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ABSTRACT

In dynamic financial market characterized by shifting regimes, how can we make
effective investment decisions under the changing 1) market regimes and 2) their
impact? Among many research fields in financial AI, portfolio allocation stands
out as one of the most practically significant areas. Consequently, numerous re-
searchers and financial institutions continually seek approaches that improve the
risk–reward trade-off and strive to apply them in real-world investment scenarios.
However, achieving robust risk-adjusted performance is extremely challenging,
because each asset’s return and volatility fluctuate according to the shifting mar-
ket regime. In response, modern portfolio theory (MPT) addresses this issue by
solving for asset weights that maximize a risk–reward objective, using estimates
of the return mean and covariance from historical returns. Reinforcement learning
(RL) frameworks have been introduced to directly decide portfolio allocations by
optimizing risk-adjusted objectives using asset prices and macroeconomic indices.
In this work, we propose STABLE (Shift-Tolerant Allocation via Black–Litterman
Using Conditional Diffusion Estimates), which combines a diffusion-based gener-
ative model that captures regime shifts with an estimation-based portfolio alloca-
tion module that maximizes expected risk-adjusted return. STABLE takes macroe-
conomic context and asset-specific signals as inputs and generates per-stock return
trajectories that reflect the prevailing macro regime while preserving firm-specific
dynamics. This yields regime-aware predictive return distributions at the single-
stock level together with a coherent covariance structure, which are then incor-
porated as investor views within a Black–Litterman allocation module to obtain
risk-diversified portfolio weights. Empirically, STABLE delivers superior portfolio
outcomes, achieving up to 122.9% higher Sharpe ratios with reduced drawdowns
across major equity markets. It also attains state-of-the-art time-series estimation,
lowering MSE by up to 15.7% compared with generative baselines.

1 INTRODUCTION

Given historical macroeconomic data and stock data, how can we make effective investment deci-
sions under changing market regimes? Because portfolio allocation directly influences investment
performance, it is essential not only to aim for high profitability but also to control volatility and
drawdowns for practical deployment (Wang et al., 2019; Sun et al., 2022; Niu et al., 2022; Jeon
et al., 2024).

However, to perform robust portfolio optimization under shifting market regimes, we must over-
come three key challenges. First, stocks are high-risk assets with substantial exposure to global
macro conditions, thus failing to jointly model these macro drivers with firm-specific factors un-
dermines predictive accuracy for price dynamics. Second, even when both global factors and local
factors, it is difficult to know how strongly each factor influences each stock, and the influence varies
across assets and over time. Third, individual assets in a portfolio are often correlated, so failing
to diversify risk when determining weights can cause severe drawdowns. There have been existing
works relying on portfolio optimization to maximize risk-adjusted returns (Pun et al., 2020; Sun
et al., 2024; Ma et al., 2022), but they depend too much on past asset returns and lack predictive
power for future returns, which causes severe performance drops under regime shifts. Others adopt
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Figure 1: Annualized portfolio volatility across regions. We measure the annualized portfolio
volatility in four real-world stock markets (United States, China, Europe, and South Korea). With
estimation-driven Black–Litterman optimization, STABLE achieves effective risk diversification and
yields the lowest realized volatility across all regions and periods, delivering robust portfolio man-
agement.

deep reinforcement learning to derive regime-specific strategies (Ye et al., 2020; Hu & Lin, 2019;
Gao et al., 2020), but they tend to select regimes primarily from macro signals, overfit the prevailing
macro state, and fail to capture stock-level idiosyncratic movements.

To overcome the limitations of both classical portfolio theory and deep policy network-based mod-
els, we propose STABLE (Shift-Tolerant Allocation via Black–Litterman Using Conditional Dif-
fusion Estimates) that robustly allocates portfolio weights with maximized expected risk-adjusted
return. First, STABLE uses a conditional diffusion mechanism to accurately sample per-stock return
paths at each step while jointly conditioning on the current macro-regime state and stock-specific
features. Second, within the diffusion process, STABLE effectively decomposes per-step noise for
each asset into a macro impact and a micro (firm-specific) impact, yielding strong reconstruction
performance. Third, STABLE injects the resulting forecasted views into a Black–Litterman alloca-
tion module so that the final portfolio weights improve both performance and stability. Fig. 1 shows
the cross-region robustness comparison.

Our contributions are summarized as follows:

• Method. We present STABLE (Shift-Tolerant Allocation via Black–Litterman Using Con-
ditional Diffusion Estimates), a portfolio allocation method that maximizes expected risk-
adjusted return. STABLE couples a conditional diffusion module with Black–Litterman
portfolio construction to produce regime-aware predictive distributions for portfolio opti-
mization. STABLE addresses central shortcomings of conventional mean–variance (MVO)
approaches and deep RL methods.

• Exclusive experiments. We evaluate STABLE on four regional stock markets (United
States, China, Europe, and South Korea) with two tasks: portfolio allocation and
time-series estimation. STABLE achieves state-of-the-art performance in both tasks. In the
portfolio task, STABLE improves the Sharpe ratio by up to 122.9% over the best competitor,
demonstrating superior risk-adjusted return. In the estimation task, STABLE improves the
MSE metric by up to 15.7% over the best competitor, indicating accurate stock time-series
prediction.

• Case study. Visual inspection shows that the temporal stock embeddings faithfully re-
flect real-world sector relationships and allow stocks with similar characteristics at each
time step to reference one another. This enables STABLE to condition on intrinsic stock
properties, which in turn improves time-series estimation accuracy.

The code and datasets are publicly available at https://github.com/iclr26stable/
iclr26stable. Symbols are summarized in Appendix A.1.

2 RELATED WORK

We categorize existing portfolio allocation methods based on how they determine asset weights.
Broadly, they can be divided into modern portfolio theory (MPT) methods and deep reinforcement
learning approaches.
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Modern portfolio theory. Classical MPT seeks closed-form solutions for weight allocation by solv-
ing a mean–variance optimization (MVO) problem (Markowitz, 1952b). Representative examples
include Black–Litterman and robust portfolio optimization. The Black–Litterman model combines
investor views with Markowitz-style portfolio optimization to determine allocation (Black & Litter-
man, 1990), while robust portfolio approaches define an ambiguity set to account for uncertainty in
asset returns and then allocate weights based on worst-case scenarios (Goldfarb & Iyengar, 2003).
Although these methods strengthen traditional portfolio optimization by plugging in estimates of
the mean and covariance of stocks, they are effective only when those estimates are accurate at each
rebalancing time. However, because their estimation is typically restricted to historical windows,
any post-allocation regime shift that drives the realized distribution depart from the past severely
degrades both profitability and stability. Instead, STABLE leverages a generative sampling model
conditioned on both macro-level and micro-level signals to improve estimation accuracy. The gener-
ative sampling process yields per-stock predictive distributions from which the mean and covariance
are computed, enabling more effective plug-in to the allocation stage (see Section 3.5).

Deep reinforcement learning. Another line of work applies deep reinforcement learning to port-
folio allocation. Under this paradigm, a policy network learns to output actions (i.e., portfolio
weights) to maximize cumulative rewards such as risk-adjusted return metrics. Early approaches rely
on a neural network that directly proposes allocations. Subsequent research incorporates market-
regime considerations, aiming to adapt allocations more flexibly. For instance, Alphastock (Wang
et al., 2019) introduces asset-axis attention to capture correlations among multiple assets, improving
weight computation. Similarly, MetaTrader (Niu et al., 2022) proposes a strategy that selects from
typical financial domain baselines (e.g., constant rebalanced portfolio, Markowitz portfolio) under
different market regimes. AlphaMix (Sun et al., 2023) employs a routing mechanism that switches
between multiple neural network models depending on market conditions, thus incorporating regime
awareness into the policy. Despite using regime-aware policy networks, these approaches overlook
the aspect that the degree to which a given macro state influences returns is stock-specific. Conse-
quently, their portfolio allocation overfits the macro state and fails to capture stock-level idiosyn-
cratic movements. In contrast, STABLE employs a learnable guidance scale within classifier-free
guidance to decompose per-step noise into a macro impact and a firm-specific impact, enabling fine-
grained per-stock distribution estimation and downstream portfolio allocation (see Section 3.3 and
Section 3.4).

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

Given a macro condition mτ ∈ Rdm , per-stock conditions c(s)τ ∈ Rdc , a prior window length ν, a
prior mean µprior,τ ∈ RS and prior covariance Σprior,τ ∈ RS×S computed from the most recent ν
business days, and an investment horizon `,

Allocate

w?τ ∈ arg max
wτ

E
[
w>τ Rτ,τ+`

]√
Var(w>τ Rτ,τ+`)

,

where Rτ,τ+` ∈ RS denotes the realized adjusted-close returns over the next ` business days for the
S stocks,

Such that the budget constraint holds: 1>wτ = 1.

3.2 OVERVIEW

To solve the portfolio allocation problem defined in Section 3.1, our proposed STABLE executes
three stages as summarized in Figure 2. First, the Conditional Diffusion Generator (CDG) gen-
erates per-stock return segments conditioned on macro context and firm-specific properties at an
individual stock level. Second, Multi-Level Guidance (MLG) constructs the estimated noise by
combining the shared impact with the idiosyncratic component, modulated by a learnable gate,
yielding regime-aware per-stock distributions. Third, a Black–Litterman–based Mean–Variance
Optimizer (BL–MVO) consumes the diffusion-induced moments as views and outputs allocation
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Figure 2: Overview of STABLE. (I1) CDG conditions on macro and firm signals to generate per-
stock return segments. (I2) MLG decomposes noise into shared (systematic) and idiosyncratic parts
via a learnable gate. (I3) BL–MVO fuses diffusion views with a rolling prior to produce regime-
aware portfolio weights.

weights that balance diversification and estimation. The main challenges and our ideas are as fol-
lows.

C1 Regime shift. How can we accurately estimate future time series in markets whose regimes
keep changing?

C2 Multi-level factors. How can we separate, at each time step for each stock, the influence
of macro-level factors from stock-level factors?

C3 Uncertainty shifts. How can we maintain robust portfolio performance when the certainty
of per-step estimates differs over time?

We address the above challenges with the following ideas.

I1 Conditional diffusion generator (CDG, Sec. 3.3). We synthesize regime-aware return
paths by conditioning diffusion on macro-regime features and stock-specific features.

I2 Multi-level guidance (MLG, Sec. 3.4). We adapt modified classifier-free guidance to
financial domain to estimate a shared systematic noise and a stock-specific idiosyncratic
noise with a learnable gate that adjusts their relative importance over time.

I3 Black–Litterman–based mean–variance optimizer (BL–MVO, Sec. 3.5). We combine
diffusion-based views with a certainty weighted Black–Litterman update, which yields
per-time, per-stock posterior estimates and enables rational, robust allocation.

3.3 CONDITIONAL DIFFUSION GENERATOR (CDG)

Regime-aware sampling. STABLE estimates return segments with a Denoising Diffusion Implicit
Model (DDIM)-based conditional diffusion sampler (see A.2 in Appendix for details of DDIM).
Under the standard random-walk view of log returns, price noise is modeled as Gaussian (Fama,
1995). Diffusion models likewise inject Gaussian perturbations in the forward process and learn
to remove them in reverse, so the noise assumptions are aligned with our conditional setting. This
alignment makes conditional DDIM a natural mechanism to generate stock-return paths conditioned
on market and firm states.
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Table 1: Macro indices and description. After ν-day rolling normalization and log differencing, raw
and processed values compose mτ ∈Rdm .

Index Description

Market index Region-level equity baseline (overall market condition).
Dollar index Currency strength affecting equities via FX channels.
U.S. term spread (10y–3m) Bond-market condition and liquidity measure.
VIX index Forward-looking equity volatility (risk expectation).
Gold index Risk aversion / inflation measure.

Inputs and refinement. At rebalancing time τ , CDG conditions on two inputs that summarize
market context and firm identity. The macro feature mτ ∈Rdm encodes the global regime at time τ
and is refined by a linear layerWm∈Rdm×d into a refined macro condition hm,τ = mT

τWm∈R1×d.
The macro features are described in Table 1. The corporate-specific feature c(s)τ ∈Rdc for stock s at
time τ concatenates (i) the temporal stock embedding β(s)

τ at τ (Das & Ghoshal, 2010), and (ii) the
last normalized adjusted-close level and daily log returns for s. A linear layer Wc ∈Rdc×d yields
a refined stock-level condition h(s)c,τ = c

(s)T
τ Wc ∈ R1×d, and the refined full condition becomes

h
(s)
f,τ = [hm,τ ‖h(s)c,τ ] ∈ R1×2d. Given h(s)f,τ , CDG produces a denoised length-` return segment

r̂
(s)
0,τ ∈R` for stock s at time τ .

Temporal stock embedding. We construct part of the stock-specific feature c(s)τ using a temporal
stock embedding vector β(s)

τ ∈ Rdm at time τ . Prior approaches often use static metadata such as
sector labels or neural embeddings from price series (Dolphin et al., 2022), but these representations
are either fixed over time or fail to reflect macroeconomic regimes.

To address this, we apply Kalman filtering to estimate a time-varying coefficient β(s)
τ with respect

to the macro input mτ . Given the log return y(s)τ of stock s as the dependent variable and the macro
vector mτ as the independent variable, we estimate a contemporaneous macro sensitivity vector
β
(s)
τ via recursive filtering. This posterior estimate β(s)

τ reflects the stock’s embedding at time τ ,
incorporating all observations up to that point. It serves as a temporal and robust representation that
captures regime-aware macro sensitivity of each stock.

Conditioned DDIM synthesis. We first define the base conditioned denoiser. The multi-level
conditioning and its decomposition are detailed in Section 3.4, and the DDIM notation is defined
in Section A.1. Let r(s)n,τ ∈ R` be the reverse–chain state for stock s at time τ and DDIM step n
(n = N, . . . , 1, 0). The denoiser predicts noise ε̂ with r(s)n,τ and h(s)f,τ , and DDIM updates

r̂
(s)
0,τ =

r
(s)
n,τ −

√
1− ᾱn ε̂√
ᾱn

, r
(s)
n−1,τ =

√
ᾱn−1 r̂

(s)
0,τ +

√
1− ᾱn−1 ε̂, (η = 0)

Training objective. STABLE minimizes the diffusion mean-squared error (MSE) across all stocks
s∈S , rebalancing times τ ∈T , and DDIM steps n∈N .To mitigate overfitting, we add an `2 penalty
on the parameters with hyper parameter β.

min
θ
L(θ) = Es,τ,n,ε ‖ ε− ε̂ ‖22 + β ‖θ‖22. (1)

Since ε∼N (0, I) and Eq. (1) minimizes E ‖ ε− ε̂ ‖22, asymptotically we have ε̂ ∼ N (0, I).

3.4 MULTI-LEVEL GUIDANCE (MLG)

Noise decomposition and gate. We use multi-level guidance that decomposes, for each rebalanc-
ing time τ and stock s, the guided noise into a shared (macroeconomic) impact and an unshared
(firm-specific) impact with a stock-specific balancing gate. This is motivated by two empirical prop-
erties of the financial market. First, macro impact varies over time (Mezei & Sarlin, 2014): during
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crises macro variables dominate and cross-stock co-movements are pronounced, whereas in calm pe-
riods firm-specific signals carry more weight. Second, sensitivities to macro variables differ across
stocks (Shiller, 1995). By explicitly encoding this multi-level context in the denoising step, the noise
estimation becomes more accurate for both regime-driven and idiosyncratic dynamics.

For stock s at time τ at DDIM step n, define

ε̂ := εθ
(
r(s)n,τ , n, h

(s)
f,τ

)
= ε̂n,τ︸︷︷︸

shared (systematic)

+

balancing gate︷︸︸︷
z(s)τ

(
ε̂(s)n,τ − ε̂n,τ

)
︸ ︷︷ ︸

firm-specific (unsystematic)

.

ε̂n,τ = uφ
(
r(s)n,τ , n, hm,τ

)
, ε̂(s)n,τ = uφ

(
r(s)n,τ , n, h

(s)
f,τ

)
, z(s)τ = gπ

(
h
(s)
f,τ

)
∈ [0, zmax].

All labeled terms in the equation refer to three well-defined elements: (i) the shared noise term ε̂n,τ ,
(ii) the firm-specific residual ε̂(s)n,τ − ε̂n,τ , and (iii) the scalar gate z(s)τ . The two noise terms are
evaluations of the convolutional UNet denoiser uφ at DDIM step n with inputs (r

(s)
n,τ , n, h). We

use hm,τ to obtain the shared term ε̂n,τ and h(s)f,τ to obtain the full-condition term ε̂
(s)
n,τ . The gate is

produced by a linear map gφ, which adjusts, at the stock level, the balance between macro impact
and micro dynamics. Here uφ takes three inputs: the recovered state r(s)n,τ , the step index n, and the
condition vector h ∈ {hm,τ , h(s)f,τ}.

Training objective and optimization. We train all parameters jointly to minimize the diffusion
MSE. The optimization drives the gate z(s)τ downward when h(s)f,τ indicates macro-level synchroniza-
tion, and upward in decoupling regimes to allocate more weight to the firm-specific residual. We
replace ε̂ with εθ

(
r
(s)
n,τ , n, h

(s)
f,τ

)
, and rewrite the diffusion objective in Eq. (1) as

L(θ) = E
∥∥∥ ε− εθ(r(s)n,τ , n, h(s)f,τ

) ∥∥∥2
2

+ β ‖θ‖22, θ = {φ, π,Wm,Wc}. (2)

3.5 BLACK–LITTERMAN–BASED MEAN–VARIANCE OPTIMIZER (BL–MVO)

Black–Litterman using generative sampler. STABLE performs portfolio allocation by feeding its
stock-wise time-series estimates into the Black–Litterman (BL) algorithm to obtain an updated pos-
terior and then solving mean–variance optimization (MVO) (see A.3 for details of BL with MVO).

Views from CDG+MLG. For each stock s at time τ , we generate k guided paths and stack them
as R̂(s)

0,τ ∈ Rk×`, whose i-th row is the denoised sequence r̂(s,i)0 . From these per-asset samples,
we form view moments µview,τ ∈ RS and Σview,τ ∈ RS×S , and fuse them with the rolling prior
(µprior,τ ,Σprior,τ ) using prior certainty Φτ = Σ−1prior,τ and view certainty Ωτ = Σ−1view,τ .

Estimated posterior and allocation. The BL posterior mean is obtained by minimizing the neg-
ative log-posterior in Eq. (3) (first-order condition), and the posterior covariance follows from the
canonical Gaussian form in Eq. (5):

µBL,τ = (Φτ + Ωτ )−1
(
Φτµprior,τ + Ωτµview,τ

)
, ΣBL,τ = (Φτ + Ωτ )−1.

Given (µBL,τ ,ΣBL,τ ), the Sharpe-maximizing weight solves Eq. (6) and has the closed form

w?τ =
Σ−1BL,τµBL,τ

1>Σ−1BL,τµBL,τ

,

which enforces the budget constraint 1>wτ = 1 by normalization.

4 EXPERIMENT RESULTS

We perform experiments to answer the following research questions.

Q1 Investment performance and robustness. How does STABLE compare with
state-of-the-art portfolio-allocation baselines in investment performance and robustness?
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Table 2: Summary of datasets.
Dataset Region #Stocks Train from Train cut Test to
S&P500 United States 55 2013-01 2024-09 2025-03
CSI300 China 55 2013-01 2024-09 2025-03
EUROSTOXX Europe 37 2013-01 2024-09 2025-03
KOSPI200 South Korea 44 2013-01 2024-09 2025-03

Code and data: https://github.com/iclr26stable/iclr26stable

Q2 Estimation accuracy. Is STABLE’s DDIM-conditioned future time-series estimation supe-
rior to competing generative models?

Q3 Stock embedding quality. How effectively does the Kalman-β–based stock embedding
model each stock’s latent state?

4.1 EXPERIMENTAL SETTINGS

All experiments run on a workstation with 4 RTX 3080 GPUs.

Datasets. To evaluate STABLE fairly across both market-wide and sector-level universes, we build
four regional datasets with identical splits. Following the Global Industry Classification Standard
(GICS) as of 2025-03-31, we select the top five largest stocks in each of the eleven sectors for
S&P500 and CSI300, and the top four per sector for EUROSTOXX and KOSPI200. We exclude
stocks whose available histories do not span the entire sample window. Table 2 summarizes the
universe and the split period.

Competitors. Q1 aims to demonstrate that STABLE achieves both profitability and robustness in
investment performance. We compare against a range of classical and learning-based portfolio al-
location methods. CRP (Kelly, 1956) allocates equal weights and rebalances to equality at every
decision time. MVO (Markowitz, 1952a) solves the mean–variance program that maximizes ex-
pected return for a target variance using recent mean and covariance estimates, producing stable
allocations under approximately stationary regimes. MOM (Jegadeesh & Titman, 1993) assigns
larger weights to recent winners based on a lookback momentum score and rebalances on a sched-
ule, and is suitable when returns tend to continue for the next few months. DeepTrader (Wang et al.,
2021) learns to determine portfolio-level long–short balances from macro features using reinforce-
ment learning. MetaTrader (Niu et al., 2022) classifies the market regime based on macro inputs
and switches among CRP, MVO, and MOM accordingly. AlphaMix (Sun et al., 2023) routes market
state representations to multiple neural allocators and selects the best action based on a soft gating
policy.

Q2 aims to demonstrate that STABLE ’s conditional generation of future time series is accurate. Ac-
cordingly, for portfolio allocation (Section 4.2), we evaluate classical allocators and regime-aware
RL allocators. For time–series prediction (Section 4.3), we benchmark representative generative
forecasters. Diffusion-TS (Yuan & Qiao, 2024) is a diffusion-based time-series model that recon-
structs past data and forecasts future trajectories using a spectral loss. AEC-GAN (Wang et al.,
2023) augments a GAN with adversarial error correction over an autoregressive backbone to im-
prove long-horizon accuracy. KoVAE (Naiman et al., 2023) combines a variational autoencoder
with Koopman-operator latent dynamics to model linear evolution in the latent space.

Evaluation Metrics. We report metrics for the two experiments. For portfolio allocation experi-
ment, we use ASR, RMDD, and AVol. Annualized Sharpe Ratio (ASR) uses daily test returns with
a zero risk-free rate and is annualized. Relative Maximum Drawdown (RMDD) is the maximum
peak-to-trough loss divided by the peak over the test horizon. Annualized Volatility (AVol) is the
standard deviation of daily returns and is annualized. For the time-series prediction task, we report
mean squared error (MSE) and dynamic time warping (DTW). MSE is computed between the pre-
dicted and true return sequences. DTW measures the average temporal alignment cost between the
predicted path and the ground-truth trajectory. Across both experiments, we use a fixed global seed
to ensure reproducibility.

Hyperparameters. We grid-search the original segment length ` ∈ {5, 10, 20}, macro and stock
encoder width {8, 16, 32}, number of reverse DDIM steps {20, 30, 50, 80, 100}, and the number k
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Table 3: Portfolio allocation results on sector-diversified multi-region datasets. Best performance
per column in bold. RMDD and AVol are expressed in percentage units (%).

S&P500 (US) CSI300 (China)

Method ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

CRP 0.82 8.89 14.44 -0.70 10.96 18.21
MVO 1.18 9.00 21.18 -0.66 13.18 25.93
MOM 0.03 11.87 17.00 -0.47 15.57 28.77
DeepTrader -0.71 13.40 15.76 -1.18 13.40 18.76
MetaTrader 1.00 10.88 16.82 -1.09 19.40 24.15
AlphaMix 0.35 9.59 13.92 -0.80 9.59 19.11
STABLE (Proposed) 1.85 7.82 13.43 -0.41 8.85 17.17

EUROSTOXX (Europe) KOSPI200 (South Korea)

Method ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

CRP 1.31 5.40 12.96 0.76 8.72 26.55
MVO 0.48 8.35 16.75 0.45 11.84 29.49
MOM 1.42 5.41 12.71 0.33 13.49 23.34
DeepTrader -2.44 15.99 12.59 0.77 9.62 23.76
MetaTrader 0.50 9.86 14.63 0.57 10.88 22.28
AlphaMix 1.31 5.75 11.77 1.47 9.96 18.76
STABLE (Proposed) 2.92 3.84 10.88 1.61 8.34 17.82

of generated paths per stock for BL views {20, 30, 50}. We also investigate the forward noising steps
used during training over {100, 200, 400} and the DDIM noise scale η ∈ {0, 0.01, 0.1, 0.2}. The
gate cap zmax ∈ {2, 3, 4}, the BL prior window length ν ∈ {60, 120, 250}, and the `2 regularization
weight β ∈ {0.001, 0.01, 0.1} are tuned per dataset. Baselines follow official implementations or
paper-reported settings. We report the selected hyperparameters for each dataset in Appendix A.8,
and provide details on computational transparency and reproducibility in Appendix A.9.

4.2 PORTFOLIO MANAGEMENT PERFORMANCE (Q1)

Table 3 reports ASR, RMDD, and AVol across sector-diversified regional universes. STABLE is
ranked first on all three metrics in every region, delivering higher risk-adjusted returns together with
lower drawdowns and lower volatility. We analyze the results for different regimes in Appendix A.4.

Classical strategies (CRP, MVO, MOM) are sensitive to regime shifts. In our test window with
frequent drawdowns and rebounds, they exhibit larger RMDD and higher AVol, which lowers ASR
relative to a regime-aware approach. MetaTrader, which switches among the classical strategies
using macro cues, inherits the same limitations and shows similar patterns.

Among RL baselines, DeepTrader performs the worst. Its macro-only controller struggles during
the “new normal” period with a persistent yield-curve inversion, where macro signals alone are not
sufficient to determine long–short balance. AlphaMix is the strongest competitor because it routes
among policies by market state, yet it does not model time-varying stock-specific properties. In
contrast, STABLE conditions on temporal Kalman β embeddings and adapts to stock-level regime
changes, which explains the consistent gains in ASR, RMDD, and AVol.

4.3 TIME–SERIES PREDICTION ACCURACY (Q2)

We assess the accuracy of conditional future return sequences predicted by STABLE. At each re-
balancing time we generate k trajectories per stock. We report two error metrics aggregated over
all stocks and times: MSE of the mean-of-k forecaster and the average DTW distance across the k
generated paths. Lower is better for both.

Table 4 summarizes mean squared error (MSE) and dynamic time warping (DTW) across all four
markets. STABLE achieves the lowest MSE and DTW in every market, indicating the most accurate
conditional estimation of future return segments.
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Table 4: Time–series prediction on sector-diversified markets. Lower is better. We report MSE and
DTW aggregated over all stocks and rebalancing times. MSE is shown in×10−4. Normalized DTW
is shown in ×10−3. Best per column in bold.

S&P500 CSI300 EUROSTOXX KOSPI200

Method MSE (↓) DTW (↓) MSE (↓) DTW (↓) MSE (↓) DTW (↓) MSE (↓) DTW (↓)

Diffusion-TS 3.90 5.73 5.71 6.78 3.05 5.80 9.41 8.70
AEC-GAN 4.27 6.58 4.57 6.13 3.70 7.40 10.18 9.28
KoVAE 4.58 5.93 5.46 7.28 2.61 5.43 9.83 8.73
STABLE (proposed) 3.51 5.62 3.89 6.09 2.49 4.78 8.15 8.67
Table 5: Top-5 most similar stocks (by Euclidean distance) returned by our dynamic embeddings for
four query snapshots. For TSLA on 2024-12-31, the global context most strongly reflects the prices
of NVDA, AVGO, AAPL, MSFT, and GOOGL.

Query Top 1 Top 2 Top 3 Top 4 Top 5

TSLA @ 2021-06-28 AAPL AVGO MA META ECL
TSLA @ 2024-12-31 NVDA AVGO AAPL MSFT GOOGL
BAC @ 2021-06-28 JPM WELL WFC DUK MCD
BAC @ 2024-12-31 WFC JPM ECL LIN APD

Diffusion-TS is the strongest baseline but remains behind STABLE. It is designed for broad general-
ization and does not modulate the importance of conditions at the individual-stock level. In contrast,
STABLE decomposes guidance into systematic noise that captures market-wide regularities and id-
iosyncratic noise that captures firm-specific patterns. This dual modeling allows the relative weight
of conditions to vary by stock and time, which improves sequence alignment and reduces prediction
error. Furthermore, we evaluate the covariance estimation performance derived from these return
sequences against non-generative and deep generative models in Appendix A.5. We also present a
stylized facts validation and goodness-of-fit tests on the distributions of returns generated by these
models in Appendix A.6.

4.4 STOCK EMBEDDING QUALITY (Q3)

To assess embedding quality, we perform a nearest-neighbor analysis on representative U.S. stocks
in our universe. For each query date, we retrieve the most similar embeddings and verify whether the
matches share sector category or display similar price dynamics, as expected when the embedding
faithfully encodes stock identity.

Table 5 shows the five closest neighbours from the dynamic embeddings for TSLA (Tesla) and BAC
(Bank of America) at two snapshots (2021 and 2024). In 2021 TSLA is nearest to Big-Tech stocks
such as AAPL and AVGO. By late 2024 its closest neighbours shift to AI-focused firms like NVDA
and MSFT. This shift illustrates how the embeddings track the market’s AI boom. BAC stays close
to JPM and WFC at both times, confirming a stable financial-sector relationship that our method
captures over time.

5 CONCLUSION

We propose STABLE, a regime-adaptive portfolio framework that unifies three modules. First, the
Conditional Diffusion Generator (CDG) uses market regime and stock identity as conditions, and
enables accurate per-stock time-series estimation. Second, the Multi-Level Guidance (MLG) esti-
mates, for each stock and time, how strongly macro and micro impacts drive the denoising process
through a learnable gate. Third, the Black–Litterman–based Mean–Variance Optimizer (BL–MVO)
incorporates sampling certainty into view formation and produces rational and robust allocations.
On real-world sector-diversified, multi-region stock market datasets, STABLE outperforms competi-
tors portfolio allocation and estimation tasks. For portfolio allocation, Annualized Sharpe Ratio
improves by up to 122.9%, relative maximum drawdown decreases by up to 1.56%p, and annual-
ized volatility decreases by up to 7.56%. For future time-series estimation, STABLE reduces MSE by
up to 15.7% and DTW by up to 13.8% against the best competitor. Future works include extending
our method to exploit more rich features including texts for macro and stock features.
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A APPENDIX

A.1 SYMBOLS

The symbols used in this paper is summarized in Table 6
Table 6: Notation summary of STABLE.

Symbol Description

S Number of stocks in the universe.
` Length of the per-stock return segment reconstructed by the

diffusion model.
r
(s)
τ ∈ R` Next-period log-return segment of stock s (length `).
r
(s)
n,τ ∈ R` Reverse-chain state at step n (r(s)0,τ clean; r(s)N,τ noisy).
hm,τ ∈ Rd Macro representation from mτ .
h
(s)
c,τ ∈ Rd Stock-specific representation obtained from c

(s)
τ .

h
(s)
f,τ ∈ R2d Combined representation, [hm,τ ‖h(s)c,τ ].
αn, βn, ᾱn Diffusion schedule (αn = 1− βn, ᾱt =

∏n
i=1 αi).

µprior,τ ∈ RS Prior mean vector at time τ .
Σprior,τ ∈ RS×S Prior covariance.
µview,τ ∈ RS View mean vector.
Σview,τ ∈ RS×S View covariance.
µBL,τ ∈ RS , ΣBL,τ ∈ RS×S Black–Litterman posterior mean and covariance.
π Parameters of the balancing gate gπ .
φ Parameters of the UNet denoiser uφ.

A.2 DENOISING DIFFUSION IMPLICIT MODELS USING CLASSIFIER-FREE GUIDANCE

Denoising Diffusion Implicit Models (DDIM). DDIM provides a non-Markovian implicit reverse
sampler that preserves the training-time marginals while allowing a much coarser (fewer-step) dis-
cretization of the reverse process than DDPM. This yields faster inference and, under fixed condi-
tions, more consistent denoised sequences. These properties are crucial for regime-aware forecasting
at each decision time τ .

DDIM Training objective. Training follows the standard noise-prediction objective used by
DDPM. For stock s and time τ , let r(s)n,τ ∈ Rl be the noisy return sequence at DDIM reverse step
n, and let the condition be either a macro vector mτ ∈ Rdm or a per-stock vector c(s)τ ∈ Rdc . A
denoiser εφ predicts the injected Gaussian noise:

`ε = Es,τ,n,ε
[∥∥ε− εφ(r(s)n,τ , n, cond

)∥∥2], cond ∈ {mτ , c
(s)
τ }.

At test period, DDIM replaces the Markovian reverse chain with a non-Markovian update, so that
the same trained εφ can be sampled in substantially fewer steps while keeping faithful marginals.

Classifier-Free Guidance. CFG aims to strengthen conditional fidelity without training an auxiliary
classifier by interpolating noise predictions from the same network. We use

εu = εθ(rn, n, uncond), εc = εθ(rn, n, cond), ε̂ = εu + z (εc − εu), z ≥ 0.
The scalar z controls the trade-off: larger z pushes sampling toward the conditional mode, while
the shared-parameter εu keeps samples realistic. The term (εc − εu) acts as a conditional residual
that steers the denoising direction toward the conditional mode, while εu regularizes the step toward
high-likelihood regions of the unconditional data distribution. Despite fewer reverse steps (DDIM),
this residual-plus-regularizer view improves conditional alignment without sacrificing realism.

A.3 BLACK–LITTERMAN–BASED OPTIMIZATION

Black–Litterman (BL) updates a baseline prior for asset returns with investor views to form a poste-
rior. Given this estimated posterior, BL performs mean–variance–optimal (MVO) portfolio alloca-
tion. The update balances the prior and the views by their certainties: highly certain views tilt the
posterior toward the views, while low-certainty views keep it close to the prior.
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At time τ , let S denote the number of investable stocks in the universe. We use two prior quanti-
ties: the prior mean µprior,τ ∈ RS and the prior covariance Σprior,τ ∈ RS×S . Under MVO, the
market–equilibrium portfolio weight implied by moments (µ,Σ) is proportional to Σ−1µ, which
maximizes the expected risk-adjusted return. To anchor this reference in a simple way, we fix the
equilibrium benchmark to the equal-weight portfolio weq ∈ RS with entries 1/S and define

µprior,τ = Σprior,τ weq, Φτ = Σ−1prior,τ .
This construction makes weq coincide with the MVO direction under the prior and defines certainty
via the precision Φτ .

Let the per-asset view be (µview,τ ,Σview,τ ) with view certainty Ωτ = Σ−1view,τ .

Posterior mean via MAP. Our goal is the posterior mean of returns µBL,τ that balances the prior
µprior,τ and the view µview,τ according to their certainties. Under Gaussian prior and view, the max-
imum a posteriori (MAP) estimator is obtained by minimizing the negative log-posterior (constants
omitted):

J(µ) = 1
2 (µ− µprior,τ )>Φτ (µ− µprior,τ ) + 1

2 (µ− µview,τ )>Ωτ (µ− µview,τ ). (3)
Setting the gradient to zero yields the closed-form solution

µBL,τ = (Φτ + Ωτ )−1
(
Φτµprior,τ + Ωτµview,τ

)
. (4)

Posterior covariance via canonical form. Expanding (3) yields
J(µ) = 1

2µ
>Hτµ− µ>ητ + const, Hτ = Φτ + Ωτ , ητ = Φτµprior,τ + Ωτµview,τ .

Hence
p(µ | prior, view) ∝ exp

(
− J(µ)

)
= exp

(
− 1

2µ
>Hτµ+ µ>ητ

)
,

which is the canonical form of a multivariate Gaussian. Therefore,
ΣBL,τ = H−1τ = (Φτ + Ωτ )−1. (5)

MVO with the BL posterior. With the Black–Litterman posterior moments (µBL,τ ,ΣBL,τ ),

the goal is to maximize the Sharpe ratio

w?τ ∈ arg max
1>wτ=1

w>τ µBL,τ√
w>τ ΣBL,τwτ

. (6)

Let a = Σ
1/2
BL,τwτ and b = Σ

−1/2
BL,τ µBL,τ . Then

w>τ µBL,τ√
w>τ ΣBL,τwτ

=
a>b

‖a‖
.

By the Cauchy–Schwarz inequality, a>b
‖a‖ ≤ ‖b‖, with equality iff a is colinear with b. Thus the

maximizing direction satisfies a = λb for some λ > 0, i.e.,
wτ = λΣ−1BL,τµBL,τ .

Finally, enforce the budget constraint 1>wτ = 1 to fix the scale:

λ =
1

1>Σ−1BL,τµBL,τ

, w?τ =
Σ−1BL,τµBL,τ

1>Σ−1BL,τµBL,τ

.

As the view certainty decreases, µBL,τ → µprior,τ and ΣBL,τ → Σprior,τ , so w?τ → weq (since
Σ−1prior,τµprior,τ = weq). This follows directly from Eqs. (4)–(5).

A.4 PORTFOLIO MANAGEMENT PERFORMANCES OVER MULTIPLE MARKET REGIMES

We evaluate whether STABLE sustains superior risk-adjusted portfolio performance across hetero-
geneous market regimes and regions. Predictive performance for financial time series often varies
with the dataset and the sample window. To verify consistency, we measure results across disjoint
periods and markets.

Building on the recent-period results in Section 4.2, we present experimental results for two contrast-
ing market regimes, excluding the recent period. The first regime, the COVID-19 crisis (2019-09-01
to 2020-03-31), is a global stock market crisis characterized by an enormous crash and extreme
volatility. The second regime is the Zero Interest Rate Policy (ZIRP) period (2020-04-01 to
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Table 7: Portfolio performance during COVID-19 (2019-09-01 to 2020-03-31). Best performance
per column in bold. RMDD and AVol are in percentage units (%).

S&P500 (US) CSI300 (China)

Method ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

CRP -0.69 35.63 51.59 -0.17 16.28 26.09
MVO -0.62 32.34 49.47 -0.05 14.91 25.36
MOM 0.07 26.64 46.58 -1.00 9.64 24.72
DeepTrader -0.32 25.53 38.09 0.41 11.71 19.15
MetaTrader 0.05 37.05 34.65 1.09 10.70 21.66
AlphaMix -0.65 38.69 38.79 -0.35 9.70 19.40
STABLE (Proposed) 1.61 23.77 34.10 1.18 9.20 18.50

EUROSTOXX (Europe) KOSPI200 (South Korea)

Method ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

CRP -1.74 39.97 40.92 -1.28 37.18 38.25
MVO -1.61 37.02 39.04 -1.29 36.74 36.68
MOM -3.70 50.16 45.81 -2.64 46.71 41.91
DeepTrader -1.36 39.71 32.50 -1.64 36.87 40.61
MetaTrader -0.84 37.03 37.15 -1.59 53.00 40.37
AlphaMix -0.92 42.49 34.20 -1.38 43.30 37.80
STABLE (Proposed) -0.70 28.17 30.30 -1.30 37.65 31.19

2022-03-31). Following the crisis, global quantitative easing policies kept bond yields and credit
spreads near zero, fueling a global stock market rally.

Results. STABLE attains the best ASR, RMDD, and AVol in almost all markets across the two
contrasting regimes (Tables 7 and 8). In the COVID-19 window (Table 7), STABLE shows strong
crisis-resilience. For example, it improves ASR to 1.61 in the US (from 0.07 for MOM) and reduces
RMDD significantly. An exception is South Korea (KOSPI200), where STABLE’s ASR (-1.30) is
similar to CRP (-1.28). This is an expected outcome, as our BL–MVO framework converges to
the equal-weight vector weq (which CRP represents) when predicted covariances become extremely
high, prioritizing stability. Notably, STABLE still achieves the lowest AVol (31.19) in this market,
confirming its stable performance.

In the ZIRP window (Table 8), STABLE demonstrates strong performance in the market rally, achiev-
ing the highest ASR in all regions. In China (CSI300), while its AVol (18.40) is slightly higher than
MVO’s (17.63), it secures the best ASR (1.67), indicating superior risk-adjusted returns. These
outcomes are consistent with the regime-shift-tolerant design of STABLE. The diffusion sampler
generates regime-aware paths and the MLG mechanism separates macro impact from firm-specific
effects at the stock and time level. As noted for the KOSPI200 case, within BL–MVO, as the view
precision Ωτ = Σ−1view,τ decreases (e.g., in high uncertainty), the posterior places greater weight on
the prior and the allocation approaches the equal-weight vector weq, which explains the observed
stability during extreme episodes.

A.5 INDEPENDENT TEST OF COVARIANCE ESTIMATION PERFORMANCE

We isolate the covariance estimation to assess whether the diffusion-derived covariance of STABLE
delivers meaningful gains relative to simple prediction models and deep generative forecasters. The
goal is to test the covariance view in isolation because risk-adjusted portfolio allocation is driven
by risk control, which depends on accurate covariance estimation. We conduct this experiment over
multiple regimes including the periods examined in Section 4.2 and Section A.4.

In this experiment STABLE ’s CDG with MLG generates per-stock return paths and forms the
return view µview,τ . The return view remains fixed for all comparisons. We replace only the
covariance view Σview,τ with each estimator. BL–MVO solves for the portfolio weights given
(µview,τ ,Σview,τ ). All settings including datasets and data split follow Section 4.2 and Section A.4.
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Table 8: Portfolio performance during the ZIRP window (2020-04-01 to 2022-03-31). Best
performance per column in bold. RMDD and AVol are in percentage units (%).

S&P500 (US) CSI300 (China)

Method ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

CRP 2.16 9.46 14.71 1.15 14.37 18.24
MVO 2.50 7.84 13.94 1.09 15.63 17.63
MOM -0.19 30.17 23.03 -0.01 18.19 23.20
DeepTrader -1.93 58.13 19.44 0.68 16.57 18.96
MetaTrader 1.41 14.38 21.44 1.36 19.76 21.77
AlphaMix 1.60 12.10 16.70 1.27 16.40 19.30
STABLE (Proposed) 2.58 7.14 13.50 1.67 14.01 18.40

EUROSTOXX (Europe) KOSPI200 (South Korea)

Method ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

CRP 1.09 19.93 18.97 1.71 14.90 17.11
MVO 1.18 19.64 18.59 1.75 14.40 17.94
MOM 0.46 25.10 19.20 0.25 19.40 23.00
DeepTrader -1.05 46.23 22.03 -0.94 44.71 21.50
MetaTrader 1.04 20.03 22.76 1.36 19.76 21.77
AlphaMix 1.04 20.67 20.66 1.50 18.90 19.50
STABLE (Proposed) 1.83 16.17 17.12 1.87 14.03 16.14

In these settings STABLE as the covariance estimator shows consistent improvements compared with
all alternatives. We report ASR, RMDD, and AVol on the four regional universes.

Simple generative forecasters. We compare STABLE against simple prediction models that
include a regression model, a deep learning model, and a tree-based model, each producing
a full covariance forecast over time. For the neural and tree models we follow established
volatility-forecasting settings for LSTM Bucci (2020) and LightGBM Zhang (2022). Both pre-
dict the lower-triangular Cholesky factor Lτ of the covariance, as in prior Cholesky-parameterized
volatility modeling (Bucci, 2020; Zhang, 2022), which reduces the prediction target and improves
computational efficiency. The simple prediction models are as follows.

1. DCC–GARCH(1,1) Engle (2002). A multivariate GARCH that captures time-varying covari-
ances through univariate volatility updates coupled with a dynamic correlation recursion. The
notation (1, 1) denotes one lag of the innovation and one lag of the conditional variance. It is a
widely used regression baseline that reflects evolving correlations.

2. LSTM–Cholesky Nelson et al. (2017). A vanilla LSTM uses the macro sequence in Table 1 over
the last ν business days and predicts the entries of Lτ . The diagonal is constrained positive via a
softplus map. The loss is the Gaussian negative log-likelihood on Lτ .

3. LightGBM–Cholesky Ke et al. (2017). We train one gradient-boosted tree regressor per entry
Lij,τ . Inputs include the most recent values from the previous rebalanceLij,τ−`, Lii,τ−`, Ljj,τ−`
together with macro features aggregated over the last ν business days from Table 1.

Deep generative forecasters. We also include diffusion- and autoencoding-based deep generative
models as covariance forecasters by sampling k paths per asset and taking the sample covariance at
each τ : Diffusion-TS Yuan & Qiao (2024), AEC–GAN Wang et al. (2023), and KoVAE Naiman
et al. (2023). STABLE forms Σview,τ directly from its conditional diffusion paths with multi-level
guidance.

Results. Table 9, Table 10, and Table 11 summarize portfolio outcomes under the fixed-return
setting across multiple regimes. In general, using STABLE for the covariance view achieves the best
performance across all metrics in almost every regime and region. However, in South Korea during
the COVID-19 period, where STABLE previously showed lower performance than CRP, replacing
the covariance with a simple regression model, DCC–GARCH(1,1), yields the highest performance.
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Table 9: Portfolio results with a fixed return view from STABLE (CDG+MLG) during the
COVID-19 crisis. We fix the return view µview,τ to the per-stock estimates from STABLE ’s
CDG+MLG and vary only the covariance view Σview,τ using each forecaster. BL–MVO then uses
(µview,τ ,Σview,τ ) to produce the allocation. Performance of STABLE corresponds to the results in
Table 7. Replacing the covariance view of STABLE generally degrades performance, except for
South Korea where DCC–GARCH(1,1) outperforms. Best per column in bold.

S&P500 (US) CSI300 (China)

Covariance forecaster ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

DCC–GARCH(1,1) -0.48 39.28 36.62 0.33 12.48 18.39
LSTM–Cholesky -0.35 45.78 35.09 0.53 11.79 19.80
LightGBM–Cholesky -0.15 26.35 37.66 0.46 15.60 19.11
Diffusion-TS 0.84 26.51 35.59 0.63 12.17 21.26
AEC–GAN -0.73 33.86 37.78 1.02 13.29 20.58
KoVAE -1.04 41.36 39.57 0.87 14.51 21.15
STABLE (Proposed) 1.61 23.77 34.10 1.18 9.20 18.50

EUROSTOXX (Europe) KOSPI200 (South Korea)

Covariance forecaster ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

DCC–GARCH(1,1) -1.38 37.18 32.86 0.01 27.60 25.54
LSTM–Cholesky -2.00 34.31 35.37 -1.60 32.11 33.37
LightGBM–Cholesky -1.89 40.69 34.41 -0.75 47.56 40.22
Diffusion-TS -0.93 36.32 35.26 -1.88 42.55 34.18
AEC–GAN -1.00 48.82 36.75 -1.49 41.02 30.93
KoVAE -2.61 46.57 39.48 -1.26 39.22 41.78
STABLE (Proposed) -0.70 28.17 30.30 -1.30 37.65 31.19

During the COVID-19 crisis (Table 9), replacing STABLE’s covariance with other deep generative
models leads to severe performance degradation, with the exception of KoVAE in South Korea. As
shown in the stylized facts comparison in Section A.6, these models tend to estimate Kurtosis and
Skewness close to a normal distribution. Consequently, they fail to account for the extreme tail
risks inherent in market crashes, resulting in significantly worsened stability metrics. For instance,
in the S&P500 market, STABLE improves ASR by 92.7% (from 0.84 to 1.61) compared to the
best alternative (Diffusion-TS), while reducing annualized volatility by 1.49%p. Similarly, in the
EUROSTOXX market, STABLE reduces RMDD by 6.14%p (from 34.31% to 28.17%) compared to
the strongest baseline (LSTM), demonstrating superior stability during crises.

In the ZIRP period (Table 10), STABLE’s covariance estimation yields the superior investment per-
formance across all regions. This dominance aligns with the findings in Section A.6, where the
distribution of returns estimated by STABLE exhibits stylized facts highly similar to those of real-
ized market data, enabling effective risk diversification. Notably, in the S&P500 market, STABLE
improves ASR by 25.1% (from 2.06 to 2.58) and reduces RMDD by 2.49%p compared to the
best competitor (AEC–GAN). In the EUROSTOXX market, STABLE achieves a 29.5% higher ASR
(1.83 vs 1.41) than the LSTM baseline, confirming that accurate covariance estimation via STABLE
translates directly into enhanced risk-adjusted returns.

For the recent period (Table 11), the performance degradation from replacing STABLE’s covariance
is the lowest in the EUROSTOXX market. This result is consistent with the findings in Table 4,
where the deep generative models exhibit their strongest average MSE and DTW scores. Even here,
STABLE improves the ASR by 9.8% (from 2.66 to 2.92) and reduces RMDD by 14.1% (from 4.47%
to 3.84%) compared to the strongest competitor (KoVAE). Conversely, in regions where generative
models have higher MSE and DTW scores, such as CSI300 and KOSPI200 (Table 4), replacing
STABLE’s covariance leads to severe performance degradation. This result aligns with the time-
series estimation performance reported in Table 4 and underscores the effectiveness of STABLE’s
multi-level guidance. By separating systematic impacts from idiosyncratic characteristics, STABLE
maintains robust covariance estimation and risk control even in markets where simpler generative
models fail.
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Table 10: Portfolio results with a fixed return view from STABLE (CDG+MLG) during the
ZIRP period. Performance of STABLE corresponds to the results in Table 8. STABLE consistently
achieves the best performance across all regions. Best per column in bold.

S&P500 (US) CSI300 (China)

Covariance forecaster ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

DCC–GARCH(1,1) 1.39 20.81 24.27 1.47 16.96 27.15
LSTM–Cholesky 1.77 10.19 19.30 1.30 14.64 18.80
LightGBM–Cholesky 1.36 18.81 21.44 1.11 20.70 24.92
Diffusion-TS 0.82 12.69 22.38 1.16 21.34 24.26
AEC–GAN 2.06 9.63 18.94 1.38 15.68 21.53
KoVAE 1.42 11.47 20.43 1.35 14.26 21.81
STABLE (Proposed) 2.58 7.14 13.50 1.67 14.01 18.40

EUROSTOXX (Europe) KOSPI200 (South Korea)

Covariance forecaster ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

DCC–GARCH(1,1) 1.11 19.17 21.71 -0.62 31.78 19.14
LSTM–Cholesky 1.41 18.02 20.65 1.57 21.31 20.21
LightGBM–Cholesky 0.95 25.92 24.48 0.50 29.03 27.70
Diffusion-TS 0.87 22.61 27.94 1.27 16.94 23.74
AEC–GAN 0.78 21.48 25.56 1.78 14.25 18.90
KoVAE 0.66 23.54 26.69 1.66 15.64 21.98
STABLE (Proposed) 1.83 16.17 17.12 1.87 14.03 16.14

Table 11: Portfolio results with a fixed return view from STABLE (CDG+MLG) during the
recent period. Performance of STABLE corresponds to the results in Table 3. STABLE consistently
achieves the best performance across all regions. Best per column in bold. RMDD and AVol are in
%.

S&P500 (US) CSI300 (China)

Covariance forecaster ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

DCC–GARCH(1,1) 0.81 10.18 16.10 -0.95 14.12 19.91
LSTM–Cholesky 0.82 10.22 16.94 -1.23 13.94 20.12
LightGBM–Cholesky 0.95 13.63 20.94 -1.22 14.20 21.70
Diffusion-TS 0.53 12.68 25.85 -1.01 13.58 20.57
AEC–GAN 0.80 12.70 19.90 -0.74 16.14 21.41
KoVAE 0.90 12.36 16.13 -0.68 16.60 22.52
STABLE (Proposed) 1.85 7.82 13.43 -0.41 8.85 17.17

EUROSTOXX (Europe) KOSPI200 (South Korea)

Covariance forecaster ASR (↑) RMDD (↓) AVol (↓) ASR (↑) RMDD (↓) AVol (↓)

DCC–GARCH(1,1) 2.53 5.31 11.78 0.79 11.09 18.34
LSTM–Cholesky 2.54 5.36 14.14 1.13 12.46 19.69
LightGBM–Cholesky 1.52 7.12 14.66 1.18 9.60 23.10
Diffusion-TS 2.65 5.21 14.55 -1.88 21.93 24.98
AEC–GAN 2.41 6.11 14.94 -0.82 13.09 21.13
KoVAE 2.66 4.47 14.59 0.66 21.70 26.29
STABLE (Proposed) 2.92 3.84 10.88 1.61 8.34 17.82

A.6 STYLIZED FACTS ANALYSIS AND GOODNESS-OF-FIT TESTS

We conduct a comprehensive analysis to validate the distributional properties of the return segments
generated by STABLE and the deep generative models from Section 4.3. We conduct this experiment
over multiple regimes including the periods examined in Section 4.2 and Section A.4. We perform
both stylized facts validation and goodness-of-fit tests on the generated segments against the realized
return segments. The objective is to verify that the generated segments, particularly from STABLE,
capture not only simple time-series similarity but also the key dynamic properties and underlying
stochastic structure of realized returns. For stylized facts validation, we conduct statistical tests to
determine if the realized kurtosis, skewness, and autocorrelation of volatility exhibit significant dif-
ferences from the generated values. For goodness-of-fit tests, we perform the Kolmogorov-Smirnov
(KS) Smirnov (1948) and Anderson-Darling (AD) Anderson & Darling (1952) tests.
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Setup. We apply a stratified bootstrapping procedure for all tests. Let S be the number of stocks
and T be the total number of rebalancing timesteps. Let N = S × T be the total number of realized
segments. Let D ∈ RN×` be the set of N realized return segments of length `, and let VD ∈ RN` be
its flattened 1D vector. Let R̂ represent the set of generated returns, structured as an (N, k, `) array,
where for each of the N conditions (s, τ), we have k candidate segments of length `. We perform
M bootstrap iterations. In each iteration i, we construct a sample set D(i)

sample ∈ RN×` by randomly
selecting exactly one segment (out of k) for each of the N conditions. This sample is then flattened
into a 1D vector V (i)

sample ∈ RN`. This procedure is applied to STABLE, Diffusion-TS, AEC-GAN,
and KoVAE.

Stylized Facts Validation. We analyze three key stylized facts: kurtosis, skewness, and volatility
clustering. The results are visualized in Figure 13, Figure 14, and Figure 15, respectively. The
validation for each statistic is performed as follows:

• Kurtosis: We test whether the single kurtosis value calculated from the flattened realized
data VD ∈ RN` falls within the 95% confidence interval of the distribution formed by
the M kurtosis values, where each kurtosis is calculated from a corresponding flattened
bootstrap sample V (i)

sample ∈ RN`.
• Skewness: We test whether the single skewness value calculated from the flattened real-

ized data VD falls within the 95% confidence interval of the distribution formed by the M
skewness values calculated from each V (i)

sample.

• Volatility Clustering: We measure the lag-1 autocorrelation of absolute returns (ACF(1))
for each `-length segment. We test whether the mean ACF(1) calculated across all N
segments in the realized data set D ∈ RN×` falls within the 95% confidence interval of
the distribution formed by the M mean ACF(1) values, where each mean acfi is calculated
from the N segments within a bootstrap sample set D(i)

sample ∈ RN×`.

Goodness-of-Fit Tests. We use the KS and AD tests to assess the similarity between the generated
and realized distributions from two perspectives: overall shape (KS) and tail behavior (AD). The
results are visualized in Figures 16 and 17.

• Kolmogorov-Smirnov (KS) Test: For each of theM bootstrap samples, we perform a two-
sample KS test between the flattened realized data VD ∈ RN` and the flattened bootstrap
sample V (i)

sample ∈ RN`. We compute the KS statistic based on the maximum discrepancy
between the two empirical CDFs Smirnov (1948). Instead of relying on asymptotic dis-
tributions, we calculate the p-value using a permutation test with B = 200 iterations to
ensure robustness against finite sample sizes and non-normal distributions. We then plot
the ECDF of these M p-values. If the generated samples are statistically indistinguishable
from the realized data, this ECDF plot should be close to the diagonal line (i.e., a uniform
distribution).

• Anderson-Darling (AD) Test: We conduct a similar procedure using the two-sample AD
test. The test statistic is computed as a squared, weighted difference between the ECDFs,
giving higher weight to tail deviations Anderson & Darling (1952). Consistent with the KS
test, the significance levels are determined via a permutation test. We again plot the ECDF
of the M resulting p-values to check for uniformity.

Results. Overall, STABLE exhibits distribution characteristics most similar to realized returns
across all regimes and stock markets, with the exception of KOSPI200 during the COVID-19
regime. KoVAE is confirmed to show high similarity for skewness in the COVID-19 regime. How-
ever, KoVAE consistently overestimates the volatility clustering (ACF(1)) of stock returns across all
regimes. Consequently, its prediction accuracy for realized returns is not high, resulting in invest-
ment performance similar to STABLE in Table 9. Notably, excluding the CSI300 market, the regimes
we select exhibit very high kurtosis (specifically, 20.46 for the S&P500 in the COVID-19 regime).
This indicates that the market regimes during our experimental periods contain high volatility due
to crashes, surges, and political issues, whereas the CSI300 market has relatively limited tail values
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Figure 3: Stylized Fact Validation (COVID-19): Kurtosis. Distribution of kurtosis in the COVID-
19 regime. Note the extreme realized kurtosis in the S&P500 (20.46). STABLE generally provides
robust estimates, though the extreme tails in non-CSI300 markets challenge all models.

Figure 4: Stylized Fact Validation (COVID-19): Skewness. Distribution of skewness in the
COVID-19 regime. KoVAE captures the negative skewness in KOSPI200 well, reflecting the market
crash dynamics.

Figure 5: Stylized Fact Validation (COVID-19): Volatility Clustering (ACF(1)). Realized values
are near zero. STABLE remains consistent, while KoVAE tends to overestimate volatility clustering.

Figure 6: Goodness-of-Fit (COVID-19): KS Test. ECDF of p-values. STABLE demonstrates
superior fit across most markets, with KoVAE showing strength in KOSPI200.
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Figure 7: Goodness-of-Fit (COVID-19): AD Test. ECDF of p-values for the tail-sensitive AD test.
Results deteriorate generally due to extreme kurtosis, but rankings remain consistent with KS tests.

Figure 8: Stylized Fact Validation (ZIRP): Kurtosis. Distribution of kurtosis in the ZIRP regime.
STABLE successfully captures the kurtosis within confidence intervals in most markets.

Figure 9: Stylized Fact Validation (ZIRP): Skewness. Positive skewness is observed due to the
market rally. STABLE and others (except KoVAE) capture this feature well.

Figure 10: Stylized Fact Validation (ZIRP): Volatility Clustering (ACF(1)). STABLE provides
accurate estimates near zero, whereas competitors show significant deviations.
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Figure 11: Goodness-of-Fit (ZIRP): KS Test. STABLE shows the best fit, aligning closely with the
uniform distribution line across all markets.

Figure 12: Goodness-of-Fit (ZIRP): AD Test. Similar to KS results, STABLE outperforms com-
petitors, benefiting from accurate kurtosis estimation.

Figure 13: Stylized Fact Validation (Recent): Kurtosis. Distribution of kurtosis in the recent
regime. The black line is the realized value. All models systematically underestimate the S&P500
kurtosis (10.83). STABLE (blue) provides the closest estimate in CSI300 and KOSPI200, while
KoVAE (orange) is closest in EUROSTOXX.

Figure 14: Stylized Fact Validation (Recent): Skewness. Distribution of skewness in the recent
regime. STABLE (blue) provides the closest estimate in EUROSTOXX and KOSPI200. Diffusion-
TS (green) is closest in S&P500, and KoVAE (orange) is closest in CSI300.
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Figure 15: Stylized Fact Validation (Recent): Volatility Clustering (ACF(1)). Distribution of
the mean ACF(1) in the recent regime. Realized values are near zero. STABLE (blue) provides the
closest estimate in all markets. KoVAE (orange) consistently fails, predicting extreme outliers in
three markets.

Figure 16: Goodness-of-Fit (Recent): KS Test. ECDF of p-values. The STABLE curve (blue)
is closest to the ideal uniform line (black dash) in all markets, aligning with its top ASR rank in
Table 11.

Figure 17: Goodness-of-Fit (Recent): AD Test. ECDF of p-values for the tail-sensitive AD test.
STABLE (blue) again provides the best fit in all four markets. The rankings are consistent with the
KS test, but the separation between competitors is wider, reflecting the large Kurtosis estimation
errors shown in Figure 13.
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likely due to price fluctuation regulations. Additionally, volatility clustering based on ACF(1) is
confirmed to be nearly zero across all regimes.

The stylized facts validation results are as follows.

COVID-19 (Figures 3–5): STABLE demonstrates the most homogeneous stylized facts across most
markets. The realized kurtosis in the S&P500 is extremely high (20.46) (Figure 3), which challenges
all models. However, STABLE (7.74) provides a distribution closer to the realized value compared
to KoVAE (4.30). In KOSPI200, consistent with the results in Table 9, KoVAE is confirmed to
generate the return distribution most similar to reality. In particular, KoVAE’s generated skewness
(-1.18) (Figure 4) closely matches the realized value (-0.80), accurately capturing the negative skew-
ness during the crash period, whereas STABLE (-0.13) underestimates this asymmetry. Regarding
volatility clustering (Figure 5), the realized values are near zero across all markets (e.g., S&P500
0.04), but KoVAE predicts extreme outliers (e.g., S&P500 0.63, CSI300 0.86), showing significant
deviation from reality.

ZIRP (Figures 8–10): STABLE shows the best stylized facts across all markets. The realized kurtosis
in the S&P500 is 9.00 (Figure 8), and STABLE (8.21) successfully captures this within its confidence
interval, whereas Diffusion-TS (0.36) significantly underestimates it. A unique characteristic of this
regime is the positive skewness observed due to the market rally (e.g., KOSPI200 0.92, CSI300
0.25). Notably, all models except KoVAE include this feature within their confidence intervals. For
instance, in KOSPI200 (Figure 9), STABLE (0.27) and Diffusion-TS (0.40) show positive skewness,
while KoVAE predicts an excessive value (1.59). In terms of ACF(1) (Figure 10), KoVAE again pre-
dicts unrealistic values (e.g., CSI300 0.94), whereas STABLE (0.10) provides a much closer estimate
to the realized value (-0.04).

Recent (Figures 13–15): The realized kurtosis is high, confirming fat tails. For the S&P500, the
realized value (10.83) is an outlier that all models systematically underestimate, although STABLE’s
distribution is centered closest (7.27) to this value (Figure 13). The realized skewness is market-
dependent. STABLE provides the closest estimate in EUROSTOXX and KOSPI200 (Figure 14). For
volatility clustering, STABLE consistently centers its distribution very close to the realized value,
whereas KoVAE predicts extreme outliers in three markets (Figure 15).

The goodness-of-fit test results are as follows.

COVID-19 (Figures 6–7): STABLE shows the best fit in most markets, while KoVAE shows strength
in KOSPI200. However, due to the excessive realized kurtosis (e.g., S&P500 20.46, EUROSTOXX
22.02), all models failed to include the realized value within their confidence intervals. Conse-
quently, the AD test results, which are sensitive to tail distributions, are commonly deteriorated
compared to the KS test results across all models.

ZIRP (Figures 11–12): STABLE exhibits the most superior goodness-of-fit results. Unlike other
regimes, the accurate capturing of tail distributions (e.g., S&P500 Kurtosis 9.00 vs STABLE 8.21)
results in the AD test results appearing highly similar to the KS test results, confirming that STABLE
accurately models both the body and tails of the distribution.

Recent (Figures 16–17): The ECDF curve of the KS test p-values for STABLE is unambiguously the
closest to the ideal uniform distribution line across all datasets. Figure 17 confirms these findings
with the AD test. However, the performance differences between models are amplified, reflecting
the Kurtosis estimation performance. For instance, in S&P500 and KOSPI200, the models with the
worst Kurtosis estimation (Diffusion-TS and KoVAE, respectively) show a visibly larger deviation
from the uniform line in the AD test compared to the KS test.

A.7 ABLATION STUDY

STABLE is organized into a feature-engineering module and three core modules. The in-
puts are enriched by the Kalman-filtered stock embedding (KFE), and the core pipeline com-
prises the Conditional Diffusion Generator (CDG), the Multi-Level Guidance (MLG), and the
Black–Litterman–based Mean–Variance Optimizer (BL–MVO). To quantify each component’s con-
tribution, we remove or modify one module at a time while keeping all other settings identical to
those of Section 4.2. We do not include a variant that removes CDG because allocation requires
diffusion-derived views. Accordingly, the ablation variants are as follows.
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Figure 18: Ablation study of STABLE on ASR. Across all regions the BL–MVO module contributes
most to risk adjusted return.
Table 12: Selected hyperparameters by dataset. Dataset-level ASR grid-search selections for all
hyperparameters defined in Section 4.1. Except for the DDIM noise scale η which controls sampling
stochasticity, the same configuration attains the highest ASR across all datasets.

Hyperparameter S&P500 CSI300 EUROSTOXX KOSPI200

Segment length ` 20 20 20 20
Macro & stock embedding dim d 16 16 16 16
# DDIM reverse steps 30 30 30 30
Number of paths k 50 50 50 50
# forward diffusion steps 200 200 200 200
DDIM noise η 0.00 0.00 0.00 0.01
Balancing-gate cap zmax 2 2 2 2
BL prior window length ν 120 120 120 120
`2 weight β 0.001 0.001 0.001 0.001

1. STABLE without KFE. The temporal stock embedding β(s)
τ is set to zero, so that the corporate-

specific feature c(s)τ contains only the last normalized adjusted-close level and daily log returns.

2. STABLE without MLG. The noise decomposition and the learnable gate are disabled by fix-
ing the balancing gate to a constant z(s)τ = 0.5 for all stocks and times. Sampling reduces to
conditional DDIM with the full condition h(s)f,τ without adaptive separation of systematic and
idiosyncratic effects.

3. STABLE without BL–MVO. The BL update is removed and plug-in MVO uses the diffusion
view moments (µview,τ ,Σview,τ ) directly. This is equivalent to skipping posterior blending.

Results. Figure 18 summarizes ASR across the four regional universes. The full STABLE attains
the highest ASR in every market. However, removing a module can sometimes result in performance
below the best competitor. For instance, in KOSPI200, the variants without KFE or BL–MVO show
a lower ASR than AlphaMix (see Table 3). In CSI300, all three ablation variants fall below the ASR
of MOM. The degree to which each module contributes varies by dataset. For example, the KFE’s
influence is larger than MLG’s in the S&P500, but their importance is reversed in CSI300. Despite
this, BL–MVO consistently plays the most critical role; removing it causes the largest drop in ASR
in all markets. This is natural, as the BL–MVO module determines the final portfolio weights by
deciding how much to trust the estimates from the other modules.

A.8 HYPERPARAMETER ANALYSIS

We measure how STABLE’s hyperparameters affect the risk-adjusted return metric ASR. This sensi-
tivity analysis assesses how responsive the method is to hyperparameter choices and informs the
generalization of the selected configuration in practice. In particular, we sweep the number of
guided paths per stock k and the `2 regularization weight β because these two hyperparameters most
strongly affect ASR, while fixing all remaining settings to the dataset-wise choices in Table 12.

We report the dataset-level selections of all tuned hyperparameters in Table 12. The ASR sensitivity
to k and β is visualized in Figure 19. For k, k = 50 is optimal across regions and the ASR curve sat-
urates beyond this point. For β, the best value is β = 0.001 and larger values suppress performance
due to over-regularization.
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Figure 19: ASR sensitivity to the most influential hyperparameters. Top row varies the number
of guided paths k. ASR saturates once k ≥ 50. Bottom row varies the `2 weight β. Values above
0.001 induce excessive regularization and reduce ASR.
Table 13: We report the compute budget by each dataset for one full training run with 200 epochs
using four GPUs (4×RTX 3080). Estimated GPU hours assume full utilization. Latency (rebalance)
represents the end-to-end per-rebalance inference time on the full universe (55 assets for US/China,
37 for Europe, 44 for South Korea). Latency (asset) denotes the corresponding per-asset time.

Dataset Wall time Est. GPU hours Latency (rebalance) Latency (asset)

S&P500 (US) 2h 01m 13s 8.08 31.21 s 568 ms
CSI300 (China) 1h 59m 42s 7.98 29.64 s 539 ms
EUROSTOXX (Europe) 1h 21m 05s 5.41 21.37 s 578 ms
KOSPI200 (South Korea) 1h 35m 28s 6.36 25.84 s 587 ms

A.9 COMPUTATIONAL TRANSPARENCY AND REPRODUCIBILITY

For computational transparency and reproducible results, we report training and inference latencies
in Table 13, and the detailed hardware and software environment in Table 14. We document the
compute budget and environment to support reproducibility and fair comparison. We report wall-
clock time, estimated GPU hours, and per–rebalance as well as per-asset inference time by dataset,
and we disclose the hardware and software stack used for all runs.
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Table 14: Hardware and software environment.
Item Specification

GPUs 4× NVIDIA RTX 3080 (10 GiB each)
CPU 2× Intel Xeon Silver 4214 @ 2.20 GHz (12 cores/socket, 24 cores, 48

threads total)
RAM 503 GiB
Storage 33 TiB root volume (PERC H730P RAID)
OS Ubuntu 20.04.5 LTS, Linux kernel 5.4.0-216-generic
Driver and CUDA NVIDIA driver 535.183.01, CUDA runtime 12.2; CUDA Toolkit 11.6 (nvcc

11.6.124)
Deep learning framework PyTorch 1.13.1 (cu116, cuDNN 8.3.2); torchvision 0.14.1;

torchaudio 0.13.1
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