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Abstract
Collecting large-scale multi-label data with full labels is difficult for
real-world scenarios. Many existing studies have tried to address
the issue of missing labels caused by annotation but ignored the
difficulties encountered during the annotation process. We find that
the high annotation workload can be attributed to two reasons: (1)
Annotators are required to identify labels on widely varying visual
concepts. (2) Exhaustively annotating the entire dataset with all the
labels becomes notably difficult and time-consuming. In this paper,
we propose a new setting, i.e. block diagonal labels, to reduce the
workload on both sides. The numerous categories can be divided
into different subsets based on semantics and relevance. Each anno-
tator can only focus on its own subset of labels so that only a small
set of highly relevant labels are required to be annotated per image.
To deal with the issue of such missing labels, we introduce a simple
yet effective method that does not require any prior knowledge of
the dataset. In practice, we propose an Adaptive Pseudo-Labeling
method to predict the unknown labels with less noise. Formal analy-
sis is conducted to evaluate the superiority of our setting. Extensive
experiments are conducted to verify the effectiveness of our method
on multiple widely used benchmarks.

CCS Concepts
• Computing methodologies→ Object recognition.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3680793

Keywords
Multi-label classification, Missing labels, Pseudo labels

ACM Reference Format:
Leqi Shen, Sicheng Zhao, Yifeng Zhang, Hui Chen, Jundong Zhou, Pengzhang
Liu, Yongjun Bao, and Guiguang Ding. 2024. Multi-Label Learning with
Block Diagonal Labels. In Proceedings of the 32nd ACM International Con-
ference on Multimedia (MM ’24), October 28-November 1, 2024, Melbourne,
VIC, Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3664647.3680793

1 Introduction
Image classification [21, 32] is a fundamental and important re-
search area in the computer vision community. Unlike single-label
classification, images for multi-label classification usually contain
complex scenes with several objects [42–44]. Due to the extensive
number of categories, collecting a realistic large-scale dataset with
complete labels is notably laborious [10, 20]. Consequently, an-
notators inadvertently overlook certain objects [37], resulting in
missing labels.

Previous works study multi-label classification with missing la-
bels in the settings of partial labels [13] and single positive labels
[7]. The simulation of partial labels annotates each image with
a fixed number of categories to study unannotated labels. In or-
der to explore the minimal supervision, only one positive label is
annotated per image in single positive labels. Both settings are em-
ployed to investigate the unannotated labels caused by annotation
while neglecting the annotation challenges encountered during the
annotation process.

As shown in Fig 2.(a), the general annotation pipeline for multi-
label classification is that the annotators first learn the visual con-
cepts and differences of all categories, and then annotate a large
number of images with complete labels. The high annotation work-
load for multi-label classification can be attributed to two reasons.
(1) Learning: Annotators are required to identify labels on widely
varying visual concepts, which can take a lot of effort. The large
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(b) partial labels
Figure 1: Illustration of full labels, partial labels, single positive labels, and the proposed block diagonal labels on a dataset with
15 images {𝐼𝑖 }15𝑖=1 and 10 categories

{
𝐶 𝑗

}10
𝑗=1. Each row shows the label vector of an image. The annotation matrix consists of all

label vectors. For each image, all categories are annotated in (a) full labels, a fixed portion of random categories are annotated in
(b) partial labels, one category is annotated with positive label in (c) single positive labels, and a subset of interrelated categories
are annotated in (d) our proposed block diagonal labels.

Categories Images

① learning ② annotating

② annotating① learning

annotators

Categories Images

(a) The general annotation pipeline.

(b) The annotation pipeline of block diagonal labels.
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Figure 2: (a) The general annotation pipeline. The annotators
first learn the visual concepts and differences of all categories
and then annotate all the images. (b) The annotation pipeline
of block diagonal labels. Categories can be partitioned into
different subsets according to semantics and relevance. The
annotators simply focus on their own block, so that the an-
notators can individually annotate a smaller dataset with a
subset of highly relevant labels.

size of the data requires a lot of highly skilled annotators. (2) An-
notating: As the number of to-be-annotated images and categories
grows, exhaustively annotating the entire dataset with all the labels
becomes notably difficult and time-consuming.

In light of the aforementioned two aspects, we propose a new
setting of multi-label classification with block diagonal labels. As de-
picted in Fig 1.(d), the block diagonal labels setting exhibits similarity
with block diagonal matrices whose diagonal contains blocks of
smaller matrices. Each block corresponds to a single coarse label. In
both online resources and existing single-label datasets, numerous
images are accompanied by coarse labels. Furthermore, well-trained
single-label classifiers have the capacity to obtain coarse labels for
unannotated images. For these reasons, coarse labels are readily
available. Therefore, we propose to annotate the multi-label dataset
by utilizing the prior coarse label present in each image. Fig 3 shows
some image examples with coarse labels, where categories in the
block are labeled.

The annotation process for block diagonal labels, as illustrated in
Fig 2.(b), consists of two stages: (1) All categories are partitioned into
distinct coarse labels according to their semantic similarities. The
unannotated images are grouped based on their respective coarse
label. These categories and images, which belong to the same coarse
label, form a specific block in Fig 1.(d). Each annotator is responsible
for only one of these blocks, learning the semantic knowledge of
the labels within that block. (2) Annotators individually perform
annotations of their designated block. For instance, the annotator
𝐴 can only focus on Block#1 in Fig 2.(b).

The primary advantage of block diagonal labels is that annotators
can purely concentrate on their assigned block, which contains a
compact subset of highly relevant labels, significantly smaller than
the complete set of labels. As a result, training annotators to learn
visual concepts is more efficient, and the number of annotated labels
required per image is greatly reduced. Therefore, the proposed block
diagonal labels setting can readily obtain a large-scale dataset with
a great number of labels.

Unknown labels are still the core problem in the block diagonal
labels setting. We propose a simple yet effective method to deal
with the problem of unknown labels. A naive approach is to use
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Coarse Label: food
Block Diagonal Labels : 

banana, broccoli, carrot

Full Labels:
bowl, banana, broccoli, carrot, 
chair, dining table, laptop

Coarse Label: vehicle
Block Diagonal Labels : 

car, motorcycle, bus, truck

Full Labels:
person, backpack, handbag, car, 
motorcycle, bus, truck, traffic light, 
fire hydrant

Coarse Label: animal
Block Diagonal Labels : 

cat, dog

Full Labels:
person, car, cat, dog

Coarse Label: sports equipment
Block Diagonal Labels : 

sports ball, baseball bat, baseball glove

Full Labels:
person, sports ball, baseball bat, 
baseball glove, tv

Figure 3: Example of images in COCO2014 with the full labels and block diagonal labels settings. In full labels, all categories
are labeled in each image. As for block diagonal labels, images have a coarse label prior. The categories belonging to the same
coarse label as the image are labeled.

a hard threshold to distinguish true negative labels, but it will
inevitably introduce some noise. Thus, we propose an adaptive
pseudo-labeling method that dynamically adjusts the threshold to
reduce the noise for labeling the unknown labels. Any relationships
between categories or prior statistics of data are not involved in
our method, which can be regarded as a strong baseline.

To evaluate the effectiveness of our proposed setting, we con-
duct a formal analysis of the annotation workload. In addition, we
compare with state-of-the-art methods in our setting. We artifi-
cially create the block diagonal labels datasets from VOC2012 [14],
COCO2014 [23], NUSWIDE [6]. We extend this evaluation on a
more extensive scale, utilizing the large-scale dataset OpenImages
[22]. The block divisions are modified according to the category
hierarchies of the published papers. Our method significantly out-
performs the existing baselines and achieves state-of-the-art per-
formance: 81.92% mAP on COCO2014 with 9.31% annotated labels
and 63.26% mAP on NUSWIDE with 15.60% annotated labels.

The contributions are summarized in three-fold: (1) We argue
the difficulty of producing realistic large-scale multi-label datasets
from two aspects: learning and annotating, which are neglected
in partial labels and single positive labels. (2) We propose a new
multi-label classification setting with block diagonal labels where
annotators can simply concentrate on their assigned block to re-
duce the annotation workload and positive labels are guaranteed
per image. (3) We propose a strong baseline to adaptively predict
unknown labels without any prior of datasets or categories, which
achieves state-of-the-art performance.

2 Related Work
2.1 Multi-label Learning with Full Labels
There are a lot of remarkable works in the field of multi-label learn-
ing. An important direction is to model correlation between labels
via graph neural networks [2, 4, 5, 39] or transformer structure
[25, 31]. [31] predicts labels through queries and extracts local dis-
criminative features adaptively for different labels. Another key

characteristic of this field is the inherent positive-negative imbal-
ance. [29] dynamically focuses on the hard samples and controls the
contribution propagated from the positive and negative samples.

2.2 Multi-label Learning with Missing Labels
The setting of [40] significantly differs from ours. In [40], the can-
didate set (positive labels) for each image includes both relevant
(true positive) and irrelevant (noisy) labels. In contrast, more recent
studies have focused on missing labels, where not all positive labels
are annotated. Many works [13, 17, 46] focus on the optimization
of the loss function. [13] is the first work to train a deep neural
network for partial labels, which introduces partial-binary cross
entropy. [17] proposes to reject or correct the large loss samples to
prevent the model from memorizing the noisy label. [46] proposes
Hill to down-weight negatives and self-paced loss correction to
correct potential unknown labels. There are some works [1, 7, 16]
that estimate unknown labels by the label prior or correlation. Some
other works [3, 13, 27, 34] require extra complex architectures.

Different from the exiting missing labels setting, the novel block
diagonal labels setting is introduced to take the annotators’ learning
and annotating process into consideration. Instead of modeling
label correlation and using the dataset priors or extra architectures,
we propose to adaptively predict unknown labels by dynamically
adjusting the thresholds in the training process.

3 Block Diagonal Labels
3.1 Comparison with Other Settings
In order to reduce the annotation workload, recent works mainly
focus on the missing labels setting, which annotates a small sub-
set of positive and negative labels. We demonstrate the difference
between the full labels and existing missing labels settings based
on the example in Fig 1. The dataset has 15 images {𝐼𝑖 }15𝑖=1 and
10 categories {𝐶𝑖 }10𝑖=1. In the full labels setting, all categories are
completely annotated for a given image. Positive labels are marked
in red and negative labels are marked in blue. Each row shows
the label vector for each image. Fig 1.(a) illustrates the annotation
matrix with the full labels setting.
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UnknownNegativePositive Ignore

(a) All Ignore

GT

Modified GT

(b) All Negative

GT

Modified GT

(c) Hard Pseudo-Labeling

GT

Modified GT

Prediction

(d) Adaptive Pseudo-Labeling

GT

Modified GT

Prediction

Hard threshold Dynamic threshold

Figure 4: Different strategies for handling unknown labels given an example with ground-truth labels. (a) AI ignores all
unknown labels whose loss will not be calculated. (b) AN assumes all unknown labels as negative. (c) HPL utilizes hard
thresholds to find the true negative labels. (d) APL applies dynamic thresholds to obtain negatives with less noise.

As for the missing labels setting, the unknown labels are anno-
tated in gray. The partial labels and single positive labels settings
for missing labels are widely studied by previous works. Fig 1.(b)
shows the partial labels setting, which annotates each image with a
small number of labels. Related works manually generate the partial
labels dataset, where each image is randomly selected with a fixed
portion of categories as annotations and the others are assumed
to be unknown. Since the number of positive labels per image is
small on the existing dataset, partial labels will inevitably produce
images without positive labels, which does not match the truemiss-
ing labels setting. Furthermore, Fig 1.(c) shows the single positive
labels setting, which annotates one positive label per image, and no
additional negative or positive labels are provided. This setting has
the least supervision on the multi-label task. However, the scarce
supervision greatly limits the performance.

Our proposed block diagonal labels setting also belongs tomissing
labels. In each block, the images have the same coarse label as
the category subset. In Fig 1.(d), each image is annotated with
only one subset of categories. The labels in the same subset are
correlated and the number of labels in each subset is small. This
facilitates annotators in easily annotating the specified subset of
labels. Accordingly, we assume in the experiment that labels within
each subset are fully annotated. When subset 𝑆𝑖 is annotated by its
annotator, the other subsets

{
𝑆 𝑗 | 𝑗 ≠ 𝑖, 𝑗 = 1, 2, 3

}
are ignored. As a

result, labels of other subsets are considered unknown.
In practical applications, an image may contain multiple coarse

labels, each of which can be simultaneously annotated by differ-
ent annotators. Each annotator is responsible for their designated
block, enabling the parallel processing of annotations. These find-
ings suggest that our setting is suitable for complex real-world
label distributions. However, our study on block diagonal labels
investigates a more extreme scenario, where an image is associated
with only a single coarse label, as illustrated in Fig 1.(d).

3.2 Analysis on Annotation Workload
To demonstrate the superiority of our block diagonal labels, we
conduct simulation and analysis of different settings, given a dataset
of 𝑁 images and𝑀 categories which are divided into 𝑂 blocks. 𝑁𝑖

indicates the number of images in block 𝑖 and 𝑀𝑖 indicates the
number of categories in block 𝑖 . Each block requires at least one

annotator, so we make the assumption that there are a total of 𝑂
annotators.

From learning, we assume that the cost of learning category 𝑖
is 𝑝𝑖 . In the other settings, all annotators are required to learn all
the categories, resulting in a cost of𝑂 ×∑𝑀

𝑖=1 𝑝𝑖 . However, in block
diagonal labels, each annotator only learns the categories within
their assigned block, significantly reducing the cost to

∑𝑂
𝑗=1

∑𝑀𝑗

𝑖=1 𝑝𝑖 .
The comparison is as follows:

𝑂∑︁
𝑗=1

𝑀𝑗∑︁
𝑖=1

𝑝𝑖 < 𝑂 ×max

𝑀𝑗∑︁
𝑖=1

𝑝𝑖 : 𝑗 = 1, · · · ,𝑂


< 𝑂 ×
𝑀∑︁
𝑖=1

𝑝𝑖 .

(1)

From annotating, we assume that the cost of annotating category
𝑖 is 𝑞𝑖 . In full labels, the cost is 𝑁 ×∑𝑀

𝑖=1 𝑞𝑖 . In block diagonal labels,
the cost is

∑𝑂
𝑘=1

∑𝑁𝑘

𝑗=1
∑𝑀𝑘

𝑖=1 𝑞𝑖 . The comparison is as follows:

𝑂∑︁
𝑘=1

𝑁𝑘∑︁
𝑗=1

𝑀𝑘∑︁
𝑖=1

𝑞𝑖 <

𝑂∑︁
𝑘=1

𝑁𝑘∑︁
𝑗=1

max

{
𝑀𝑙∑︁
𝑖=1

𝑞𝑖 : 𝑙 = 1, · · · ,𝑂
}

= 𝑁 ×max

{
𝑀𝑙∑︁
𝑖=1

𝑞𝑖 : 𝑙 = 1, · · · ,𝑂
}
< 𝑁 ×

𝑀∑︁
𝑖=1

𝑞𝑖 .

(2)

In the Appendix, we conduct additional experiments for partial
labels and block diagonal labels under conditions with a similar
number of annotated labels.

Exiting partial labels and single positive labels settings only con-
sider missing labels resulting from annotation errors, but ignore
the cost during the annotation pipeline. Our proposed setting of
block diagonal labels reduces the annotation workload from both
learning and annotating.

4 Methodology
4.1 Problem Formulation
A dataset consists of images {𝐼𝑖 |𝑖 = 1, 2, · · · , 𝑁 } and ground truth
labels {𝑦𝑖 |𝑖 = 1, 2, · · · , 𝑁 }, where 𝑁 is the number of training sam-
ples. 𝑦 = {𝑐𝑖 |𝑖 = 1, 2, · · · , 𝑀}, and 𝑀 is the number of categories.
In full labels, the category 𝑐𝑖 is labelled by positive ‘1’ or negative
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‘-1’. As for missing labels, 𝑐𝑖 ∈ {1,−1, 0}, where 0 is an “unknown”
annotation.

In our block diagonal labels setting, all categories are divided into
subsets {𝑆𝑖 |𝑖 = 1, 2, · · · , 𝑘} based on the semantic and relevance,
where 𝑘 is the number of subsets. 𝑠𝑖 = |𝑆𝑖 |,

∑𝑘
𝑖=1 𝑠𝑖 = 𝑀 , where 𝑠𝑖

is the size of subset 𝑆𝑖 . The annotators only annotate 𝑆𝑖 of their
own block 𝐵𝑖 . The final dataset 𝐷 is the union of all block datasets{
𝐷𝐵𝑖

|𝑖 = 1, 2, · · · , 𝑘
}
. The label vector of an image in block 𝐵 𝑗 is as

follows:

𝑐𝑖 =

{
1 𝑜𝑟 − 1, 𝑐𝑖 ∈ 𝑆 𝑗 ,
0, 𝑐𝑖 ∉ 𝑆 𝑗 .

(3)

The annotation number per image in block 𝐵 𝑗 is 𝑠 𝑗 , where 𝑠 𝑗 ≪ 𝑀 .
Unknown labels are still the primary concern requiring resolution
in block diagonal labels.

Given an image 𝐼 with missing labels, its label vector 𝑦 is com-
posed of positive labels 𝑃𝐼 = {𝑖 |𝑐𝑖 = 1}, negative labels 𝑁𝐼 =

{𝑖 |𝑐𝑖 = −1}, and unknown labels𝑈𝐼 = {𝑖 |𝑐𝑖 = 0}, where |𝑃𝐼 | + |𝑁𝐼 | +
|𝑈𝐼 | = 𝑀 . There are two naive baselines that can be applied inmiss-
ing labels, which show different strategies for the unknown labels.
All Ignore (AI). In this baseline, we simply ignore the unknown
labels. In Fig 4.(a), only positive and negative labels are used as
supervisory signals to calculate the loss:

𝐿(𝐼 ) =
∑︁
𝑐∈𝑃𝐼

𝐿+ (𝑝𝑐 ) +
∑︁
𝑐∈𝑁𝐼

𝐿− (𝑝𝑐 ), (4)

where the prediction output for category 𝑐 is 𝑝𝑐 . The ignored labels
do not compute gradients to optimize the network and the predic-
tions of those are seen as the ground truth, which misses valuable
training signals.
All Negative (AN). In a typical multi-label dataset, there are far
more negative labels than positive labels. Therefore, we assume all
the unknown labels as negative labels in Fig 4.(b). The loss function
is as follows:

𝐿(𝐼 ) =
∑︁
𝑐∈𝑃𝐼

𝐿+ (𝑝𝑐 ) +
∑︁

𝑐∈𝑁𝐼∪𝑈𝐼

𝐿− (𝑝𝑐 ) . (5)

There are also some false negatives of the unknown labels, which
leads the model to predict the true positive labels incorrectly.
Loss Function. The loss function in AI and AN is the Binary Cross
Entropy loss, which is defined as:{

𝐿+
𝐵𝐶𝐸

(𝑝𝑐 ) = −𝑙𝑜𝑔(𝑝𝑐 ),
𝐿−
𝐵𝐶𝐸

(𝑝𝑐 ) = −𝑙𝑜𝑔(1 − 𝑝𝑐 ) .
(6)

However, the severe imbalance between positive labels and neg-
ative labels is an important problem for multi-label learning [38].
PASL loss [1] is a modified ASL loss [29] to mitigate the imbalance
problem for missing labels:{

𝐿+
𝑃𝐴𝑆𝐿

(𝑝𝑐 , 𝛾) = −(1 − 𝑝𝑐 )𝛾 𝑙𝑜𝑔(𝑝𝑐 ),
𝐿−
𝑃𝐴𝑆𝐿

(𝑝𝑐 , 𝛾) = −(𝑝𝑐 )𝛾 𝑙𝑜𝑔(1 − 𝑝𝑐 ),
(7)

where 𝛾 is a focusing parameter, which performs more attention
to the hard samples with a larger value. In the following paper, PASL
loss is the base loss functionwhose abbreviation is

{
𝐿+ (𝑝𝑐 , 𝛾), 𝐿− (𝑝𝑐 , 𝛾)

}
.

PASL is based on AN:

𝐿(𝐼 ) =
∑︁
𝑐∈𝑃𝐼

𝐿+ (𝑝𝑐 , 𝛾+) +
∑︁
𝑐∈𝑁𝐼

𝐿− (𝑝𝑐 , 𝛾−)

+
∑︁
𝑐∈𝑈𝐼

𝐿− (𝑝𝑐 , 𝛾𝑢 ),
(8)

where 𝛾+ < 𝛾− < 𝛾𝑢 . Unknown labels are the most frequent and
have less confidence than negative labels.

4.2 Hard Pseudo-Labeling (HPL)
A naive approach to reduce the false negatives is to use a constant
threshold for all categories. If the prediction probability for an
unknown label is below the pre-defined threshold, it is likely a true
negative. HPL computes a pseudo label for each unknown label
using the predictions:

𝑈
𝑁𝑒𝑔

𝐼
=
{
𝑐𝑖 |𝑐𝑖 ∈ 𝑈𝐼 , 𝑝𝑐𝑖 <= 𝜏

}
,

𝑈
𝐼𝑔𝑛

𝐼
=
{
𝑐𝑖 |𝑐𝑖 ∈ 𝑈𝐼 , 𝑝𝑐𝑖 > 𝜏

}
,

(9)

where𝑈𝐼 = 𝑈
𝑁𝑒𝑔

𝐼
∪𝑈 𝐼𝑔𝑛

𝐼
, and 𝜏 is a pre-defined hard threshold. As

illustrated in Fig 4.(c), the unknown labels are partitioned by a hard
threshold. Then, the overall loss function is calculated as follows:

𝐿(𝐼 ) =
∑︁
𝑐∈𝑃𝐼

𝐿+ (𝑝𝑐 , 𝛾+) +
∑︁
𝑐∈𝑁𝐼

𝐿− (𝑝𝑐 , 𝛾−)

+
∑︁

𝑐∈𝑈𝑁𝑒𝑔

𝐼

𝐿− (𝑝𝑐 , 𝛾𝑢 ),
(10)

where 𝑈𝐼 is replaced by 𝑈𝑁𝑒𝑔

𝐼
in Eqn. (8). Like [1], 𝑈 𝐼𝑔𝑛

𝐼
is not

involved in the final loss, where the positive and negative are really
hard to distinguish.

4.3 Adaptive Pseudo-Labeling (APL)
[45] indicates that using identical hard thresholds for all cate-
gories fails to consider different learning statuses and learning
difficulties of different categories. Thresholds should be flexibly
updated for each category during the training stage. Unlike [45] for
single-label classification, we maintain memory banks of positive
predictions to compute the learning status of categories: 𝑀𝐵 =

{𝑚𝑏1,𝑚𝑏2, · · · ,𝑚𝑏𝑀 }, where𝑚𝑏𝑖 is the memory bank of category
𝑐𝑖 . We store the positive predictions of the past𝑍 mini-batch, where
𝑚𝑏𝑖 =

{
𝑝
𝑎𝑣𝑔𝑧
𝑐𝑖

}𝑍
𝑧=1 is updated with first-in-first-out strategy. 𝑝𝑎𝑣𝑔𝑧𝑐𝑖

is the average predictions of positive 𝑐𝑖 in 𝑧 mini-batch. Note that
we only count the predictions of true positive labels 𝑃 . Then, the
learning status of 𝑐𝑖 is formulated as follows:

𝛼𝑐𝑖 =
1

|𝑚𝑏𝑖 |
∑︁

𝑝∈𝑚𝑏𝑖

𝑝, (11)

where 𝛼𝑐𝑖 ∈ [0, 1]. Since negative samples are more frequent com-
pared to positive samples, the model tends to predict them with low
probabilities. Larger 𝛼𝑐𝑖 indicates that the model can better classify
the category 𝑐𝑖 . The flexible threshold is defined as:

𝜏𝑐𝑖 = 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 + (𝜏𝑡𝑜𝑝 − 𝜏𝑏𝑜𝑡𝑡𝑜𝑚) · 𝛼𝑐𝑖 , (12)
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Table 1: Comparison with state-of-the-arts in block diagonal labels. The best and second-best results are marked in bold and
underlined, respectively. EMA indicates the exponential moving average strategy.

Backbone Method VOC2012 COCO2014 NUSWIDE
mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

TResNet-
Large

AI 82.01 80.71 77.94 67.30 66.76 61.75 47.70 50.77 54.61
AN 84.48 80.04 81.69 70.54 67.31 69.69 55.96 57.72 70.43

ASL [29] 90.29 86.19 87.33 75.04 71.32 73.66 58.02 59.42 70.69
SPLC [46] 90.42 87.07 88.58 75.90 72.45 74.70 58.31 59.52 71.96
LL [17] 87.28 82.84 85.43 75.81 72.22 72.49 57.78 58.69 71.71
PASL [1] 90.47 86.57 87.87 76.39 72.51 74.78 58.87 59.88 71.65

Selective [1] 87.31 84.68 80.68 78.32 75.00 76.57 57.77 59.04 72.18
MLdecoder [31] 89.39 85.67 86.70 76.02 72.07 74.63 57.90 59.63 71.20
BoostLU [18] 87.71 83.89 85.89 76.09 72.77 73.05 57.71 59.74 71.87
APL (Ours) 91.56 88.21 89.36 78.25 74.61 76.73 59.69 60.35 72.12

APL-EMA (Ours) 91.56 88.21 89.36 81.92 77.99 80.05 63.26 62.82 73.36

ResNet-
101

AI 76.63 73.77 73.67 61.76 61.44 62.45 42.73 46.26 44.41
AN 85.55 80.89 81.63 64.50 62.25 65.29 51.67 53.98 68.82

ASL [29] 88.38 82.90 84.60 69.33 66.16 68.23 54.47 56.51 69.55
SPLC [46] 89.13 84.31 86.2 72.39 69.25 71.68 55.25 57.10 70.81
LL [17] 87.24 82.16 84.08 70.86 68.03 68.17 54.28 56.44 70.41
PASL [1] 88.97 83.79 85.22 70.84 67.45 69.38 54.68 56.25 69.94

Selective [1] 78.72 77.25 73.07 72.85 70.17 72.61 54.03 56.05 70.42
MLdecoder [31] 88.03 83.12 84.39 72.16 68.63 71.14 55.09 56.62 70.07
BoostLU [18] 88.70 83.96 85.86 71.78 69.17 69.15 54.44 57.34 70.41
APL (Ours) 89.94 85.17 87.14 73.52 70.33 73.38 56.28 57.55 70.67

APL-EMA (Ours) 89.94 85.17 87.14 78.49 74.49 76.61 60.02 60.94 72.70

where 𝜏𝑡𝑜𝑝 and 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 are the top and bottom boundaries of the
threshold, respectively. Small 𝜏𝑐𝑖 means 𝑐𝑖 is hard to learn, indicat-
ing that fewer false negatives in unknown labels should be con-
sidered in the model optimization. As 𝜏𝑐𝑖 grows, more negative
samples are encouraged to be learned.

Instead of using a fixed value in HPL, dynamic thresholds are
used to divide unknown labels:

𝑈
𝑁𝑒𝑔

𝐼
=
{
𝑐𝑖 |𝑐𝑖 ∈ 𝑈𝐼 , 𝑝𝑐𝑖 <= 𝜏𝑐𝑖

}
,

𝑈
𝐼𝑔𝑛

𝐼
=
{
𝑐𝑖 |𝑐𝑖 ∈ 𝑈𝐼 , 𝑝𝑐𝑖 > 𝜏𝑐𝑖

}
.

(13)

The final loss of APL is the same as Eqn. (10). The thresholds are dy-
namically adjusted at each iteration. As shown in Fig 4.(d), dynamic
thresholds are applied.

5 Experiments
5.1 Experimental Settings
Datasets. Several widely used multi-label benchmarks, VOC-2012,
COCO2014, NUSWIDE, and OpenImages, are used to analyze the
performance of our proposed setting and method. To generate block
diagonal labels datasets, we randomly select only one block that
has at least a positive label. For fair comparisons, the same random
seed is used to create the datasets in all experiments.

We show the block divisions on VOC2012, COCO2014, and
NUSWIDE in the Appendix. There are 9 blocks, 11 blocks, and
12 blocks for VOC2012, COCO2014, and NUSWIDE, respectively.
(1) VOC2012 contains 5,717 training images with 20 categories and
5,823 images for testing. (2) COCO2014 consists of 82,081 train-
ing images with 80 categories and a test set of 40,137 images. (3)

NUSWIDE contains a total of 269,648 images with 81 categories.
(4) OpenImages is a large-scale multi-label dataset. According to
the category hierarchy, there are 68 blocks which contain 520 cat-
egories. 1,211,648 images are used for training and 80,356 images
are used for testing.

As for partial labels, we randomly discard a fixed portion of
labels per image following [13]. We maintain a similar proportion
of known labels in partial labels as in block diagonal labels. The
annotation proportions for VOC2012, COCO2014, and NUSWIDE
are nearly 11%, 10%, and 16%, respectively. Comparison between
block diagonal labels and partial labels is provided in the Appendix.
Evaluation Metrics. To fairly compare with other methods, we
employ the mean Average Precision (mAP), per-category F1-score
(CF1), and overall F1-score (OF1) as evaluation metrics.
Implementation Details. We employ the TResNet-Large [30] and
ResNet-101 [15] architectures, which are pre-trained on ImageNet
[9] dataset, as our backbone networks. Our training configuration
modified from [1]. The model is trained for 30 epochs using Adam
optimizer [19] with true-weight-decay [26] of 1e-4 and 1-cycle
cosine annealing policy [33]. The maximal learning rate is 2e-5 for
VOC2012 and 6e-5 for COCO2014 and NUSWIDE, respectively. We
scale the learning rate according to the batch size with the formula:
lr𝑠𝑐𝑎𝑙𝑒𝑑 = lr

64 × batchsize. We resize the input images to 448 × 448.
For data augmentation, we use the Cutout [11] with a factor of 0.5
and the auto-augment [8]. We use 4 GPUs with batch size 128.

For all benchmarks, we use 𝛾+ = 0, 𝛾− = 4, 𝛾𝑢 = 6 in Eqn.
(10). We use the HPL in the first epoch as a warmup phase. Hyper-
parameters in Eqn. (12) are as followed: In VOC2012, 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 =
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Table 2: DualCoOp [34] with our proposed APL in block diagonal labels. The results evaluate the effectiveness on powerful
vision-languange CLIP [28].

Backbone Method VOC2012 COCO2014 NUSWIDE
mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

CLIP (ResNet-101)
DualCoOp 83.16 80.66 70.52 72.99 70.24 71.32 51.83 54.15 57.69

DualCoOp+APL(Ours) 92.63 88.21 89.53 79.53 75.53 78.33 57.38 58.69 70.20
+9.47 +7.55 +19.01 +6.54 +5.29 +7.01 +5.55 +4.54 +12.51

Table 3: OpenImages results with TResNet-Large backbone in
block diagonal labels. EMA indicates the exponential moving
average strategy.

Method OpenImages
mAP CF1 OF1

AI 51.28 54.05 29.94
SPLC [46] 71.01 69.81 70.34
Selective [1] 70.50 69.68 70.29
APL (Ours) 72.16 70.98 70.69

APL-EMA (Ours) 75.01 73.14 72.85

0.65, 𝜏𝑡𝑜𝑝 = 0.85. In COCO2014, 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 = 0.25, 𝜏𝑡𝑜𝑝 = 0.90. In
NUSWIDE, 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 = 0.60, 𝜏𝑡𝑜𝑝 = 0.90. The length of the mem-
ory bank 𝑍 is set to 400. Following [1], we apply the exponential
moving average strategy (EMA) with a decay of 0.9997 for higher
performance. Unless stated otherwise, the experiment results are
without EMA.
Compared Methods. For a fair comparison, the training config-
uration of compared methods is the same as ours. We apply hy-
perparameter searches to determine the optimal parameters. Only
parameters different from the default values of the published paper
will be listed.

Two naive baselines mentioned in Sec 4.1 of the main paper,
all ignore (AI) and all negative (AN), use BCE loss. ASL applies
the asymmetric loss for AN, where 𝛾+ = 0, 𝛾− = 4. MLdecoder
uses full-decoding ML-decoder structure as the classification head
based onASL. 𝜏 in SPLC is 0.65. Three versions of LL are conducted
and the best performance of them is listed in Table 1 of the main
paper. In LL-R, Δ𝑟𝑒𝑙 is 0.2, 0.3, and 0.1 for VOC2012, COCO2014, and
NUSWIDE. In LL-Ct, Δ𝑟𝑒𝑙 is always 0.1. In LL-Cp, Δ𝑟𝑒𝑙 is 0.3, 0.5,
and 0.3 for VOC2012, COCO2014, and NUSWIDE. BoostLU is based
on LL-Cp. PASL applies the partial asymmetric loss (Eqn.8 of the
main paper), where 𝛾+ = 0, 𝛾− = 4, 𝛾𝑢 = 6. Selective is based on
PASL: In VOC2012, 𝜂 = 0.6, 𝐾 = 100. In COCO2014, 𝜂 = 0.6, 𝐾 = 50.
In NUSWIDE, 𝜂 = 0.3, 𝐾 = 20. Selective uses AI to estimate the
class distribution in the first stage.

5.2 Comparison with State-of-the-art
Table 1 shows the block diagonal labels results on VOC2012, COCO-
2014, and NUSWIDE with TResNet-Large and ResNet-101 back-
bones. We compare our proposed APL with state-of-the-art meth-
ods. ASL and MLdecoder-ASL treat unknown labels as negatives
in the experiments. In the first stage of Selective, the label prior is
estimated. Although Selective with TResNet-Large reaches the best
performance on COCO2014, the results in other experiments are
unstable. By adopting the TResNet-Large backbone, APL surpasses
other methods by 1.09% and 0.82%mAP onVOC2012 and NUSWIDE.
APL also achieves comparable performance on COCO2014. APL

Table 4: Comparison with state-of-the-art single positive la-
bels methods. FL denotes full labels, SPL denotes single posi-
tive labels, and BDL denotes block diagonal labels. # Positive
denotes the number of positively annotated labels and # An-
notated denotes the number of all annotated labels. † denotes
the exponential moving average strategy. * denotes methods
based on vision-language pretrained CLIP.

Setting Method COCO2014
mAP # Positive # Annotated

FL PASL 83.2 241035(100%) 6566480(100%)

SPL

VLPL∗ [41] 71.5

82081(34.05%) 82081(1.25%)

MIME [24] 72.9
DualCoOP∗ [34] 73.5
HSPNet∗† [36] 75.7
SCPNet∗† [12] 76.4
Our APL† 78.3

BDL Our APL† 81.9 107881(44.76%) 611198(9.31%)

with ResNet-101 outperforms all existing approaches. The exper-
iments with different backbones validate the robustness of our
method. Moreover, EMA averages model weights [35] to further
improve the performance of APL. Specifically, APL-EMA reaches
81.92% and 63.26%mAP on COCO2014 and NUSWIDE, respectively.

The results on OpenImages, which is a large-scale multi-label
dataset, are shown in Table 3. We compare our APL with the two
methods that perform well in Table 1. Our APL outperforms other
methods by 1.15% mAP. In addition, our APL with EMA achieves
75.01% mAP.

In Table 2, we conduct further evaluation based on powerful
vision-language models. DualCoOp [34] adapts the knowledge ac-
quired in CLIP [28] to multi-label classification with missing labels.
Although DualCoOp employs prompts to provide positive and neg-
ative contexts, this approach overlooks unknown labels during
training which may leads to a sub-optimal issue [1]. Notably, Dual-
CoOp enhanced with our APL surpasses the standard DualCoOp
by a considerable margin of 6.54% mAP on COCO2014.

5.3 Comparison with Single Positive Labels
(1) SPL can be considered an extreme case where each block in
BDL contains only one class, converting a multi-label dataset into
a single-label dataset. (2) Such extreme setting potentially harm
performance in practical applications due to insufficient supervision.
Table 4 indicates a notable gap between SPL and FL. However, our
APL method in BDL, with 10.71% more positive labels, achieves
performance close to FL. (3) We further compare state-of-the-art
SPL methods. Despite some methods leveraging vision-language
pertained CLIP, our APL method still achieves better results.
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XLabeled: microwave, oven
XxxHPL: microwave, oven
XxxAPL: microwave, oven, knife, spoon

x

XxXxGT: microwave, oven, knife, spoon,
cup

XLabeled: bicycle, bus
XxxHPL: bicycle, bus, person, traffic light
XxxAPL: bicycle, bus, person, traffic light,

backpack, handbag
x

XxXxGT: bicycle, bus, person, traffic light,
backpack, handbag, tv

XLabeled: car, motorcycle
XxxHPL: car, motorcycle, person
XxxAPL: car, motorcycle, person, backpack

x

XxXxGT: car, motorcycle, person, backpack 

XLabeled: oven, sink
XxxHPL: oven, sink, bottle, bowl, cup, knife 
XxxAPL: oven, sink, bottle, bowl, spoon,

cup, knife, toaster
x

XxXxGT: oven, sink, bottle, bowl, spoon 

Figure 5: Qualitative results in block diagonal labels. GT indicates the ground truth labels for a training image. Labeled indicates
the categories labeled in block diagonal labels. HPL utilizes hard thresholds while APL employs dynamic thresholds.

Table 5: Ablation studies of our APL in block diagonal labels
and partial labels on different benchmarks. The evaluation
metric is mAP.

Setting Method VOC2012 COCO2014 NUSWIDE
block

diagonal
labels

PASL 90.47 76.39 58.87
HPL 91.22 77.79 59.37
APL 91.56 78.25 59.69

partial
labels

PASL 78.88 67.45 51.43
HPL 84.91 71.36 54.41
APL 86.61 71.79 54.87

5.4 Ablation Study
The Effectiveness of Individual Components. In Table 5, we
validate the effectiveness of each component in block diagonal labels
and partial labels. We generate the partial labels datasets with a
similar annotation proportion as the block diagonal labels ones, as
detailed in the Appendix.

Our proposed HPL and APL apply PASL loss to deal with the
positive-negative imbalance issue. HPL sets a constant threshold
to find true negatives and reduces the number of false negatives to
mitigate performance. However, the thresholds of each category
should be dynamically adjusted. Our APL flexibly adjusts thresholds
for different classes, which improves the performance in all ablation
experiments.
Hyper-parameters Analysis.We investigate the effectiveness of
hyper-parameters. As shown in Fig 6, the first col shows the impact
of 𝜏𝑡𝑜𝑝 when 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 is fixed and the second col shows the impact
of 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 when 𝜏𝑡𝑜𝑝 is fixed. Despite variations in values across the
three datasets, performance remains consistently near the optimal
values. In practice, we can initially set 𝜏𝑡𝑜𝑝 at 0.9 and conduct a
grid search for 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 . Once a satisfactory 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 is obtained, we
proceed with a grid search for 𝜏𝑡𝑜𝑝 . Fig 6 illustrates the robustness
of the hyper-parameters, highlighting the efficacy and convenience
of identifying optimal hyper-parameters.
Qualitative Results. We show the qualitative results of HPL and
APL in Fig 5. GT indicates the ground truth labels for a training im-
age. Labeled indicates the categories labeled in block diagonal labels.
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Figure 6: Ablation studies of 𝜏𝑡𝑜𝑝 and 𝜏𝑏𝑜𝑡𝑡𝑜𝑚 on different
benchmarks. The evaluation metric is mAP.

The pseudo labels are marked in blue or red. Blue indicates a cor-
rect prediction and red indicates an incorrect prediction. Four cases
show that our APL predicts correct labels better than HPL, which
demonstrates the superiority of the dynamic threshold. However,
in the last case, some errors still occur in the prediction process.
The complex scene contains too many small objects, thus confusing
the two approaches to predict the pseudo labels.

6 Conclusion
In this paper, we demonstrated the main challenge of the multi-label
dataset construction from two aspects i.e. learning and annotating.
We introduced a new setting of multi-label classification with block
diagonal labels, which was considered from both sides to reduce
the annotation workload. We compared it with the exiting missing
labels setting to prove the effectiveness of our setting. Addition-
ally, an adaptive pseudo-labeling method was proposed, which is
a simple yet effective method without any label prior or complex
architectures. Our APL achieves state-of-the-art performance on
different benchmarks. For further studies in our block diagonal la-
bels, we plan to utilize the prior of coarse label present in each
image to improve the prediction accuracy of unknown labels.
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Figure 7: The categories partitions of BDL. The partitions are modified according to the category hierarchies of their published
papers. VOC2012 and NUSWIDE have 4 and 6 super-categories, respectively. In order to evaluate the effectiveness of BDL, we
increase the number of blocks to obtain more unknown labels, so that VOC2012 gets 9 blocks and NUSWIDE gets 12 blocks. As
for COCO2014, we use the original partition.

Table 6: Comparison of the proportion of annotated labels
between block diagonal labels and partial labels. #𝑃𝑃𝑜𝑠+𝑁𝑒𝑔

indicates the proportion of all annotated labels. #𝑃𝑃𝑜𝑠 indi-
cates the proportion of positive labels.

partial labels block diagonal labels
#𝑃𝑃𝑜𝑠+𝑁𝑒𝑔 #𝑃𝑃𝑜𝑠 #𝑃𝑃𝑜𝑠+𝑁𝑒𝑔 #𝑃𝑃𝑜𝑠

VOC2012 10.98% 0.80% 10.59% 5.25%
COCO2014 9.99% 0.37% 9.31% 1.64%
NUSWIDE 15.99% 0.48% 15.60% 2.01%

A Block Divisions and Details on Benchmarks
Fig 7 illustrates the block divisions on VOC2012, COCO2014, and
NUSWIDE. There are 9 blocks, 11 blocks, and 12 blocks for VOC2012,
COCO2014, and NUSWIDE, respectively. VOC2012 contains 5,717
training images with 20 categories and 5,823 images for testing.
COCO2014 consists of 82,081 training images with 80 categories
and a test set of 40,137 images. NUSWIDE contains a total of 269,648
images with 81 categories.

OpenImages is a large-scale multi-label dataset. According to the
category hierarchy, there are 68 blocks which contain 520 categories.
1,211,648 images are used for training and 80,356 images are used
for testing.

B Comparison between Block Diagonal Labels
and Partial Labels

To evaluate the superiority of block diagonal labels, we compare the
experiments of block diagonal labels with those of partial labels. As

illustrated in Table 6, the number of annotated labels is almost the
same between block diagonal labels and partial labels. We generate
the block diagonal labels datasets by randomly selecting a block of
labels. For comparison between these two settings, we generate
the partial labels datasets with a similar annotation proportion as
the block diagonal labels ones. The positive proportions #𝑃𝑃𝑜𝑠 of
them differ greatly. For example, #𝑃𝑃𝑜𝑠 of block diagonal labels is
greater than that of partial labels by 4.45% on VOC2012. Randomly
annotating a fixed percentage of labels in partial labels, which may
generate images with all negative labels, will result in a very small
number of positives.

Fig 8 shows results of the state-of-the-art methods in block di-
agonal labels and partial labels. The results in our block diagonal
labels significantly surpass the results in partial labels on all bench-
marks, which proves the superiority of our setting. Especially for
SPLC, the performance gaps between these two settings are remark-
able. Evident 19.13%, 11.94%, and 8.46% mAP gains are achieved on
VOC2012, COCO2014, and NUSWIDE, respectively. The recent ap-
proaches treat most unknown labels as negatives. This assumption
is mostly correct due to the large number of true negatives. The
effect of annotated negative labels is reduced, while the number of
positive labels has a significant impact on the final performance.
Therefore, the block diagonal labels setting not only reduces the
annotation workload from both learning and annotating aspects
but also increases the number of positives, leading to a notable
enhancement in performance.

In addition, on all benchmarks, we find the performance gaps of
our APL are relatively small compared to other methods. Our APL
outperforms other methods by a large margin in all experiments.
Such results prove the effectiveness and robustness of our APL.



Multi-Label Learning with Block Diagonal Labels MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

SPLC PASL APL
Method

70

80

90

100

m
AP

71.29

78.88

86.61

90.42 90.47 91.56

partial labels
label groups

(a) VOC2012

SPLC PASL APL
Method

60

70

80

m
AP

63.96

67.45

71.79

75.9 76.39
78.25

partial labels
label groups

(b) COCO2014

SPLC PASL APL
Method

50

55

60

65

m
AP

49.85
51.43

54.87

58.31 58.87
59.69

partial labels
label groups

(c) NUSWIDE

Figure 8: Experimental results of the state-of-the-art methods in block diagonal labels and partial labels. The experiments in
partial labels are marked in blue. The experiments in block diagonal labels are marked in orange.
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