

Figure 12: An example instance of N-Puzzle.
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B BEST-FIRST SEARCH

Best-First Search greedily prioritizes node expansions with the highest heuristic estimates, aiming
for paths that likely lead to the goal. While not ensuring optimality, BestFS provides a simple yet
efficient strategy for navigating complex search spaces. The high-level pseudocode for BestFS is
outlined in Algorithm 2.

Algorithm 2 Pseudocode for Best-First Search
while has nodes to expand do

Take node N with the highest value
Select children ni of N
Compute values vi for the children
Add (ni, vi) to the search tree

end while

C TRAINING DETAILS

Code to reproduce all our results can be found in the anonymous repository linked in the main text.
We trained the supervised baseline, contrastive baseline and CR2. For Sokoban we use trajectories
following Czechowski et al. (2021) and we use 105 trajectories for training. For 15-puzzle and
Rubik’s Cube we generate trajectories by using a policy, performing n random actions, with n equal
150 and 21 correspondingly. In 15-puzzle we delete cycles of length one from the dataset. We work
in a setup with an unlimited amount of data, training all the networks for two days. This resulted in
seeing around 8 ∗ 106 trajectories for the Rubik’s Cube and 7 ∗ 106 for 15-puzzle.
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