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ABSTRACT

Black-box optimization (BBO) aims to optimize an objective function by iteratively
querying a black-box oracle in a sample-efficient way. While prior studies focus
on forward approaches to learn surrogates for the unknown objective function,
they struggle with steering clear of out-of-distribution and invalid inputs. Recently,
inverse modeling approaches that map objective space to the design space with
conditional diffusion models have demonstrated impressive capability in learning
the data manifold. They have shown promising performance in offline BBO tasks.
However, these approaches require a pre-collected dataset. How to design the
acquisition function for inverse modeling to actively query new data remains an
open question. In this work, we propose diffusion-based inverse modeling for black-
box optimization (Diff-BBO), an inverse approach leveraging diffusion models
for online BBO problem. Instead of proposing candidates in the design space,
Diff-BBO employs a novel acquisition function Uncertainty-aware Exploration
(UaE) to propose objective function values. Subsequently, we employ a conditional
diffusion model to generate samples based on these proposed values within the
design space. We demonstrate that using UaE results in optimal optimization
outcomes, supported by both theoretical and empirical evidence.

1 INTRODUCTION

Practical problems in science and engineering often involve optimizing a black-box objective function
that is expensive to evaluate, seen in fields such as neural network architecture design (Zoph & Le,
2016), robotics (Tesch et al., 2013), and molecular design (Sanchez-Lengeling & Aspuru-Guzik,
2018). How to achieve a near-optimal solution while minimizing function evaluations is thus a major
challenge in black-box optimization (BBO). To improve sample efficiency, prior works in BBO
have largely focused on the online setting where the algorithm can iteratively select candidates in
the design space and query the black-box function for evaluation (Turner et al., 2021; Zhang et al.,
2021; Hebbal et al., 2019; Mockus, 1974). Most existing algorithms belong to the class of forward
methods, including Bayesian optimization (BO) (Kushner, 1964; Mockus, 1974; Wu et al., 2023;
Frazier, 2018), bandit algorithms (Agrawal & Goyal, 2012; Karbasi et al., 2023), and conditional
sampling approaches (Brookes et al., 2019; Gruver et al., 2024; Stanton et al., 2022). They build a
surrogate model to approximate and optimize the black-box function sequentially.

However, these approaches may face difficulties in scenarios where valid inputs represent a small
subspace, such as valid protein sequences or molecular structures. Such optimization problems
become exceptionally challenging, as the optimizer must navigate and avoid out-of-distribution and
invalid inputs (Kumar & Levine, 2020). Recently, a novel set of methods, termed inverse approaches,
have been proposed to address this issue. These methods (Kumar & Levine, 2020; Krishnamoorthy
et al., 2023; Kim et al., 2023) break the traditional paradigm by learning an inverse mapping from the
objective space back to the input space (a.k.a., the black-box function’s design space). Leveraging
state-of-the-art generative models, such as diffusion models (Song et al., 2020), these approaches
effectively capture data distributions in the design space and facilitate optimization within the data
manifold (Kong et al., 2024). Besides, diffusion models naturally provide uncertainty estimates
through the probabilistic nature of the diffusion process (Chan et al., 2024; Du & Li, 2023), which can
be further utilized to design informative exploration strategies to propose better candidate solutions
for optimization problems. They achieve high performance in offline optimization settings (Kumar &
Levine, 2020; Lu et al., 2023; Wang et al., 2018), assuming access to a fixed pre-collected dataset.
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Note that the offline setting can be restrictive compared with the online setting, which allows for
continuous learning and improvements from new data samples.

Despite the advancements in the offline setting, we cannot directly apply inverse modeling approaches
to the online setting due to the unresolved issues regarding how to accurately capture the uncertainty
of the inverse model and design an acquisition function for data-efficient querying. In this paper,
we propose Diff-BBO, an inverse approach for online black-box optimization (BBO). Diff-BBO
places a distribution within the design space and represents it with a conditional diffusion model.
Although diffusion model necessitates a relatively large dataset to effectively learn the data manifold,
we show that the low-quality pre-collected dataset with average or below-average objective function
values suffices for the initial training stage of Diff-BBO. Our approach consists of a novel acquisition
function Uncertainty-aware Exploration (UaE), which leverages the uncertainty of the conditional
diffusion model to strategically propose the desired objective function values for sampling the design
space. We summarize our main contributions as follows:

* We present Diff-BBO, an inverse modeling approach for efficient online black-box optimiza-
tion (BBO) leveraging uncertainty of conditional diffusion models.

* We provide an uncertainty decomposition into epistemic uncertainty and aleatoric uncer-
tainty for conditional diffusion models. We rigorously analyze how uncertainty propagates
throughout the denoising process of conditional diffusion model.

* We design a novel acquisition function UaE for Diff-BBO. Theoretically, we prove that the
balance between targeting higher objective values and minimizing the epistemic uncertainty
lead to optimal optimization outcomes.

* We demonstrate that Diff-BBO achieves state-of-the-art performance with superior sample
efficiency on Design-Bench and molecular discovery task in the online BBO setting.

2 RELATED WORK

Black-box Optimization. While recent studies aim to solve offline Black-box Optimization (BBO)
using a pre-collected dataset (Li et al., 2024; Krishnamoorthy et al., 2023; Fu & Levine, 2021)
without querying the oracle function, prior works in BBO have largely focused on the online setting
where a model can iteratively query the function during training (Turner et al., 2021; Zhang et al.,
2021; Hebbal et al., 2019; Mockus, 1974). In both settings, most existing algorithms belong to the
class of forward methods, including Bayesian optimization (BO) (Kushner, 1964; Mockus, 1974;
Wau et al., 2023; Frazier, 2018), bandit algorithms (Agrawal & Goyal, 2012; Karbasi et al., 2023),
and conditional sampling approaches (Brookes et al., 2019; Gruver et al., 2024; Stanton et al., 2022).
Liu et al. (2024) further integrate LLM capabilities into the BO framework to enable zero-shot
warmstarting and enhance surrogate modeling and candidate sampling, thereby improving the sample
efficiency. Forward methods build a surrogate model to approximate and optimize the black-box
objective function. However, these approaches can struggle with capturing the data manifold within
the design space and avoiding out-of-distribution and invalid inputs (Kumar & Levine, 2020). Song
et al. (2022); Zhang et al. (2021) proposed Likelihood-free BO using likelihood-free inference to
extend BO to a broader class of models and utilities. It directly models the acquisition function
without separately performing inference with a surrogate model. However, there is a risk where the
acquisition function is over-confident. Our work builds upon recent progress in inverse approaches
for offline BBO, which utilize diffusion modeling to better learn the data manifold within the design
space (Krishnamoorthy et al., 2023; Kong et al., 2024). But we focus solely on online BBO setting by
introducing a sample-efficient inverse modeling method using conditional diffusion models.

Diffusion Models. As an emerging class of generative models with strong expressiveness, diffusion
models (Sohl-Dickstein et al., 2015; Song et al., 2020) have been successfully deployed across various
domains including image generation (Rombach et al., 2022), reinforcement learning (Wang et al.,
2022), robotics (Chi et al., 2023), etc. Notably, through the formulation of stochastic differential
equations (SDEs), (Song et al., 2020) provides a unified continuous-time score-based framework
for distinctive classes of diffusion models. To steer the generation toward high-quality samples with
desired properties, it is important to guide the backward data-generation process using task-specific
information. Hence, different types of guidance are studied in prior works (Bansal et al., 2023;
Nichol et al., 2021; Zhang et al., 2023), including classifier guidance (Dhariwal & Nichol, 2021)
where the classifier is trained externally, and classifier-free guidance (Ho & Salimans, 2022), in
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which the classifier is implicitly specified. In this work, we employ classifier-free guidance to
eliminate the requirement of training a separate classifier model, thereby enabling feasible uncertainty
quantification in conditional diffusion models.

Uncertainty Quantification. Uncertainty quantification (UQ) often relies on probabilistic mod-
eling, with Bayesian approximation and ensemble learning being two popular types of approaches.
Bayesian Neural Networks (BNNs) (MacKay, 1992; Neal, 2012; Kendall & Gal, 2017; Zhang et al.,
2018) employ variational inference (VI) to sample model weights from a tractable distribution and
estimate uncertainty through sample variance. When training large-scale models, Monte Carlo (MC)
dropout (Srivastava et al., 2014) offers a cost-effective alternative by approximating BNNs during
inference (Gal & Ghahramani, 2016). On the other hand, deep ensembles (Lakshminarayanan et al.,
2017) train multiple NNs with different initial weights to gauge uncertainty via model variance,
which also faces scalability issues as network size increases. To address this issue, recent efforts
incorporate ensembling techniques in generative models to separate uncertainty into aleatoric and
epistemic components (Valdenegro-Toro & Mori, 2022; Ekmekci & Cetin, 2023). To further improve
the scalability of deep ensembles, (Chan et al., 2024) proposed hyper-diffusion to quantify the
uncertainty with a single diffusion model. In comparison, we take one step further by utilizing the
quantified uncertainty of conditional diffusion models to solve the black-box optimization problem as
a downstream task.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Let f : X — R denote the unknown ground-truth black-box function that evaluates the quality of any
data point , with X C R?. Our goal is to find the optimal point 2* that maximizes f:

x* € argmax,cy f(x). e

We are interested in the online BBO setting in which f is expensive to evaluate and the number of
evaluations is limited. In particular, we consider batch online BBO. With a fixed query budget of K
and batch size IV, we iteratively query f with [N new inputs in each batch, and update the surrogate
model of f based on observed outputs within K iterations. A key concept in online BBO is the
acquisition function, which guides the selection of new query points by balancing exploration and
exploitation. This function aims to efficiently identify high-performing inputs, thereby efficiently
solving the online optimization problem.

3.2 CONDITIONAL DIFFUSION MODEL

Diffusion Models (Sohl-Dickstein et al., 2015; Song et al., 2020) are probabilistic generative models
that learn distributions through an iterative denoising process. These models consist of three compo-
nents: a forward diffusion process that produces a series of noisy samples by adding Gaussian noise,
a reverse process to reconstruct the original data samples from the noise, and a sampling procedure to
generate new data samples from the learned distribution. Let the original sample be xg and ¢ be the
diffusion step. For conditional diffusion models, a conditional variable y is added to both the forward
process as g (x¢|x:—1, y) and reverse process as pg (€i—1 | x+,y), Vt € [T).

The reverse process begins with the standard Gaussian distribution p(xr) = N(0, I), and denoises
x; to recover xg through the following Markov chain with reverse transitions:

T
po (@orly) = pler) [ ] vo (@1 [@ey), @ ~N(0,1),

Po (xt—l | I, y) = N(mt—l; M@(mt, t7 y)? Ea(mtv ta y)) .
During training, >y is empirically fixed, and g is reparametrized by a trainable denoise function

€9 (x4, t,y), which is used to estimate the noise vector € that was added to input @, and is trained by
minimizing a reweighted version of the evidence lower bound (ELBO):

2
[/dif = Ewo~q(w),y,ENN(O,I),tNZ/{(O,T),mt~q(wt|wo,y) |:’U) (t) ||6 — €9 (Scta t7 y)||2 . (2)

Note that the loss in Equation (2) (Ho et al., 2020) for €y is denoising score matching for all
time step ¢, which estimates the gradient of the log probability density of the noisy data (a.k.a.
score function): €y (x:,t,y) = —o0:Vzlogp(x | y). We further denote the score function as

Sa(why’t) = —€g (mt7tay) /Ut'
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Figure 1: Forward modeling vs inverse modeling for black-box optimization. (7op) Forward modeling approach
using surrogate models (e.g., GPs) for forward modeling and acquisition functions (e.g., UCB, PI, and EI) to
select x. (Bottom) Our inverse modeling approach using generative model (e.g., diffusion model) for inverse
modeling and acquisition function (e.g., UaE) to select y.

Algorithm 1: Diff-BBO

Input: Initial dataset D = {x, y}, total number of iterations K, candidate feasible range C,
oracle function f(-), batch size N
1 Initialization: Conditional diffusion model py(x|y)
2 fork=1,2,--- K do

3 Train the conditional diffusion model with D

4 | Construct a candidate set Y = {y : 0 <y < C}

5 Yy = argmax,cy a(y, D)

6 Generate {x; }}*, where x; ~ py(x | y;, D)

7 | Query the oracle function f(-) with generated samples {x;}_,
s | D« DU{x;, f(x)},

9 | ¢« max(f(z)) st. x€D

Output: Reconstructed {¢y } X,

4 DIFr-BBO

In this section, we present Diffusion-based Inverse Modeling for Black-Box Optimization (Diff-BBO),
followed by the details of training its conditional diffusion model in the Bayesian setting.

4.1 THE DIFF-BBO FRAMEWORK

A key distinction of Diff-BBO is to solve the online BBO problem in the inverse modeling setting,
whereas prior works mainly focus on the forward modeling setting. In the latter, a surrogate model
p(y|x, D) for the unknown objective f is learnt by utilizing models such as GPs. These methods
typically rely on heuristic approaches to generate new candidate solutions, which can lead to out-of-
distribution and invalid designs. In contrast, our approach leverages the power of diffusion models to
represent p(x|y, D), allowing it to provide high-quality candidate solutions in the design space and
to leverage arbitrary function values as conditional information. Besides, diffusion models naturally
provide uncertainty estimates, which are further utilized in our design of the acquisition function.
Figure 1 demonstrates a detailed comparison of Diff-BBO with prior forward methods to solve the
online BBO problem.

Given this inverse modeling setting, we model the conditional distribution of p(x|y, D) with training
data D. The function value y to condition on is proposed by an acquisition function, which quantifies
the quality of the generated . As the optimization performance at each iteration matters, the
optimization objective given in Equation (1) becomes:

K
g}gﬁé;f(wk), xi ~po(- | yx. D), 0 € O. 3)

4



Under review as a conference paper at ICLR 2025

3 o 2 Rauisiion Funetion ™,
H %k 3 ' K N
LY AN I - "
L e y* = argmax a(y, D):

: L y !

4. l 1. =777 Train Conditional Diffusion Model

ooty S ) S
:“9 =D+ {f(x), Xo}_’ . . i

g

Figure 2: Black-box optimization framework using the conditional diffusion model as the inverse model. The
overall framework includes 4 stages. 1. Train the conditional diffusion model given the current training dataset.
2. Compute the acquisition function and select the optimal y* to condition on. 3. Generate samples {xo }
conditioned on y*. 4. Query the oracle given generated samples {Xo } and update the training dataset.

To solve the above optimization problem, we introduce Diff-BBO in Algorithm 1. At each iteration
k, we train a conditional diffusion model and compute the optimal y;; with the designed acquisition
function. In practice, we select y = w - ¢ from a constructed candidate set )/ based on the
acquisition function scores «(y), where the weight w belongs to a set of positive scalars WV and ¢y,
is the maximum function values being queried in the current training dataset D. Conditioning on
yr, we generate N samples {x; }é-vzl, where x; ~ pg(x|y;, D). By querying the black-box oracle
to evaluate each x;, we obtain the best possible reconstructed value ¢, for the current iteration,
and append all queried data pairs {x;, f(x;) ;VZI to the training dataset D. The overall Diff-BBO
framework with the conditional diffusion model is shown on Figure 2.

4.2 CONDITIONAL DIFFUSION MODEL TRAINING IN BAYESIAN SETTING

Instead of estimating a set of deterministic parameters ¢ from a deterministic neural network, we
are interested in learning its Bayesian posterior to further understand and improve the model’s
performance as well as its reliability with uncertainty quantification. In Bayesian settings, we
consider the model parameters § € O, where O is the parameter space, and maintain its pos-
terior distribution p(#|D), which is learned from training data D. By choosing 6 from its
posterior, essentially we sample a score function Sy(x¢,y,t) from the probability distribution
p(se | s, y,t, D) = N(so(xs,y,t), X5, (x4, v, ), whose expected value is sg (¢, y, t), and variance
is a diagonal covariance matrix X, (¢, y, t).

Specifically, we adopt classifier-free guidance as in (Ho & Salimans, 2022) to eliminate the require-
ment of training a separate classifier model. We jointly train an unconditional diffusion model pg ()
parameterized by €y (x, ¢, ) and a conditional diffusion model py(z|y) parameterized by €y (x, ¢, y)
by minimizing the following loss function:

£ = Eopyctan [w(H) €= o (@i, (1= Ny + M)3] 0

where g ~ q(x),e ~ N(0,I),t ~ U0, T),z; ~ q(x | x9), A ~ Bernoulli(puncond), and
Puncond 18 the probability of setting ¥ to the unconditional information ().

5 ACQUISITION FUNCTION DESIGN

In this section, we propose a novel acquisition function called Uncertainty-aware Exploration (UaE)
for Diff-BBO. We first analyze the uncertainty of Diff-BBO from both theoretical and practical
perspectives, decomposing the uncertainty into the aleatoric and epistemic components. Based on the
uncertainty decomposition, we then propose UaE. We prove that by achieving a balance between
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high objective values and low epistemic uncertainty, UaE effectively provides a near-optimal solution
to the online BBO problem.

5.1 UNCERTAINTY QUANTIFICATION ON CONDITIONAL DIFFUSION MODEL

The optimization problem defined in Equation (3) presents a probabilistic formulation of the online
BBO problem using inverse modeling. Instead of searching for a single optimal point x, it aims
to learn a parameterized distribution py(x | y, D) for a given y, and sampling from this predictive
distribution. As such, we resort to the tools of Bayesian inference to solve this task. More specifically,
given an observed value y of a sample x, the objective of Bayesian inference is to estimate the
predictive distribution:

p(® | 9, D) = Eglpo(w | y)] = /9 po(z | )p(8 | D)do. 5)

Its empirical estimation over an ensemble of M conditional diffusion models is computed as:

Eolpo( | y)] Zpe (| y).

By Equation (5), we recognize that the uncertainty arises from two sources: uncertainty in deciding
parameter # from its posterior p(6|D) and uncertainty in generating sample x from a fixed diffusion
model py(x | y) after 6 is chosen. Before proceeding with the uncertainty decomposition in Diff-
BBO, it is crucial to understand how to capture the overall uncertainty when using a diffusion model
to generate x. Essentially, it can be explicitly traced through the denoising process. More specifically,
Theorem 1 provides analytical solutions to compute the uncertainty on a single denoising process of
general score-based conditional diffusional models. It offers theoretical insights of how uncertainty
is being propagated through the reverse denoising process both in discrete time and continuous
time, which is characterized through the lens of stochastic differential equations (SDEs) of the
Ornstein—Uhlenbeck (OU) process. Detailed proofs can be found in Appendix A.

Theorem 1. (Uncertainty propagation) Let t € [T be the diffusion step, so(x,y,t) be the score
Sunction of the corresponding diffusion model pg(x | y). For a single conditional diffusional
model pg(x | y), the uncertainty in generating a sample x can be analytically traced through the
discrete-time reverse denoising process as follows:

Var(ai—1) = %Var(mt) + Var(sg(z,y,t)) + % (E [z 0 sg(@y, y,t)] — Elxy] o Elso(ze, v, t)]) + 1,

]E(.’Bt_l) - %E(mf) + E(SO(mvyat))v

where o is the Hadamard product, and 1 is the identity matrix. Similarly, in continuous-time process,
the uncertainty can be captured as follows:

Var(xz) = (T'+ 1)1 + Var </tT <;wt + se(w,y,t)> dt) . (6)

=0

While Theorem 1 establishes the existence of closed-form solutions to quantify uncertainty based
on the intrinsic properties of diffusion models, performing exact Bayesian inference when training
diffusion models in practice requires non-trivial efforts and can be computationally demanding.
Hence, in Section 5.2, we will introduce a practically-efficient approach to quantify and decompose
the uncertainty based on Equation (5) .

5.2 UNCERTAINTY DECOMPOSITION

To systematically analyze the effect of uncertainty in our inverse modeling approach using Diff-BBO,
we now provide a practical method to perform uncertainty decomposition in terms of the aleatoric
component and its epistemic counterpart.

The aleatoric uncertainty in inverse modeling is captured by the variance of the likelihood py(x | y),
which is proportional to the variance of the measurement noise during sample generation, irreducible
and task-inherent. To estimate the aleatoric uncertainty, we can Monte Carlo (MC) sample x for N
times from a learned likelihood function py( | y) for fixed y, 6.
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In contrast, the epistemic uncertainty is captured through the variance of the posterior distribution
p(0 | D), which is proportional to the variance of the score network, and is reducible with the increase
of training data. Recall that © is the parameter space that contains all possible model parameters 6,
which are used to generate samples from the predictive distribution p(x | y, D). As the dataset size
and quality grows, the variance of the posterior distribution shrinks, corresponding to the reduction
of epistemic uncertainty in learned parameters 6 ~ p(6 | D).

To estimate the epistemic uncertainty, we use ensemble techniques. During the inference time, by
initializing the trained ensemble models with different random seeds, we first sample M model
parameters {6;}, to simulate M conditional diffusion models. Then we generate N samples
{z;} ?]:1 for each diffusion model with corresponding parameter 0;, Vi € [M]. Combining the above
gives a systematic way to decompose and estimate the two types of uncertainty in practice, which is
formally described in Proposition 1.

Proposition 1 (Uncertainty Decomposition). Az each iteration k € [K], the overall uncertainty in
inverse modeling can be decomposed into its aleatoric and epistemic components, which can be
empirically measured as follows:

Aaleal‘oric (%D) = EOinH'D) |:Vara:71,j~p9i(-\y) (le,]H)} ) Vi € [M]?] € [NL

(7
Aepistemic (%D) = Var@¢~p(~|D) (Ewi,jwpei(ﬂy) [”"BLJH]) ) Vi € [ML] € [N]

5.3 UNCERTAINTY-AWARE EXPLORATION.

At each iteration & € [K] of Diff-BBO algorithm, the acquisition function «(y, D) proposes an
optimal scalar value y; as follows:

Yy = argmax, a(y, D),
which is used to generate x in the design space using conditional difussion model.

Note that to design an effective acquisition function for inverse modeling, we need to achieve a
balance between high objective values y and low epistemic uncertainty. On the one hand, it is
advantageous to focus on the regions in X whose corresponding y is of high values. As function
evaluations are expensive to perform, we prefer to generate samples « conditioned on higher y, and
only query the oracle for such promising samples to solve the black-box optimization task. On the
other hand, we employ the epistemic uncertainty to gauge the error in the trained diffusion model.
Specifically, it helps reduce the approximation error between y;; and the reconstructed function value
maxe[n] f(x;), where f(-) is the black-box oracle, and x; ~ py(-|y};, D), Vj € [N].

We introduce the Uncertainty-aware Exploration (UaE) as our designed acquisition function:

a(y, D) =Y - Aepistemic (y, D)> (8)
which utilizes the uncertainty estimation on conditional diffusion model as given in Proposition 1.
It effectively penalizes the candidates for which the model is less certain. As shown later, by
balancing the exploration-exploitation trade-off, UaE provides an effective way to solve the online
BBO problem.

5.4 SUB-OPTIMALITY OF UAE

To quantify the quality of generated samples, we theoretically analyze the sub-optimality performance
gap between y;; and reconstructed value at each iteration. In particular, Theorem 2 and Theorem 3
demonstrate that such sub-optimality gap can be effectively handled in inverse modeling, with proofs
deferred to Appendix B. We first show that by using conditional diffusion model, the expected error
of the sub-optimality performance gap can be effectively bounded under mild assumptions.

Theorem 2. At each iteration k € [K|, define the sub-optimality performance gap as

yr — max f(x;)|, where @; ~ py(-lyg, D), Vj € [N]. ©)

JEIN]
Assume that there exists some 0* ~ p(0|D) that produces a probability distribution pg«(- | D)
such that it is able to generate a sample x* that perfectly reconstructs y. Suppose function f is
L-Lipschitz and each sample is o-subGaussian, it can be shown that

E [A(pe, ;)] < 1LV do,
where d is the dimensionality of the design space, ¢y is some universal constant.

A(pe,yy) =
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Theorem 2 suggests that in expectation, the reconstructed function value max;c[n) f(x;) closely
approximates the provided conditional information ¥;, implying Diff-BBO is effective in searching
for promising samples in the design space by utilizing the information from the objective space.
Hence, to achieve a robust estimator for the online BBO problem, the primary concern shifts to
controlling the variance of the sub-optimality gap defined in Equation (9), which is further assessed
and evaluated in Theorem 3.

Theorem 3. (Sub-optimality bound) At each iteration k € K|, suppose M model parameters
{0:}M | are generated from the ensemble model for some fixed dataset D. Suppose function f is
L-Lipschitz, it can be shown that the variance of the sub-optimality performance gap of each model
is bounded by the epidemic uncertainty:

Var (A(pan:g;:)) S CQLQdO'Z + 02L2Aepistemic(y;:7 D), V’L S M7 (10)
where co is some universal positive constant.

Theorem 3 shows that the variance of the sub-optimality performance gap can be upper bounded by
the epistemic uncertainty of diffusion model with some global constants. It implies that decreasing
the epistemic uncertainty will reduce the variance of the performance gap, leading to more reliable
optimization performance. Therefore, it is crucial to achieve an effective balance between maximizing
the objective value and minimizing epistemic uncertainty when designing the acquisition function.
By dosing so, UaE not only explores the objective space with high-value solutions, but also ensures
stability and consistency in the optimization process.

Finally, we prove in Theorem 4 that by adopting UaE for inverse modeling to guide the selection of
generated samples for solving BBO problems, we can obtain a near-optimal solution for the online
optimization problem defined in Equation (3). The proof is available in Appendix C.

Theorem 4. Let ) be the constructed candidate set at each iteration k € [K] in Algorithm 1. By
adopting UaFE as the acquisition function to guide the sample generation process in conditional
diffusion model, Diff-BBO (Algorithm 1) achieves a near-optimal solution for the online BBO problem
defined in Equation (3):

=

K
max x), TK ~ po(- ,D), 0 € ©® = max a(yk, D).
ykeR;f( k) Tk ~ Dol | Yk, D) e 2 (Y%, D)

As a result, equipped with the novel design of UaE, Diff-BBO is a theoretically sound approach
utilizing inverse modeling to effectievely solve the online BBO problem.

6 EXPERIMENTS

To validate the efficacy of Diff-BBO, we conduct experiments on six online black-box optimization
tasks for both continuous and discrete optimization settings. Ablation studies are performed to
verify the effectiveness of the proposed acquisition function, assess the robustness of our model in
relation to the batch size, and evaluate the computational efficiency of our model. More details of the
experimental setups are provided in Appendix D.

6.1 DATASET

We restructured 5 high-dimensional real-world tasks from Design-Bench to facilitate online black-box
optimization. We test on 3 continuous and 2 discrete tasks. In D’Kitty and Ant Morphology, the
goal is to optimize for the morphology of robots. In Superconductor, the aim is to optimize for
finding a superconducting material with a high critical temperature. TFBind8 and TFBind10 are
discrete tasks where the goal is to find a DNA sequence that has a maximum affinity to bind with a
specified transcription factor. We also include a Molecular Discovery task to optimize a compound’s
activity against a biological target with therapeutic value. For each task, we arrange the offline dataset
from (Krishnamoorthy et al., 2023) in ascending order based on objective values and select data from
the 25th to the 50th percentile as the initial training dataset. We prioritize data with lower objective
scores to better observe performance differences across each baseline. Each optimization iteration
is allocated 100 queries to the oracle function (batch size N = 100), with a total of 16 iterations
conducted. More details of the dataset are provided in Appendix D.1.
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Figure 3: Comparison of Diff-BBO with baselines for online black-box optimization on DesignBench and
Molecular Discovery task. All plots start at iteration 1 after one round of data queries. We plot the mean values
and the confidence interval based on three random runs. Diff-BBO demonstrates superior performance with few
queries to the oracle.

6.2 BASELINES

We compare Diff-BBO with 10 baselines, including Bayesian optimization (BO), trust region BO
(TuRBO) (Eriksson et al., 2019), local latent space Bayesian optimization (LOL-BO) (Maus et al.,
2022), likelihood-free BO (LFBO) (Song et al., 2022), evolutionary algorithms (Brindle, 1980;
Real et al., 2019), conditioning by adaptive sampling (CbAS) (Brookes et al., 2019), and random
sampling. For BO approaches, we include Gaussian Processes (GP) with Monte Carlo (MC)-based
batch expected improvement (EI), MC-based batch upper confidence bound (UCB) (Wilson et al.,
2017), and joint entropy search (JES (Hvarfner et al., 2022) as the acquisition functions. For LFBO,
we use EI and probability of improvement (PI) as the acquisition functions.

6.3 RESULTS

Figure 3 illustrates the performance across six datasets for all baselines and our proposed algorithm.
Notably, Diff-BBO consistently outperforms other baselines in both discrete and continuous settings,
with the sole exception of the TF-BIND-8 task. Specifically, in the Ant and Dkitty tasks, Diff-BBO
demonstrates a significant lead over all baseline methods, starting from the very first iteration of
the online optimization process. This remarkable performance can be attributed to Diff-BBO’s
diffusion model-based inverse modeling approach, which effectively learns the data manifold in the
design space from the initial dataset, even when the initial dataset lacks data with high objective
function values. In contrast, the forward approach employed by BO and LFBO, which relies solely on
optimizing the trained surrogate model, is more prone to converging on suboptimal solutions.

TFBind10 D'Kitty
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Figure 4: Impact of acquisition function design for black-box optimization on both discrete task (TFBind10)
and continous task (D’Kitty). Comparison of Diff-BBO against fixed-condition approaches using weights
w € {0.6,0.8,1.0,1.2,1.4,2.0,2.5,3.0}. Results averaged across three random runs.
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Task GP (EI) GP(UCB) Evolution LFBO (EI) LFBOPI) CbAS TuRBO Diff-BBO
TFBind8 112.92 113.81 0.0021 0.59 1.44 0.075  67.23 136.29
Molecular Discovery 53.14 53.82 0.0024 1.93 1.12 0.023 76.84 69.44

Table 1: Model training and acquisition function computation time in seconds.

6.4 ABLATION STUDY

In this section, we conduct ablation studies to investigate the impact of our designed acquisition
function, UaE. We compare Diff-BBO with the fixed-condition approach. Instead of using UaE
to dynamically determine which y = w - ¢y, to condition on, the fixed condition approach always
generates new samples conditioned on w - ¢y, with a fixed weight w. As shown in Figure 4, Diff-BBO
consistently outperforms the fixed condition approach. Furthermore, it can be found that simply
conditioning on higher y by increasing w does not enhance optimization performance. This highlights
the effectiveness of UaE in identifying the optimal y for conditioning by balancing between targeting
higher objective values and minimizing the epistemic uncertainty.

Furthermore, we evaluate the effect of batch size,
aka the number of queries per iteration on Diff-BBO
on the Superconductor task. As shown in Figure 5, Superconductor
we compare the objective function score over num- e
ber of function evaluations. We can see the perfor-
mance of our approach remains similar when the
batch size becomes larger, suggesting remarkable
robustness across different batch sizes. Hence, Diff-
BBO is a highly-scalable inverse modeling approach

100
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80
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—=— Batch Size = 100

Objective Score

70

60

that can efficiently leverage parallelism to handle —+ Bakch Size = 200
larger computational loads without compromising 0 200 400 600 800 1000 1200 1400 1600

Number of Evaluations
performance.

. . . Figure 5: Ablation study to evaluate the effect of
Finally, we analyze the computational time for model  patch size on the superconductor task. The mean

training and acquisition function computation for and standard deviation across three random seeds
Diff-BBO and existing baselines, as shown in Ta- are plotted. Diff-BBO shows robust performances
ble 1. The results indicate that the computational across different batch size given the same total
time for Diff-BBO is comparable to BO approaches number of evaluations.

using GP as the surrogate model, typically ranging

from 1 to 2 minutes per iteration for model training

and acquisition function computation. Given the context of online BBO, where querying the oracle to
generate new data is the most expensive or time-consuming part, a few minutes spent on training and
acquisition function computation should not be considered a significant computational burden.

7 CONCLUSION, LIMITATION, AND FUTURE WORK

In this paper, we introduced Diff-BBO, a novel inverse modeling approach for black-box optimization
that leverages the uncertainty of conditional diffusion models. By utilizing the novel acquisition
function UaE, Diff-BBO strategically proposes objective function values to improve sample efficiency
in online settings. Our empirical evaluations on the Design-Bench benchmark and molecular design
experiments demonstrate that Diff-BBO achieves state-of-the-art performance, establishing its poten-
tial as a robust tool for efficient and effective online black-box optimization. Theoretically, we prove
that using UaE leads to optimal optimization solutions. We conclude by discussing the limitations and
potential extensions of Diff-BBO: (i) acquisition function improvement: Our current implementation
for the acquisition function, UaE, requires presetting the candidate sets. This necessitates addi-
tional hyperparameter tuning. (ii) BBO extensions: Diff-BBO can be extended to various Bayesian
optimization settings, including multi-objective and multi-fidelity Bayesian optimization.

REPRODUCIBILITY STATEMENT

The experimental details can be found in Appendix D. We provide the code in the supplementary
materials for reproducing the results.
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Appendices

A UNCERTAINTY QUANTIFICATION THROUGH SDES

A.1 CONDITIONAL DIFFUSION SDE

It can be shown that the conditional diffusion model can be represented by the Ornstein—Uhlenbeck
(OU) process, which is a time-homogeneous continuous-time Markov process:

dx; = —vyx; dt 4+ o dwy, )

where -y is the relaxation rate, o is the strength of fluctuation, and w; is the standard Wiener process
(a.k.a., Brownian motion). Both « and ¢ are time-invariant. In particular, setting v = 1 and o = V2,
we are able to establish that Denoising Diffusion Probabilistic Model (DDPM) is equivalent to OU
process observed at discrete times. In the remaining text, we consider SDEs for general score-based
diffusion models. The SDE of the forward process in conditional diffusion model can then be written
as:

1
da, = —Sg(t)ar dt + /g(t) dwy, @0 ~ q(y) (12)

where g(t) is a nondecreasing weighting function that controls the speed of diffusion in the forward
process and g(t) > 0. For simplicity of analysis, we fix g(t) = 1 for all ¢ € [T].

The generation process of a conditional score-based diffusion model can be viewed as a particular
discretization of the following reverse-time SDE:

1
dar = (1~ Ve logplail) )+ dwr, @0~ plary) (13)

In practice, the unknown ground truth conditional score V5, log p(x+|y) needs to be estimated with
score networks. Let such estimator denoted by sg¢(x, y, t), then the conditional sample generation is
to simulate the following backward SDE:

dxy = (;:ct - se(m,y,t)) dt + dwg, xo ~ N(0,1I). (14)

In Bayesian settings, we sample a score function $p(x,y,t) from the probability distribution
p(sol@t, y, 6, D) = N(sg(xs,y,1), Lo(xt, y, t)) with expected value sqp(x:,y,t), and diagonal co-
variance Xy (xy, y, t).

A.2 ESTIMATION OF UNCERTAINTY

In this section, we quantify the uncertainty of a single conditional diffusion model in both discrete-
time and continuous-time reverse process for Theorem 1.

A.2.1 UNCERTAINTY IN DISCRETE-TIME REVERSE PROCESS

We first proof the first statement of Theorem 1. We consider the Euler discretization of Equation (14),
which leads to:

1
$t_1:§$t+59($,y,t)+€, ENN((LI) (15)
We thus have,
1 1
Var(z:—1) = zVar(:Bt) + Var(sg(z,y,t)) + §COV (zs, s0(x,y,t)) + 1. (16)
1
E(x;—1) = §E($t) + E(so(z, y,1)). (17)

Here Cov (x¢, sg(x, y,t)) is the element-vise covariance between x; and sq(x, y,t). Note that we
only need to consider the correlation between x; and sq(x, y, t) at the same time step. As a result, to
estimate Cov (¢, sg(x, y, 1)), we have,

Cov (mtv SQ(CC, Y, t)) =E (mt - E[CC,‘]) (SG(ma Y, t) - E[89($7 Y, t)])Ti|
=E [wt o 89((B, Y, t)] - E[wt] © E[89(w7 Y, t)]
= Ewt [mt © 89($7 Y, t)] - E[wt} © Emt [sa(wta Y, t)] (18)

where o is the Hadamard product and the third equality is by tower’s rule. Substituting Equation (18)
back to Equation (16) completes the proof of the first part of Theorem 1.
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A.2.2 UNCERTAINTY IN CONTINUOUS-TIME REVERSE PROCESS

We now proof the second statement of Theorem 1. To perform the uncertainty quantification for the
continuous-time reverse process, we posit the following assumption.

Assumption 1. For valid t € [0, T, the generating process x in Equation (13) is integrable and has
finite second-order moments.

With Assumption 1, integrating Equation (13) with respect to ¢ yields:

T T
1
Ty =TT — / <2mt + Va, 1ogp(a:t|y)> dt + / dw;. (19)
t t

-0 =0
Applying the variance operator to both sides of

Var(zo) = Var(zr) + Var (/:0 (;wt + Va, logp(:ct|y)> dt) + Var (/:0 dwt>
= I+ Var (/:O (;:ct + Vg, logp(sct|y)) dt) +E </:0 dwt>2 - (E l/:o dwt]>2

T
= (T +1)I + Var (/ (;wt + Va, logp(wty)> dt), (20)
t

=0

Vi
where the last equality follows the properties of Itd Integral and rules of stochastic calculus such

that (dw)? = dt, E[ i) tT:o dw;] = 0. Hence, to provide an uncertainty estimate for xy, it remains
to estimate the term V5. Recall that the true score function V, log p(x:|y) is approximated by
so((xe,y,t) = —€g(x,t,y)/o. For ease of notation, let sg ; = sg(x¢, y,t) and 59, = Sp(x¢,y, 1),
which gives

T T
1 1 1
V= / / (4COV(CL‘S,£IJt) — 5(]0\/‘(33S7 So) — §COV(a:t, se,s) + Cov(sg,., 5975)) dsdt.
t=0 Js=0

When s # t, score functions sg; and sg s are independent, and similarly, x; and sy ; are also
independent. As a result, the above equation can be further simplified as

T T T
1 1
Vi = / / <4COV((BS,£E,5) — 2Cov(a:8,39’t)> dsdt — / (Cov(zy,s0,¢) + Cov(se, So,)) di.

t=0s=0 t=0
Combining all the above results together completes the proof of the second statement of Theo-
rem 1.

B ANALYSIS OF SUB-OPTIMALITY FOR BLACK-BOX FUNCTION

In this section, we study the behavior of the sub-optimality gap of our algorithm by proving Theorem 2
and Theorem 3. We first introduce the notation that is used throughout this section and the next
section. Then we present the main lemmas along with their proofs. Finally, we combine the lemmas
to prove our main results.

At each iteration k € [K], let Y, be the target function value on which the diffusion model conditions,
and pg be the model learned by the conditional diffusion model. We define the performance metric
for online BBO problem, which measures the sub-optimal performance gap between the function
value achieved by sample  ~ pg(-|y;, D) and the target function value y; . Its formal definition is
described as follows:

A(p97y2) = ’ where Zj Np9(|y27p)> V] € [N] (21)

Yi. — max f(x;)

For simplicity of analysis, we consider N = 1, and let the generated sample at the k-th iteration be
xj, in the remaining text. We remark that all proofs go through smoothly for general N with more
nuanced notations, and do not affect the conclusions being drawn. To proceed with the proofs in this
section, we first state the formal assumptions for the black-box function f(-) and sample .
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Assumption 2. The scalar black-box function f is L-Lipschitz in x:
f@) - f@)| < Llia’ — 2|, Vo', € R,

Assumption 3. Each generated sample x € R? is o-subGaussian. That is, there exists 0 € R such
that for any v € R? with ||v|| = 1, v (x — E[z]) is o-subGaussian, and its moment generating
function is bounded by:

Elexp (Av" (z — E[z]))] < exp (U A

), VAeR, vesSit,

where S := {v € R? : ||v|| = 1} is the (d — 1) unit sphere.
Before proceeding with the proofs of main theorems, we present our main lemmas.

Lemma B.1. At each iteration k € [K]|, under fixed parameters 6 and 6*, for xj, ~ pg(-|y;, D),
x* ~ py-(-|y;, D), we have

Eoxyopo v D) ~poe (lyp, D) 12" = @4l]] < 8Vdo + | Eae [27] — Ea, [24]]] (22)

By mpo(-lyz. D)z ~pes (Jy.D) 1" — Zpl[] = ||EBgr [27] — Eg, []|] - (23)

Proof of Lemma B.1. To bound E [||x* — x]|], by triangle inequality,
Eepar (|27 —zp|] = Efll2” — E[z"] + Ely] — 25 + E[2"] — Elay ][]
<E[|" - Elz"||] + E ([l — E[zx][l] + E [|[E[z"] — Ela]||].
Under assumption 3, by Lemma B.3, we have,
Eu, o (& — 2xl|] < 8Vdo + |[E[z"] — Efe]| -
Applying triangle inequality completes the step. In addition, it can be easily seen that
Eapar (|27 — zx] > [[Elz7] — Efz:]|]-

O

Lemma B.2. At each iteration k € [K], under fixed parameters 6 and 0*, for xj, ~ po(-|y;, D),
x* ~ py-(-|y;, D), we have

Varmk~ps(~\y;,D)7w*~pe*('Iy,ﬁﬂ)(”m* —ail]) < C3d02' 24)

Proof of Lemma B.2. By definition of variance,
|z — @) = Elllz" - z]*] - (E[l|lz* - 2]])*. (25)
Expanding the first term leads to
E(|z* — @|*] = E[(z” — @) " (@" — @)
= Elle"||"] + El|@x|] - 2E[(z) " 2]
= El|="||"] + E[|@x|*] - 2E[(z1)] "E[z"], (26)

where the last equality is due to the independece between x* and xg.

Varmk,w*(

Under Assumption 3 and by Lemma B.4, we have
E[|lz*)*] = E[a* — E[z*] + E[z"]|%]
=E[(z" - E[z"))" (=" — E[z*])] + ||E[z"])*
= tr(E[(z" — E[z*])(z* — E[="])]") + |[E[z*]|®
< Cdo® + |E[=*]|°.

Here, the second equality holds as the cross terms vanish due to the fact that E[xz* — E[z*]] = 0.
Similarly,
Elllz4]’] < Cdo® + |[Ef]||” -
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Substituting the above two results back to Equation (26),
Ellz* - @|] < 2Cdo” + |Ela]|* + |E[z"]|* — 2E[(z+)"2"]
< 2Cdo? + |Elzy] — Elz*]|)°. 27)
Substituting Equation (27) back to Equation (25) and applying Lemma B.1 leads to
Varg, o (|2 — zi|]) < 20do? + |Elzy] — Elz*]||* — (8vdo + |[E[z*] — Ezy]|))? < c3do®.

O
With the above results, we are ready to prove Theorem 2 and Theorem 3.
Theorem 2. At each iteration k € [K|, define the sub-optimality performance gap as
Alpo, yk) = Yk — max f(x;)|, where ; ~ po(-lyg, D), Vj € [N]. ©)

Assume that there exists some 0* ~ p(0|D) that produces a probability distribution pg«(- | D)
such that it is able to generate a sample x* that perfectly reconstructs yj,. Suppose function f is
L-Lipschitz and each sample is o-subGaussian, it can be shown that

E [A(p97 y;:)] < ClL\/go-v
where d is the dimensionality of the design space, c1 is some universal constant.
Proof of Theorem 2. Recall that we consider the case where N = 1, and denote x;, the generated
sample in the k-th iteration, i.e. i ~ po(-|y;, D), where 6 ~ p(6 | D). In each iteration k, with

the existence of 8* ~ p(# | D), we have y; = f(z*), where * ~ pg-(-|y;, D). Hence, under
Assumption 2,

E[A(po, yp)l = E[[f(®") — f(ax)]] < LE [[]” — ]

By Lemma B.1, tower rule and Lemma B.5, we have
E[A(po, yi)] < LEg o+ [Ey o= [[l2" — i ]] 6, 07]
< 8LVdo + Eg g+ [|Ea- [*|6%] — Eq, [z1]0] ]
S ClL\/gG'.

O

Theorem 3. (Sub-optimality bound) At each iteration k € [K]|, suppose M model parameters
{0:}M | are generated from the ensemble model for some fixed dataset D. Suppose function f is
L-Lipschitz, it can be shown that the variance of the sub-optimality performance gap of each model
is bounded by the epidemic uncertainty:

Var (A(pe,, ;) < cal?do? + caL? Acpistemic (Yf, D), Vi € M, (10)

where co is some universal positive constant.

Proof of Theorem 3. Atevery iteration k € [K], let the target function value on which the conditional
diffusion model conditions be y;;. The statement needs to hold for each conditional diffusion model
in the ensemble, and thus for simplicity of notation, the subscript 4 of 6; is dropped in the remaining
proof. With the existence of 6* ~ p(6 | D), we have y;; = f(x*), where * ~ pyg-(-|y;, D). Recall
that f(xy) is achieved by @ ~ po(-|y;, D), where § ~ p(8 | D), and N = 1.

Thus, by Eve’s law, the overall variance of A(pg, y;) can be decomposed as:
Var (A(pg, yi)) = Var (ly — f(@x)])
= Var (|f(2") — f(a)])
= Eg o+ [Varg, o (1f(®") = f(@x)] | 0,07)] + Varg p- (B, o [|f(@7) — f(ar)] [ 0,607]) .

T1 T2
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In particular, the first term 77 corresponds to the aleatoric component and the second term 75
corresponds to the episdemic component. We then proceed to bound the above two terms separately.

Step 1: bound 7. Under Assumption 2,
f(x") = f(xr)
Under Assumption 3 and by Lemma B.2,
Ty < L*Eg g+ [Varg, z-(
Step 2: bound 75. Under Assumption 2,
Ty < L?Varg g« (g, o [||2* — 1| | | 0,0%]))

|6,0%) < LQVarwk,m*(Hw* — x| ]]0,6%).

Varg, o (

lx* — x| || 6,0%)] < czL?do?. (28)

By Lemma B.1,
Vatg,g- (B, o [1f (@) = f (@) 6,6"]) < Vargo- (Eo - [8Vido + [Ear [2"] — Ea, 2]l
< Varg g« (|[Eq-[2"] — Eay [zi]]) -

Then by property of variance, we have

2
* * 2 *
[Ea- (2] — Ea, [24]]) = Eoo- |[Eo- 0] — Eq, [o]]*] = (Eoor | [Eor[0] - Eay [anll]) -
From the proof of Lemma B.2, we have

Eoo- | [Eo [2710°] — B, [a]6]]

Varg’g* (

= Ep- [Eo- [l 27| 16"]] + Eo[Ea [ i]|” 6] — 2Eo 0+ [Ew, [(21]0)] "Eq- [27|67]]
= 2(Eo[Ea, (|24 ]” 16]] — Eo.o- [Ex, [(21]0)] "E [27167]))

= 2(Eo[Ea, [llz4]” 16]] - |Eo[Ea, [24]6]]]%)

= 2Vary(Eq, [||24][]),

where the third equality is by the law of total expectation and the fact that Ey[E,, [zx|0]] =
Eg« [Eg«[x*]0*]]. Combining the above results, we have

Ty < L?Varg g+ (|Eg+ [2*] — B, [2£]]]) < 2L2Varg(Eqy, [[|lzx]])- (29)
Combining Equation (28) and Equation (29) completes the proof:
Var (A(pg,y;)) < esL?do? + 2L*Varg (Eg[||z1|]).-

O
B.1 SUPPORTING LEMMAS
Lemma B.3 (Wainwright (2019)). Let x € R? be a o-subGaussian ramdom vector, then
Elllz — Efa]]] < 40Vd. (30)
Lemma B.4. Ler x € R? be a o-subGaussian ramdom vector, then its variance satisfies:
Var[z] < Cdo?, 31

where C is some positive constant.

Proof of lemma B.4. By definition of sub-Gaussian vector, for any direction u € R? with ||u|| = 1,
E [exp()\uT(m — Elz]))] <exp (AQ -

This implies that the second moment in any direction w satisfies:

E [uT((a} — Elz])(x — E[w])T)} < g2,

Therefore, the maximum eigenvalue of the covariance matrix is upper-bounded by Co2, where C is
some positive constant.

Var[z] = tr (E [(z — E[z])(x — E[z])"]) < Cdo?.

>, VA eR.
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Lemma B.5. In each iteration k € [K), let D be the collected dataset, 6 and 6* are parameters
independently drawn from posterior p(0|D), xj, ~ po(-|y;, D) and x* ~ pg-(-|yf, D). For any
measurable function f, and o(D)-measurable random variable xy,

E[f(z)] = E[f(=")].

Proof of Lemma B.5. Since the black-box function f is measurable, and by the nature of Algorithm 1,
in each iteration k, the generated sample x, the target function value y7, the predictive distribution
pa(-lyx, D), the posterior distribution p(6 | D) are o(D)-measurable at iteration k, the only random-
ness in f(x) comes from the random sampling in the algorithm. Thus, condition on the training data
D and target value y;, by tower rule,

E[f(zr)] = E[E[f(2)]6]] = /9 f(@r)pe(zx|yr, D)p(6|D) day, A8

- /0 F(@)po(@xlyf, D) day p(6]D) do.

Note that both the true parameter 8* and the chosen parameter 6 are drawn from the same posterior
distribution p(f | D), we have

/ / f(@)po(ly}, D) de p(6|D) df = / / F(@)ps- (lyf D) d p(6|D) 6",
0Jx * Jx
As a result, we have
E[f(z)] = / [ @ @l D) datp(6° D) d6* = E[E[f(@)]6%]) = E[f(w")].
O

Corollary 1. In each iteration k € [K], let D be the collected dataset, 0 and 0* are parameters
independently drawn from posterior p(0|D), x, ~ po(-|y}, D) and x* ~ pg-(-|y}, D). For any
measurable function f, and o(D)-measurable random variable xy,

E{[lex]l]] = Eflz"|]-

Proof of Corollary 1. Since the norm function is deterministic and o(D)-measurable, the proof
directly follows that of Lemma B.S5. O

C OPTIMALITY OF PROPOSED ACQUISITION FUNCTION

Theorem 4. Let Y be the constructed candidate set at each iteration k € [K] in Algorithm 1. By
adopting UaE as the acquisition function to guide the sample generation process in conditional
diffusion model, Diff-BBO (Algorithm 1) achieves a near-optimal solution for the online BBO problem
defined in Equation (3):

K K

mafo(wk), zp ~po(-|yx, D), 0 €O = max a(yg, D).
k=1

Proof of Theorem 4. Following Theorem 3, we can express the function evaluation as follows,
f(xr) = yp — (yr — f(21)), VK € [K].

The overall objective of the optimization problem defined in Equation (3) can then be further
decomposed as
K
, ~ . , 0O
I@};gﬁ;f(wk) x, ~ po(- | yk)
K
yrER —

e max Y yr — (yk — f(@k)), Tk ~pol-|yk), 0 €O
k=1
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K
= max — A(po, yi),

where the candidate set ) is constructed based on the model’s predictions and is designed to explore
the objective space efficiently. When considering an online maximization problem, adding a positive
term would lead to overestimation, because the model would be overly optimistic about f(xy).
Therefore, we should only consider the case where we the uncertainty is being subtracted. By
Theorem 3, which shows A(pg, y;) can be effectively upper bounded the epidemic uncertainty, we
therefore have

K K
;I:gé;f(wk), i ~po(- | yk), 0 €O = gclg;yk — Acpisdemic (Yk, D).

Essentially, our chosen acquisition function allows Diff-BBO to maximize the lower bound of the
original optimization problem. Penalizing high uncertainty ensures that the model prioritizes more
confident predictions (i.e. those with lower epistemic uncertainty), which are more likely to yield
higher objective function values. O

D EXPERIMENT DETAILS

D.1 DATASET DETAILS.

DesignBench (Trabucco et al., 2022) is a benchmark for real-world black-box optimization tasks. For
continuouse tasks, we use Superconductor, D’Kitty Morphology and Ant Morphology benchmarks.
For discrete tasks, we utilize TFBind8 and TFBind10 benchmarks. We exclude Hopper due to the
domain is known to be buggy, as explained in Appendix C in (Krishnamoorthy et al., 2023). We also
exclude NAS due to the significant computational resource requirement. Additionally, we exclude
the ChEMBL task because the oracle model exhibits non-trivial discrepancies when queried with the
same design.

* Superconductor (materials optimization). This task involves searching for materials with
high critical temperatures. The dataset comprises 17,014 vectors, each with 86 components
that represent the number of atoms of each chemical element in the formula. The provided
oracle function is a pre-trained random forest regression model.

» D’Kitty Morphology (robot morphology optimization). This task focuses on optimizing
the parameters of a D’Kitty robot, including the size, orientation, and location of the limbs,
to make it suitable for a specific navigation task. The dataset consists of 10,004 entries with
a parameter dimension of 56. It utilizes MuJoCO (Todorov et al., 2012), a robot simulator,
as the oracle function.

* Ant Morphology (robot morphology optimization). Similar to D’Kitty, this task aims to
optimize the parameters of a quadruped robot to maximize its speed. It includes 10,004 data
points with a parameter dimension of 60. It also uses MuJoCO as the oracle function.

* TFBind8 (DNA sequence optimization). This task seeks to identify the DNA sequence of
length eight with the highest binding affinity to the transcription factor SIX6 REF R1. The
design space comprises sequences of nucleotides represented as categorical variables. The
dataset size is 32,898, with a dimension of 8. The ground truth is used as a direct oracle
since the affinity for the entire design space is available.

* TFBind10 (DNA sequence optimization). Similar to TFBind8, this task aims to find the
DNA sequence of length ten that exhibits the highest binding affinity with transcription
factor SIX6 REF R1. The design space consists of all possible nucleotide sequences. The
dataset size is 10,000, with a dimension of 10. The ground truth is used as a direct oracle
since the affinity for the entire design space is available.

Molecular Discovery. A key problem in drug discovery is the optimization of a compound’s
activity against a biological target with therapeutic value. Similar to other papers (Eckmann et al.,
2022; Jeon & Kim, 2020; Lee et al., 2023; Noh et al., 2022), we attempt to optimize the score from
AutoDock4 (Morris et al., 2009), which is a physics-based estimator of binding affinity. The oracle is
a feed-forward model as a surrogate to AutoDock4. The surrogate model is trained until convergence
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on 10,000 compounds randomly sampled from the latent space (using N'(0, 1)) and their computed
objective values with AutoDock4. We construct our continuous design space by fixing a random
protein embedding and randomly sampling 10,000 molecular embedding of dimension 32.

For all the tasks, We sort the offline dataset based on the objective values and select data from the
25% to 50% as the initial training dataset. We use data with lower objective scores to better observe
performance differences across each baseline. The overview of all the task statistics is provided in
Table 2.

Task Size Dimensions Task Max
TFBind8 32,898 8 1.0
TFBind10 10,000 10 2.128
D’Kitty 10,004 56 340.0
Ant 10,004 60 590.0
Superconductor 17,014 86 185.0
Molecular Discovery 10,000 32 1.0

Table 2: Data Statistics

D.2 IMPLEMENTATION DETAILS.

We train our model on NVIDIA A100 GPU and report the average performance over 3 random
runs along with standard deviation for each task. For discrete tasks, we follow the procedure in
Krishnamoorthy et al. (2023) where we convert the d-dimensional vector to a d X ¢ one hot vector
regarding c classes. We then approximate logits by interpolating between a uniform distribution and
the one hot distribution using a mixing factor of 0.6. We jointly train a conditional and unconditional
model with the same model by randomly set the conditioning value to 0 with dropout probability of
0.15.

For each task, we fix the learning rate at 0.001 with batch size of 256. We use 5 ensemble models to
estimate the uncertainty for our acquisition function. We set hidden dimensions to 1024 and gamma
to 2. We use 10% of the available data at each iteration as validation set during training.

E IMPACT STATEMENT

Optimization techniques can address various real-world problems, including drug and material
design. Our method enhances sample-efficient online black-box optimization, potentially accelerating
solutions in these areas. However, caution is needed to prevent misuse, such as optimizing drugs to
enhance harmful side effects.
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