
000 STABLE: SHIFT-TOLERANT ALLOCATION VIA 001 002 BLACK-LITTERMAN USING CONDITIONAL DIFFU- 003 SION ESTIMATES 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

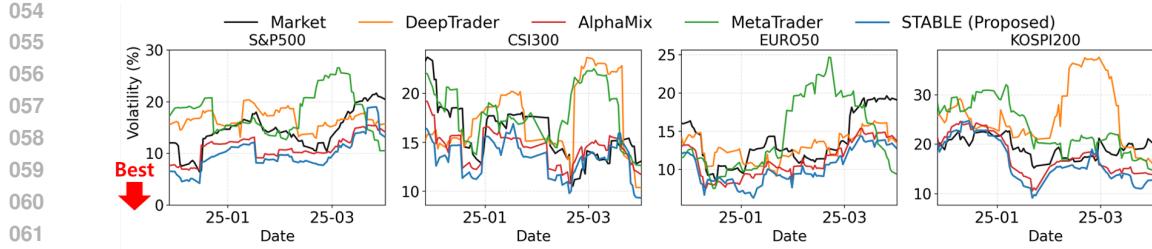
ABSTRACT

013 In dynamic financial market characterized by shifting regimes, how can we make
014 effective investment decisions under the changing 1) market regimes and 2) their
015 impact? Among many research fields in financial AI, portfolio allocation stands
016 out as one of the most practically significant areas. Consequently, numerous re-
017 searchers and financial institutions continually seek approaches that improve the
018 risk–reward trade-off and strive to apply them in real-world investment scenarios.
019 However, achieving robust risk-adjusted performance is extremely challenging,
020 because each asset’s return and volatility fluctuate according to the shifting mar-
021 ket regime. In response, modern portfolio theory (MPT) addresses this issue by
022 solving for asset weights that maximize a risk–reward objective, using estimates
023 of the return mean and covariance from historical returns. Reinforcement learning
024 (RL) frameworks have been introduced to directly decide portfolio allocations by
025 optimizing risk-adjusted objectives using asset prices and macroeconomic indices.
026 In this work, we propose STABLE (Shift-Tolerant Allocation via Black–Litterman
027 Using Conditional Diffusion Estimates), which combines a diffusion-based gener-
028 ative model that captures regime shifts with an estimation-based portfolio alloca-
029 tion module that maximizes expected risk-adjusted return. STABLE takes macroe-
030 economic context and asset-specific signals as inputs and generates per-stock return
031 trajectories that reflect the prevailing macro regime while preserving firm-specific
032 dynamics. This yields regime-aware predictive return distributions at the single-
033 stock level together with a coherent covariance structure, which are then incor-
034 porated as investor views within a Black–Litterman allocation module to obtain
035 risk-diversified portfolio weights. Empirically, STABLE delivers superior portfolio
036 outcomes, achieving up to 122.9% higher Sharpe ratios with reduced drawdowns
037 across major equity markets. It also attains state-of-the-art time-series estimation,
038 lowering MSE by up to 15.7% compared with generative baselines.

1 INTRODUCTION

039
040 *Given historical macroeconomic data and stock data, how can we make effective investment deci-
041 sions under changing market regimes?* Because portfolio allocation directly influences investment
042 performance, it is essential not only to aim for high profitability but also to control volatility and
043 drawdowns for practical deployment (Wang et al., 2019; Sun et al., 2022; Niu et al., 2022; Jeon
044 et al., 2024).

045 However, to perform robust portfolio optimization under shifting market regimes, we must over-
046 come three key challenges. First, stocks are high-risk assets with substantial exposure to *global*
047 *macro conditions*, thus failing to jointly model these macro drivers with *firm-specific factors* under-
048 mines predictive accuracy for price dynamics. Second, even when both global factors and local
049 factors, it is difficult to know *how strongly* each factor influences each stock, and the influence varies
050 across assets and over time. Third, individual assets in a portfolio are often *correlated*, so failing
051 to diversify risk when determining weights can cause severe drawdowns. There have been existing
052 works relying on portfolio optimization to maximize risk-adjusted returns (Pun et al., 2020; Sun
053 et al., 2024; Ma et al., 2022), but they depend too much on past asset returns and lack predictive
power for future returns, which causes severe performance drops under regime shifts. Others adopt



054
055
056
057
058
059
060
061
062
063
064
065
066
067
Figure 1: Annualized portfolio volatility across regions. We measure the annualized portfolio
068 volatility in four real-world stock markets (United States, China, Europe, and South Korea). With
069 estimation-driven Black–Litterman optimization, STABLE achieves effective risk diversification and
070 yields the lowest realized volatility across all regions and periods, delivering robust portfolio man-
071 agement.

072 deep reinforcement learning to derive regime-specific strategies (Ye et al., 2020; Hu & Lin, 2019;
073 Gao et al., 2020), but they tend to select regimes primarily from macro signals, overfit the prevailing
074 macro state, and fail to capture stock-level idiosyncratic movements.

075 To overcome the limitations of both classical portfolio theory and deep policy network-based mod-
076 els, we propose STABLE (Shift-Tolerant Allocation via Black–Litterman Using Conditional Dif-
077 fusion Estimates) that robustly allocates portfolio weights with maximized expected risk-adjusted
078 return. First, STABLE uses a conditional diffusion mechanism to accurately sample per-stock return
079 paths at each step while jointly conditioning on the current macro-regime state and stock-specific
080 features. Second, within the diffusion process, STABLE effectively decomposes per-step noise for
081 each asset into a macro impact and a micro (firm-specific) impact, yielding strong reconstruction
082 performance. Third, STABLE injects the resulting forecasted views into a Black–Litterman allo-
083 cation module so that the final portfolio weights improve both performance and stability. Fig. 1 shows
084 the cross-region robustness comparison.

085 Our contributions are summarized as follows:

- 086 • **Method.** We present STABLE (Shift-Tolerant Allocation via Black–Litterman Using Con-
087 ditional Diffusion Estimates), a portfolio allocation method that maximizes expected risk-
088 adjusted return. STABLE couples a conditional diffusion module with Black–Litterman
089 portfolio construction to produce regime-aware predictive distributions for portfolio opti-
090 mization. STABLE addresses central shortcomings of conventional mean–variance (MVO)
091 approaches and deep RL methods.
- 092 • **Exclusive experiments.** We evaluate STABLE on four regional stock markets (United
093 States, China, Europe, and South Korea) with two tasks: portfolio allocation and
094 time-series estimation. STABLE achieves state-of-the-art performance in both tasks. In the
095 portfolio task, STABLE improves the Sharpe ratio by up to 122.9% over the best competitor,
096 demonstrating superior risk-adjusted return. In the estimation task, STABLE improves the
097 MSE metric by up to 15.7% over the best competitor, indicating accurate stock time-series
098 prediction.
- 099 • **Case study.** Visual inspection shows that the temporal stock embeddings faithfully re-
100 flect real-world sector relationships and allow stocks with similar characteristics at each
101 time step to reference one another. This enables STABLE to condition on intrinsic stock
102 properties, which in turn improves time-series estimation accuracy.

103 The code and datasets are publicly available at <https://github.com/iclr26stable/iclr26stable>. Symbols are summarized in Appendix A.1.

104 2 RELATED WORK

105 We categorize existing portfolio allocation methods based on how they determine asset weights.
106 Broadly, they can be divided into modern portfolio theory (MPT) methods and deep reinforcement
107 learning approaches.

108 **Modern portfolio theory.** Classical MPT seeks closed-form solutions for weight allocation by solving
 109 a mean-variance optimization (MVO) problem (Markowitz, 1952b). Representative examples
 110 include Black-Litterman and robust portfolio optimization. The Black-Litterman model combines
 111 investor views with Markowitz-style portfolio optimization to determine allocation (Black & Litter-
 112 man, 1990), while robust portfolio approaches define an ambiguity set to account for uncertainty in
 113 asset returns and then allocate weights based on worst-case scenarios (Goldfarb & Iyengar, 2003).
 114 Although these methods strengthen traditional portfolio optimization by *plugging in* estimates of
 115 the mean and covariance of stocks, they are effective only when those estimates are accurate at each
 116 rebalancing time. However, because their estimation is typically restricted to historical windows,
 117 any post-allocation regime shift that drives the realized distribution depart from the past severely
 118 degrades both profitability and stability. Instead, STABLE leverages a generative sampling model
 119 conditioned on both macro-level and micro-level signals to improve estimation accuracy. The gener-
 120 ative sampling process yields per-stock predictive distributions from which the mean and covariance
 121 are computed, enabling more effective plug-in to the allocation stage (see Section 3.5).
 122

123 **Deep reinforcement learning.** Another line of work applies deep reinforcement learning to port-
 124 folio allocation. Under this paradigm, a policy network learns to output actions (i.e., portfolio
 125 weights) to maximize cumulative rewards such as risk-adjusted return metrics. Early approaches rely
 126 on a neural network that directly proposes allocations. Subsequent research incorporates market-
 127 regime considerations, aiming to adapt allocations more flexibly. For instance, Alphastock (Wang
 128 et al., 2019) introduces asset-axis attention to capture correlations among multiple assets, improving
 129 weight computation. Similarly, MetaTrader (Niu et al., 2022) proposes a strategy that selects from
 130 typical financial domain baselines (e.g., constant rebalanced portfolio, Markowitz portfolio) under
 131 different market regimes. AlphaMix (Sun et al., 2023) employs a routing mechanism that switches
 132 between multiple neural network models depending on market conditions, thus incorporating regime
 133 awareness into the policy. Despite using regime-aware policy networks, these approaches overlook
 134 the aspect that the degree to which a given macro state influences returns is stock-specific. Conse-
 135 quently, their portfolio allocation overfits the macro state and fails to capture stock-level idiosyn-
 136 cratic movements. In contrast, STABLE employs a *learnable guidance scale* within classifier-free
 137 guidance to decompose per-step noise into a macro impact and a firm-specific impact, enabling fine-
 138 grained per-stock distribution estimation and downstream portfolio allocation (see Section 3.3 and
 139 Section 3.4).
 140

141 3 PROPOSED METHOD

142 3.1 PROBLEM DEFINITION

143 **Given** a macro condition $m_\tau \in \mathbb{R}^{d_m}$, per-stock conditions $c_{\tau}^{(s)} \in \mathbb{R}^{d_c}$, a prior window length ν , a
 144 prior mean $\mu_{\text{prior},\tau} \in \mathbb{R}^S$ and prior covariance $\Sigma_{\text{prior},\tau} \in \mathbb{R}^{S \times S}$ computed from the most recent ν
 145 business days, and an investment horizon ℓ ,

146 **Allocate**

$$147 w_\tau^* \in \arg \max_{w_\tau} \frac{\mathbb{E}[w_\tau^\top R_{\tau,\tau+\ell}]}{\sqrt{\text{Var}(w_\tau^\top R_{\tau,\tau+\ell})}},$$

148 where $R_{\tau,\tau+\ell} \in \mathbb{R}^S$ denotes the realized adjusted-close returns over the next ℓ business days for the
 149 S stocks,

150 **Such that** the budget constraint holds: $\mathbf{1}^\top w_\tau = 1$.
 151

152 3.2 OVERVIEW

153 To solve the portfolio allocation problem defined in Section 3.1, our proposed STABLE executes
 154 three stages as summarized in Figure 2. First, the **Conditional Diffusion Generator (CDG)** generates
 155 per-stock return segments conditioned on macro context and firm-specific properties at an
 156 individual stock level. Second, **Multi-Level Guidance (MLG)** constructs the estimated noise by
 157 combining the shared impact with the idiosyncratic component, modulated by a learnable gate,
 158 yielding regime-aware per-stock distributions. Third, a **Black-Litterman-based Mean-Variance
 159 Optimizer (BL-MVO)** consumes the diffusion-induced moments as views and outputs allocation
 160 161

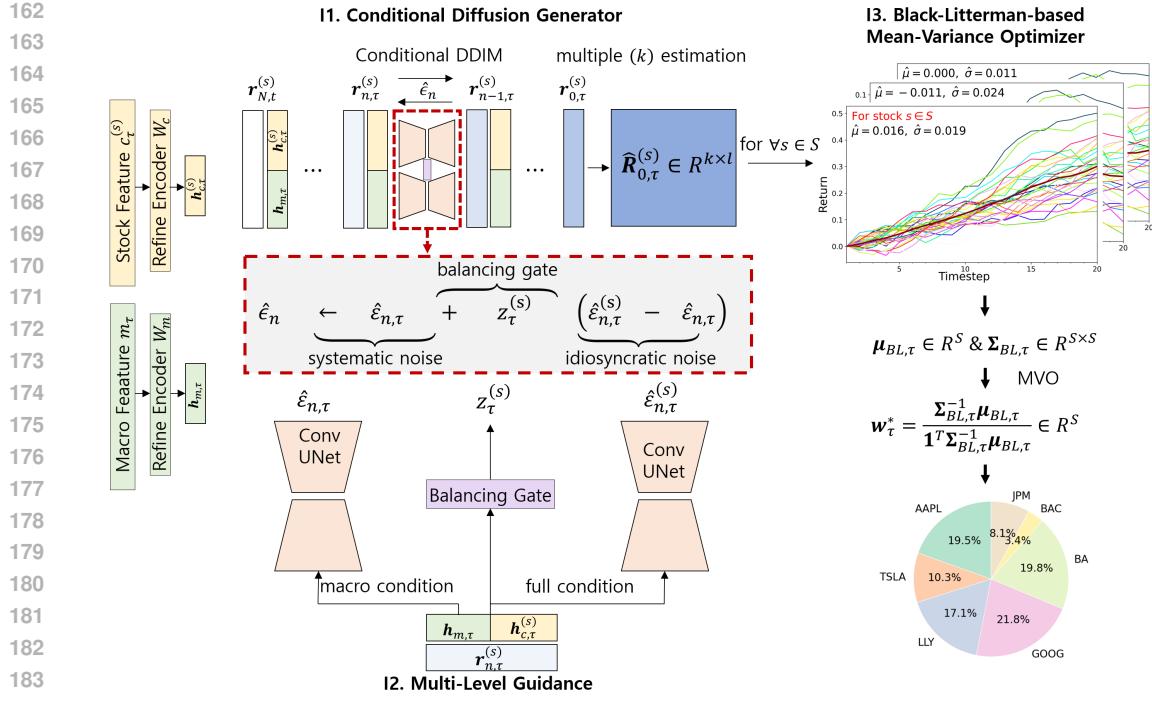


Figure 2: Overview of STABLE. (I1) CDG conditions on macro and firm signals to generate per-stock return segments. (I2) MLG decomposes noise into shared (systematic) and idiosyncratic parts via a learnable gate. (I3) BL-MVO fuses diffusion views with a rolling prior to produce regime-aware portfolio weights.

weights that balance diversification and estimation. The main challenges and our ideas are as follows.

- C1 **Regime shift.** How can we accurately estimate future time series in markets whose regimes keep changing?
- C2 **Multi-level factors.** How can we separate, at each time step for each stock, the influence of macro-level factors from stock-level factors?
- C3 **Uncertainty shifts.** How can we maintain robust portfolio performance when the certainty of per-step estimates differs over time?

We address the above challenges with the following ideas.

- I1 **Conditional diffusion generator (CDG, Sec. 3.3).** We synthesize regime-aware return paths by conditioning diffusion on macro-regime features and stock-specific features.
- I2 **Multi-level guidance (MLG, Sec. 3.4).** We adapt modified classifier-free guidance to financial domain to estimate a shared systematic noise and a stock-specific idiosyncratic noise with a learnable gate that adjusts their relative importance over time.
- I3 **Black-Litterman-based mean-variance optimizer (BL-MVO, Sec. 3.5).** We combine diffusion-based views with a certainty weighted Black-Litterman update, which yields per-time, per-stock posterior estimates and enables rational, robust allocation.

3.3 CONDITIONAL DIFFUSION GENERATOR (CDG)

Regime-aware sampling. STABLE estimates return segments with a Denoising Diffusion Implicit Model (DDIM)-based conditional diffusion sampler (see A.2 in Appendix for details of DDIM). Under the standard random-walk view of log returns, price noise is modeled as Gaussian (Fama, 1995). Diffusion models likewise inject Gaussian perturbations in the forward process and learn to remove them in reverse, so the noise assumptions are aligned with our conditional setting. This alignment makes conditional DDIM a natural mechanism to generate stock-return paths conditioned on market and firm states.

216 Table 1: Macro indices and description. After ν -day rolling normalization and log differencing, raw
 217 and processed values compose $m_\tau \in \mathbb{R}^{d_m}$.

218 Index	219 Description
220 Market index	Region-level equity baseline (overall market condition).
221 Dollar index	Currency strength affecting equities via FX channels.
222 U.S. term spread (10y–3m)	Bond-market condition and liquidity measure.
223 VIX index	Forward-looking equity volatility (risk expectation).
224 Gold index	Risk aversion / inflation measure.

225
 226 **Inputs and refinement.** At rebalancing time τ , CDG conditions on two inputs that summarize
 227 market context and firm identity. The *macro feature* $m_\tau \in \mathbb{R}^{d_m}$ encodes the global regime at time τ
 228 and is refined by a linear layer $W_m \in \mathbb{R}^{d_m \times d}$ into a refined macro condition $h_{m,\tau} = m_\tau^T W_m \in \mathbb{R}^{1 \times d}$.

229 The macro features are described in Table 1. The *corporate-specific feature* $c_\tau^{(s)} \in \mathbb{R}^{d_c}$ for stock s at
 230 time τ concatenates (i) the temporal stock embedding $\beta_\tau^{(s)}$ at τ (Das & Ghoshal, 2010), and (ii) the
 231 last normalized adjusted-close level and daily log returns for s . A linear layer $W_c \in \mathbb{R}^{d_c \times d}$ yields
 232 a refined stock-level condition $h_{c,\tau}^{(s)} = c_\tau^{(s)T} W_c \in \mathbb{R}^{1 \times d}$, and the refined full condition becomes
 233 $h_{f,\tau}^{(s)} = [h_{m,\tau} \parallel h_{c,\tau}^{(s)}] \in \mathbb{R}^{1 \times 2d}$. Given $h_{f,\tau}^{(s)}$, CDG produces a denoised length- ℓ return segment
 234 $\hat{r}_{0,\tau}^{(s)} \in \mathbb{R}^\ell$ for stock s at time τ .

235
 236 **Temporal stock embedding.** We construct part of the stock-specific feature $c_\tau^{(s)}$ using a temporal
 237 stock embedding vector $\beta_\tau^{(s)} \in \mathbb{R}^{d_m}$ at time τ . Prior approaches often use static metadata such as
 238 sector labels or neural embeddings from price series (Dolphin et al., 2022), but these representations
 239 are either fixed over time or fail to reflect macroeconomic regimes.

240 To address this, we apply Kalman filtering to estimate a time-varying coefficient $\beta_\tau^{(s)}$ with respect
 241 to the macro input m_τ . Given the log return $y_\tau^{(s)}$ of stock s as the dependent variable and the macro
 242 vector m_τ as the independent variable, we estimate a contemporaneous macro sensitivity vector
 243 $\beta_\tau^{(s)}$ via recursive filtering. This posterior estimate $\beta_\tau^{(s)}$ reflects the stock’s embedding at time τ ,
 244 incorporating all observations up to that point. It serves as a temporal and robust representation that
 245 captures regime-aware macro sensitivity of each stock.

246
 247 **Conditioned DDIM synthesis.** We first define the base conditioned denoiser. The multi-level
 248 conditioning and its decomposition are detailed in Section 3.4, and the DDIM notation is defined
 249 in Section A.1. Let $r_{n,\tau}^{(s)} \in \mathbb{R}^\ell$ be the reverse-chain state for stock s at time τ and DDIM step n
 250 ($n = N, \dots, 1, 0$). The denoiser predicts noise $\hat{\epsilon}$ with $r_{n,\tau}^{(s)}$ and $h_{f,\tau}^{(s)}$, and DDIM updates

$$253 \quad \hat{r}_{0,\tau}^{(s)} = \frac{r_{n,\tau}^{(s)} - \sqrt{1 - \bar{\alpha}_n} \hat{\epsilon}}{\sqrt{\bar{\alpha}_n}}, \quad r_{n-1,\tau}^{(s)} = \sqrt{\bar{\alpha}_{n-1}} \hat{r}_{0,\tau}^{(s)} + \sqrt{1 - \bar{\alpha}_{n-1}} \hat{\epsilon}, \quad (\eta = 0)$$

254
 255 **Training objective.** STABLE minimizes the diffusion mean-squared error (MSE) across all stocks
 256 $s \in \mathcal{S}$, rebalancing times $\tau \in \mathcal{T}$, and DDIM steps $n \in \mathcal{N}$. To mitigate overfitting, we add an ℓ_2 penalty
 257 on the parameters with hyper parameter β .

$$258 \quad \min_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{s,\tau,n,\epsilon} \|\epsilon - \hat{\epsilon}\|_2^2 + \beta \|\theta\|_2^2. \quad (1)$$

259
 260 Since $\epsilon \sim \mathcal{N}(0, I)$ and Eq. (1) minimizes $\mathbb{E} \|\epsilon - \hat{\epsilon}\|_2^2$, asymptotically we have $\hat{\epsilon} \sim \mathcal{N}(0, I)$.

261 3.4 MULTI-LEVEL GUIDANCE (MLG)

262
 263 **Noise decomposition and gate.** We use multi-level guidance that decomposes, for each rebalanc-
 264 ing time τ and stock s , the guided noise into a shared (macroeconomic) impact and an unshared
 265 (firm-specific) impact with a stock-specific balancing gate. This is motivated by two empirical prop-
 266 erties of the financial market. First, macro impact varies over time (Mezei & Sarlin, 2014): during

270 crises macro variables dominate and cross-stock co-movements are pronounced, whereas in calm pe-
 271 riods firm-specific signals carry more weight. Second, sensitivities to macro variables differ across
 272 stocks (Shiller, 1995). By explicitly encoding this multi-level context in the denoising step, the noise
 273 estimation becomes more accurate for both regime-driven and idiosyncratic dynamics.

274 For stock s at time τ at DDIM step n , define

$$275 \quad \hat{\epsilon} := \epsilon_\theta(r_{n,\tau}^{(s)}, n, h_{f,\tau}^{(s)}) = \underbrace{\hat{\varepsilon}_{n,\tau}}_{\substack{\text{shared (systematic)}}} + \underbrace{\overbrace{z_\tau^{(s)}}^{\text{balancing gate}}}_{\substack{\text{firm-specific (unsystematic)}}} \underbrace{\left(\hat{\varepsilon}_{n,\tau}^{(s)} - \hat{\varepsilon}_{n,\tau}\right)}_{\substack{\text{firm-specific (unsystematic)}}}.$$

$$280 \quad \hat{\varepsilon}_{n,\tau} = u_\phi(r_{n,\tau}^{(s)}, n, h_{m,\tau}), \quad \hat{\varepsilon}_{n,\tau}^{(s)} = u_\phi(r_{n,\tau}^{(s)}, n, h_{f,\tau}^{(s)}), \quad z_\tau^{(s)} = g_\pi(h_{f,\tau}^{(s)}) \in [0, z_{\max}].$$

$$281$$

282 All labeled terms in the equation refer to three well-defined elements: (i) the shared noise term $\hat{\varepsilon}_{n,\tau}$,
 283 (ii) the firm-specific residual $\hat{\varepsilon}_{n,\tau}^{(s)} - \hat{\varepsilon}_{n,\tau}$, and (iii) the scalar gate $z_\tau^{(s)}$. The two noise terms are
 284 evaluations of the convolutional UNet denoiser u_ϕ at DDIM step n with inputs $(r_{n,\tau}^{(s)}, n, h)$. We
 285 use $h_{m,\tau}$ to obtain the shared term $\hat{\varepsilon}_{n,\tau}$ and $h_{f,\tau}^{(s)}$ to obtain the full-condition term $\hat{\varepsilon}_{n,\tau}^{(s)}$. The gate is
 286 produced by a linear map g_π , which adjusts, at the stock level, the balance between macro impact
 287 and micro dynamics. Here u_ϕ takes three inputs: the recovered state $r_{n,\tau}^{(s)}$, the step index n , and the
 288 condition vector $h \in \{h_{m,\tau}, h_{f,\tau}^{(s)}\}$.

290 **Training objective and optimization.** We train all parameters jointly to minimize the diffusion
 291 MSE. The optimization drives the gate $z_\tau^{(s)}$ downward when $h_{f,\tau}^{(s)}$ indicates macro-level synchroniza-
 292 tion, and upward in decoupling regimes to allocate more weight to the firm-specific residual. We
 293 replace $\hat{\epsilon}$ with $\epsilon_\theta(r_{n,\tau}^{(s)}, n, h_{f,\tau}^{(s)})$, and rewrite the diffusion objective in Eq. (1) as

$$294 \quad \mathcal{L}(\theta) = \mathbb{E} \left\| \epsilon - \epsilon_\theta(r_{n,\tau}^{(s)}, n, h_{f,\tau}^{(s)}) \right\|_2^2 + \beta \|\theta\|_2^2, \quad \theta = \{\phi, \pi, W_m, W_c\}. \quad (2)$$

$$295$$

298 3.5 BLACK–LITTERMAN–BASED MEAN–VARIANCE OPTIMIZER (BL–MVO)

300 **Black–Litterman using generative sampler.** STABLE performs portfolio allocation by feeding its
 301 stock-wise time-series estimates into the Black–Litterman (BL) algorithm to obtain an updated pos-
 302 terior and then solving mean–variance optimization (MVO) (see A.3 for details of BL with MVO).

303 **Views from CDG+MLG.** For each stock s at time τ , we generate k guided paths and stack them
 304 as $\hat{R}_{0,\tau}^{(s)} \in \mathbb{R}^{k \times \ell}$, whose i -th row is the denoised sequence $\hat{r}_0^{(s,i)}$. From these per-asset samples,
 305 we form view moments $\mu_{\text{view},\tau} \in \mathbb{R}^S$ and $\Sigma_{\text{view},\tau} \in \mathbb{R}^{S \times S}$, and fuse them with the rolling prior
 306 ($\mu_{\text{prior},\tau}, \Sigma_{\text{prior},\tau}$) using prior certainty $\Phi_\tau = \Sigma_{\text{prior},\tau}^{-1}$ and view certainty $\Omega_\tau = \Sigma_{\text{view},\tau}^{-1}$.

307 **Estimated posterior and allocation.** The BL posterior mean is obtained by minimizing the neg-
 308 ative log-posterior in Eq. (3) (first-order condition), and the posterior covariance follows from the
 309 canonical Gaussian form in Eq. (5):

$$310 \quad \mu_{\text{BL},\tau} = (\Phi_\tau + \Omega_\tau)^{-1} (\Phi_\tau \mu_{\text{prior},\tau} + \Omega_\tau \mu_{\text{view},\tau}), \quad \Sigma_{\text{BL},\tau} = (\Phi_\tau + \Omega_\tau)^{-1}.$$

311 Given $(\mu_{\text{BL},\tau}, \Sigma_{\text{BL},\tau})$, the Sharpe-maximizing weight solves Eq. (6) and has the closed form

$$312 \quad w_\tau^* = \frac{\Sigma_{\text{BL},\tau}^{-1} \mu_{\text{BL},\tau}}{\mathbf{1}^\top \Sigma_{\text{BL},\tau}^{-1} \mu_{\text{BL},\tau}},$$

313 which enforces the budget constraint $\mathbf{1}^\top w_\tau = 1$ by normalization.

314 4 EXPERIMENT RESULTS

315 We perform experiments to answer the following research questions.

316 **Q1 Investment performance and robustness.** How does STABLE compare with
 317 state-of-the-art portfolio-allocation baselines in investment performance and robustness?

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Table 2: Summary of datasets.

Dataset	Region	#Stocks	Train from	Train cut	Test to
S&P500	United States	55	2013-01	2024-09	2025-03
CSI300	China	55	2013-01	2024-09	2025-03
EUROSTOXX	Europe	37	2013-01	2024-09	2025-03
KOSPI200	South Korea	44	2013-01	2024-09	2025-03

Code and data: <https://github.com/iclr26stable/iclr26stable>

Q2 **Estimation accuracy.** Is STABLE’s DDIM-conditioned future time-series estimation superior to competing generative models?

Q3 **Stock embedding quality.** How effectively does the Kalman- β -based stock embedding model each stock’s latent state?

4.1 EXPERIMENTAL SETTINGS

All experiments run on a workstation with 4 RTX 3080 GPUs.

Datasets. To evaluate STABLE fairly across both market-wide and sector-level universes, we build four regional datasets with identical splits. Following the Global Industry Classification Standard (GICS) as of 2025-03-31, we select the top five largest stocks in each of the eleven sectors for S&P500 and CSI300, and the top four per sector for EUROSTOXX and KOSPI200. We exclude stocks whose available histories do not span the entire sample window. Table 2 summarizes the universe and the split period.

Competitors. Q1 aims to demonstrate that STABLE achieves both profitability and robustness in investment performance. We compare against a range of classical and learning-based portfolio allocation methods. CRP (Kelly, 1956) allocates equal weights and rebalances to equality at every decision time. MVO (Markowitz, 1952a) solves the mean-variance program that maximizes expected return for a target variance using recent mean and covariance estimates, producing stable allocations under approximately stationary regimes. MOM (Jegadeesh & Titman, 1993) assigns larger weights to recent winners based on a lookback momentum score and rebalances on a schedule, and is suitable when returns tend to continue for the next few months. DeepTrader (Wang et al., 2021) learns to determine portfolio-level long-short balances from macro features using reinforcement learning. MetaTrader (Niu et al., 2022) classifies the market regime based on macro inputs and switches among CRP, MVO, and MOM accordingly. AlphaMix (Sun et al., 2023) routes market state representations to multiple neural allocators and selects the best action based on a soft gating policy.

Q2 aims to demonstrate that STABLE’s conditional generation of future time series is accurate. Accordingly, for portfolio allocation (Section 4.2), we evaluate classical allocators and regime-aware RL allocators. For time-series prediction (Section 4.3), we benchmark representative generative forecasters. Diffusion-TS (Yuan & Qiao, 2024) is a diffusion-based time-series model that reconstructs past data and forecasts future trajectories using a spectral loss. AEC-GAN (Wang et al., 2023) augments a GAN with adversarial error correction over an autoregressive backbone to improve long-horizon accuracy. KoVAE (Naiman et al., 2023) combines a variational autoencoder with Koopman-operator latent dynamics to model linear evolution in the latent space.

Evaluation Metrics. We report metrics for the two experiments. For portfolio allocation experiment, we use ASR, RMDD, and AVol. Annualized Sharpe Ratio (ASR) uses daily test returns with a zero risk-free rate and is annualized. Relative Maximum Drawdown (RMDD) is the maximum peak-to-trough loss divided by the peak over the test horizon. Annualized Volatility (AVol) is the standard deviation of daily returns and is annualized. For the time-series prediction task, we report mean squared error (MSE) and dynamic time warping (DTW). MSE is computed between the predicted and true return sequences. DTW measures the average temporal alignment cost between the predicted path and the ground-truth trajectory. Across both experiments, we use a fixed global seed to ensure reproducibility.

Hyperparameters. We grid-search the original segment length $\ell \in \{5, 10, 20\}$, macro and stock encoder width $\{8, 16, 32\}$, number of reverse DDIM steps $\{20, 30, 50, 80, 100\}$, and the number k

378 Table 3: Portfolio allocation results on sector-diversified multi-region datasets. Best performance
 379 per column in **bold**. RMDD and AVol are expressed in percentage units (%).

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	S&P500 (US)			CSI300 (China)		
	Method	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)
CRP	0.82	8.89	14.44	-0.70	10.96	18.21
MVO	1.18	9.00	21.18	-0.66	13.18	25.93
MOM	0.03	11.87	17.00	-0.47	15.57	28.77
DeepTrader	-0.71	13.40	15.76	-1.18	13.40	18.76
MetaTrader	1.00	10.88	16.82	-1.09	19.40	24.15
AlphaMix	0.35	9.59	13.92	-0.80	9.59	19.11
STABLE (Proposed)	1.85	7.82	13.43	-0.41	8.85	17.17
EUROSTOXX (Europe)						
Method	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)
	CRP	1.31	5.40	12.96	0.76	8.72
MVO	0.48	8.35	16.75	0.45	11.84	29.49
MOM	1.42	5.41	12.71	0.33	13.49	23.34
DeepTrader	-2.44	15.99	12.59	0.77	9.62	23.76
MetaTrader	0.50	9.86	14.63	0.57	10.88	22.28
AlphaMix	1.31	5.75	11.77	1.47	9.96	18.76
STABLE (Proposed)	2.92	3.84	10.88	1.61	8.34	17.82

of generated paths per stock for BL views $\{20, 30, 50\}$. We also investigate the forward noising steps used during training over $\{100, 200, 400\}$ and the DDIM noise scale $\eta \in \{0, 0.01, 0.1, 0.2\}$. The gate cap $z_{\max} \in \{2, 3, 4\}$, the BL prior window length $\nu \in \{60, 120, 250\}$, and the ℓ_2 regularization weight $\beta \in \{0.001, 0.01, 0.1\}$ are tuned per dataset. Baselines follow official implementations or paper-reported settings. [We report the selected hyperparameters for each dataset in Appendix A.8, and provide details on computational transparency and reproducibility in Appendix A.9.](#)

4.2 PORTFOLIO MANAGEMENT PERFORMANCE (Q1)

Table 3 reports ASR, RMDD, and AVol across sector-diversified regional universes. STABLE is ranked first on all three metrics in every region, delivering higher risk-adjusted returns together with lower drawdowns and lower volatility. [We analyze the results for different regimes in Appendix A.4.](#)

Classical strategies (CRP, MVO, MOM) are sensitive to regime shifts. In our test window with frequent drawdowns and rebounds, they exhibit larger RMDD and higher AVol, which lowers ASR relative to a regime-aware approach. MetaTrader, which switches among the classical strategies using macro cues, inherits the same limitations and shows similar patterns.

Among RL baselines, DeepTrader performs the worst. Its macro-only controller struggles during the “new normal” period with a persistent yield-curve inversion, where macro signals alone are not sufficient to determine long–short balance. AlphaMix is the strongest competitor because it routes among policies by market state, yet it does not model time-varying stock-specific properties. In contrast, STABLE conditions on temporal Kalman β embeddings and adapts to stock-level regime changes, which explains the consistent gains in ASR, RMDD, and AVol.

4.3 TIME-SERIES PREDICTION ACCURACY (Q2)

We assess the accuracy of conditional future return sequences predicted by STABLE. At each rebalancing time we generate k trajectories per stock. We report two error metrics aggregated over all stocks and times: MSE of the mean-of- k forecaster and the average DTW distance across the k generated paths. Lower is better for both.

Table 4 summarizes mean squared error (MSE) and dynamic time warping (DTW) across all four markets. STABLE achieves the lowest MSE and DTW in every market, indicating the most accurate conditional estimation of future return segments.

432 Table 4: Time-series prediction on sector-diversified markets. Lower is better. We report MSE and
 433 DTW aggregated over all stocks and rebalancing times. MSE is shown in $\times 10^{-4}$. Normalized DTW
 434 is shown in $\times 10^{-3}$. Best per column in **bold**.

Method	S&P500		CSI300		EUROSTOXX		KOSPI200	
	MSE (↓)	DTW (↓)						
Diffusion-TS	3.90	5.73	5.71	6.78	3.05	5.80	9.41	8.70
AEC-GAN	4.27	6.58	4.57	6.13	3.70	7.40	10.18	9.28
KoVAE	4.58	5.93	5.46	7.28	2.61	5.43	9.83	8.73
STABLE (proposed)	3.51	5.62	3.89	6.09	2.49	4.78	8.15	8.67

441 Table 5: Top-5 most similar stocks (by Euclidean distance) returned by our dynamic embeddings for
 442 four query snapshots. For TSLA on 2024-12-31, the global context most strongly reflects the prices
 443 of NVDA, AVGO, AAPL, MSFT, and GOOGL.

Query	Top 1	Top 2	Top 3	Top 4	Top 5
TSLA @ 2021-06-28	AAPL	AVGO	MA	META	ECL
TSLA @ 2024-12-31	NVDA	AVGO	AAPL	MSFT	GOOGL
BAC @ 2021-06-28	JPM	WELL	WFC	DUK	MCD
BAC @ 2024-12-31	WFC	JPM	ECL	LIN	APD

444 Diffusion-TS is the strongest baseline but remains behind STABLE. It is designed for broad general-
 445 ization and does not modulate the importance of conditions at the individual-stock level. In contrast,
 446 STABLE decomposes guidance into *systematic* noise that captures market-wide regularities and *id-
 447 iosyncratic* noise that captures firm-specific patterns. This dual modeling allows the relative weight
 448 of conditions to vary by stock and time, which improves sequence alignment and reduces prediction
 449 error. Furthermore, we evaluate the covariance estimation performance derived from these return
 450 sequences against non-generative and deep generative models in Appendix A.5. We also present a
 451 stylized facts validation and goodness-of-fit tests on the distributions of returns generated by these
 452 models in Appendix A.6.

453 4.4 STOCK EMBEDDING QUALITY (Q3)

454 To assess embedding quality, we perform a nearest-neighbor analysis on representative U.S. stocks
 455 in our universe. For each query date, we retrieve the most similar embeddings and verify whether the
 456 matches share sector category or display similar price dynamics, as expected when the embedding
 457 faithfully encodes stock identity.

458 Table 5 shows the five closest neighbours from the dynamic embeddings for TSLA (Tesla) and BAC
 459 (Bank of America) at two snapshots (2021 and 2024). In 2021 TSLA is nearest to Big-Tech stocks
 460 such as AAPL and AVGO. By late 2024 its closest neighbours shift to AI-focused firms like NVDA
 461 and MSFT. This shift illustrates how the embeddings track the market’s AI boom. BAC stays close
 462 to JPM and WFC at both times, confirming a stable financial-sector relationship that our method
 463 captures over time.

464 5 CONCLUSION

465 We propose STABLE, a regime-adaptive portfolio framework that unifies three modules. First, the
 466 *Conditional Diffusion Generator (CDG)* uses market regime and stock identity as conditions, and
 467 enables accurate per-stock time-series estimation. Second, the *Multi-Level Guidance (MLG)* esti-
 468 mates, for each stock and time, how strongly macro and micro impacts drive the denoising process
 469 through a learnable gate. Third, the *Black–Litterman–based Mean–Variance Optimizer (BL–MVO)*
 470 incorporates sampling certainty into view formation and produces rational and robust allocations.
 471 On real-world sector-diversified, multi-region stock market datasets, STABLE outperforms competi-
 472 tors portfolio allocation and estimation tasks. For portfolio allocation, Annualized Sharpe Ratio
 473 improves by up to **122.9%**, relative maximum drawdown decreases by up to **1.56%**p, and annual-
 474 ized volatility decreases by up to **7.56%**. For future time-series estimation, STABLE reduces MSE by
 475 up to **15.7%** and DTW by up to **13.8%** against the best competitor. Future works include extending
 476 our method to exploit more rich features including texts for macro and stock features.

486 REFERENCES

487

488 Theodore W Anderson and Donald A Darling. Asymptotic theory of certain "goodness of fit" criteria
489 based on stochastic processes. *The annals of mathematical statistics*, pp. 193–212, 1952.

490 Fischer Black and Robert Litterman. Asset allocation: combining investor views with market equi-
491 librium. *Goldman Sachs Fixed Income Research*, 115(1):7–18, 1990.

492

493 Andrea Bucci. Cholesky–ann models for predicting multivariate realized volatility. *Journal of*
494 *Forecasting*, 39(6):865–876, 2020.

495 Atanu Das and Tapan Kumar Ghoshal. Market risk beta estimation using adaptive kalman filter.
496 *International Journal of Engineering Science and Technology*, 2(6):1923–1934, 2010.

497

498 Rian Dolphin, Barry Smyth, and Ruihai Dong. Stock embeddings: Learning distributed representa-
499 tions for financial assets. *arXiv preprint arXiv:2202.08968*, 2022.

500 Robert Engle. Dynamic conditional correlation: A simple class of multivariate generalized autore-
501 gressive conditional heteroskedasticity models. *Journal of business & economic statistics*, 20(3):
502 339–350, 2002.

503

504 Eugene F Fama. Random walks in stock market prices. *Financial analysts journal*, 51(1):75–80,
505 1995.

506

507 Ziming Gao, Yuan Gao, Yi Hu, Zhengyong Jiang, and Jionglong Su. Application of deep q-network
508 in portfolio management. In *2020 5th IEEE International Conference on Big Data Analytics*
(ICBDA), pp. 268–275. IEEE, 2020.

509

510 Donald Goldfarb and Garud Iyengar. Robust portfolio selection problems. *Mathematics of opera-
511 tions research*, 28(1):1–38, 2003.

512

513 Yuh-Jong Hu and Shang-Jen Lin. Deep reinforcement learning for optimizing finance portfolio
514 management. In *2019 amity international conference on artificial intelligence (AICAI)*, pp. 14–
20. IEEE, 2019.

515

516 Narasimhan Jegadeesh and Sheridan Titman. Returns to buying winners and selling losers: Impli-
517 cations for stock market efficiency. *Journal of Finance*, 48(1):65–91, March 1993. doi: None.
518 URL <https://ideas.repec.org/a/bla/jfinan/v48y1993i1p65-91.html>.

519

520 Jihyeong Jeon, Jiwon Park, Chanhee Park, and U Kang. Frequent: A reinforcement-learning based
521 adaptive portfolio optimization with multi-frequency decomposition. In *Proceedings of the 30th*
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1211–1221, 2024.

522

523 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
524 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural
525 information processing systems*, 30, 2017.

526

527 John L Kelly. A new interpretation of information rate. *the bell system technical journal*, 35(4):
917–926, 1956.

528

529 Xiaoteng Ma, Shuai Ma, Li Xia, and Qianchuan Zhao. Mean-semivariance policy optimization via
530 risk-averse reinforcement learning. *Journal of Artificial Intelligence Research*, 75:569–595, 2022.

531

532 Harry Markowitz. Portfolio selection. *The Journal of Finance*, 7(1):77–91, 1952a. ISSN 00221082,
15406261.

533

534 Harry Markowitz. Modern portfolio theory. *Journal of Finance*, 7(11):77–91, 1952b.

535

536 Jozsef Mezei and Peter Sarlin. Aggregation operators for the measurement of systemic risk. *arXiv
537 preprint arXiv:1412.5452*, 2014.

538

539 Ilan Naiman, N Benjamin Erichson, Pu Ren, Michael W Mahoney, and Omri Azencot. Gener-
ative modeling of regular and irregular time series data via koopman vaes. *arXiv preprint
arXiv:2310.02619*, 2023.

540 David MQ Nelson, Adriano CM Pereira, and Renato A De Oliveira. Stock market's price movement
541 prediction with lstm neural networks. In *2017 International joint conference on neural networks*
542 (*IJCNN*), pp. 1419–1426. Ieee, 2017.

543

544 Hui Niu, Siyuan Li, and Jian Li. Metatrader: An reinforcement learning approach integrating diverse
545 policies for portfolio optimization. In *Proceedings of the 31st ACM international conference on*
546 *information & knowledge management*, pp. 1573–1583, 2022.

547

548 Chi Seng Pun, Lei Wang, and Hoi Ying Wong. Financial thought experiment: A gan-based approach
549 to vast robust portfolio selection. In *Proceedings of the 29th International Joint Conference on*
550 *Artificial Intelligence (IJCAI'20)*, 2020.

551

552 Robert J Shiller. Aggregate income risks and hedging mechanisms. *The Quarterly Review of Eco-*
553 *nomics and Finance*, 35(2):119–152, 1995.

554

555 Nickolay Smirnov. Table for estimating the goodness of fit of empirical distributions. *The annals of*
556 *mathematical statistics*, 19(2):279–281, 1948.

557

558 Haoyu Sun, Yuxuan Bian, Li Han, Peng Zhu, Dawei Cheng, and Yuqi Liang. Dynamic graph-based
559 deep reinforcement learning with long and short-term relation modeling for portfolio optimiza-
560 tion. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge*
561 *Management*, pp. 4898–4905, 2024.

562

563 Shuo Sun, Wanqi Xue, Rundong Wang, Xu He, Junlei Zhu, Jian Li, and Bo An. Deepscalper: A
564 risk-aware reinforcement learning framework to capture fleeting intraday trading opportunities.
565 In *Proceedings of the 31st ACM International Conference on Information & Knowledge Manage-*
566 *ment*, pp. 1858–1867, 2022.

567

568 Shuo Sun, Xinrun Wang, Wanqi Xue, Xiaoxuan Lou, and Bo An. Mastering stock markets with effi-
569 cient mixture of diversified trading experts. In *Proceedings of the 29th ACM SIGKDD Conference*
570 *on Knowledge Discovery and Data Mining*, pp. 2109–2119, 2023.

571

572 Jingyuan Wang, Yang Zhang, Ke Tang, Junjie Wu, and Zhang Xiong. Alphastock: A buying-
573 winners-and-selling-losers investment strategy using interpretable deep reinforcement attention
574 networks. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge*
575 *discovery & data mining*, pp. 1900–1908, 2019.

576

577 Lei Wang, Liang Zeng, and Jian Li. Aec-gan: adversarial error correction gans for auto-regressive
578 long time-series generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
579 volume 37, pp. 10140–10148, 2023.

580

581 Zhicheng Wang, Biwei Huang, Shikui Tu, Kun Zhang, and Lei Xu. Deeptrader: a deep reinforce-
582 ment learning approach for risk-return balanced portfolio management with market conditions
583 embedding. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp.
643–650, 2021.

584

585 Yunan Ye, Hengzhi Pei, Boxin Wang, Pin-Yu Chen, Yada Zhu, Ju Xiao, and Bo Li. Reinforcement-
586 learning based portfolio management with augmented asset movement prediction states. In *Pro-*
587 *ceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 1112–1119, 2020.

588

589 Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation.
590 *arXiv preprint arXiv:2403.01742*, 2024.

591

592 Xiang Zhang. A model combining lightgbm and neural network for high-frequency realized volatil-
593 ity forecasting. In *2022 7th international conference on financial innovation and economic de-*
594 *velopment (ICFIED 2022)*, pp. 2906–2912. Atlantis Press, 2022.

594 **A APPENDIX**

595 **A.1 SYMBOLS**

598 The symbols used in this paper is summarized in Table 6

599 **Table 6: Notation summary of STABLE.**

600 Symbol	601 Description
602 S	603 Number of stocks in the universe.
604 ℓ	605 Length of the per-stock return segment reconstructed by the diffusion model.
606 $r_{\tau}^{(s)} \in \mathbb{R}^{\ell}$	607 Next-period log-return segment of stock s (length ℓ).
608 $r_{n,\tau}^{(s)} \in \mathbb{R}^{\ell}$	609 Reverse-chain state at step n ($r_{0,\tau}^{(s)}$ clean; $r_{N,\tau}^{(s)}$ noisy).
610 $h_{m,\tau} \in \mathbb{R}^d$	611 Macro representation from m_{τ} .
612 $h_{c,\tau}^{(s)} \in \mathbb{R}^d$	613 Stock-specific representation obtained from $c_{\tau}^{(s)}$.
614 $h_{f,\tau}^{(s)} \in \mathbb{R}^{2d}$	615 Combined representation, $[h_{m,\tau} \parallel h_{c,\tau}^{(s)}]$.
616 $\alpha_n, \beta_n, \bar{\alpha}_n$	617 Diffusion schedule ($\alpha_n = 1 - \beta_n$, $\bar{\alpha}_t = \prod_{i=1}^n \alpha_i$).
618 $\mu_{\text{prior},\tau} \in \mathbb{R}^S$	619 Prior mean vector at time τ .
620 $\Sigma_{\text{prior},\tau} \in \mathbb{R}^{S \times S}$	621 Prior covariance.
622 $\mu_{\text{view},\tau} \in \mathbb{R}^S$	623 View mean vector.
624 $\Sigma_{\text{view},\tau} \in \mathbb{R}^{S \times S}$	625 View covariance.
626 $\mu_{\text{BL},\tau} \in \mathbb{R}^S, \Sigma_{\text{BL},\tau} \in \mathbb{R}^{S \times S}$	627 Black–Litterman posterior mean and covariance.
628 π	629 Parameters of the balancing gate g_{π} .
630 ϕ	631 Parameters of the UNet denoiser u_{ϕ} .

619 **A.2 DENOISING DIFFUSION IMPLICIT MODELS USING CLASSIFIER-FREE GUIDANCE**

621 **Denoising Diffusion Implicit Models (DDIM).** DDIM provides a non-Markovian implicit reverse sampler that preserves the training-time marginals while allowing a much coarser (fewer-step) discretization of the reverse process than DDPM. This yields faster inference and, under fixed conditions, more consistent denoised sequences. These properties are crucial for regime-aware forecasting at each decision time τ .

626 **DDIM Training objective.** Training follows the standard noise-prediction objective used by DDPM. For stock s and time τ , let $r_{n,\tau}^{(s)} \in \mathbb{R}^{\ell}$ be the noisy return sequence at DDIM reverse step n , and let the condition be either a macro vector $m_{\tau} \in \mathbb{R}^{d_m}$ or a per-stock vector $c_{\tau}^{(s)} \in \mathbb{R}^{d_c}$. A denoiser ϵ_{ϕ} predicts the injected Gaussian noise:

$$631 \ell^{\epsilon} = \mathbb{E}_{s,\tau,n,\epsilon} \left[\left\| \epsilon - \epsilon_{\phi}(r_{n,\tau}^{(s)}, n, \text{cond}) \right\|^2 \right], \quad \text{cond} \in \{m_{\tau}, c_{\tau}^{(s)}\}.$$

632 At test period, DDIM replaces the Markovian reverse chain with a non-Markovian update, so that 633 the same trained ϵ_{ϕ} can be sampled in substantially fewer steps while keeping faithful marginals.

635 **Classifier-Free Guidance.** CFG aims to strengthen conditional fidelity without training an auxiliary 636 classifier by interpolating noise predictions from the same network. We use

$$637 \epsilon_u = \epsilon_{\theta}(r_n, n, \text{uncond}), \quad \epsilon_c = \epsilon_{\theta}(r_n, n, \text{cond}), \quad \hat{\epsilon} = \epsilon_u + z(\epsilon_c - \epsilon_u), \quad z \geq 0.$$

638 The scalar z controls the trade-off: larger z pushes sampling toward the conditional mode, while 639 the shared-parameter ϵ_u keeps samples realistic. The term $(\epsilon_c - \epsilon_u)$ acts as a conditional residual 640 that steers the denoising direction toward the conditional mode, while ϵ_u regularizes the step toward 641 high-likelihood regions of the unconditional data distribution. Despite fewer reverse steps (DDIM), 642 this residual-plus-regularizer view improves conditional alignment without sacrificing realism.

643 **A.3 BLACK–LITTERMAN–BASED OPTIMIZATION**

645 Black–Litterman (BL) updates a baseline prior for asset returns with investor views to form a posterior. Given this estimated posterior, BL performs mean–variance–optimal (MVO) portfolio allocation. The update balances the prior and the views by their certainties: highly certain views tilt the 646 posterior toward the views, while low-certainty views keep it close to the prior.

At time τ , let S denote the number of investable stocks in the universe. We use two prior quantities: the prior mean $\mu_{\text{prior},\tau} \in \mathbb{R}^S$ and the prior covariance $\Sigma_{\text{prior},\tau} \in \mathbb{R}^{S \times S}$. Under MVO, the market-equilibrium portfolio weight implied by moments (μ, Σ) is proportional to $\Sigma^{-1}\mu$, which maximizes the expected risk-adjusted return. To anchor this reference in a simple way, we fix the equilibrium benchmark to the equal-weight portfolio $w_{\text{eq}} \in \mathbb{R}^S$ with entries $1/S$ and define

$$\mu_{\text{prior},\tau} = \Sigma_{\text{prior},\tau} w_{\text{eq}}, \quad \Phi_\tau = \Sigma_{\text{prior},\tau}^{-1}.$$

This construction makes w_{eq} coincide with the MVO direction under the prior and defines certainty via the precision Φ_τ .

Let the per-asset view be $(\mu_{\text{view},\tau}, \Sigma_{\text{view},\tau})$ with view certainty $\Omega_\tau = \Sigma_{\text{view},\tau}^{-1}$.

Posterior mean via MAP. Our goal is the posterior mean of returns $\mu_{\text{BL},\tau}$ that balances the prior $\mu_{\text{prior},\tau}$ and the view $\mu_{\text{view},\tau}$ according to their certainties. Under Gaussian prior and view, the maximum a posteriori (MAP) estimator is obtained by minimizing the negative log-posterior (constants omitted):

$$J(\mu) = \frac{1}{2}(\mu - \mu_{\text{prior},\tau})^\top \Phi_\tau (\mu - \mu_{\text{prior},\tau}) + \frac{1}{2}(\mu - \mu_{\text{view},\tau})^\top \Omega_\tau (\mu - \mu_{\text{view},\tau}). \quad (3)$$

Setting the gradient to zero yields the closed-form solution

$$\mu_{\text{BL},\tau} = (\Phi_\tau + \Omega_\tau)^{-1} (\Phi_\tau \mu_{\text{prior},\tau} + \Omega_\tau \mu_{\text{view},\tau}). \quad (4)$$

Posterior covariance via canonical form. Expanding (3) yields

$$J(\mu) = \frac{1}{2}\mu^\top H_\tau \mu - \mu^\top \eta_\tau + \text{const}, \quad H_\tau = \Phi_\tau + \Omega_\tau, \quad \eta_\tau = \Phi_\tau \mu_{\text{prior},\tau} + \Omega_\tau \mu_{\text{view},\tau}.$$

Hence

$$p(\mu \mid \text{prior, view}) \propto \exp(-J(\mu)) = \exp(-\frac{1}{2}\mu^\top H_\tau \mu + \mu^\top \eta_\tau),$$

which is the canonical form of a multivariate Gaussian. Therefore,

$$\Sigma_{\text{BL},\tau} = H_\tau^{-1} = (\Phi_\tau + \Omega_\tau)^{-1}. \quad (5)$$

MVO with the BL posterior. With the Black–Litterman posterior moments $(\mu_{\text{BL},\tau}, \Sigma_{\text{BL},\tau})$,

the goal is to maximize the Sharpe ratio

$$w_\tau^* \in \arg \max_{\mathbf{1}^\top w_\tau = 1} \frac{w_\tau^\top \mu_{\text{BL},\tau}}{\sqrt{w_\tau^\top \Sigma_{\text{BL},\tau} w_\tau}}. \quad (6)$$

Let $a = \Sigma_{\text{BL},\tau}^{1/2} w_\tau$ and $b = \Sigma_{\text{BL},\tau}^{-1/2} \mu_{\text{BL},\tau}$. Then

$$\frac{w_\tau^\top \mu_{\text{BL},\tau}}{\sqrt{w_\tau^\top \Sigma_{\text{BL},\tau} w_\tau}} = \frac{a^\top b}{\|a\|}.$$

By the Cauchy–Schwarz inequality, $\frac{a^\top b}{\|a\|} \leq \|b\|$, with equality iff a is colinear with b . Thus the maximizing direction satisfies $a = \lambda b$ for some $\lambda > 0$, i.e.,

$$w_\tau = \lambda \Sigma_{\text{BL},\tau}^{-1} \mu_{\text{BL},\tau}.$$

Finally, enforce the budget constraint $\mathbf{1}^\top w_\tau = 1$ to fix the scale:

$$\lambda = \frac{1}{\mathbf{1}^\top \Sigma_{\text{BL},\tau}^{-1} \mu_{\text{BL},\tau}}, \quad w_\tau^* = \frac{\Sigma_{\text{BL},\tau}^{-1} \mu_{\text{BL},\tau}}{\mathbf{1}^\top \Sigma_{\text{BL},\tau}^{-1} \mu_{\text{BL},\tau}}.$$

As the view certainty decreases, $\mu_{\text{BL},\tau} \rightarrow \mu_{\text{prior},\tau}$ and $\Sigma_{\text{BL},\tau} \rightarrow \Sigma_{\text{prior},\tau}$, so $w_\tau^* \rightarrow w_{\text{eq}}$ (since $\Sigma_{\text{prior},\tau}^{-1} \mu_{\text{prior},\tau} = w_{\text{eq}}$). This follows directly from Eqs. (4)–(5).

A.4 PORTFOLIO MANAGEMENT PERFORMANCES OVER MULTIPLE MARKET REGIMES

We evaluate whether STABLE sustains superior risk-adjusted portfolio performance across heterogeneous market regimes and regions. Predictive performance for financial time series often varies with the dataset and the sample window. To verify consistency, we measure results across disjoint periods and markets.

Building on the recent-period results in Section 4.2, we present experimental results for two contrasting market regimes, excluding the recent period. The first regime, the **COVID-19 crisis** (2019-09-01 to 2020-03-31), is a global stock market crisis characterized by an enormous crash and extreme volatility. The second regime is the **Zero Interest Rate Policy (ZIRP)** period (2020-04-01 to

702 **Table 7: Portfolio performance during COVID-19 (2019-09-01 to 2020-03-31).** Best performance
 703 per column in **bold**. RMDD and AVol are in percentage units (%).

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	S&P500 (US)			CSI300 (China)		
	Method	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)
CRP	-0.69	35.63	51.59	-0.17	16.28	26.09
MVO	-0.62	32.34	49.47	-0.05	14.91	25.36
MOM	0.07	26.64	46.58	-1.00	9.64	24.72
DeepTrader	-0.32	25.53	38.09	0.41	11.71	19.15
MetaTrader	0.05	37.05	34.65	1.09	10.70	21.66
AlphaMix	-0.65	38.69	38.79	-0.35	9.70	19.40
STABLE (Proposed)	1.61	23.77	34.10	1.18	9.20	18.50
EUROSTOXX (Europe)						
Method	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)
CRP	-1.74	39.97	40.92	-1.28	37.18	38.25
MVO	-1.61	37.02	39.04	-1.29	36.74	36.68
MOM	-3.70	50.16	45.81	-2.64	46.71	41.91
DeepTrader	-1.36	39.71	32.50	-1.64	36.87	40.61
MetaTrader	-0.84	37.03	37.15	-1.59	53.00	40.37
AlphaMix	-0.92	42.49	34.20	-1.38	43.30	37.80
STABLE (Proposed)	-0.70	28.17	30.30	-1.30	37.65	31.19

2022-03-31). Following the crisis, global quantitative easing policies kept bond yields and credit spreads near zero, fueling a global stock market rally.

Results. STABLE attains the best ASR, RMDD, and AVol in almost all markets across the two contrasting regimes (Tables 7 and 8). In the COVID-19 window (Table 7), STABLE shows strong crisis-resilience. For example, it improves ASR to **1.61** in the US (from 0.07 for MOM) and reduces RMDD significantly. An exception is South Korea (KOSPI200), where STABLE’s ASR (-1.30) is similar to CRP (-1.28). This is an expected outcome, as our BL–MVO framework converges to the equal-weight vector w_{eq} (which CRP represents) when predicted covariances become extremely high, prioritizing stability. Notably, STABLE still achieves the lowest AVol (31.19) in this market, confirming its stable performance.

In the ZIRP window (Table 8), STABLE demonstrates strong performance in the market rally, achieving the highest ASR in all regions. In China (CSI300), while its AVol (18.40) is slightly higher than MVO’s (17.63), it secures the best ASR (1.67), indicating superior risk-adjusted returns. These outcomes are consistent with the regime-shift-tolerant design of STABLE. The diffusion sampler generates regime-aware paths and the MLG mechanism separates macro impact from firm-specific effects at the stock and time level. As noted for the KOSPI200 case, within BL–MVO, as the view precision $\Omega_\tau = \Sigma_{view,\tau}^{-1}$ decreases (e.g., in high uncertainty), the posterior places greater weight on the prior and the allocation approaches the equal-weight vector w_{eq} , which explains the observed stability during extreme episodes.

A.5 INDEPENDENT TEST OF COVARIANCE ESTIMATION PERFORMANCE

We isolate the covariance estimation to assess whether the diffusion-derived covariance of STABLE delivers meaningful gains relative to simple prediction models and deep generative forecasters. The goal is to test the covariance view in isolation because risk-adjusted portfolio allocation is driven by risk control, which depends on accurate covariance estimation. We conduct this experiment over multiple regimes including the periods examined in Section 4.2 and Section A.4.

In this experiment STABLE’s CDG with MLG generates per-stock return paths and forms the return view $\mu_{view,\tau}$. The return view remains fixed for all comparisons. We replace only the covariance view $\Sigma_{view,\tau}$ with each estimator. BL–MVO solves for the portfolio weights given $(\mu_{view,\tau}, \Sigma_{view,\tau})$. All settings including datasets and data split follow Section 4.2 and Section A.4.

756 Table 8: **Portfolio performance during the ZIRP window (2020-04-01 to 2022-03-31).** Best
 757 performance per column in **bold**. RMDD and AVol are in percentage units (%).

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	S&P500 (US)			CSI300 (China)		
	Method	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)
CRP	2.16	9.46	14.71	1.15	14.37	18.24
MVO	2.50	7.84	13.94	1.09	15.63	17.63
MOM	-0.19	30.17	23.03	-0.01	18.19	23.20
DeepTrader	-1.93	58.13	19.44	0.68	16.57	18.96
MetaTrader	1.41	14.38	21.44	1.36	19.76	21.77
AlphaMix	1.60	12.10	16.70	1.27	16.40	19.30
STABLE (Proposed)	2.58	7.14	13.50	1.67	14.01	18.40
EUROSTOXX (Europe)						
Method	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)
CRP	1.09	19.93	18.97	1.71	14.90	17.11
MVO	1.18	19.64	18.59	1.75	14.40	17.94
MOM	0.46	25.10	19.20	0.25	19.40	23.00
DeepTrader	-1.05	46.23	22.03	-0.94	44.71	21.50
MetaTrader	1.04	20.03	22.76	1.36	19.76	21.77
AlphaMix	1.04	20.67	20.66	1.50	18.90	19.50
STABLE (Proposed)	1.83	16.17	17.12	1.87	14.03	16.14

In these settings STABLE as the covariance estimator shows consistent improvements compared with all alternatives. We report ASR, RMDD, and AVol on the four regional universes.

Simple generative forecasters. We compare STABLE against simple prediction models that include a regression model, a deep learning model, and a tree-based model, each producing a full covariance forecast over time. For the neural and tree models we follow established volatility-forecasting settings for LSTM Bucci (2020) and LightGBM Zhang (2022). Both predict the lower-triangular Cholesky factor L_τ of the covariance, as in prior Cholesky-parameterized volatility modeling (Bucci, 2020; Zhang, 2022), which reduces the prediction target and improves computational efficiency. The simple prediction models are as follows.

1. **DCC–GARCH(1,1)** Engle (2002). A multivariate GARCH that captures time-varying covariances through univariate volatility updates coupled with a dynamic correlation recursion. The notation (1, 1) denotes one lag of the innovation and one lag of the conditional variance. It is a widely used regression baseline that reflects evolving correlations.
2. **LSTM–Cholesky** Nelson et al. (2017). A vanilla LSTM uses the macro sequence in Table 1 over the last ν business days and predicts the entries of L_τ . The diagonal is constrained positive via a softplus map. The loss is the Gaussian negative log-likelihood on L_τ .
3. **LightGBM–Cholesky** Ke et al. (2017). We train one gradient-boosted tree regressor per entry $L_{ij,\tau}$. Inputs include the most recent values from the previous rebalance $L_{ij,\tau-\ell}, L_{ii,\tau-\ell}, L_{jj,\tau-\ell}$ together with macro features aggregated over the last ν business days from Table 1.

Deep generative forecasters. We also include diffusion- and autoencoding-based deep generative models as covariance forecasters by sampling k paths per asset and taking the sample covariance at each τ : **Diffusion-TS** Yuan & Qiao (2024), **AEC–GAN** Wang et al. (2023), and **KoVAE** Naiman et al. (2023). STABLE forms $\Sigma_{\text{view},\tau}$ directly from its conditional diffusion paths with multi-level guidance.

Results. Table 9, Table 10, and Table 11 summarize portfolio outcomes under the fixed-return setting across multiple regimes. In general, using STABLE for the covariance view achieves the best performance across all metrics in almost every regime and region. However, in South Korea during the COVID-19 period, where STABLE previously showed lower performance than CRP, replacing the covariance with a simple regression model, DCC–GARCH(1,1), yields the highest performance.

810
811 **Table 9: Portfolio results with a fixed return view from STABLE (CDG+MLG) during the**
812 **COVID-19 crisis.** We fix the return view $\mu_{\text{view},\tau}$ to the per-stock estimates from STABLE’s
813 CDG+MLG and vary only the covariance view $\Sigma_{\text{view},\tau}$ using each forecaster. BL–MVO then uses
814 $(\mu_{\text{view},\tau}, \Sigma_{\text{view},\tau})$ to produce the allocation. Performance of STABLE corresponds to the results in
815 Table 7. Replacing the covariance view of STABLE generally degrades performance, except for
South Korea where DCC–GARCH(1,1) outperforms. Best per column in **bold**.

Covariance forecaster	S&P500 (US)			CSI300 (China)		
	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)
DCC–GARCH(1,1)	-0.48	39.28	36.62	0.33	12.48	18.39
LSTM–Cholesky	-0.35	45.78	35.09	0.53	11.79	19.80
LightGBM–Cholesky	-0.15	26.35	37.66	0.46	15.60	19.11
Diffusion–TS	0.84	26.51	35.59	0.63	12.17	21.26
AEC–GAN	-0.73	33.86	37.78	1.02	13.29	20.58
KoVAE	-1.04	41.36	39.57	0.87	14.51	21.15
STABLE (Proposed)	1.61	23.77	34.10	1.18	9.20	18.50
EUROSTOXX (Europe)						
Covariance forecaster	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)	ASR (\uparrow)	RMDD (\downarrow)	AVol (\downarrow)
DCC–GARCH(1,1)	-1.38	37.18	32.86	0.01	27.60	25.54
LSTM–Cholesky	-2.00	34.31	35.37	-1.60	32.11	33.37
LightGBM–Cholesky	-1.89	40.69	34.41	-0.75	47.56	40.22
Diffusion–TS	-0.93	36.32	35.26	-1.88	42.55	34.18
AEC–GAN	-1.00	48.82	36.75	-1.49	41.02	30.93
KoVAE	-2.61	46.57	39.48	-1.26	39.22	41.78
STABLE (Proposed)	-0.70	28.17	30.30	-1.30	37.65	31.19

834 During the COVID-19 crisis (Table 9), replacing STABLE’s covariance with other deep generative
835 models leads to severe performance degradation, with the exception of KoVAE in South Korea. As
836 shown in the stylized facts comparison in Section A.6, these models tend to estimate Kurtosis and
837 Skewness close to a normal distribution. Consequently, they fail to account for the extreme tail
838 risks inherent in market crashes, resulting in significantly worsened stability metrics. For instance,
839 in the S&P500 market, STABLE improves ASR by **92.7%** (from 0.84 to 1.61) compared to the
840 best alternative (Diffusion–TS), while reducing annualized volatility by **1.49% \downarrow** . Similarly, in the
841 EUROSTOXX market, STABLE reduces RMDD by **6.14% \downarrow** (from 34.31% to 28.17%) compared to
842 the strongest baseline (LSTM), demonstrating superior stability during crises.

843 In the ZIRP period (Table 10), STABLE’s covariance estimation yields the superior investment per-
844 formance across all regions. This dominance aligns with the findings in Section A.6, where the
845 distribution of returns estimated by STABLE exhibits stylized facts highly similar to those of real-
846 ized market data, enabling effective risk diversification. Notably, in the S&P500 market, STABLE
847 improves ASR by **25.1%** (from 2.06 to 2.58) and reduces RMDD by **2.49% \downarrow** compared to the
848 best competitor (AEC–GAN). In the EUROSTOXX market, STABLE achieves a **29.5%** higher ASR
849 (1.83 vs 1.41) than the LSTM baseline, confirming that accurate covariance estimation via STABLE
850 translates directly into enhanced risk-adjusted returns.

851 For the recent period (Table 11), the performance degradation from replacing STABLE’s covariance
852 is the lowest in the EUROSTOXX market. This result is consistent with the findings in Table 4,
853 where the deep generative models exhibit their strongest average MSE and DTW scores. Even here,
854 STABLE improves the ASR by **9.8%** (from 2.66 to 2.92) and reduces RMDD by **14.1%** (from 4.47%
855 to 3.84%) compared to the strongest competitor (KoVAE). Conversely, in regions where generative
856 models have higher MSE and DTW scores, such as CSI300 and KOSPI200 (Table 4), replacing
857 STABLE’s covariance leads to severe performance degradation. This result aligns with the time-
858 series estimation performance reported in Table 4 and underscores the effectiveness of STABLE’s
859 multi-level guidance. By separating systematic impacts from idiosyncratic characteristics, STABLE
860 maintains robust covariance estimation and risk control even in markets where simpler generative
861 models fail.

862
863

864
865 **Table 10: Portfolio results with a fixed return view from STABLE (CDG+MLG) during the**
866 **ZIRP period.** Performance of STABLE corresponds to the results in Table 8. STABLE consistently
867 achieves the best performance across all regions. Best per column in **bold**.

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888	870 S&P500 (US)			871 CSI300 (China)		
	Covariance forecaster	ASR (↑)	RMDD (↓)	AVol (↓)	ASR (↑)	RMDD (↓)
DCC-GARCH(1,1)	1.39	20.81	24.27	1.47	16.96	27.15
LSTM-Cholesky	1.77	10.19	19.30	1.30	14.64	18.80
LightGBM-Cholesky	1.36	18.81	21.44	1.11	20.70	24.92
Diffusion-TS	0.82	12.69	22.38	1.16	21.34	24.26
AEC-GAN	2.06	9.63	18.94	1.38	15.68	21.53
KoVAE	1.42	11.47	20.43	1.35	14.26	21.81
STABLE (Proposed)	2.58	7.14	13.50	1.67	14.01	18.40
879 EUROSTOXX (Europe)						
880 881 882 883 884 885 886 887 888	Covariance forecaster			KOSPI200 (South Korea)		
	ASR (↑)	RMDD (↓)	AVol (↓)	ASR (↑)	RMDD (↓)	AVol (↓)
DCC-GARCH(1,1)	1.11	19.17	21.71	-0.62	31.78	19.14
LSTM-Cholesky	1.41	18.02	20.65	1.57	21.31	20.21
LightGBM-Cholesky	0.95	25.92	24.48	0.50	29.03	27.70
Diffusion-TS	0.87	22.61	27.94	1.27	16.94	23.74
AEC-GAN	0.78	21.48	25.56	1.78	14.25	18.90
KoVAE	0.66	23.54	26.69	1.66	15.64	21.98
STABLE (Proposed)	1.83	16.17	17.12	1.87	14.03	16.14

885 **Table 11: Portfolio results with a fixed return view from STABLE (CDG+MLG) during the**
886 **recent period.** Performance of STABLE corresponds to the results in Table 3. STABLE consistently
887 achieves the best performance across all regions. Best per column in **bold**. RMDD and AVol are in
888 **%.
889**

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	890 S&P500 (US)			891 CSI300 (China)		
	Covariance forecaster	ASR (↑)	RMDD (↓)	AVol (↓)	ASR (↑)	RMDD (↓)
DCC-GARCH(1,1)	0.81	10.18	16.10	-0.95	14.12	19.91
LSTM-Cholesky	0.82	10.22	16.94	-1.23	13.94	20.12
LightGBM-Cholesky	0.95	13.63	20.94	-1.22	14.20	21.70
Diffusion-TS	0.53	12.68	25.85	-1.01	13.58	20.57
AEC-GAN	0.80	12.70	19.90	-0.74	16.14	21.41
KoVAE	0.90	12.36	16.13	-0.68	16.60	22.52
STABLE (Proposed)	1.85	7.82	13.43	-0.41	8.85	17.17
901 EUROSTOXX (Europe)						
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	Covariance forecaster			KOSPI200 (South Korea)		
	ASR (↑)	RMDD (↓)	AVol (↓)	ASR (↑)	RMDD (↓)	AVol (↓)
DCC-GARCH(1,1)	2.53	5.31	11.78	0.79	11.09	18.34
LSTM-Cholesky	2.54	5.36	14.14	1.13	12.46	19.69
LightGBM-Cholesky	1.52	7.12	14.66	1.18	9.60	23.10
Diffusion-TS	2.65	5.21	14.55	-1.88	21.93	24.98
AEC-GAN	2.41	6.11	14.94	-0.82	13.09	21.13
KoVAE	2.66	4.47	14.59	0.66	21.70	26.29
STABLE (Proposed)	2.92	3.84	10.88	1.61	8.34	17.82

A.6 STYLIZED FACTS ANALYSIS AND GOODNESS-OF-FIT TESTS

909 We conduct a comprehensive analysis to validate the distributional properties of the return segments
910 generated by STABLE and the deep generative models from Section 4.3. We conduct this experiment
911 over multiple regimes including the periods examined in Section 4.2 and Section A.4. We perform
912 both stylized facts validation and goodness-of-fit tests on the generated segments against the realized
913 return segments. The objective is to verify that the generated segments, particularly from STABLE,
914 capture not only simple time-series similarity but also the key dynamic properties and underlying
915 stochastic structure of realized returns. For stylized facts validation, we conduct statistical tests to
916 determine if the realized kurtosis, skewness, and autocorrelation of volatility exhibit significant dif-
917 ferences from the generated values. For goodness-of-fit tests, we perform the Kolmogorov-Smirnov
(KS) Smirnov (1948) and Anderson-Darling (AD) Anderson & Darling (1952) tests.

918 **Setup.** We apply a stratified bootstrapping procedure for all tests. Let S be the number of stocks
 919 and T be the total number of rebalancing timesteps. Let $N = S \times T$ be the total number of realized
 920 segments. Let $D \in \mathbb{R}^{N \times \ell}$ be the set of N realized return segments of length ℓ , and let $V_D \in \mathbb{R}^{N\ell}$ be
 921 its flattened 1D vector. Let \hat{R} represent the set of generated returns, structured as an (N, k, ℓ) array,
 922 where for each of the N conditions (s, τ) , we have k candidate segments of length ℓ . We perform
 923 M bootstrap iterations. In each iteration i , we construct a sample set $D_{\text{sample}}^{(i)} \in \mathbb{R}^{N \times \ell}$ by randomly
 924 selecting exactly one segment (out of k) for each of the N conditions. This sample is then flattened
 925 into a 1D vector $V_{\text{sample}}^{(i)} \in \mathbb{R}^{N\ell}$. This procedure is applied to STABLE, Diffusion-TS, AEC-GAN,
 926 and KoVAE.
 927

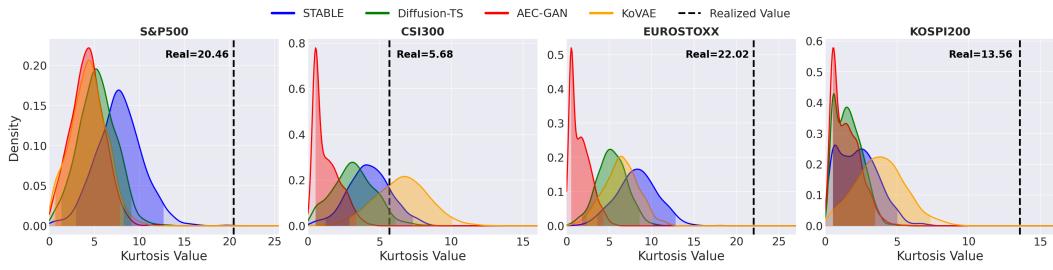
928 **Stylized Facts Validation.** We analyze three key stylized facts: kurtosis, skewness, and volatility
 929 clustering. The results are visualized in Figure 13, Figure 14, and Figure 15, respectively. The
 930 validation for each statistic is performed as follows:
 931

- **Kurtosis:** We test whether the single kurtosis value calculated from the flattened realized data $V_D \in \mathbb{R}^{N\ell}$ falls within the 95% confidence interval of the distribution formed by the M kurtosis values, where each kurtosis is calculated from a corresponding flattened bootstrap sample $V_{\text{sample}}^{(i)} \in \mathbb{R}^{N\ell}$.
- **Skewness:** We test whether the single skewness value calculated from the flattened realized data V_D falls within the 95% confidence interval of the distribution formed by the M skewness values calculated from each $V_{\text{sample}}^{(i)}$.
- **Volatility Clustering:** We measure the lag-1 autocorrelation of absolute returns (ACF(1)) for each ℓ -length segment. We test whether the mean ACF(1) calculated across all N segments in the realized data set $D \in \mathbb{R}^{N \times \ell}$ falls within the 95% confidence interval of the distribution formed by the M mean ACF(1) values, where each mean acf_i is calculated from the N segments within a bootstrap sample set $D_{\text{sample}}^{(i)} \in \mathbb{R}^{N \times \ell}$.

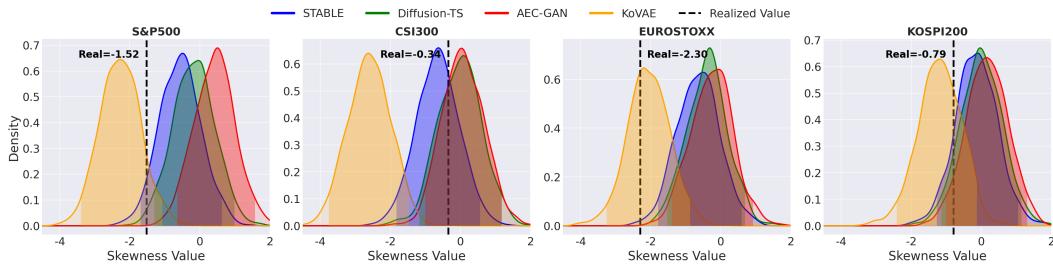
945 **Goodness-of-Fit Tests.** We use the KS and AD tests to assess the similarity between the generated
 946 and realized distributions from two perspectives: overall shape (KS) and tail behavior (AD). The
 947 results are visualized in Figures 16 and 17.
 948

- **Kolmogorov-Smirnov (KS) Test:** For each of the M bootstrap samples, we perform a two-sample KS test between the flattened realized data $V_D \in \mathbb{R}^{N\ell}$ and the flattened bootstrap sample $V_{\text{sample}}^{(i)} \in \mathbb{R}^{N\ell}$. We compute the KS statistic based on the maximum discrepancy between the two empirical CDFs Smirnov (1948). Instead of relying on asymptotic distributions, we calculate the p -value using a permutation test with $B = 200$ iterations to ensure robustness against finite sample sizes and non-normal distributions. We then plot the ECDF of these M p -values. If the generated samples are statistically indistinguishable from the realized data, this ECDF plot should be close to the diagonal line (i.e., a uniform distribution).
- **Anderson-Darling (AD) Test:** We conduct a similar procedure using the two-sample AD test. The test statistic is computed as a squared, weighted difference between the ECDFs, giving higher weight to tail deviations Anderson & Darling (1952). Consistent with the KS test, the significance levels are determined via a permutation test. We again plot the ECDF of the M resulting p -values to check for uniformity.

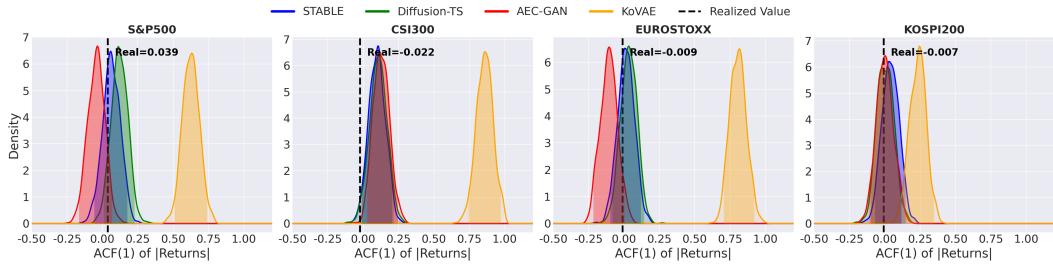
944 **Results.** Overall, STABLE exhibits distribution characteristics most similar to realized returns
 945 across all regimes and stock markets, with the exception of KOSPI200 during the **COVID-19**
 946 regime. KoVAE is confirmed to show high similarity for skewness in the **COVID-19** regime. How-
 947 ever, KoVAE consistently overestimates the volatility clustering (ACF(1)) of stock returns across all
 948 regimes. Consequently, its prediction accuracy for realized returns is not high, resulting in invest-
 949 ment performance similar to STABLE in Table 9. Notably, excluding the CSI300 market, the regimes
 950 we select exhibit very high kurtosis (specifically, 20.46 for the S&P500 in the **COVID-19** regime).
 951 This indicates that the market regimes during our experimental periods contain high volatility due
 952 to crashes, surges, and political issues, whereas the CSI300 market has relatively limited tail values
 953



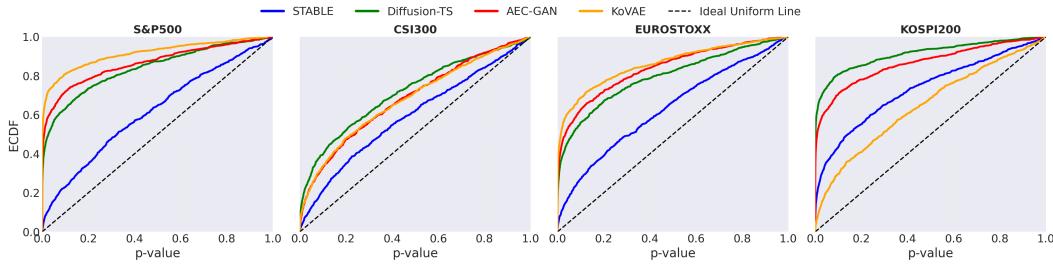
972
973
974
975
976
977
978
979
980
981
982 **Figure 3: Stylized Fact Validation (COVID-19): Kurtosis.** Distribution of kurtosis in the COVID-19 regime. Note the extreme realized kurtosis in the S&P500 (20.46). STABLE generally provides robust estimates, though the extreme tails in non-CSI300 markets challenge all models.
983
984
985
986
987
988
989
990
991
992
993
994
995
996



996
997 **Figure 4: Stylized Fact Validation (COVID-19): Skewness.** Distribution of skewness in the COVID-19 regime. KoVAE captures the negative skewness in KOSPI200 well, reflecting the market crash dynamics.
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025



1010 **Figure 5: Stylized Fact Validation (COVID-19): Volatility Clustering (ACF(1)).** Realized values are near zero. STABLE remains consistent, while KoVAE tends to overestimate volatility clustering.
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025



1024 **Figure 6: Goodness-of-Fit (COVID-19): KS Test.** ECDF of p -values. STABLE demonstrates superior fit across most markets, with KoVAE showing strength in KOSPI200.
1025

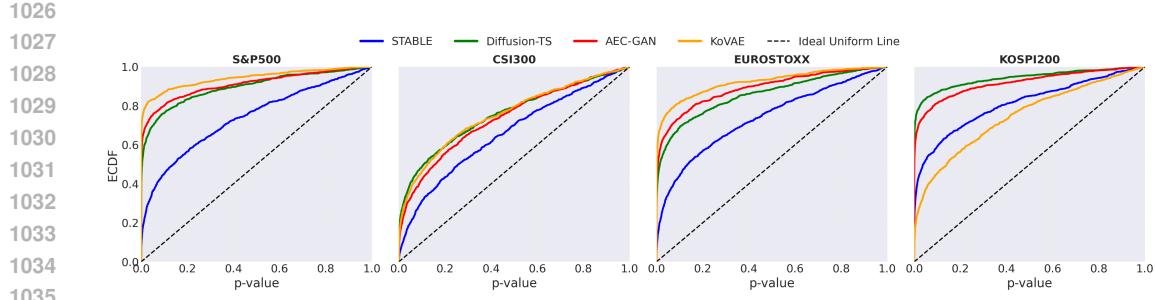


Figure 7: **Goodness-of-Fit (COVID-19): AD Test.** ECDF of p -values for the tail-sensitive AD test. Results deteriorate generally due to extreme kurtosis, but rankings remain consistent with KS tests.

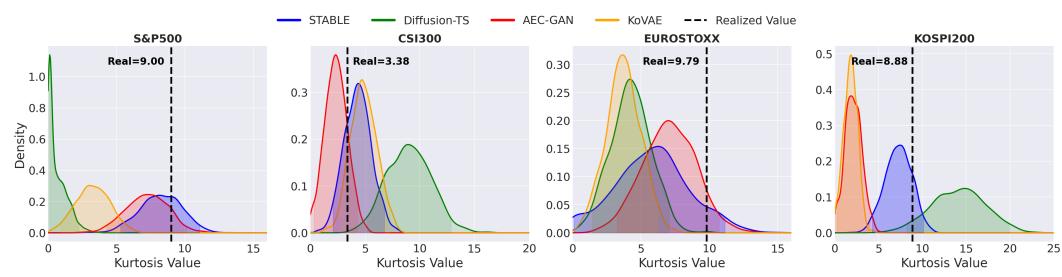


Figure 8: **Stylized Fact Validation (ZIRP): Kurtosis.** Distribution of kurtosis in the ZIRP regime. STABLE successfully captures the kurtosis within confidence intervals in most markets.

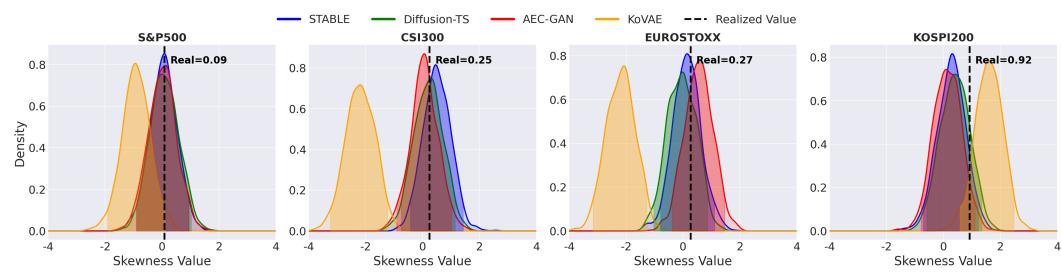


Figure 9: **Stylized Fact Validation (ZIRP): Skewness.** Positive skewness is observed due to the market rally. STABLE and others (except KoVAE) capture this feature well.

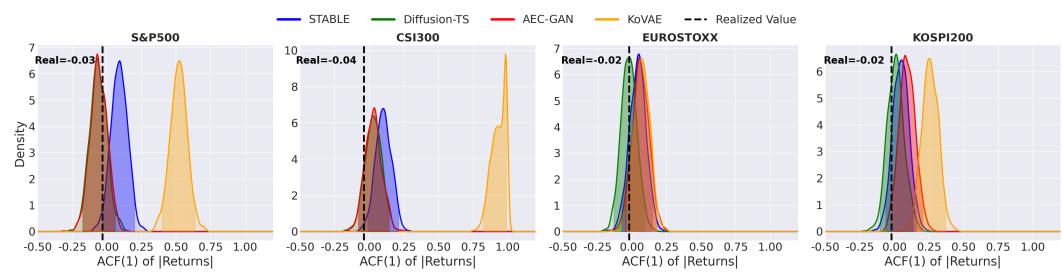
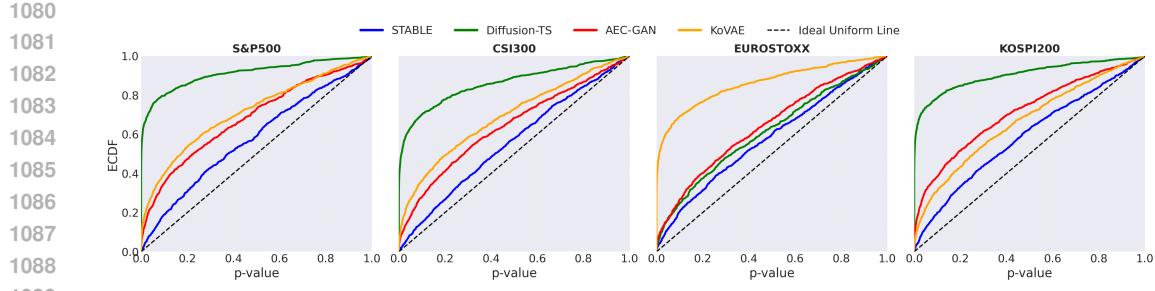
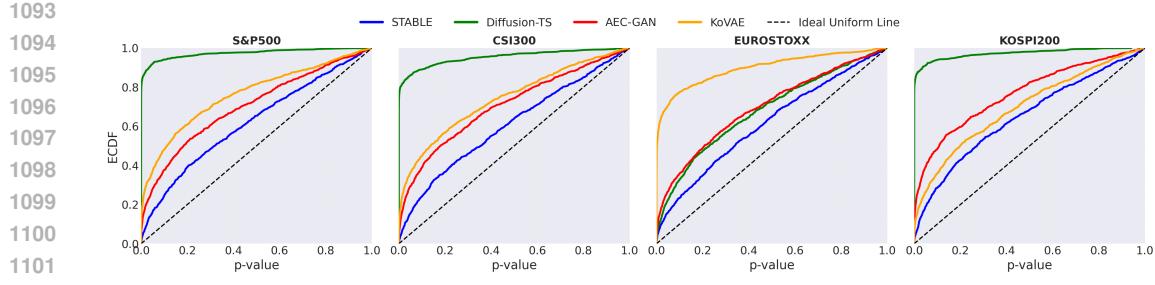


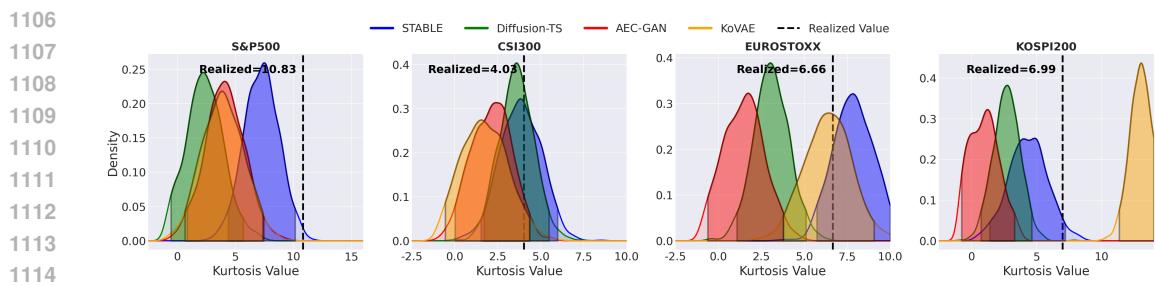
Figure 10: **Stylized Fact Validation (ZIRP): Volatility Clustering (ACF(1)).** STABLE provides accurate estimates near zero, whereas competitors show significant deviations.



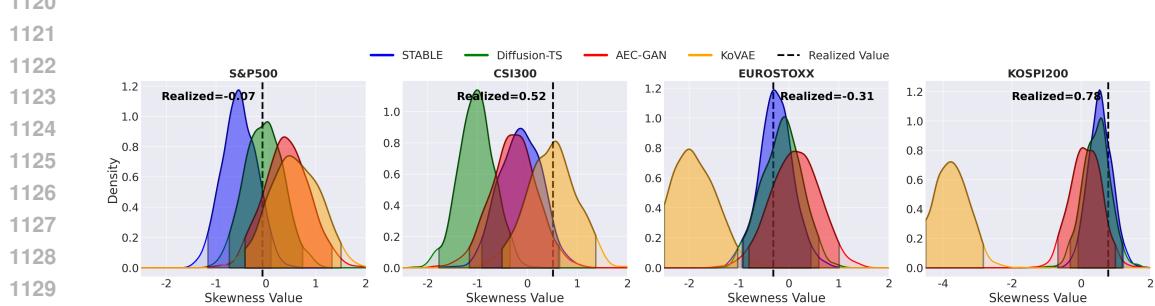
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090 **Figure 11: Goodness-of-Fit (ZIRP): KS Test.** STABLE shows the best fit, aligning closely with the
1091 uniform distribution line across all markets.
1092



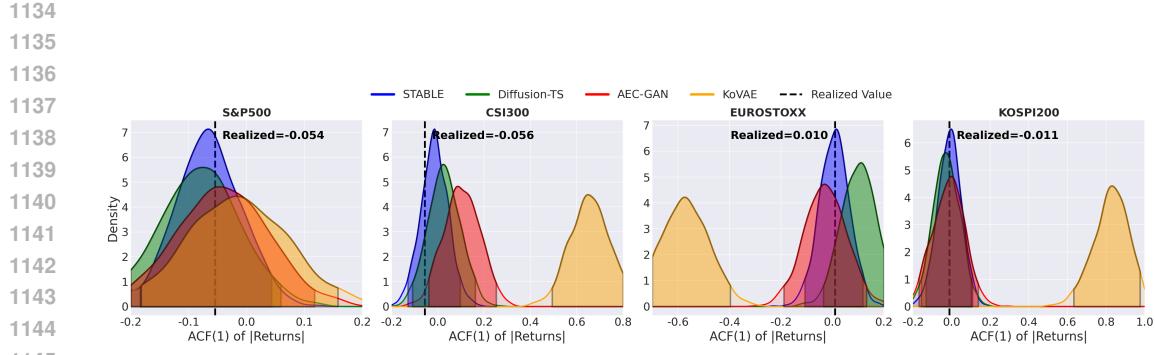
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102 **Figure 12: Goodness-of-Fit (ZIRP): AD Test.** Similar to KS results, STABLE outperforms com-
1103 petitors, benefiting from accurate kurtosis estimation.
1104



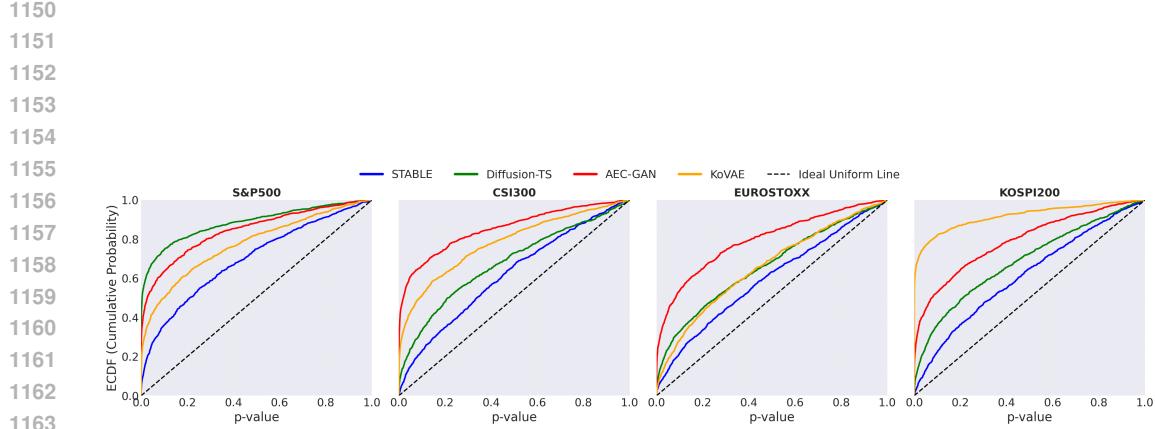
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115 **Figure 13: Stylized Fact Validation (Recent): Kurtosis.** Distribution of kurtosis in the recent
1116 regime. The black line is the realized value. All models systematically underestimate the S&P500
1117 kurtosis (10.83). STABLE (blue) provides the closest estimate in CSI300 and KOSPI200, while
1118 KoVAE (orange) is closest in EUROSTOXX.
1119



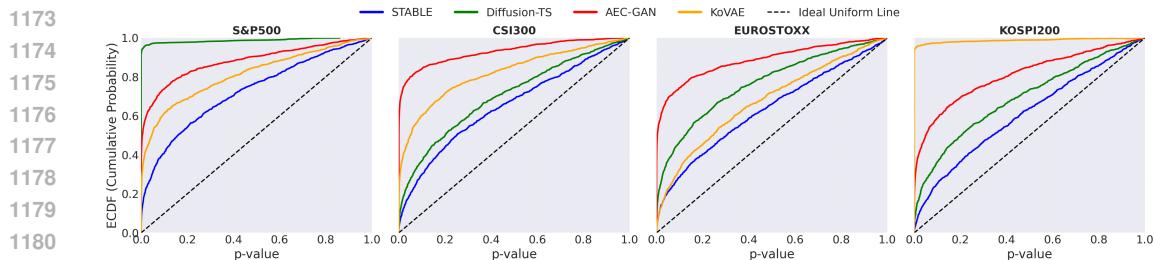
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131 **Figure 14: Stylized Fact Validation (Recent): Skewness.** Distribution of skewness in the recent
1132 regime. STABLE (blue) provides the closest estimate in EUROSTOXX and KOSPI200. Diffusion-
1133 TS (green) is closest in S&P500, and KoVAE (orange) is closest in CSI300.



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146 **Figure 15: Stylized Fact Validation (Recent): Volatility Clustering (ACF(1)).** Distribution of
1147 the mean ACF(1) in the recent regime. Realized values are near zero. STABLE (blue) provides the
1148 closest estimate in all markets. KoVAE (orange) consistently fails, predicting extreme outliers in
1149 three markets.



1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164 **Figure 16: Goodness-of-Fit (Recent): KS Test.** ECDF of p -values. The STABLE curve (blue)
1165 is closest to the ideal uniform line (black dash) in all markets, aligning with its top ASR rank in
1166 Table 11.
1167



1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182 **Figure 17: Goodness-of-Fit (Recent): AD Test.** ECDF of p -values for the tail-sensitive AD test.
1183 STABLE (blue) again provides the best fit in all four markets. The rankings are consistent with the
1184 KS test, but the separation between competitors is wider, reflecting the large Kurtosis estimation
1185 errors shown in Figure 13.
1186
1187

1188 likely due to price fluctuation regulations. Additionally, volatility clustering based on ACF(1) is
1189 confirmed to be nearly zero across all regimes.
1190

1191 The stylized facts validation results are as follows.
1192

1193 **COVID-19** (Figures 3–5): STABLE demonstrates the most homogeneous stylized facts across most
1194 markets. The realized kurtosis in the S&P500 is extremely high (20.46) (Figure 3), which challenges
1195 all models. However, STABLE (7.74) provides a distribution closer to the realized value compared
1196 to KoVAE (4.30). In KOSPI200, consistent with the results in Table 9, KoVAE is confirmed to
1197 generate the return distribution most similar to reality. In particular, KoVAE’s generated skewness
1198 (-1.18) (Figure 4) closely matches the realized value (-0.80), accurately capturing the negative skew-
1199 ness during the crash period, whereas STABLE (-0.13) underestimates this asymmetry. Regarding
1200 volatility clustering (Figure 5), the realized values are near zero across all markets (e.g., S&P500
1201 0.04), but KoVAE predicts extreme outliers (e.g., S&P500 0.63, CSI300 0.86), showing significant
1202 deviation from reality.
1203

1204 **ZIRP** (Figures 8–10): STABLE shows the best stylized facts across all markets. The realized kurtosis
1205 in the S&P500 is 9.00 (Figure 8), and STABLE (8.21) successfully captures this within its confidence
1206 interval, whereas Diffusion-TS (0.36) significantly underestimates it. A unique characteristic of this
1207 regime is the positive skewness observed due to the market rally (e.g., KOSPI200 0.92, CSI300
1208 0.25). Notably, all models except KoVAE include this feature within their confidence intervals. For
1209 instance, in KOSPI200 (Figure 9), STABLE (0.27) and Diffusion-TS (0.40) show positive skewness,
1210 while KoVAE predicts an excessive value (1.59). In terms of ACF(1) (Figure 10), KoVAE again pre-
1211 dicted unrealistic values (e.g., CSI300 0.94), whereas STABLE (0.10) provides a much closer estimate
1212 to the realized value (-0.04).
1213

1214 **Recent** (Figures 13–15): The realized kurtosis is high, confirming fat tails. For the S&P500, the
1215 realized value (10.83) is an outlier that all models systematically underestimate, although STABLE’s
1216 distribution is centered closest (7.27) to this value (Figure 13). The realized skewness is market-
1217 dependent. STABLE provides the closest estimate in EUROSTOXX and KOSPI200 (Figure 14). For
1218 volatility clustering, STABLE consistently centers its distribution very close to the realized value,
1219 whereas KoVAE predicts extreme outliers in three markets (Figure 15).
1220

1221 The goodness-of-fit test results are as follows.
1222

1223 **COVID-19** (Figures 6–7): STABLE shows the best fit in most markets, while KoVAE shows strength
1224 in KOSPI200. However, due to the excessive realized kurtosis (e.g., S&P500 20.46, EUROSTOXX
1225 22.02), all models failed to include the realized value within their confidence intervals. Conse-
1226 quently, the AD test results, which are sensitive to tail distributions, are commonly deteriorated
1227 compared to the KS test results across all models.
1228

1229 **ZIRP** (Figures 11–12): STABLE exhibits the most superior goodness-of-fit results. Unlike other
1230 regimes, the accurate capturing of tail distributions (e.g., S&P500 Kurtosis 9.00 vs STABLE 8.21)
1231 results in the AD test results appearing highly similar to the KS test results, confirming that STABLE
1232 accurately models both the body and tails of the distribution.
1233

1234 **Recent** (Figures 16–17): The ECDF curve of the KS test p -values for STABLE is unambiguously the
1235 closest to the ideal uniform distribution line across all datasets. Figure 17 confirms these findings
1236 with the AD test. However, the performance differences between models are amplified, reflecting
1237 the Kurtosis estimation performance. For instance, in S&P500 and KOSPI200, the models with the
1238 worst Kurtosis estimation (Diffusion-TS and KoVAE, respectively) show a visibly larger deviation
1239 from the uniform line in the AD test compared to the KS test.
1240

1241 A.7 ABLATION STUDY

1242 STABLE is organized into a feature-engineering module and three core modules. The in-
1243 puts are enriched by the Kalman-filtered stock embedding (KFE), and the core pipeline com-
1244 prises the Conditional Diffusion Generator (CDG), the Multi-Level Guidance (MLG), and the
1245 Black–Litterman–based Mean–Variance Optimizer (BL–MVO). To quantify each component’s con-
1246 tribution, we remove or modify one module at a time while keeping all other settings identical to
1247 those of Section 4.2. We do not include a variant that removes CDG because allocation requires
1248 diffusion-derived views. Accordingly, the ablation variants are as follows.
1249

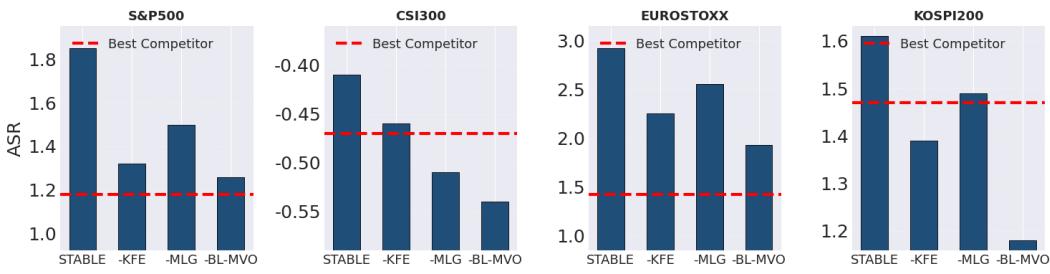


Figure 18: Ablation study of STABLE on ASR. Across all regions the BL–MVO module contributes most to risk adjusted return.

Table 12: **Selected hyperparameters by dataset.** Dataset-level ASR grid-search selections for all hyperparameters defined in Section 4.1. Except for the DDIM noise scale η which controls sampling stochasticity, the same configuration attains the highest ASR across all datasets.

Hyperparameter	S&P500	CSI300	EUROSTOXX	KOSPI200
Segment length ℓ	20	20	20	20
Macro & stock embedding dim d	16	16	16	16
# DDIM reverse steps	30	30	30	30
Number of paths k	50	50	50	50
# forward diffusion steps	200	200	200	200
DDIM noise η	0.00	0.00	0.00	0.01
Balancing-gate cap z_{\max}	2	2	2	2
BL prior window length ν	120	120	120	120
ℓ_2 weight β	0.001	0.001	0.001	0.001

1. **STABLE without KFE.** The temporal stock embedding $\beta_{\tau}^{(s)}$ is set to zero, so that the corporate-specific feature $c_{\tau}^{(s)}$ contains only the last normalized adjusted-close level and daily log returns.
2. **STABLE without MLG.** The noise decomposition and the learnable gate are disabled by fixing the balancing gate to a constant $z_{\tau}^{(s)} = 0.5$ for all stocks and times. Sampling reduces to conditional DDIM with the full condition $h_{f,\tau}^{(s)}$ without adaptive separation of systematic and idiosyncratic effects.
3. **STABLE without BL–MVO.** The BL update is removed and plug-in MVO uses the diffusion view moments $(\mu_{\text{view},\tau}, \Sigma_{\text{view},\tau})$ directly. This is equivalent to skipping posterior blending.

Results. Figure 18 summarizes ASR across the four regional universes. The full STABLE attains the highest ASR in every market. However, removing a module can sometimes result in performance below the best competitor. For instance, in KOSPI200, the variants without KFE or BL–MVO show a lower ASR than AlphaMix (see Table 3). In CSI300, all three ablation variants fall below the ASR of MOM. The degree to which each module contributes varies by dataset. For example, the KFE’s influence is larger than MLG’s in the S&P500, but their importance is reversed in CSI300. Despite this, BL–MVO consistently plays the most critical role; removing it causes the largest drop in ASR in all markets. This is natural, as the BL–MVO module determines the final portfolio weights by deciding how much to trust the estimates from the other modules.

A.8 HYPERPARAMETER ANALYSIS

We measure how STABLE’s hyperparameters affect the risk-adjusted return metric ASR. This sensitivity analysis assesses how responsive the method is to hyperparameter choices and informs the generalization of the selected configuration in practice. In particular, we sweep the number of guided paths per stock k and the ℓ_2 regularization weight β because these two hyperparameters most strongly affect ASR, while fixing all remaining settings to the dataset-wise choices in Table 12.

We report the dataset-level selections of all tuned hyperparameters in Table 12. The ASR sensitivity to k and β is visualized in Figure 19. For k , $k = 50$ is optimal across regions and the ASR curve saturates beyond this point. For β , the best value is $\beta = 0.001$ and larger values suppress performance due to over-regularization.

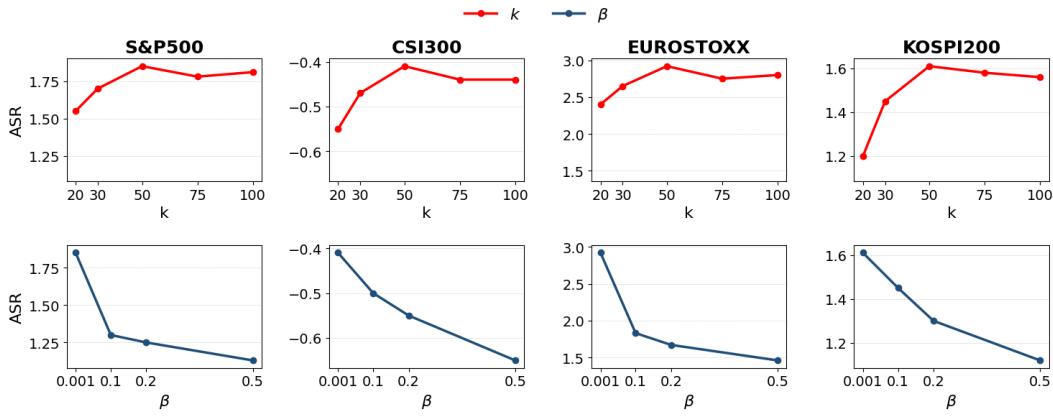


Figure 19: **ASR sensitivity to the most influential hyperparameters.** Top row varies the number of guided paths k . ASR saturates once $k \geq 50$. Bottom row varies the ℓ_2 weight β . Values above 0.001 induce excessive regularization and reduce ASR.

Table 13: We report the compute budget by each dataset for one full training run with 200 epochs using four GPUs (4×RTX 3080). Estimated GPU hours assume full utilization. Latency (rebalance) represents the end-to-end per-rebalance inference time on the full universe (55 assets for US/China, 37 for Europe, 44 for South Korea). Latency (asset) denotes the corresponding per-asset time.

Dataset	Wall time	Est. GPU hours	Latency (rebalance)	Latency (asset)
S&P500 (US)	2h 01m 13s	8.08	31.21 s	568 ms
CSI300 (China)	1h 59m 42s	7.98	29.64 s	539 ms
EUROSTOXX (Europe)	1h 21m 05s	5.41	21.37 s	578 ms
KOSPI200 (South Korea)	1h 35m 28s	6.36	25.84 s	587 ms

A.9 COMPUTATIONAL TRANSPARENCY AND REPRODUCIBILITY

For computational transparency and reproducible results, we report training and inference latencies in Table 13, and the detailed hardware and software environment in Table 14. We document the compute budget and environment to support reproducibility and fair comparison. We report wall-clock time, estimated GPU hours, and per-rebalance as well as per-asset inference time by dataset, and we disclose the hardware and software stack used for all runs.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

Table 14: **Hardware and software environment.**

Item	Specification
GPUs	4× NVIDIA RTX 3080 (10 GiB each)
CPU	2× Intel Xeon Silver 4214 @ 2.20 GHz (12 cores/socket, 24 cores, 48 threads total)
RAM	503 GiB
Storage	33 TiB root volume (PERC H730P RAID)
OS	Ubuntu 20.04.5 LTS, Linux kernel 5.4.0-216-generic
Driver and CUDA	NVIDIA driver 535.183.01, CUDA runtime 12.2; CUDA Toolkit 11.6 (nvcc 11.6.124)
Deep learning framework	PyTorch 1.13.1 (cu116, cuDNN 8.3.2); torchvision 0.14.1; torchaudio 0.13.1

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403