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ABSTRACT

Recent advancements in video generation, especially with diffusion models, have
led to new challenges in evaluating the generated outputs, highlighting the need for
well-curated evaluation metrics and benchmarks. While prior work has focused
on assessing text-to-video models for overall video quality, such as temporal co-
herence and prompt consistency, they overlook a crucial aspect: motion modeling
abilities of generative models. To address this gap, we propose a structured ap-
proach to evaluate image-to-video generation models, with a focus on their motion
modeling abilities. For example, we assess how accurately models generate mo-
tions like circular movement for a rotating ferris wheel or oscillatory motion for a
pendulum. We categorize videos into linear, circular, and oscillatory motion-types
and formulate metrics to capture key motion properties for each category. Our
benchmark, MMEval, along with the code and image-prompt-video sets, will be
publicly released.

1 INTRODUCTION

The rapid development and availability of various video generation models Xing et al. (2023); Hu
et al. (2023); Zhang et al. (2023); Li et al. (2023); Ho et al. (2022b;a); Blattmann et al. (2023a);
Bar-Tal et al. (2024); Villegas et al. (2022; 2019; 2018); Blattmann et al. (2023b); Wang et al.
(2023); Singer et al. (2022) has necessitated the development of evaluation metrics. While efforts
have been made in the recent past to introduce evaluation suites Huang et al. (2023); Liu et al.
(2023b) for video generation, these benchmarks primarily focus on the general aspects of video
generation like temporal consistency, flickering, aesthetic quality, frame-wise imaging quality,
and so on. Previously, metrics like Frechet Video Distance (FVD) Unterthiner et al. (2019) and
frame-wise Frechet Inception Distance Heusel et al. (2017) were used to compute the distance
between distributions of pixels in the training set and the generated videos. EvalCrafter Liu et al.
(2023b) proposes a host of overall video quality assessment metrics like text-video alignment
and image-video consistency scores. In addition, it also introduces action recognition score and
average flow score to assess the motion quality. While motion quality metrics can capture temporal
consistency to some degree, the fine-grained specifics of the motion models of the objects in the
video are not evaluated. Similarly, VBench Huang et al. (2023) introduces many metrics to evaluate
video quality and video-condition consistency. These metrics have the same shortcomings in that
they do not focus on the specifics of the motion models of the objects in focus.

Videos are fundamentally driven by object motion, and accurate video generation relies on
effectively modeling these motion properties to produce natural and temporally consistent outputs.
Building on established theories of motion in physics Wikipedia (2024), we focus on three
fundamental motion-types: linear, rotational, and oscillatory - to evaluate image-to-video (I2V)
generation models. Although recent video diffusion models produce highly realistic results, they
often generate deformations and inconsistencies that haven’t been observed in previous models
like GANs. While existing benchmarks have made significant progress on various aspects of
video evaluation, they often overlook the key aspect of motion modeling in creating realistic and
coherent videos. To address this, we propose a new benchmark MMEval, which categorizes videos
by motion type and introduces metrics specifically curated for evaluating these motions. Such
category-specific evaluation provides deeper insights into the ability of the image-to-video models
to generate various motion types. We focus on image-to-video diffusion models, where the input
image and prompt together convey clear information about the object and its motion type. Our
contributions are outlined below:
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• We introduce a first-of-its-kind method to classify videos by motion type (linear, rotational,
oscillatory) and propose category-specific evaluation metrics.

• We evaluate three key motion properties—smoothness, direction, and speed—along with
overall video quality to assess the strengths and weaknesses of image-to-video models.

• We present a comprehensive benchmark, MMEval, designed to evaluate image-to-video
generation models for their motion modeling ability. It comprises of 1,000 carefully cu-
rated image-video pairs spanning multiple motion types and an extensive prompt set of
approximately 5,000 image-prompt pairs.

• We find that different models perform better for different motion types, but none of them
successfully model all motion-types. Some models perform well with fluid motion, while
some others with small oscillations, but none of them perform well for linear motion of
rigid bodies, rotational motion, or large oscillations. Furthermore, all models struggle to
understand and model motion direction and speed.

2 RELATED WORK

Video Generation: The last decade has seen the emergence of the video generation methods in
various flavours. Several early works on unconditional video generation methods Villegas et al.
(2018; 2019); Vondrick et al. (2016); Villegas et al. (2017); Oh et al. (2015) are based on training
convolutional neural networks (CNNs), recurrent neural networks (RNNs) or long short-term mem-
ory (LSTM). More recently, with the advent of the diffusion models Rombach et al. (2022); Ho
et al. (2020); Song et al. (2020), several architectures Villegas et al. (2022); Bar-Tal et al. (2024);
Blattmann et al. (2023a); Ho et al. (2022b); Singer et al. (2022) have been proposed to generate
videos from just a single text prompt. There have been attempts to utilize text-to-image generation
models for video generation by infusing manipulating cross-frame self-attention maps Khachatryan
et al. (2023).

Image-to-Video Generation: One of the attractive applications of video generation is animating
still pictures to generate cinemagraphs. Several GAN based approaches Holynski et al. (2021);
Mahapatra & Kulkarni (2022); Fan et al. (2023) have been proposed to successfully generate videos
of fluids animation of a single image. Similary, motion models have been proposed to animate hairs
Xiao et al. (2023). Recently, there has been a surge of diffusion model based approaches to animate
image and generate video of any object Ren et al. (2024); Shi et al. (2024); Gong et al. (2024); Xing
et al. (2023); Guo et al. (2023); Zhang et al. (2023). This represents a significant shift from previous
approaches that focused on training models for specific motion types. The current efforts aim to
develop a more versatile and generic model that can effectively animate any object and generate
various motion types. In this paper, we propose to assess the ability of various general-purpose
image-to-video (I2V) approaches in effectively modeling different types of motion.

Metrics and Benchmarks: Evalcrafter Liu et al. (2023b) and VBench Huang et al. (2023) are the
two video generation benchmarks that are proposed after proliferation of the video diffusion models.
Both Evalcrafter and VBench focus on the overall temporal coherence and semantic consistency of
the video generation. However, they do not evaluate the ability of the video diffusion models to
mimic the motion models that we encounter in real world like linear motion in case of fluids or
rotational motions in a ferris wheel. Different from these approaches, we propose a comprehensive
set of metrics and experiments to evaluate different types of motion individually that allows us to
concretely make recommendations of the models.

3 BENCHMARK: MMEVAL

The main goal of MMEval is to provide a well-curated and diverse set of (text prompt, initial frame)
pairs to evaluate the motion modeling capabilities of image-to-video generation models. We also
provide the corresponding ground truth video from which the initial frame was extracted, enabling
comprehensive evaluation of the motion characteristics of image-to-video models. To effectively
evaluate motion properties, it is crucial to accurately map the properties of the 3D world to pixel
space. To achieve this, we first categorize motion based on trajectory and present the details of this
categorization in Table 1. Note: Linear, Rotational, and Oscillatory are referred to as motion-types,
while examples like waterfalls and vehicle wheels are called object types. Each motion type can
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include numerous object types. We selected this specific set based on the availability of data that
meets our constraints, detailed in the following section.

Motion-Type Sub-category Object-Types
Linear Motion Fluid Elements River, Waterfall, Clouds, Fire, Smoke

Non-Fluid Elements Cable Car, Conveyor Belt, Vehicles, Escalator

Rotational Motion - Ceiling Fan, Ferris Wheel, Vehicle Wheels

Oscillatory Motion Small Displacements Leaves Swaying, Flower Swaying, Candle Flickering
Large Displacements Pendulum, Metronome, Rocking Chair, Toy Horse, Swing

Table 1: Categorization of Motion Types

3.1 DATA COLLECTION

A key step in constructing the MMEval benchmark involves collecting (text prompt, initial frame)
pairs along with their corresponding ground truth videos. We collect videos from publicly avail-
able platforms such as Adobe Stock Adobe Stock (2024) and StoryBlocks Storyblocks (2024) for
all object-types, except for waterfall and river, for which we use data from the fluid-motion stock-
footage dataset Holynski et al. (2021). These platforms provide a diverse range of videos featuring
object motion, camera motion, and interactions (object-object, human-object, etc). To ensure ac-
curate evaluation of motion modeling capabilities, we adhere to specific constraints (listed below)
during data collection and preprocess the videos to compile a dataset of 1,000 videos, with 50 videos
for each object-type. Please refer to the appendix for further details.

1. Static Camera - All videos in our dataset have minimal to no camera motion. This allows
us to focus on the specific object movements, which is harder to isolate when there are
multiple moving components in the video.

2. Single Object of Focus - Our dataset consists of images and videos with a single object of
focus, centred in the frame, facilitating the study of object-specific motion properties.

3. Object-driven Motion - The motion in the ground truth videos primarily results from the
object of focus, making the dataset a reliable option to study the motion properties of
specific objects without distracting background movements.

4. Diversity in data - The collected videos exhibit diversity in FPS, recording angles, and
foreground and background characteristics (object color and shape).

3.2 PROMPT CURATION

We follow our motion categorization and design prompts that capture different motion properties
like smoothness, speed, and direction. Our prompts follow the following template “a cinemagraph
of object moving in direction, at a speed, captured with a stationary camera.” For each motion-type,
we have a pre-defined set of prompts, when put together leads to total of 5, 200 unique (input image,
prompt) pairs for evaluating image-to-video models. Please refer to appendix for more details.

4 EVALUATION OF IMAGE-TO-VIDEO MODELS

This section details our proposed evaluation suite, MMEval for image-to-video generation models -
beginning with the evaluation dimensions, followed by our proposed metrics.

4.1 EVALUATION DIMENSIONS

We begin by introducing key evaluation dimensions essential for assessing the motion modeling
capabilities of image-to-video generation models, along with the rationale for their selection. Our
focus is on four broad dimensions: 1) Motion Smoothness, 2) Motion Direction, 3) Motion Speed,
4) Overall Video Quality.

Motion Smoothness: This dimension assesses the model’s ability to generate realistic, non-jittery
videos by accurately understanding the nature of motion (trajectory of movement). We wish to
answer - Do the models inherently understand the natural motions of different object-types? For
example, a pendulum should move to-and-fro, while a waterfall should flow downwards naturally.
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Motion Direction: Direction is a key characteristic of motion that can be clearly specified in text.
A robust model should generate videos with diverse motion directions. We wish to answer - Do the
models adhere to the direction specified in the prompt? For example, for the prompt ”an escalator
moving up”, the generated video should have an escalator moving up, and not down.

Motion Speed: Speed is another crucial characteristic of motion that can be specified through
text. A robust model should be able to generate videos with various speeds of motions. We wish
to answer - Do the models understand the notion of speed when specified when indicated in the
prompt? Can they generate videos with varying motion speeds?

Overall Video Quality: We evaluate the consistency of the generated video with the initial input
image and its temporal coherence across frames.

4.2 EVALUATION METRICS:

We now present our proposed evaluation metrics for each of the aforementioned dimensions.

Preliminary We denote a generated video as vgen and the corresponding frames as
(igen0

, igen1
, ..., igent−1

), where t = number of frames. We compute optical flow F =
(f0, f1, ..., ft−1) = OpticalF low(vgen) of the video using RAFT Teed & Deng (2020), where
fk refers to flow computed between igenk

and igenk+1
. We use GroundingDINO Liu et al. (2023a),

followed by SAM Kirillov et al. (2023) to obtain the object region, (also the region of motion) for a
frame igenk

. GroundingDINO provides bounding box coordinates for the object, and SAM provides
finer masked region of the object.

x1k , x2k , y1k , y2k = GroundingDINO(igenk
, object) (1)

maskk = SAM(x1k , x2k , y1k , y2k) (2)

For any given fk, flow in the region of bounding box is denoted as fbbk (for flow between igenk
and

igenk+1
) and in cases where the bounding box region remains constant across frames, the flow for

the entire video is computed using x10 , x20 , y10 , y20 and is denoted as Fbb.

fbbk = fk[:, x1k : x2k , y1k : y2k ]

Fbb = F [:, :, x10 : x20 , y10 : y20 ]
(3)

4.2.1 MOTION SMOOTHNESS:
Linear Motion - Fluid Elements: Prior works have established that continuous fluid motion
such as flowing water or billowing smoke, can be modeled as a temporally constant 2D optical
flowmap Mahapatra & Kulkarni (2022); Holynski et al. (2021). We propose FC − Score (Flow-
Constancy score) to capture the constancy of optical flow values across time.

We compute optical flow F and obtain fluid region mask0 for igen0
using Equations 1 and

2. Since the region of fluid motion remains constant, mask0 is applied to all frames to obtain
masked flow Fmask = (f0 ∗mask0, f1 ∗mask0, ..., ft−1 ∗mask0). We next compute Fast-Fourier
Transform of Fx (flow in x-direction) and Fy (flow in y-direction) at each pixel to obtain Tx and
Ty , (Fx, Fy = Fmask[:, 0, :, :], Fmask[:, 1, :, :]) - Tx, Ty = FFT (Fx, Fy). We compute the energy
of the zeroth frequency component as follows: Ex =

∑
w,h |Tx|2 and Ey =

∑
w,h |Ty|2. Energy

in zeroth frequency Ex 0 freq = Ex[0]∑
f Ex

and Ey 0 freq =
Ey [0]∑

f Ey
To formulate the constant flow

property of fluids, we define FC − Score = (
Ex 0 freq+Ey 0 freq

2
) ∗ 100. For a constant

time-domain signal, the frequency-domain signal has the highest energy in the zeroth frequency
and zero elsewhere. For fluid motions, a high energy in the zeroth frequency component of the
frequency signal indicates smooth motion. However, note that it is crucial to also check motion
magnitude, as a still video may exhibit a high FC − Score despite no actual motion.

Linear Motion - Rigid Bodies: For smooth motion in rigid bodies moving linearly, all points in
the object region must move at the same speed, ensuring the entire object moves uniformly without
deformation, thus maintaining its shape and structure. We propose CS − Score (Constant-Speed
Score) to capture this property. This differs from fluid elements where each point in the object
region has fixed speed over time.
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For each pair of consecutive frames (igenk
, igenk+1

), we use fmaskk
and compute

the speed of motion at each pixel in maskk to obtain Sk =
√

(fxk
)2 + (fyk

)2. (
fxk

, fyk
= fmaskk

[0, :, :], fmaskk
[1, :, :]). At each timestamp k, we compute the standard de-

viation of the speeds: Sstd dev
k =

√∑pck (Sk−S̃k)2

pck−1
, where pck is the number of pixels in the

masked region maskk. We compute the average of standard deviations at each timestamp to arrive

at CS − Score =
∑t−1

k=0 Sstd dev
k

t−1
. In an ideal case, the standard deviation value should be 0 at

each timestamp, thus producing CS-Score=0, indicating constant speed of motion for all the pixels
in the object region.

Rotational Motion- For smooth rotational motion, every point on the rotating body should
move with consistent angular velocity. Instead of estimating angular velocity from 2D frames,
which requires identifying the axis of rotation and radius, we propose simpler method that can
approximate rotational motion using 2D-pixel values. (Note: Our dataset ensures complete views
of rotation, where pixel movement is circular.)

Our proposed metric q − Score is computed as follows - we first compute optical flow F .
Next, for each pair of consecutive frames (igenk

, igenk+1
), we determine the motion direc-

tion in the segmented region maskk for frame (igenk
). The motion direction at timestamp k

is given by θk = flattened(tan−1(
fyk
fxk

)).(( fxk
, fyk

= fmaskk
[0, :, :], fmaskk

[1, :, :])). We
then compute a histogram of these angles hfreqk = Histogram(θk, bins), where bins =
[−180◦,−150◦, ...0◦, ..., 30◦, ...150◦, 180◦] We then find difference between the frequency values
(D(hfreqk)) of complementary bins. By complementary bins, we mean that for bin in range
(−150◦,−180◦), the complementary bin is (0◦, 30◦). D(hfreqk) =

|hfreqk
[:6]−hfreqk

[6:]|
pck

. Our
final metric q − Score is computed by taking an average of D(hfreqk) across all the frames:
q − Score =

∑t−1
k−0 D(hfreqk). In an ideal case, for each pixel moving by θ ∈ [0, 180) in the

body performing rotational motion, there should be a complementary pixel moving in the opposite
direction −180◦ + θ. This would lead to D(hfreqk) = 0, and thus leading to q − Score = 0.

Oscillatory Motion - Small Displacements Oscillatory motions with small-displacements such
as trees, flowers, or candle flames moving in the breeze are primarily composed of low-frequency
components. Prior works have established that these types of motions are quasi-periodic and the
motion can be described as a superposition of a small number of harmonic oscillators represented
with different frequencies, amplitude and phases Chuang et al. (2005); Li et al. (2023). We propose
metric LF − Score (Low-Frequency Score) to capture the presence of low-frequency components.

In the case of flowers and leaves, there is no need to segment out the object region as 1) the
region of movement is spread across the frame and localizing specific parts of the frame would
lead to loss of information, and 2) the background is fairly consistent across frames, thus con-
tributing to the 0-freq component, which will be included in the low-frequency component. In
the case of candles, we consider the bounding box region for igen0

and keep it fixed for all the
frames (Equation 1). We compute optical flow F for flowers and leaves, and Fbb (Equation 3
for candles. From F or Fbb, we obtain the flow in x and y direction, denoted as Fx and Fy .
Next, we compute Fast-Fourier transform to obtain Tx, Ty = FFT (Fx, Fy), and compute the
energy at different frequencies as mentioned before - Ex =

∑
w,h |Tx|2, Ey =

∑
w,h |Ty|2

We then calculate the percentage of energy in low frequency components (lf is the number
of low-frequency components considered). For lfnum = 25% of low-frequency components,

lf = 0.25× (t− 1). Ex 25% freq =
∑lf

j Ex[j]∑
f Ex fft

and Ey 25% freq =
∑lf

j Ey [j]∑
f Ey fft

. Our metric is defined

as LF − Score = (
Ex 25% freq+Ey 25% freq

2
) ∗ 100. A higher percentage of energy in the

low-frequency components indicates smoother video quality. The value of lfnum is determined
based on the video length (Section 5.1).

Oscillatory Motion - Large Displacements Oscillatory motions with large displacements, such
as those of a pendulum, metronome, or swing, are periodic. The to-and-fro motion is repetitive and
when the generated videos align with this repetitive nature, the observed motion is smooth.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To evaluate this, we compute a distance-matrix (Zgen of dimension t × t) for frames
vgen = (igen0

, igen2
, ..., igent−1

) by calculating pair-wise Euclidean distance: Zgen(i, j) =
||V (i) − V (j)||2, where V is the flattened tensor of all frames igen0

, igen1
, ..., igent−1

. Visualizing
the distance-matrices, reveals clear patterns for oscillatory motions (Figure 1). Motivated by these
observations we propose a method to identify oscillatory motions using the symmetric distance
matrix Z. For oscillatory motions, Z displays clear repetitive patterns, setting it apart from
non-oscillatory motions. To capture these patterns, we compute Local Binary Pattern (LBP) Ojala
et al. (2002) descriptors from the matrix visualization image. We train a linear SVM Cortes (1995)
using LBP features of distance matrices of ground truth videos to classify between repeptitive and
non-repetitive patterns. For our training data, all the distance-matrices computed for Oscillatory
motions with large displacements are labelled as oscillatory and the other non-oscillatory ones are
labelled as non-oscillatory. Our metric P − Score (Periodicity Score) is the inference stage of the
model. P − Score = 1 if SV M(distmat) == oscillatory else 0.

rocking chair        metronome             pendulum                swing                 toy horse

Figure 1: Visualization of distance matrices computed for various videos provided in the benchmark
dataset across different object-categories in oscillatory motions displaying large displacements.

rocking chair        metronome             pendulum                swing                 toy horse

Figure 2: Visualization of distance matrices computed for different videos generated by different
methods across different object-categories in oscillatory motions displaying large displacements.

4.2.2 MOTION DIRECTION:
We evaluate the model’s ability to generate videos with diverse motion directions and its adherence
to specific directions specified in prompts. However, it’s important to note that motion direction in
the physical world doesn’t always correspond directly to pixel changes, primarily due to the projec-
tion of 3D world onto a 2D space. Our dataset is curated to include images with clear orientations
and straightforward views of objects.

Linear Motion For linear motion, our benchmark contains images that categorize pixel movement
into one of four directions: left to right, right to left, upward, and downward, avoiding ambiguous
terms like “towards the camera, etc.” We create image-prompt pairs as - “a cinemagraph of object
moving in direction 1, captured with a stationary camera” and “a cinemagraph of object moving
in direction 2, captured with a stationary camera”. For fluid elements, we obtain the region of
fluid motion mask0 once for the first frame igen0

using Equations 1 and 2, and use it for all the
remaining frames. In the case of rigid bodies, we compute the region of motion for each frame to
obtain mask0,mask1, ...,maskt−1, and then obtain fmaski

= fi ∗ maski. To accurately capture
the direction of motion in pixel space, we count the number of positive and negative flow values
in both the x-direction (xflow) and y-direction (yflow) and check for the predominant direction
of motion (Table 2). For instance, Left-to-Right motion should contain a majority of positive xflow

values. We aggregate the value Dir(fmaski) across all frames to obtain our metric Dir−Score =∑
t−1 Dir(fmaski

)

t−1

Rotational Motion Evaluating rotational direction in generated videos is challenging as the di-
rection perceived can vary with the viewer’s line of sight and the object’s orientation. We therefore
exclude motion direction from our evaluation of rotational motions.

6
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Table 2: Motion direction computation. I(·) function returns 1 if the condition is true, 0 otherwise.
Motion Type Direction Formula

Left-to-Right Dir(fmaski) = 1 if
∑

i,j∈P I(xflow(i, j) > 0) >
∑

i,j∈P I(xflow(i, j) ≤ 0) else 0
Right-to-Left Dir(fmaski) = 1 if

∑
i,j∈P I(xflow(i, j) < 0) >

∑
i,j∈P I(xflow(i, j) ≥ 0) else 0

Downward Dir(fmaski) = 1 if
∑

i,j∈P I(yflow(i, j) > 0) >
∑

i,j∈P I(yflow(i, j) ≤ 0) else 0
Upward Dir(fmaski) = 1 if

∑
i,j∈P I(yflow(i, j) < 0) >

∑
i,j∈P I(yflow(i, j) ≥ 0) else 0

Oscillatory Motion For oscillatory motion, the notion of direction is not applicable as the move-
ment involves a to-and-fro pattern and is defined by its repetitive cycle. Hence, we do not evaluate
videos of oscillatory motion for motion direction.

4.2.3 MOTION SPEED:
To evaluate the model’s understanding of motion speed, we use three prompts - “moving
at a slow pace, moving at a moderate pace, moving at a fast pace” to generate videos
vgens1

, vgensp2
, vgens3

for each input-image. For each video, we compute the motion magnitude as -

MotionMagnitude =

∑t
k=0

∑pck
i=0

√
f2
xki

+f2
yki

(t−1)∗(pck) , where pck refers to the number of pixels in the seg-
mented region. We obtain three values corresponding to the three generated videos - mms1,mms2,

and mms3. Our metric Speed-Score =
{
1, if mms1 < mms2 and mms2 < mms3

0, else

4.3 OVERALL VIDEO QUALITY:

We evaluate the model’s ability to generate videos that are both consistent with the initial input image
and temporally coherent. For both our metrics, we use the pretrained ViT-B/32 CLIP model Radford
et al. (2021) as the feature extractor.
CLIP −Score : To quantify the similarity between the input image and the frames of the generated
video, we utilize the CLIP-Score. We obtain the CLIP embeddings for the input image and the
individual frames of the video. The cosine similarity between these embeddings is then calculated,
and the overall CLIP-Score is the average of the individual scores across all frames. CLIP −
Score =

∑t−1
0 (cos(CLIP (igent),CLIP (img)))

t
.

CLIP − Temp : To assess temporal consistency, we compute CLIP-Temp, which evaluates the
similarity between consecutive frames. Given that the primary differences between two frames
occur in the regions of motion, which change subtly from one frame to the next, this metric al-
lows for a more precise evaluation. We compute the cosine similarity between the CLIP em-
beddings of each pair of consecutive frames in the video and report the average value. This ap-
proach aligns with methodologies used in previous works Liu et al. (2023b). CLIP − Temp =∑t−2

0 (cos(CLIP (igent),CLIP (igent+1
)))

t−1
.

5 EXPERIMENTS AND RESULTS

We generate videos using the proposed benchmark for 5 state-of-the-art image-to-video generation
methods - DynamiCrafter Xing et al. (2023), ConsistI2V Ren et al. (2024), SparseCtrl Guo et al.
(2023), I2V-GenXL Zhang et al. (2023), and Open-SORA Zheng et al. (2024). We generate all the
videos for our benchmark at the default resolutions of the model. For fair comparison, and evaluation
of these models, we resize and center-crop all the generated videos to 256× 256 before conducting
our experiments. Details of the models, sampling process and resolution are in the appendix.

5.1 MOTION SMOOTHNESS:

We collect all videos generated for the prompt “a cinemagraph of object moving, captured with
a stationary camera” to evaluate motion smoothness, using the metrics discussed in Section 4.2.1.
This prompt serves as a baseline to assess the model’s inherent capability to animate specific motion-
types, while other prompts introduce complexity through notions of speed and direction. This setup
leads to a total of 20*50 generated videos, along with 20*50 corresponding ground truth videos. We
compute metrics for videos of all object-types, according to their motion-type and report the average
values. We also report the metric values on ground truth videos to establish expected benchmarks.
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Note: our metrics include an initial object detection stage using GroundingDINO Liu et al. (2023a)
and/or SAM Kirillov et al. (2023) on the first frame. Videos failing this detection are excluded, as
motion assessment is irrelevant in the absence of the main object.

Linear Motion: Fluid Elements Table 3 reports the FC−Score results. We find that ground truth
videos achieve over 65% FC − Score for all object-types except fire, which is affected by rapid
movement of blazing fire, leading to higher frequency components. Although the FC − Score
for fire is below 65%, it remains above 50%, indicating a significant zeroth frequency compo-
nent. Among diffusion model baselines, I2V-GenXL performs best for water-based motions like
rivers and waterfalls. The low FC − Score for object types other than fire suggests flicker-
ing or abrupt, unrealistic pixel changes. The performance for clouds is similar across all base-
lines. Please refer to the appendix for generated videos, along with the computed FC − Score.

Table 3: Results for FC − Score on fluid elements for all
baselines. The higher the score, the smoother the motion
quality.

FC-Score

Method river waterfall clouds smoke fire all

ConsistI2V 38.16 34.79 60.47 46.37 49.74 45.91
DynamiCrafter 42.98 34.08 62.93 47.95 25.56 42.8
I2V-GenXL 63.6 64.66 55.48 42.12 19.17 49.01
Open-Sora 39.46 67.29 56.31 69.79 35.09 53.59
SparseCtrl 36.34 40.97 65.46 55.59 33.56 46.39
FluidAnimation 72.73 86.31 79.11 77.39 70.84 78.65
Ground truth 66.08 77.77 85.62 73.02 52.51 71.14

To compare the performance of dif-
fusion models with GANs, we eval-
uated videos generated by a GAN-
based model for fluid animation Ma-
hapatra & Kulkarni (2022) (FluidAn-
imation in Table 3). This model,
trained explicitly for fluid elements
by modeling constant flow, outper-
forms all other methods. Inter-
estingly, the FC − Score for the
GAN-based model exceeds that of
the ground truth. This suggests that
while it generates smoother fluid an-
imations, its overly smooth nature
makes it less relistic. Thus, it’s essential to align model outputs closely with the ground truth val-
ues. Overall, we observe that baseline models can model fluid motion, but they fail to consistently
generate accurate motion, resulting in lower average scores.

Linear Motion: Rigid Bodies Table 4 presents the SC − Score results, and shows that ground
truth videos have values close to 0, while generative models exhibit higher values. The lowest SC−
Score is observed for escalators, suggesting that I2V models effectively capture this linear motion
due to the similarity across escalator videos (often black with yellow stripes) and their constant
motion region, making inpainting easier compared to object-types like cable cars, conveyor belts,
and vehicles. I2V-GenXL has a very high value of SC − Score = 10.07 for conveyor belts,
indicating abrupt and jittery motion. We observe that, all models perform poorly with conveyor
belts, likely due to the complexity of varying luggage types moving rapidly in and out of view.
Additionally, models generally perform better with cable cars than with vehicles, which include a
variety of types like trains, buses, and airplanes, indicating challenges in handling certain vehicles -
traisn, and airplanes. Overall, OpenSora and DynamiCrafter struggle with linear motion generation
for rigid bodies. The poor performnace of models for htis motion-type can be attributed to the
complexity of inpainting as the object moves.

Rotational Motion: Table 5 presents the q− Score results. Lower values for ground truth videos
highlights the effectiveness of our metric. The models perform better for ferris wheels and vehi-
cle wheels than for ceiling fans, likely due to the uniform appearance of wheel-like objects, which
simplifies motion modeling compared to the more complex structure of ceiling fans. Overall, Dy-
namiCrafter demonstrates strong performance across all object types, while OpenSora exhibits the
weakest performance.

Oscillatory Motion: For oscillatory motion with large displacements, ground truth videos have
FPS values ranging from 23 to 60 and durations ranging from 1 to 3 seconds. Since our metric for
both small and large oscillations analyzes either the frequency signal or the distance matrix of video
frames, we ensure that the FPS and duration of the ground truth videos match those of the generated
videos. To achieve this, we sample frames from the ground truth video to obtain a sequence at FPS 8
and trim the video to maintain an average duration of approximately 2 seconds.

SMALL DISPLACEMENTS: Table 6 presents the LF − Score results. It indicates that all models
exhibit significantly lower energy in low-frequency components compared to ground truth videos,
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Table 4: Results for CS−Score on rigid bod-
ies. Lower value indicates smoother motion.

CS − Score

Method cable conveyor escalator vehicle all
car belt

ConsistI2V 1.45 4.24 2.91 2.36 2.74
DynamiCrafter 3.84 9.96 3.04 5.48 5.58
I2V-GenXL 1.17 10.07 2.85 3.84 4.48
Open-Sora 2.15 9.08 2.71 6.09 5.01
SparseCtrl 0.71 3.7 1.58 1.71 1.92
Ground truth 1.34 0.1 0.7 1.14 0.82

Table 5: Results for q−Score for rotational mo-
tion. Lower value indicates smoother motion.

q − Score

Method ceiling ferris vehicle all
fan wheel wheels

ConsistI2V 0.64 0.4 0.52 0.56
DynamiCrafter 0.58 0.41 0.6 0.53
I2V-GenXL 0.75 0.54 0.57 0.59
Open-Sora 0.78 0.83 0.75 0.77
SparseCtrl 0.68 0.4 0.66 0.46
Ground truth 0.45 0.27 0.38 0.5

which is 70%. This suggests that the generated videos may be jittery and lack smoothness. Among
the models, SparseCtrl achieves the highest score. We also evaluated videos generated by Generative
Image Dynamics Li et al. (2023), which was explicitly trained for this motion-type. Since their code
is not open-sourced, we utilize the 14 videos available on their website (2 for candles, 7 for flowers,
and 5 for leaves). This method clearly outperforms all other generic image-to-video models. We set
lfnum = 25% because this translates to roughly ∼ 0.25 ∗ 8 = 2 frequencies.

Table 6: Results for LF − Score
on small oscillations. Higher val-
ues for lower lfnum values indi-
cate smooth generations.

Method 15% 25% 50%

ConsistI2V 25.90 25.90 41.98
DynamiCrafter 17.69 17.69 42.04
I2V-GenXL 14.3 21.2 47.94
Open-Sora 18.79 18.79 43.77
SparseCtrl 25.9 25.9 66.41
Gen-Img 16.75 33.77 72.87
Ground truth 53.42 70.61 83.1

Table 7: Results for p − Score
on large oscillations. The per-
centage indicates the proportion
of generated videos exhibiting
oscillations, with a higher value
reflecting better modeling ability
of the baseline.

Method True %

ConsistI2V 0
DynamiCrafter 0
I2V-GenXL 0
Open-Sora 0
SparseCtrl 0
PikaLabs 38.8

Table 8: Results for
Dir − Score on linear
motion. The value indi-
cates the model’s accuracy
in generating correct mo-
tion direction.
Method Fluids Rigid

Elements Bodies

ConsistI2V 0.51 0.42
DynamiCrafter 0.54 0.39
I2V-GenXL 0.48 0.44
Open-Sora 0.49 0.43
SparseCtrl 0.53 0.48
Ground truth 0.99 0.91

LARGE DISPLACEMENTS: To ensure fair evaluation, the SVM is trained on distance matrices of
ground truth frames, post sampling (FPS∼ 8, duration∼ 2 seconds). As reported in Table 7, all
methods perform poorly on this motion type. Figure 2 shows distance-matrix visualizations for
generated videos, where most do not exhibit any patterns, indicating lack of periodicity, and poor
motion quality. This highlights that even large-scale generative models trained on millions of videos
fail to capture basic oscillatory motion. We also report results on PikaLabs Pika Labs (2024) as their
motion generation quality is better than the rest for this motion-type, serving as a validation for the
correctness of our metric.

5.2 MOTION DIRECTION:

The setup described in Section 4.2.2 results in a total of 9 ∗ 50 ∗ 2 generated videos per baseline +
corresponding 9 ∗ 50 ground truth videos (only in one direction). We compute the metrics outlined
in Section 4.2.2 for both generated and ground truth videos and report the average Dir − Score in
Table 8. The Dir − Score ∼ 0.5 indicates that the model is able to generate the correct direction
only 50% of the time, suggesting it produces the same motion direction for different prompts. This
highlights the inability of generative models to produce videos with directional diversity.

5.3 MOTION SPEED:

The setup described in Section 4.2.3 leads to a total of 20 ∗ 50 ∗ 3 generated videos per base-
line, where 3 signifies the varying speed prompts. Table 9 presents results for Speed − Score.
For instance, the score of 0.2 for OpenSora in the Linear-Fluids category indicates it gener-
ates prompt-consistent motion speeds for only 20% of the input sets. The results show that
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Consist-I2V and Sparse-Ctrl demonstrate better capabilities in understanding speed from text-
prompts and generating videos with varying motion speeds. However, the overall low scores
across all the models indicate - a) generative models struggle to accurately understand speed
from text, b) models lack the ability to model and generate videos with diverse motion speeds.

Table 9: Results for Speed−Score on all motion types. The
value indicates the model’s accuracy in generating correct
motion speeds.
Method Linear Linear Rotational Oscillatory Oscillatory

Fluids Rigid Small Large

ConsistI2V 0.34 0.39 0.32 0.21 0.38
DynamiCrafter 0.18 0.13 0.18 0.19 0.14
I2V-GenXL 0.19 0.17 0.19 0.21 0.23
Open-Sora 0.2 0.22 0.23 0.17 0.19
SparseCtrl 0.3 0.19 0.31 0.27 0.24

5.4 OVERALL VIDEO QUALITY:

Table 10 presents CLIP−Score and
CLIP − Temp results. ConsistI2V
and I2V-GenXL perform the best on
CLIP −Score, indicating high con-
sistency with the input image, while
Sparse-Ctrl performs the weakest. In
terms of temporal consistency across
generated frames (CLIP − Temp),
we see that SparseCtrl performs the
best. This indicates that models
generating temporally smooth videos
might not always maintain input-image consistency. Overall, we observe that the generative models
fail to produce videos as consistent with the input image as the ground truth videos.

Table 10: Evaluation Dimension - Overall Video Quality
CLIP-Score CLIP-Temp

Method Linear Linear Rotational Oscillatory Oscillatory Linear Linear Rotational Oscillatory Oscillatory
Fluids Rigid Small Large Fluids Rigid Small Large

ConsistI2V 95.28 93.32 93.69 95.39 93.18 98.91 97.45 97.09 98.99 97.25
DynamiCrafter 93.92 90.9 90.73 93.29 89.64 98.92 97.39 96.79 98.75 96.73
I2V-GenXL 95.51 93.38 92.69 95.57 92.59 98.48 98.08 96.51 98.71 97.93
Open-Sora 93.03 89.86 90.26 94.52 90.63 98.21 96.89 97.21 98.4 97.59
SparseCtrl 92.82 89.54 88.32 92.16 88.08 99.16 98.67 98.48 99.38 98.18
Ground truth 99.06 97.84 98.44 99.25 98.54 99.76 99.67 99.13 99.87 99.67

6 DISCUSSION AND CONCLUSION:

Discussion: We find that different models exhibit varying performance across different motion
types, indicating that no single model is adept at capturing all motion types comprehensively.
Some models excel at fluid motion, while others handle small oscillations reasonably well.
However, none effectively model linear motion of rigid bodies, large oscillations or the nuances
of rotational motion. Moreover, models trained specifically for a certain motion type—whether
GAN or diffusion-based—tend to perform better than the generic models. All models struggle with
understanding and generation varying directions and speed. This analysis highlights the need to
improve motion modeling capabilities of generative models, while also focusing on building better
evaluation metrics.

Conclusion: With growing interest in video generations, particularly image-to-video genera-
tions, there is a pressing need for systematic evaluation of generated outputs to accurately assess
current models and guide the development of new ones. A significant limitation of the existing
video generation models lies in their ability to learn and model motion properties. To address
this, we propose MMEval, a principled approach to assess image-to-video generation models for
their motion modeling capabilities. We evaluate state-of-the-art models on motion smoothness,
direction, speed, and overall video quality across three fundamental motion types: linear, rotational,
and oscillatory. Our experiments highlight the strengths and weaknesses of these models, providing
insights for future research. This work serves as the first step in establishing an evaluation
methodology for the motion modeling abilities of video generation models, and we hope our work
encourages further research into more complex motion aspects. Limitations: Our focus is restricted
to three basic motion types in simple scenarios, and excludes cases involving multiple moving
objects, object interactions and camera movements.
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A DATA COLLECTION AND PRE-PROCESSING

The videos for our dataset are collected from Adobe Stock Adobe Stock (2024), Storyblock Story-
blocks (2024) and fluid-motion stock-footage dataset Holynski et al. (2021). The data collected from
public platforms like AdobeStock and Storyblocks range from 1 second to 2 minutes in duration.
We temporally segment these videos to obtain multiple smaller video segments of 2 seconds. After
pre-processing, we obtain a dataset of 1000 videos - with 50 videos for each object-type mentioned
above (50 videos of river, 50 videos of waterfall, 50 videos of cable car, 50 videos of ferris wheel,
50 videos of flowers, and so on.) The FPS of videos in our dataset ranges from 23 to 60, with an
average FPS of 30. The final videos range from 1 second to 18 seconds in duration, with an average
duration of 2 seconds.

B PROMPT CURATION

For all the motion-types, we have a default prompt of the kind - “a cinemagraph of object moving,
captured with a stationary camera”. For linear motion, we have 2 direction prompts per image such
as - downwards, upwards, and left-to-right, right-to-left. For circular motion, we have 2 direction
prompts per image - clockwise, counter-clockwise. For oscillatory motion, we don’t have direction
prompts as the motion is a to-and-fro motion. For all motion categories, we have 3 types of speed
prompts - slow, moderate and fast. By following the above prompt template, along with the above-
described motion dimensions, we arrive at 6 prompts per datapoint for linear and circular motion,
and 4 prompts per datapoint for oscillatory motion. This leads us to a dataset of size (6 ∗ 12 + 4 ∗
8) ∗ 50 = 5, 200. This means that we have 5, 200 unique (input image, prompt) pairs for evaluating
image-to-video models.

C DETAILS OF BASELINE MODELS

The official model discussed in the work DynamiCrafter Xing et al. (2023) operates at 256 × 256
resolution, and generates 16 frames with FPS = 8 in the default setting. I2VGen-XL Zhang et al.
(2023) first generates a low-resolution video at 448 × 256 and improves the resolution to 1280 ×
720 in the refinement stage to produce an output video of resolution 1280 × 720. In the default
setting, ConsistI2V Ren et al. (2024) is trained to generate videos of resolution 256 × 256. For
SparseCtrl Guo et al. (2023), we set the default resolution as 512× 512 as specified in their official
code. Open-SORA supports 256× 256 resolution for image-to-video generation, and hence we use
this resolution for all our generations.

D GENERATED VIDEOS AND EVALUATION SCORES.

Figure 3 displays videos that have been generated by the baseline models for inputs from our bench-
mark. The three videos corresponding to three different generations and the FC − score is listed
below. We can clearly see that our proposed metric is able to clearly capture the good quality mo-
tion video and scores the bad-quality outputs much lesser. Please note that these are playable videos,
click on them to compare the generations.

Figure 3: Case 1: 20.87; Case 2: 93.07; Case 3: 22.64
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