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Abstract

Recent advancements in text-attributed graphs (TAGs) have significantly improved1

the quality of node features by using the textual modeling capabilities of language2

models. Despite this success, utilizing text attributes to enhance the predefined3

graph structure remains largely unexplored. Our extensive analysis reveals that4

conventional edges on TAGs, treated as a single relation (e.g., hyperlinks) in5

previous literature, actually encompass mixed semantics (e.g., "advised by" and6

"participates in"). This simplification hinders the representation learning process7

of Graph Neural Networks (GNNs) on downstream tasks, even when integrated8

with advanced node features. In contrast, we discover that decomposing these9

edges into distinct semantic relations significantly enhances the performance of10

GNNs. Despite this, manually identifying and labeling of edges to corresponding11

semantic relations is labor-intensive, often requiring domain expertise. To this end,12

we introduce RoSE (Relation-oriented Semantic Edge-decomposition), a novel13

framework that leverages the capability of Large Language Models (LLMs) to14

decompose the graph structure by analyzing raw text attributes - in a fully automated15

manner. RoSE operates in two stages: (1) identifying meaningful relations using16

an LLM-based generator and discriminator, and (2) categorizing each edge into17

corresponding relations by analyzing textual contents associated with connected18

nodes via an LLM-based decomposer. Extensive experiments demonstrate that our19

model-agnostic framework significantly enhances node classification performance20

across various datasets, with improvements of up to 16% on the Wisconsin dataset.21

1 Introduction22

Text-attributed graphs (TAGs) [1], which combine graph structures with textual data, are frequently23

used in diverse real-world applications, including fact verification [2; 3], recommendation systems [4],24

and social media analysis [5]. In TAGs, texts are incorporated as node descriptions such as paper25

abstracts in citation networks [6; 7; 8] or web page contents in hyperlink networks [9; 10]. By26

leveraging the rich information present in both the graph topology and its associated text attributes,27

substantial advancements have been achieved in graph representation learning. Among them, numer-28

ous studies have been proposed to enhance the node representation quality of TAGs by leveraging29

features generated from light-weighted pre-trained language models (PLMs) [1; 11; 12; 13; 14; 15]30

such as Sentence-BERT [16], or by refining raw texts using the general knowledge of Large Language31

Models (LLMs) [17; 15].32

Despite their success, the potential of utilizing text attributes to enhance the predefined graph33

structure remains largely under-explored. Existing approaches have treated the edges in TAGs as a34

uniform relation, overlooking the diverse inherent semantics they convey. For instance, in the WebKB35
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dataset [10], nodes denote web pages with their textual content as node features while their edges are36

formed by hyperlinks. Despite the presence of varying semantic meanings such as "node A is advised37

by node B" or "node A participates in node C", the relationships are bundled as a single relation type38

("hyperlinks"), inadvertently entangling their semantic meanings. Such an over-simplification limits39

the ability of Graph Neural Networks (GNNs) to accurately model the intricate relationships between40

nodes, resulting in suboptimal performance.41

Throughout our comprehensive analysis, we reveal that the downstream task performance of GNNs42

is hindered by the oversimplified graph structure, even when integrating node features obtained43

from PLMs. On the other hand, disentangling edges into multiple semantic types yields more distin-44

guishable representations that significantly enhance downstream performance. However, manually45

identifying and labeling relation types is labor-intensive as it requires human annotation and often46

necessitates domain expertise to determine meaningful relation types.47

To address these challenges, we propose RoSE (Relation-oriented Semantic Edge-decomposition), a48

novel framework that utilizes LLMs to decompose predefined edges into semantic relations via textual49

information in a fully-automated manner. Given the description of the original graph composition,50

RoSE carefully identifies a concise set of meaningful relation types through the interaction between51

an LLM-based generator and a discriminator. Subsequently, the LLM-based decomposer disentangles52

each edge into predefined relation types by analyzing raw textual contents associated with its con-53

nected nodes. The versatility of our proposed framework is readily extended to varying architectures,54

encompassing edge-featured GNNs [18; 19; 20] and multi-relational GNNs [21; 22; 23].55

Our contributions are summarized as follows:56

• We reveal that the oversimplified graph structure in TAGs hinders the performance of GNNs on57

downstream tasks despite the integration of informative node features. On the other hand, mitiga-58

tion through decomposing graph edges lead to significant enhancements in GNN performance.59

• We present RoSE, a novel edge decomposition framework that utilizes the general reasoning60

capability of LLMs. RoSE identifies semantic relations through the interaction between an61

LLM-based generator and discriminator, and categorizes each edge into these relation types62

by analyzing textual contents via LLM-based decomposer. All these processes are automated,63

eliminating the need for extensive human analysis and annotation.64

• Extensive evaluations on diverse TAGs and GNN architectures demonstrate the effectiveness of65

RoSE in improving node classification performance. Notably, our framework achieves improve-66

ments of up to 16% on the Wisconsin dataset.67

2 Preliminaries68

Node Classification with Graph Neural Networks. We study a TAG G = (V, E , T ), comprising69

N nodes in V along with a node-wise text attribute T = {ti|i ∈ V} and M = |E| undirected edges70

connecting nodes. Nodes are characterized by a feature matrix X = [x1,x2, ...,xN ]T = gϕ(T ) ∈71

RN×F , where their text attributes are encoded using a PLM gϕ which is typically frozen. Edges72

are described by a binary adjacency matrix A ∈ RN×N , with A[i, j] = 1 if an edge (i, j) ∈ E , and73

A[i, j] = 0 otherwise.74

Our focus lies on a node classification task using a GNN fθ . The GNN learns representation of each75

node i by iteratively aggregating representations of its neighbors in the neighborhood set Ni in the76

previous layer, formulated as:77

h
(l+1)
i = ψ

(
h
(l)
i , AGG({h(l)

j ,∀j ∈ Ni})
)
. (1)

Here, AGG denotes an aggregation function and ψ combines the node’s prior representation with that78

of its aggregated neighbors. The initial representation is h
(0)
i = xi for notational simplicity and79

the overall multi-layered process can be expressed as fθ(X,A). The objective function L used80

for training the GNN is defined as the cross-entropy loss between the predicted class probabilities81

P = Softmax(Z) = Softmax
(
fθ(X,A)

)
∈ RN×K and the ground-truth labels Y ∈ RN×K :82

Lθ = − 1

N

N∑
i∈V

K∑
k=1

Yik logPik, (2)

where Z represents the logit produced by the GNN and K represents the total number of classes.83
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Table 1: Node classification accuracy (%) on WebKB and IMDB datasets, trained with single and
multi-type relations, averaged over 10 runs (± SEM). The best performances are represented by bold.

Datasets Cornell Texas Wisconsin IMDB

RGCN Single Type 57.60 ± 1.78 65.88 ± 1.86 59.22 ± 1.70 62.96 ± 0.44
Multi Type 68.80 ± 1.88 76.47 ± 1.82 83.28 ± 1.64 68.66 ± 0.57

HAN Single Type 56.00 ± 1.67 68.82 ± 2.12 58.28 ± 1.99 63.24 ± 0.54
Multi Type 60.40 ± 1.91 71.37 ± 2.24 76.09 ± 1.88 68.39 ± 0.62

Prompting Large Language Models. LLMs pre-trained on a vast amount of text corpora have84

demonstrated remarkable general reasoning capabilities proportional to their number of parame-85

ters [24; 25; 26; 27]. This advancement has led to a new approach to task alignment, allowing for86

the direct output obtainment from natural language prompts without the need for additional fine-87

tuning [28; 29; 30]. In practice, a natural language text prompt s is concatenated with a given input88

sequence q = {qi}ni=1 to form a new sequence q̃ = {s} ∪ q. Subsequently, an LLMM receives q̃89

as its input and generates an output comprising a sequence of tokens a = {ai}mi=1 =M(q̃).90

3 Analysis: Uncovering the Importance of Semantic Edge Decomposition91

In this section, we analyze the potential performance improvements of GNNs when applied to92

TAGs with available semantic edge types. Toward this, we choose three TAG datasets of a small93

size enough to manually classify the semantic types of edges. First, we perform our analysis on94

WebKB hyperlink graphs (Cornell, Texas, Wisconsin) [10], where nodes represent web pages and95

edges indicate hyperlinks between nodes. Despite traditionally being treated as single relation96

graphs, their edges can be mainly categorized into multiple semantic types, such as "participates in",97

"advises/advised by", "being part of", and "supervised by". To the best of our knowledge, this is the98

first analysis to broadly create and label relation types in such graphs to verify GNNs’ performance99

in a multi-relational scenario. Additionally, we include the IMDB graph [31], which consists of100

movie nodes with edges reflecting overlaps between movie professionals. In contrast to the WebKB101

graphs, the edges in the IMDB graph have been consistently regarded as multi-relations [22; 32],102

differentiated into "actor/actress overlap" and "director overlap". By incorporating this dataset into103

our analysis, we demonstrate the potential performance degradation when inherent relations are104

simplified as a single relation.105

We evaluate the efficacy of relation labeling under the node classification task, with two multi-106

relational GNN architectures; namely RGCN [21] and HAN1 [22]. Each is an extension of GCN [33]107

and GAT [34] to multi-relational scenarios, equipped with an edge type-specific neighborhood108

aggregation scheme (detailed formulation is outlined in Section 4.3). Note that in the case of109

training with a single relation, RGCN and HAN function similarly to asymmetric GCN and GAT,110

correspondingly. We train these GNNs in two different approaches: processing edges as a single and111

multiple types of relation.112

As demonstrated in Table 1, decomposing edges into multiple semantic relations leads to significant113

performance improvements across all datasets and GNN architectures. This enhancement is particu-114

larly pronounced in the Wisconsin dataset, where accuracy improvements of 26.56% and 19.37% are115

achieved for RGCN and HAN, respectively. Furthermore, our analysis reveals that neglecting the116

entangled semantics in multi-relational benchmark results in suboptimal performance. The benefits of117

decomposition are also evident at the representation level, showing more distinguishable and clustered118

node representations, as illustrated in Figure 3 and 4 in Appendix B. Hence, our observation highlights119

the suboptimality present within the graph structure due to its oversimplification of edges, which can120

be adequately addressed through the decomposition of edges into distinct semantic relations.121

4 RoSE: Relation-oriented Semantic Edge-decomposition122

Despite the efficacy of semantic edge decomposition introduced in Section 3, the practical imple-123

mentation of semantic edge decomposition presents several challenges. To begin with, defining124

1Due to the scope of our research on semantic edge decomposition, we do not consider node type-wise
aggregation in HAN.
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Figure 1: Overall framework of RoSE.

the appropriate semantic relation type is a non-trivial task that often requiring domain expertise.125

Moreover, creating annotations for the numerous edge types is extremely labor-intensive. In turn,126

limiting the usage of fine-tuned PLMs for edge decomposition, as they necessitate the identified list127

of edge types and the ground-truth edge labels for fine-tuning.128

To address this, we present RoSE, an innovative framework that leverages the advanced textual129

reasoning capabilities of LLMs to automate the decomposition of edges into their inherent semantic130

relations based on their corresponding text attributes. RoSE is structured into two main phases: (1)131

Relation Type Identification (Section 4.1), and (2) Semantic Edge Decomposition (Section 4.2). The132

edges decomposed by RoSE can be seamlessly integrated with conventional GNN architectures in133

a plug-and-play manner (Section 4.3). This is facilitated either through direct edge type-specific134

neighborhood aggregation in multi-relational GNNs or by assigning relation types as edge features in135

edge-featured GNNs. In addition, to enhance efficiency, we introduce an edge sampling strategy that136

reduces the number of queries required for LLM-based edge type annotation (Section 4.4). Figure 1137

illustrates the overall framework of RoSE.138

4.1 Relation Type Identification139

To decompose each edge into underlying semantic relations, it is essential to identify relation types140

that are: (1) meaningful, capturing the inherent context of predefined edges; (2) feasible, determinable141

based solely on textual attributes; and (3) distinct, ensuring clarity and avoiding redundancy within142

the graph.143

We use a combination of an LLM-based relation generator and relation discriminator for this task.144

The relation generator addresses the requirement for meaningfulness by generating a set of plausible145

candidate relations based on graph composition. The relation discriminator ensures feasibility and146

distinctiveness by filtering out candidate relation types that exceed the analytical capability of LLMs147

or exhibit excessive redundancy. The effectiveness of this generator - discriminator framework is148

outlined in Section 5. We provide detailed information of each component in the following paragraphs.149

All prompt templates fixed throughout our experiments is specified in Appendix A.150

Relation Generator. To obtain a set of edge types relevant to the given graph, we provide the151

relation generator Mg with detailed information about the graph in the input prompt sg, which152

is mathematically formulated as Mg(sg). This information includes specifying node’s textual153

attributes (e.g., paper abstracts), predefined rules for node connectivity (e.g., co-citation), and category154

names (e.g., rule learning). Subsequently, we outline the role ofMg and specifies the preliminary155

requirements for identifying meaningful relations within the graph. Based on the provided graph156

composition and task description, the relation generator generates a list of candidate relation types in157

a zero-shot manner, without any additional fine-tuning.158
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Relation Discriminator. To ensure the feasibility and distinctiveness of the generated relation types,159

we employ a relation discriminatorMd. The discriminatorMd takes the relation types generated by160

Mg as input and filters out those that are irrelevant or infeasible to infer given the textual attributes161

and the analytical capabilities of LLMs. Given the set of candidate relation types outputMg(sg) by162

prompting relation generator, we concatenateMg(sg) with the task description prompt sd and pass163

the combined prompt to the relation discriminator.164

The overall process can be formulated as obtaining a relation set R = {R1,R2, ...,RR} from the165

two-stage LLM outputs, represented as Md

(
{sd} ∪ Mg(sg)

)
, where Rr represents the textual166

description of r-th semantic relation. It is worth noting that in certain scenarios, there could be167

domain experts who can define the relation types with minimal cost. In such cases, the above process168

can be considered optional, as the predefined relation types can be directly fed to the LLM for edge169

decomposition. However, in the absence of domain expertise, our identification framework provides170

an automated and scalable solution.171

4.2 Semantic Edge Decomposition172

Given the set of semantic relation types R identified in Section 4.1, we deploy an LLM-based relation173

decomposer Mc tasked with assigning relevant relations to each edge (i, j). A major advantage174

of utilizing LLMs in this context is their capability to perform multi-label classification, useful in175

realistic scenarios where a single edge often convey multiple semantic meanings. For instance, in an176

IMDB graph, two connected movie nodes might share both a common director and actor. Reflecting177

such real-world complexities, we instructMc to determine all possible relations that the given edge178

can be categorized under. Equipped with raw texts ti and tj associated with nodes vi and vj , the179

decomposition process is expressed asMc

(
{sc}∪{ti, tj}

)
with sc indicating the instruction prompt180

forMc.181

4.3 Integration with Conventional GNNs182

The edges disentangled by the relation decomposer can be flexibly integrated into either multi-183

relational GNNs [21; 22; 23] or edge-featured GNNs [18; 19; 20], highlighting its versatility.184

Multi-Relational GNNs. When paired with multi-relational GNNs, the decomposed edges catego-185

rized into R types of relations are treated as R distinct sub-structures {E1, E2, ..., ER}. When a single186

edge is assigned with multiple relation types, it is included in several corresponding Er. Each set Er187

is utilized to perform type-specific neighborhood aggregation. For a given node i at the l-th layer,188

these multi-relational GNNs are mathematically formulated as follows:189

h
(l+1)
i = ψrel

(
h
(l)
i ,

{
AGG({h(l)

j ,∀j ∈ N (r)
i })

}R

r=1

)
, (3)

where N (r)
v denotes the set of neighbors of v connected via type-r relation. Here, ψrel represents190

the update function that combines outputs from edge type-wise aggregation (and optionally, the191

hidden representation of itself [21]). In general, ψrel is implemented using mean, (weighted) sum, or192

attention operators.193

Edge-Featured GNNs. In addition, the decomposed edges facilitated by RoSE can be incor-194

porated as edge features for edge-featured GNNs. Specifically, given relation type descriptions195

R = {R1,R2, ...,RR} curated from relation generator and discriminator, we utilize the same196

PLM gϕ employed for encoding node features to embed each type description Rr, yielding a set197

of relational features. Subsequently, for each edge (i, j), the edge feature eij is assigned as the198

relational feature corresponding to the specific relation type associated with that edge, as determined199

by the relation decomposer. In cases where multiple edge types are applicable to a single edge, we200

incorporate all relevant edge features by duplicating the edge with each corresponding type. The201

operations for an individual node i at the l-th layer in edge-featured GNNs are formulated as follows:202

h
(l+1)
i = ψ

(
h
(l)
i , AGG

(
{h(l)

j , ξ(l+1)(eij)|∀j ∈ Ni}
))
, (4)

where ξ(l+1) denotes a function that linearly maps euv to the same representational space as h(l)
u .203
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Table 2: Node classification accuracy (%) on various datasets and GNN architectures, averaged over
10 runs (± SEM). The best and second best performances are represented by bold and underline.

Type Model Pubmed IMDB Cornell Texas Wisconsin Cora WikiCS Avg Gain

Single-type
GCN 89.32 ± 0.11 64.04 ± 0.43 48.20 ± 2.18 62.94 ± 2.49 51.56 ± 1.79 88.05 ± 0.40 82.58 ± 0.27 -
GAT 88.64 ± 0.11 64.39 ± 0.44 57.00 ± 1.56 66.86 ± 1.48 56.25 ± 2.29 87.74 ± 0.38 82.79 ± 0.16 -
JKNet 89.68 ± 0.14 63.00 ± 0.54 56.00 ± 1.52 61.57 ± 2.92 57.50 ± 1.19 87.16 ± 0.41 82.94 ± 0.28 -

Multi-relational

RGCN 87.98 ± 0.14 62.96 ± 0.44 57.60 ± 1.78 65.88 ± 1.86 59.22 ± 1.70 88.01 ± 0.47 82.02 ± 0.23 -
+ RoSE (8b) 90.23 ± 0.10 67.77 ± 0.60 61.40 ± 2.06 71.96 ± 1.82 70.78 ± 1.45 90.28 ± 0.45 86.81 ± 0.16 + 5.08
+ RoSE (70b) 89.68 ± 0.14 71.57 ± 0.42 63.80 ± 1.86 73.53 ± 1.42 75.31 ± 1.48 91.77 ± 0.38 88.52 ± 0.19 + 7.22
HAN 88.68 ± 0.15 63.24 ± 0.54 56.00 ± 1.67 68.82 ± 2.12 58.28 ± 1.99 87.55 ± 0.37 83.32 ± 0.26 -
+ RoSE (8b) 90.09 ± 0.15 66.83 ± 0.48 60.00 ± 1.47 72.94 ± 1.64 72.50 ± 1.78 89.23 ± 0.28 86.12 ± 0.15 + 4.55
+ RoSE (70b) 89.77 ± 0.12 69.55 ± 0.43 62.80 ± 1.86 72.94 ± 1.58 74.38 ± 1.49 90.31 ± 0.38 87.49 ± 0.15 + 5.91
SeHGNN 87.97 ± 0.19 62.72 ± 0.52 60.00 ± 1.30 71.37 ± 1.28 65.31 ± 1.95 86.58 ± 0.39 82.53 ± 0.19 -
+ RoSE (8b) 89.93 ± 0.18 68.27 ± 0.51 62.00 ± 1.41 73.33 ± 1.86 77.34 ± 1.04 89.53 ± 0.32 86.94 ± 0.18 + 4.41
+ RoSE (70b) 89.50 ± 0.23 70.99 ± 0.44 64.60 ± 2.12 77.45 ± 1.15 76.09 ± 1.31 91.38 ± 0.50 87.96 ± 0.20 + 5.93

Edge-featured

UniMP 89.92 ± 0.16 69.98 ± 0.58 63.40 ± 1.79 71.18 ± 2.00 78.44 ± 1.50 87.20 ± 0.59 84.29 ± 0.23 -
+ RoSE (8b) 90.21 ± 0.12 69.55 ± 0.62 67.80 ± 2.13 76.08 ± 1.79 80.94 ± 1.12 89.17 ± 0.54 86.33 ± 0.21 + 2.24
+ RoSE (70b) 90.37 ± 0.18 70.41 ± 0.64 67.80 ± 1.78 76.47 ± 1.73 79.84 ± 1.54 89.52 ± 0.41 87.69 ± 0.18 + 2.52
GIN 89.77 ± 0.15 67.59 ± 0.41 64.60 ± 2.08 68.63 ± 1.73 73.28 ± 2.06 87.05 ± 0.36 83.03 ± 0.21 -
+ RoSE (8b) 89.68 ± 0.15 68.27 ± 0.69 68.20 ± 1.48 74.51 ± 2.13 79.22 ± 1.19 88.55 ± 0.30 83.32 ± 0.29 + 2.54
+ RoSE (70b) 89.55 ± 0.15 69.12 ± 0.68 66.20 ± 1.18 72.75 ± 1.45 77.03 ± 2.05 88.93 ± 0.32 84.84 ± 0.17 + 2.07
GraphGPS OOM 66.85 ± 0.48 60.80 ± 1.73 70.20 ± 1.84 74.53 ± 0.77 85.14 ± 0.45 83.05 ± 0.26 -
+ RoSE (8b) OOM 67.69 ± 0.56 66.60 ± 1.88 73.14 ± 2.13 76.56 ± 1.90 87.53 ± 0.30 83.48 ± 0.23 + 2.41
+ RoSE (70b) OOM 68.48 ± 0.54 64.00 ± 1.60 72.75 ± 2.24 77.34 ± 1.49 88.10 ± 0.45 85.24 ± 0.17 + 2.56

4.4 Efficient Relation Type Annotation204

Algorithm 1 Efficient Relation Type Annotation

1: Input: Node i, Neighborhood Ni

2: Output: List of relationship labels L
3:
4: Sng ← [] # List of encountered neighbors
5: Slb ← [] # Labels of encountered edges
6: c← 0 # Initialize patience
7: for j in Ni do
8: if (|Set(Slb)| ≥ R) or (c ≥ γ) then
9: # Upon satisfying (i) or (ii), escape

10: break
11: else
12: Add j to Sng

13: AddMc ({sc} ∪ {ti, tj}) to Slb

14: c← c+ 1
15: end if
16: end for
17:
18: # Initialize with labels of encountered edges
19: L← Slb

20: for u in Ni \ Set(Sng) do
21: l← argminv∈{0,1,...,|Sn|} (dist(Sng[v], u))

22: Add Slb[l] to L
23: end for

When dealing with graphs with dense edges, the205

number of edges to be annotated significantly in-206

creases, which may incur expensive costs when207

using non-free LLMs as the backbone. To this208

end, we introduce an efficient node-wise query209

edge sampling strategy that reduces the num-210

ber of queries required for LLM-based relation211

type classification. We assume that neighboring212

nodes j1 and j2 of a node i, which are close in213

the feature space, are likely to have similar se-214

mantic relationships with i. Building upon this215

intuition, for each node i, we randomly traverse216

its neighbors and query their relationships until217

either (i) all kinds of edge types are discovered218

or (ii) a predefined patience threshold γ for per-219

node LLM queries is reached. For the remaining220

unqueried neighbors, we find their closest an-221

notated neighbor and assign the same relation222

types as the corresponding annotation, akin to223

a pseudo-labeling approach. This approach can224

greatly reduce the number of queries associated225

with LLM-based edge classification, particularly226

on graphs with dense edges. The overall proce-227

dures is detailed in Algorithm 1. We illustrate228

the performance and efficiency of this approach229

in Appendix B.230

5 Experiments231

In our experiments, we evaluate our proposed framework on the node classification task using seven232

well-established benchmarks: Cora [6], Pubmed [7], WikiCS [9], IMDB [31], Cornell, Texas, and233

Wisconsin [10]. To assess the effectiveness of our approach, we compare RoSE with a wide range of234

existing GNN architectures, including both traditional and popular GNNs [33; 34; 35; 21; 22; 18],235

as well as transformer-based GNNs [19; 20; 23]. The GNNs considered in our experiments can236

be broadly broadly categorized as (1) Multi-relational GNNs, such as RGCN [21], HAN [22], and237
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Table 3: Node classification accuracy (%) on IMDB, Texas, and Cora with multi-relational and
edge-featured GNNs, averaged over 10 runs (± SEM). The best and second best performances for
each architecture are represented by bold and underline.

Multi-relational GNNs IMDB Texas Cora

RGCN

Random 62.90 ± 0.50 66.47 ± 1.67 87.00 ± 0.29

Distance 66.99 ± 0.48 66.67 ± 2.15 88.03 ± 0.46

RoSE (8b) 67.77 ± 0.60 71.96 ± 1.82 90.28 ± 0.45

RoSE (70b) 71.57 ± 0.42 73.53 ± 1.42 91.77 ± 0.38
G.T. 68.66 ± 0.57 76.47 ± 1.82 -

HAN

Random 62.76 ± 0.59 67.65 ± 1.85 86.19 ± 0.42

Distance 66.66 ± 0.50 68.63 ± 2.09 87.13 ± 0.49

RoSE (8b) 66.83 ± 0.48 72.94 ± 1.64 89.23 ± 0.28

RoSE (70b) 69.55 ± 0.43 72.94 ± 1.58 90.31 ± 0.38
G.T. 68.39 ± 0.62 71.37 ± 2.24 -

SeHGNN

Random 62.46 ± 0.56 70.98 ± 2.09 86.00 ± 0.36

Distance 67.97 ± 0.43 71.57 ± 1.15 87.07 ± 0.32

RoSE (8b) 68.27 ± 0.51 73.33 ± 1.86 89.53 ± 0.32

RoSE (70b) 70.99 ± 0.44 77.45 ± 1.15 91.38 ± 0.50
G.T. 69.00 ± 0.48 78.04 ± 1.07 -

Edge-featured GNNs IMDB Texas Cora

UniMP

Random 68.65 ± 0.40 71.18 ± 1.90 87.02 ± 0.30

Distance 69.12 ± 0.68 72.94 ± 1.88 87.94 ± 0.41

RoSE (8b) 69.55 ± 0.62 76.08 ± 1.79 89.17 ± 0.54

RoSE (70b) 70.41 ± 0.64 76.47 ± 1.73 89.52 ± 0.41
G.T. 69.87 ± 0.57 77.84 ± 1.94 -

GIN

Random 67.23 ± 0.42 69.22 ± 1.90 79.96 ± 0.93

Distance 68.27 ± 0.37 70.59 ± 1.96 86.92 ± 0.50

RoSE (8b) 68.27 ± 0.69 74.51 ± 2.13 88.55 ± 0.30

RoSE (70b) 69.12 ± 0.68 72.75 ± 1.45 88.93 ± 0.32
G.T. 68.54 ± 0.43 74.12 ± 1.59 -

GraphGPS

Random 67.23 ± 0.44 69.41 ± 2.15 85.80 ± 0.25

Distance 66.98 ± 0.75 69.22 ± 1.76 86.46 ± 0.44

RoSE (8b) 67.69 ± 0.56 73.14 ± 2.13 87.53 ± 0.30

RoSE (70b) 68.48 ± 0.54 72.75 ± 2.24 88.10 ± 0.45
G.T. 67.07 ± 0.78 72.75 ± 1.70 -

SeHGNN [23]; (2) Edge-featured GNNs, including GIN [18], UniMP [19], and GraphGPS [20];238

and (3) Single-type edge processing GNNs, such as GCN [33], GAT [34], and JKNet [35]. For the239

edge decomposition in our framework, we adopted LLaMA3-8b and 70b [26] as foundational LLMs.240

Detailed dataset descriptions and experimental configurations are specified in Appendix C.241

5.1 Main Results242

Table 2 presents the node classification accuracy results of integrating various GNN architectures with243

our proposed RoSE, across various datasets. The experiments demonstrate that our method achieves244

marked improvements in accuracy across multi-relational GNN architectures. Notably, lightweight245

architectures such as RGCN and HAN, when integrated with RoSE, achieve performance comparable246

to complex transformer-based architectures like UniMP and GraphGPS. For instance, on the WikiCS247

dataset, RGCN with RoSE surpasses the vanilla UniMP architecture, setting a new state-of-the-art248

performance. Edge-featured architectures also exhibit significant improvements, with gains of up to249

6% on Texas and Wisconsin datasets with GIN.250

It is worth emphasizing that the integration of RoSE consistently enhances performance across all251

dataset types, regardless of the original accuracy. Particularly impressive improvements are observed252

on datasets such as IMDB, Cornell, Texas, and Wisconsin, where GNNs have typically struggled.253

These results underscore the versatility of RoSE in improving node classification performance,254

irrespective of the original dataset composition. Furthermore, the scalability of RoSE with larger255

language models (e.g., RoSE 70b) is evident, further boosting performance in most scenarios,256

highlighting the effectiveness of leveraging advanced reasoning capabilities within the proposed257

pipeline.258

5.2 Additional Experiments259

Table 4: Semantic relation types generated from the relation generator and filtered from the relation
discriminator. Short description of each relation is highlighted in bold and underline.

Semantic Relations of Cora Dataset
Retained Relations Filtered Relations

• Methodology Similarity: Link papers that utilize similar methodological
approaches, algorithms, or architectures to tackle their research objectives.
This groups papers based on their technical commonalities.

• Contrasting Approaches: Connect papers that explore divergent or con-
trasting approaches to a similar problem. This could surface insightful
comparisons and foster a more holistic understanding of the problem space.

• Theoretical Foundation: Link papers that build upon the same funda-
mental theories, principles or mathematical formulations. This traces the
theoretical lineage and underpinnings across papers.

• Sequential Refinement: Connect papers where one incrementally im-
proves or optimizes the techniques proposed by the other. This captures the
evolutionary trajectory of methods within a research area.

• Shared Application Domain: Associate papers that apply their techniques
to the same application domain or real-world problem, such as image
classification, natural language processing, robotics, etc. This highlights
practical use-case similarities.

• Problem Similarity: Connect papers that address similar research prob-
lems or questions, even if they use different approaches. This captures
papers that are thematically related.

• Performance Benchmark: Associate papers that utilize the same bench-
mark dataset, evaluation metric, or performance comparison framework.
This allows for standardized comparisons across models.

• Shared Challenges: Group papers that grapple with similar challenges,
limitations or open problems yet to be fully addressed. This synthesizes
common hurdles faced by different techniques.

• Conceptual Parallels: Link papers that draw conceptual parallels, analo-
gies or inspiration from techniques in other domains and adapt them to the
problem at hand. This captures cross-pollination of ideas.

• Complementary Insights: Connect papers that offer complementary in-
sights, where the findings of one augment the understanding or interpreta-
tion of the results in another. This provides a more comprehensive picture.
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Effect of Relation Discriminator. In this experiment, we analyze the necessity and effectiveness260

of relation discriminator. We begin with a case study on the Cora dataset to demonstrate its necessity.261

Then, we perform an ablation study on node classification performance on Cora and Texas datasets262

with and without relation discriminator to exhibit its effectiveness.263

Table 5: Step-wise evaluation on Texas and Cora in
comparison without relation discriminator, averaged
over 10 runs (± SEM). The best and second-best per-
formances are represented by bold and underline.

LLaMA3 8b LLaMA3 70b
GNNs Texas Cora Texas Cora Avg Gain

RGCN
w/oMd 70.00 ± 2.27 87.66 ± 0.42 73.14 ± 1.39 87.94 ± 0.42

RoSE 71.96 ± 1.82 90.28 ± 0.45 73.53 ± 1.42 91.77 ± 0.38 + 2.20

HAN
w/oMd 71.37 ± 1.47 86.23 ± 0.31 71.57 ± 1.69 86.52 ± 0.40

RoSE 72.94 ± 1.64 89.23 ± 0.28 72.94 ± 1.58 90.31 ± 0.38 + 2.43

SeHGNN
w/oMd 72.54 ± 1.49 86.15 ± 0.47 74.51 ± 1.92 86.98 ± 0.38

RoSE 73.33 ± 1.86 89.53 ± 0.32 77.06 ± 0.68 91.38 ± 0.50 + 2.78

UniMP
w/oMd 73.92 ± 2.59 87.55 ± 0.49 75.10 ± 1.67 87.40 ± 0.50

RoSE 76.08 ± 1.79 89.17 ± 0.54 76.47 ± 1.73 89.52 ± 0.41 + 1.82

GIN
w/oMd 70.59 ± 2.20 86.85 ± 0.41 69.61 ± 1.58 86.52 ± 0.41

RoSE 74.51 ± 2.13 88.55 ± 0.30 72.75 ± 1.45 88.93 ± 0.32 + 2.79

GraphGPS
w/oMd 73.33 ± 1.65 85.76 ± 0.19 70.39 ± 2.90 86.72 ± 0.50

RoSE 73.14 ± 2.13 87.53 ± 0.30 72.75 ± 2.24 88.10 ± 0.45 + 1.33

Table 4 presents the set of retained and264

excluded relation types from the Cora co-265

citation dataset, where nodes represent sci-266

entific publications with paper abstracts as267

their text attribute. The relations curated268

from relation generator are generally plau-269

sible; however, some generated types are270

either difficult to determine through textual271

analysis of node attributes or exhibit signif-272

icant overlap with each other. For instance,273

the relation type Performance Benchmark274

(second relation in the rightmost column)275

is not easily identified based on paper ab-276

stracts, as these abstracts often do not enu-277

merate each benchmark used within the278

paper. Thus, determining such relations ex-279

ceeds the capability of language models. Additionally, Complementary Insights (last element of280

the filtered relations) overlaps significantly with Contrasting Approaches, introducing redundancy.281

Consequently, such relations are filtered out by the relation discriminator. Further case study on282

Texas dataset is provided in Appendix B.283

We also empirically validate the efficacy of this filtration on the Texas and Cora datasets by evaluating284

the node classification performance with and without the relation discriminator, as shown in Table 5.285

Consistent improvements are observed with relation discriminator across 23 out of 24 settings,286

showing an average 2.23% increase in accuracy.287

Effect of Relation Decomposer. Table 3 compares the performance of RoSE with rule-based288

decomposition methods on the IMDB, Texas, and Cora datasets. The baselines are formulated as289

follows: (1) Random, which randomly decomposes edges into different relations; (2) Distance,290

which decomposes edges into two relations based on the cosine distance between the associated291

node features obtained from pre-trained language models (PLMs), categorizing them as semantically292

similar or different edges. The ground-truth decomposition (GT) obtained through manual annotation293

is also presented for comparison. It is important to note that the ground-truth decomposition consists294

of mutually exclusive relations, and for the Cora dataset, ground truth information is not available.295

The results demonstrate the superior performance of RoSE compared to basic rule-based methods,296

highlighting the necessity of leveraging LLMs for intricate semantic decomposition. Moreover,297

RoSE achieves the best or second-best performance on all ablative datasets, even when compared298

to the ground truth decomposition. This underscores the effectiveness of our relation decomposer299

component, which identifies all relations that accurately describe a given edge, thereby providing a300

richer source of information for GNN architectures to exploit.301

Sensitivity to LLM Temperature. Figure 2 compares the performance of RoSE with respect to302

the decoding temperature. Higher temperature results in higher randomness in the outputs of LLMs,303

and may influence the performance of the relation decomposer. We choose two representative GNN304

architectures for our evaluation, RGCN from multi-relational GNNs and GIN from edge-featured305

GNNs. Our experiments on IMDB, Texas, and Cora reveal that the improvements of RoSE are306

consistent across varying temperatures.307

6 Related Works308

Node Feature-level Enhancement. The presence of textual content in TAGs has inspired re-309

searchers to explore beyond traditional feature encoding methods such as bag-of-words [36] and310

skip-grams [37]. Consequently, numerous studies have been proposed to generate semantically rich311

node features by employing relatively smaller pretrained language models (PLMs) [1; 11; 12; 13],312
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Figure 2: Sensitivity to temperature when prompting relation decomposer. Varied temperature (0.2 -
0.8) is denoted on the x-axis, while node classification accuracy(%) is denoted on the y-axis. Red,
yellow and brown each denote RoSE (LLaMA3-70b), RoSE (LLaMA3-8b), and vanilla GNNs
(RGCN and GIN), respectively.

including DeBERTa [38], Sentence-BERT [16], E5 [39], and OpenAI’s text-ada-embedding-002 [40],313

alongside larger LLMs such as GPT [24] and LLaMA [26]. These efforts can be broadly cate-314

gorized into three approaches: (1) Cascading structure receives initial node features from the315

output embeddings of PLMs and LLMs, followed by the deployment of GNNs to obtain final rep-316

resentations. This independent framework has been widely adopted across various studies in TAG317

literature [2; 4; 41; 42; 3; 11; 14; 43]. (2) Co-training structure involves the joint training of PLMs318

and GNNs within an interactive workflow. This facilitates a dynamic and correlated workflow of319

semantic information across connected nodes [1; 12; 13]. (3) Enhanced text augmentation focuses320

on enriching the raw textual contents with PLMs and LLMs, such as by replacing text attributes with321

textual explanations generated by LLMs during its node classification [17] or augmenting external322

knowledge within a knowledge graph [44; 45]. However, these studies often overlook the diverse323

semantics inherent in graph structures and characterize edges as a binary adjacency matrix of uniform324

relation, thus leading to structural oversimplification.325

LLMs with Graph Structural Information. Another line of research investigates the potential326

of LLMs for addressing graph problems by injecting graph structural information into the input327

prompt of LLMs. This incorporation is achieved through various methods, including describing328

node adjacency in natural language [46; 47; 48; 49], utilizing syntax tree into natural language329

representations [50], and leveraging structural tokens [51]. Although these approaches integrate330

structural data into LLMs, they treat graph edges as binary connections, presenting a clear distinction331

from our work of utilizing LLMs to automatically decompose graph structures into multiple semantic332

relation types.333

7 Conclusion334

Given the limitation of existing TAG literature in simplifying the entangled semantics in graph335

structure, we introduced RoSE, an innovative framework that leverages the analytical capabilities of336

LLMs to disentangle edges in a fully automated manner, based on the textual contents of connected337

nodes. As a pioneering effort in revealing and addressing the structural oversimplification, we believe338

our contributions provide valuable insights into this field. However, one limitation of our framework339

is its reliance on the general knowledge of LLMs for identifying relation types, which may not fully340

capture domain-specific relationships when applied to graphs from highly specialized domains that341

are not well-represented in the LLMs’ training data. As future work, we plan to explore techniques342

such as retrieval-augmented generation (RAG) to effectively incorporate domain knowledge.343
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Supplementary Materials488

A Detailed Prompt Templates489

In this section, we provide the fixed prompt templates used in our experiments for the relation generator,490

discriminator, and decomposer.491

First, we supply the relation generator with detailed information about the graph composition and task descrip-492

tion, enabling it to generate a set of candidate semantic relation types. The prompt template for the generator is493

as follows:494

# Graph Composition Description
You are tasked with analyzing a graph... [Graph description]

# Task Description
Your objective is to design a set of unique semantic edge types that capture meaningful relationships
between the nodes based on their text attributes.
Focus on revealing semantic connections that captures unique patterns between specific nodes. These
edge types should be inferred from the summarized textual content.

Create edge types as many as you feel are absolutely necessary to decompose, while maintaining a
manageable number of edge types for practical decomposition.

495

Subsequently, we concatenate the relation types curated from generator with the task description of edge496

type filtering, and feed the combined prompt into the relation discriminator. The prompt template for the497

discriminator is detailed below:498

# Task Description
You are tasked with verifying the quality and relevance of proposed semantic edge types in a graph
representing [Graph description]. Your objective is to identify and retain only the essential edge types
for improving the performance of Graph Neural Networks (GNNs) in node classification tasks.

# Task Requirements
When discriminating the edge types, consider the following guidelines: [Requirements]

# Proposed Semantic Edge Types
[Relation types curated from the relation generator]

499

During the semantic edge decomposition phase, we query the relation decomposer to determine all possible500

relations that the given edge can be categorized under. To accomplish this, we concatenate the instruction prompt501

with the text attributes of the associated nodes in the input prompt for the relation decomposer. The input prompt502

template is provided as follows:503

# Task Description
You are an helpful assistant, that classifies an edge connection between two nodes into one or more of
the following relation types. Note that it is a multiple-choice classification.

# Relation Specification
Relation types are as follows: [List of relation types]

Node 1: [Raw text attribute of Node 1], Node 2: [Raw text attribute of Node 2]
Question: Carefully choose relation types that likely represent the semantic relation between the two
nodes.

504

B Further Analysis and Experiments505

B.1 Additional Case Study506

In extension from Section 5, we present the retained and filtered relation types for Texas datasets in Ta-507

ble 6. In the Texas dataset, the Studies_Under/Has_Student Edge is identified as nearly redundant with the508

Advised_By/Advises Edge, leading to its exclusion to avoid redundancy. Additionally, the Affiliated_With Edge509
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Table 6: Semantic relation types generated from the relation generator and filtered from the relation
discriminator. Short description of each relation is highlighted in bold and underline.

Semantic Relations of Texas Dataset
Retained Relations Filtered Relations

• Teaches/Teaches_Under Edge: Connects a faculty node and a course node
(faculty teaches that course).

• Researches/Research_Contributes_To Edge: Connects a faculty or stu-
dent node with a project node (they conduct research related to that project).

• Advised_By/Advises Edge: Connects a student node and a faculty node
(faculty advises or mentors that student).

• Enrolled_In/Enrolls Edge: Connects a student node and a course node
(student is enrolled in that course).

• TA_For/Has_TA Edge: Connects a student node and a course node (stu-
dent is a teaching assistant for that course).

• Studies_Under/Has_Student Edge: Connects a student node to a faculty
node suggesting that the student studies under that professor’s guidance,
without an explicit advising relationship stated.

• Staff_Supports/Supported_By_Staff Edge: Connects a staff node to
other nodes (faculty/student/course/project) implying that the staff pro-
vides some type of administrative or technical support for that entity.

• Affiliated_With Edge: Connects faculty/student/staff nodes to their pri-
mary associated entity like a lab, center, department or institute mentioned
in their text.

Table 7: Node classification accuracy (%) on various datasets and GNN architectures with efficient
querying technique of RoSE, averaged over 10 runs (± SEM). The best performance in each
architecture is represented by bold.

GNN Architectures IMDB WikiCS

RGCN
Vanilla 62.96 ± 0.44 82.02 ± 0.23
RoSE-efficient (8b) 67.22 ± 0.33 86.42 ± 0.18
RoSE-original (8b) 67.77 ± 0.60 86.81 ± 0.16

HAN
Vanilla 63.24 ± 0.54 83.32 ± 0.26
RoSE-efficient (8b) 66.52 ± 0.64 85.81 ± 0.21
RoSE-original (8b) 66.83 ± 0.48 86.12 ± 0.15

SeHGNN
Vanilla 62.72 ± 0.52 82.53 ± 0.19
RoSE-efficient (8b) 66.31 ± 0.37 86.16 ± 0.20
RoSE-original (8b) 68.27 ± 0.51 86.94 ± 0.18

UniMP
Vanilla 69.98 ± 0.58 84.29 ± 0.23
RoSE-efficient (8b) 69.36 ± 0.52 86.09 ± 0.19
RoSE-original (8b) 69.55 ± 0.62 86.33 ± 0.21

GIN
Vanilla 67.59 ± 0.41 83.03 ± 0.21
RoSE-efficient (8b) 67.15 ± 0.56 84.20 ± 0.28
RoSE-original (8b) 68.27 ± 0.69 83.32 ± 0.29

GraphGPS
Vanilla 66.85 ± 0.48 83.05 ± 0.26
RoSE-efficient (8b) 67.41 ± 0.73 85.14 ± 0.18
RoSE-original (8b) 67.69 ± 0.56 83.48 ± 0.23

is deemed too ambiguous, as it can encompass various edges generated from the Texas dataset, and is therefore510

removed. Hence, these findings demonstrate the effectiveness of the relation discriminator in identifying511

and filtering out relations that lack feasibility or distinctiveness, ensuring the retention of meaningful and512

non-redundant edges.513

B.2 Experiments on Efficient Relation Type Annotation514

Table 8: Comparison of the number of
queries sent to relation-decomposer by
RoSE versus RoSE with the efficient
query technique.

Methods IMDB WikiCS
RoSE-efficient (8b) 15391 40055
RoSE-original (8b) 45698 215603
Decrement 61.58%↓ 78.80%↓

To demonstrate the efficacy of the proposed efficient query edge515

sampling strategy discussed in Section 4.4, we conduct further516

experiments with RoSE using our efficient relation type anno-517

tation (denoted as RoSE-efficient) on graphs with the largest518

number of edges: WikiCS [9] and IMDB [31]. Table 7 displays519

the node classification performance of multi-relational and edge-520

featured GNNs, utilizing LLaMa3-8b [26] as a base LLM. As521

demonstrated in Table 7, RoSE-efficient can still improve the522

performance of original GNNs across 10 out of 12 settings, with523

less than half the number of queries than RoSE-original. No-524

tably, it even surpasses the performance of RoSE with full edge525

annotation (RoSE-original) when incorporated with GIN [18] and GraphGPS [20].526

To verify the efficiency of our sampling strategy, we compare the total number of queries sent to the relation527

decomposer by RoSE and RoSE-efficient. Remarkably, our method reduces the number of queries by more than528

half, while maintaining comparable performance.529
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Figure 3: UMAP visualization analysis between raw features and representations of RGCN trained
with single and multiple types of relations.

B.3 Importance of Semantic Edge Decomposition - Representational Analysis530

We further analyze the enhancements provided by edge-decomposition strategy(presented in Section 3), in a531

representation learning perspective. Specifically, we analyze the UMAP visualizations of node representations532

obtained from RGCN [21] and HAN [22], trained with single and multiple types of relations. Figures 3 and 4533

illustrate these visualizations, each rows representing: (1) initial node features, (2) node representations learned534

from RGCN, and (3) node representations learned from HAN, respectively. The results demonstrate that decom-535

posing conventional edges into multiple relation types yields more distinct, clustered representations. Conversely,536

simplifying the inherent and diverse semantics leads to less distinguishable representations, particularly on the537

WebKB datasets (Cornell, Texas, and Wisconsin) [10] when using RGCN as the backbone.538

We observe similar trends with respect to the inter-prototype similarity between representation prototypes.539

Specifically, we calculate per-class prototype vector pk = 1
|Ck|

∑
i∈Ck

zi, where Ck denotes the set of540

nodes belonging to class k. Then we evaluate the average cosine similarity between class prototypes as541

Simmean = Ek1 ̸=k2,{k1,k2}⊆C

(
pk1

·pk2
∥pk1

∥∥pk2
∥

)
, with C denoting the set of class labels. Intuitively, a smaller542

Simmean implies more distinct class prototypes within the feature space. We plot the Simmean along the y-axis543

of Figure 5. As evident in the figure, our results indicate that simplifying diverse edge semantics results in544

less distinguishable class representations (i.e. high similarity between class prototypes). This is particularly545

pronounced in RGCN on Cornell and Texas dataset, where Simmean of learned representations on a single relation546

type is higher than inter-prototype similarities of raw features. In contrast, disentangling these semantics into547

multiple edge types can achieve significant improvements in inter-class separation. Specifically, for the Cornell548

dataset, Simmean of multi-relation type processing achieves a reduction in similarity of at least 43% across all549

GNNs, compared to those obtained from raw features and uniform edge type processing.550

C Experimental Settings551

C.1 Dataset Statistics552

In this section, we provide an overview of the graph compositional information for our benchmark datasets:553

1https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Figure 4: UMAP visualization analysis between raw features and representations of HAN trained
with single and multiple types of relations.

Figure 5: Comparison of average inter-prototype similarity (i.e., average cosine similarity between
per-class mean representation vectors) between raw features and representations of GNNs trained
with single and multiple types of relations.

Pubmed [7] is a co-citation network in which nodes represent scientific publications and edges denote554

co-citations. The textual content of each node comprises the paper’s abstract. The predefined categories are555

Diabetes Experimental, Diabetes Type I, and Diabetes Type II.556

IMDB [31] is a movie graph where nodes represent movies and edges indicate the overlap of movie557

professionals. The textual content of each node corresponds to the summarized movie description. The558

predefined genres are Action, Comedy, and Drama.559

WebKB1 (Cornell, Texas, Wisconsin) [10] are hyperlink networks in which nodes represent web pages560

and edges are hyperlinks. The text attribute of each node represents the web page content. The predefined561

categories are Student, Faculty, Staff, Course, and Project.562

Cora [6] is a co-citation network where nodes represent scientific papers and edges indicate co-citations. The563

textual content of each node comprises the paper’s abstract. The predefined categories are Case-based, Genetic564

algorithms, Neural networks, Probabilistic methods, Reinforcement learning, Rule learning, and Theory.565

WikiCS [10] is a hyperlink network in which nodes represent web pages and edges are hyperlinks. The text566

attribute of each node represents the web page content. The predefined categories are Computational linguistics,567

Databases, Operating systems, Computer architecture, Computer security, Internet protocols, Computer file568

systems, Distributed computing architecture, Web technology, and Programming language topics.569
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Table 9: Statistics of TAG benchmark datasets.

Dataset Pubmed IMDB Cornell Texas Wisconsin Cora WikiCS
#Nodes 19,717 4,182 247 255 320 2,708 11,701
#Edges 44,338 47,789 213 119 449 5,278 216,123
#Classes 3 3 5 5 5 7 10
Domain Citation Movie Hyperlinks Hyperlinks Hyperlinks Citation Hyperlinks

Comprehensive statistics of the datasets used in our experiments, including the graph domain and the number of570

nodes, edges, classes, are provided in Table 9.571

C.2 Implementation Details572

We adopted Sentence-BERT [16] to encode node features and relational features when using edge-featured573

GNNs. To carefully identify qualified relation types, we employ Claude Opus2 (Chat version) from Anthropic as574

the relation generator and discriminator. The edge decomposition is performed using a LLaMA3 [26]-based575

relation decomposer, which is a free, open-sourced model. In our experiments, we utilize LLaMA3-8b and 70b576

as base LLMs, with a fixed temperature of 0.2 across all settings. Adhering to the same evaluation protocols of577

existing TAG works [15; 17], we adopt the same train/validation/test splits of 60%/20%/20%, respectively. For578

training the GNN models, all architectures are implemented using PyTorch [52] and PyTorch Geometric [53].579

All experiments are conducted on RTX Titan and RTX 3090 (24GB) GPU machines. Throughout all experiments,580

we set the hidden dimension to 64 and employ the Adam optimizer with a weight decay of 0. The best validation581

performance is selected within the following hyperparameter search space:582

• Learning rate: [0.001, 0.005, 0.05, 0.01]583

• Number of layers: [2, 3]584

• Dropout: [0, 0.1, 0.5, 0.8]585

D Broader Impacts586

Our work identifies a novel bottleneck in GNN performance for downstream tasks, specifically highlighting the587

oversimplification of graph structures. To address this, we introduce RoSE, a framework that decomposes edges588

to enhance the representational learning capabilities of GNNs. This shift in focus from node attributes, which589

dominated prior studies, to the structure itself represents a significant paradigm shift. By leveraging the general590

knowledge of LLMs, our approach opens new research avenues for improving graph structures. Our analysis591

demonstrates that RoSE significantly enhances classification performance of GNNs, particularly in datasets592

where GNNs have traditionally underperformed. Consequently, our work extends the applicability of GNN593

architectures to a broader spectrum of datasets, overcoming previous performance limitations and expanding594

their utility in various domains.595

2https://www.anthropic.com/claude
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NeurIPS Paper Checklist596

1. Claims597

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s598

contributions and scope?599

Answer: [Yes]600

Justification: We claim that over-simplification of edges hinder downstream performance of GNN601

on node classifciation tasks, which is analyzed in Section 3. Motivated by this, we utilize LLMs to602

automize the process, described in Section 4, and empirically evaluated on Section 5.603

Guidelines:604

• The answer NA means that the abstract and introduction do not include the claims made in the605

paper.606

• The abstract and/or introduction should clearly state the claims made, including the contributions607

made in the paper and important assumptions and limitations. A No or NA answer to this608

question will not be perceived well by the reviewers.609

• The claims made should match theoretical and experimental results, and reflect how much the610

results can be expected to generalize to other settings.611

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not612

attained by the paper.613

2. Limitations614

Question: Does the paper discuss the limitations of the work performed by the authors?615

Answer: [Yes]616

Justification: We state our limitations on Section 7, our method may shortfall in scenarios where617

excessive domain expertise is required, for LLMs may general knowledge of a specific domain.618

Guidelines:619

• The answer NA means that the paper has no limitation while the answer No means that the paper620

has limitations, but those are not discussed in the paper.621

• The authors are encouraged to create a separate "Limitations" section in their paper.622

• The paper should point out any strong assumptions and how robust the results are to violations of623

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,624

asymptotic approximations only holding locally). The authors should reflect on how these625

assumptions might be violated in practice and what the implications would be.626

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested627

on a few datasets or with a few runs. In general, empirical results often depend on implicit628

assumptions, which should be articulated.629

• The authors should reflect on the factors that influence the performance of the approach. For630

example, a facial recognition algorithm may perform poorly when image resolution is low or631

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide632

closed captions for online lectures because it fails to handle technical jargon.633

• The authors should discuss the computational efficiency of the proposed algorithms and how634

they scale with dataset size.635

• If applicable, the authors should discuss possible limitations of their approach to address problems636

of privacy and fairness.637

• While the authors might fear that complete honesty about limitations might be used by reviewers638

as grounds for rejection, a worse outcome might be that reviewers discover limitations that639

aren’t acknowledged in the paper. The authors should use their best judgment and recognize640

that individual actions in favor of transparency play an important role in developing norms that641

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize642

honesty concerning limitations.643

3. Theory Assumptions and Proofs644

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete645

(and correct) proof?646

Answer: [NA]647

Justification: Instead of a theoretical analysis, we provide an empirical one, illustrated in Section 3,648

highlighting the importance and necessity of decomposing predefined edge types.649

Guidelines:650

• The answer NA means that the paper does not include theoretical results.651
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.652

• All assumptions should be clearly stated or referenced in the statement of any theorems.653

• The proofs can either appear in the main paper or the supplemental material, but if they appear in654

the supplemental material, the authors are encouraged to provide a short proof sketch to provide655

intuition.656

• Inversely, any informal proof provided in the core of the paper should be complemented by657

formal proofs provided in appendix or supplemental material.658

• Theorems and Lemmas that the proof relies upon should be properly referenced.659

4. Experimental Result Reproducibility660

Question: Does the paper fully disclose all the information needed to reproduce the main experimental661

results of the paper to the extent that it affects the main claims and/or conclusions of the paper662

(regardless of whether the code and data are provided or not)?663

Answer: [Yes]664

Justification: We provide detailed settings required in our experiments in Appendix C, reporting all665

necessary implementation specifications such as hyperparameter search space, datasets, etc..666
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• The answer NA means that the paper does not include experiments.668

• If the paper includes experiments, a No answer to this question will not be perceived well by the669

reviewers: Making the paper reproducible is important, regardless of whether the code and data670

are provided or not.671

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make672

their results reproducible or verifiable.673

• Depending on the contribution, reproducibility can be accomplished in various ways. For674

example, if the contribution is a novel architecture, describing the architecture fully might suffice,675

or if the contribution is a specific model and empirical evaluation, it may be necessary to either676

make it possible for others to replicate the model with the same dataset, or provide access to677

the model. In general. releasing code and data is often one good way to accomplish this, but678

reproducibility can also be provided via detailed instructions for how to replicate the results,679

access to a hosted model (e.g., in the case of a large language model), releasing of a model680

checkpoint, or other means that are appropriate to the research performed.681

• While NeurIPS does not require releasing code, the conference does require all submissions682

to provide some reasonable avenue for reproducibility, which may depend on the nature of the683

contribution. For example684

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to685

reproduce that algorithm.686

(b) If the contribution is primarily a new model architecture, the paper should describe the687

architecture clearly and fully.688

(c) If the contribution is a new model (e.g., a large language model), then there should either be689

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,690

with an open-source dataset or instructions for how to construct the dataset).691

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are692

welcome to describe the particular way they provide for reproducibility. In the case of693

closed-source models, it may be that access to the model is limited in some way (e.g.,694

to registered users), but it should be possible for other researchers to have some path to695

reproducing or verifying the results.696

5. Open access to data and code697

Question: Does the paper provide open access to the data and code, with sufficient instructions to698

faithfully reproduce the main experimental results, as described in supplemental material?699

Answer: [Yes]700

Justification: All the models and datasets we used are openly available, as specified in Section 5 and701

Appendix C. We will release our code upon rebuttal period.702
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• The answer NA means that paper does not include experiments requiring code.704

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/705

guides/CodeSubmissionPolicy) for more details.706

• While we encourage the release of code and data, we understand that this might not be possible,707

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless708

this is central to the contribution (e.g., for a new open-source benchmark).709
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• The instructions should contain the exact command and environment needed to run to reproduce710

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/711

guides/CodeSubmissionPolicy) for more details.712

• The authors should provide instructions on data access and preparation, including how to access713

the raw data, preprocessed data, intermediate data, and generated data, etc.714
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applicable).719
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Answer: [Yes]725
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Answer: [Yes]736
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• The answer NA means that the paper does not include experiments.740
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• The factors of variability that the error bars are capturing should be clearly stated (for example,744

train/test split, initialization, random drawing of some parameter, or overall run with given745

experimental conditions).746
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not verified.754
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• If error bars are reported in tables or plots, The authors should explain in the text how they were757
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8. Experiments Compute Resources759

Question: For each experiment, does the paper provide sufficient information on the computer760

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?761

Answer: [Yes]762
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Appendix C764
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• The answer NA means that the paper does not include experiments.766

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud767

provider, including relevant memory and storage.768

• The paper should provide the amount of compute required for each of the individual experimental769

runs as well as estimate the total compute.770

• The paper should disclose whether the full research project required more compute than the771

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into772

the paper).773

9. Code Of Ethics774

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code775

of Ethics https://neurips.cc/public/EthicsGuidelines?776

Answer: [Yes]777

Justification: Our paper adheres to the NeurIPS Code of Ethics.778

Guidelines:779

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.780

• If the authors answer No, they should explain the special circumstances that require a deviation781

from the Code of Ethics.782

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due783

to laws or regulations in their jurisdiction).784

10. Broader Impacts785

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts786

of the work performed?787

Answer: [NA]788

Justification: We provide a Broader Impact section in Appendix D789

Guidelines:790

• The answer NA means that there is no societal impact of the work performed.791

• If the authors answer NA or No, they should explain why their work has no societal impact or792

why the paper does not address societal impact.793

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,794

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-795

ment of technologies that could make decisions that unfairly impact specific groups), privacy796

considerations, and security considerations.797

• The conference expects that many papers will be foundational research and not tied to particular798

applications, let alone deployments. However, if there is a direct path to any negative applications,799

the authors should point it out. For example, it is legitimate to point out that an improvement in800

the quality of generative models could be used to generate deepfakes for disinformation. On the801

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks802

could enable people to train models that generate Deepfakes faster.803

• The authors should consider possible harms that could arise when the technology is being used804

as intended and functioning correctly, harms that could arise when the technology is being used805

as intended but gives incorrect results, and harms following from (intentional or unintentional)806

misuse of the technology.807

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies808

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-809

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the810

efficiency and accessibility of ML).811

11. Safeguards812

Question: Does the paper describe safeguards that have been put in place for responsible release of813

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or814

scraped datasets)?815

Answer: [NA]816

Justification: Our paper does not pose such risks. We do not release any pretrained language models,817

image generators, nor scraped datasets.818

Guidelines:819
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subjects.871

• Including this information in the supplemental material is fine, but if the main contribution of the872

paper involves human subjects, then as much detail as possible should be included in the main873

paper.874
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other875

labor should be paid at least the minimum wage in the country of the data collector.876

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects877

Question: Does the paper describe potential risks incurred by study participants, whether such878

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an879

equivalent approval/review based on the requirements of your country or institution) were obtained?880

Answer: [NA]881

Justification: Our paper does not involve any crowdsourcing or research with human subjects.882

Guidelines:883

• The answer NA means that the paper does not involve crowdsourcing nor research with human884

subjects.885

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be886

required for any human subjects research. If you obtained IRB approval, you should clearly state887

this in the paper.888

• We recognize that the procedures for this may vary significantly between institutions and889

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for890

their institution.891

• For initial submissions, do not include any information that would break anonymity (if applica-892

ble), such as the institution conducting the review.893
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