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Abstract

We present Maven, a foundation model for supernova science. Maven is trained
using self-supervised contrastive learning to align photometric and spectroscopic
time-series observations in a shared embedding space. The model is first pre-trained
on 0.5M synthetic supernovae, and then fine-tuned on 4,702 real observations from
the Zwicky Transient Facility. Maven achieves state-of-the-art performance in
supernova classification and redshift estimation, demonstrating the effectiveness of
its learned embeddings for multiple downstream tasks. We find that pre-training
with synthetic data significantly improves model performance. Maven has been
designed to address the common challenge in astrophysics of consolidating sparse
information-dense data with abundant lower-quality or synthetic data. Our approach
offers a scalable solution for large, unlabeled, and multimodal astronomical datasets,
and paves the way for upcoming projects like the Vera C. Rubin Observatory.

1 Introduction

The discovery rate of supernovae (SNe) has grown exponentially over the past four decades, thanks
in large part to wide-field, untargeted optical surveys (e.g., [1–4]). Today, over ten-thousand SNe
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Figure 1: Overview of our training workflows. We first pre-train on a large simulated data set using
contrastive methods (with light curves and spectra). We follow up by training on the observational
ZTF dataset and then use a simple model to translate these embeddings to downstream tasks. Different
colors indicate different first training steps and their arrows indicate subsequent training steps.

are discovered annually. The upcoming Legacy Survey of Space and Time (LSST; [5]), conducted
by the Vera C. Rubin Observatory, will enable the photometric discovery of over one million SNe
annually.While photometry (magnitude as a function of time) is easily obtained, spectroscopy (flux
as a function of wavelength) is significantly more time-consuming to acquire. This challenge has
driven research into techniques to infer the physics of an explosion from photometry alone, including
the classification of SN types [e.g., 6–12] and inference of SN redshifts [13, 14]. Supervised machine
learning has dominated the model training scheme for these tasks, but it demands large spectroscopic
datasets for sufficient model performance. To overcome this issue, researchers have begun to explore
self-supervised learning to leverage the structure of unlabeled photometric datasets [15, 16]. Self-
supervised representation learning is advantageous for time-domain astrophysics as it is more robust
against distribution shifts and class imbalances common in transient data. In addition, pre-trained
models using this approach produce generalizable latent representations that allow for application to
multiple inference tasks, often with minimal fine-tuning.

Contrastive learning has emerged as an effective pre-training objective for combining multiple data
modalities. Radford et al. [17] present an embedding scheme called Contrastive Language–Image
Pre-training (CLIP) for aligning natural language and associated images in a shared latent space.
Here, we present Maven, the first multimodal foundation model for SNe. In contrast to previous
models for SN classification and redshift inference, our model is constructed using spectroscopic
and photometric information simultaneously. Motivated by previous work in synthetic pre-training,
we first train Maven by aligning simulated light curve-spectrum pairs via contrastive learning, and
fine-tune it on a small sample of observed data using the same approach. Our final model achieves
state-of-the-art performance on multiple downstream tasks. We also train a model with only observed
data, called Maven-lite, to quantify the impact of synthetic pre-training. Though we limit our analysis
to classification and redshift (two crucial inference tasks in SN science), the model is a milestone
toward general-purpose training for a range of downstream tasks.

2 Datasets

In this study, we utilize two datasets: a simulated dataset for pre-training and a dataset of observations
for subsequent fine-tuning and validation3.

For pre-training, we simulate observations of the Zwicky Transient Facility [3] using the SNANA
simulation code [18] and the framework described in [19], which approximately matches the redshift
distribution of the SNe in our observed sample (described in A.1.2). We simulate 500,000 total
events evenly split between five different SN classes, using SED models from the Photometric LSST
Astronomical Time-Series Classification Challenge [20]: SNe Ia, SNe Ib/c, SLSNe-I, and SNe II
(which includes both SNe IIP/IIL), and SNe IIn.

For our observation dataset, we obtain metadata for 4,702 spectroscopically-classified SNe from
the ZTF Bright Transient Survey [21].We consolidate our resulting sample to only include events
spectroscopically classified as “normal”: SN Ia, SN Ib/c, SN II, SLSN-I, and SN IIn. In each
training iteration, we augment our training data by applying Gaussian noise to the photometric and

3All data are available at https://huggingface.co/datasets/thelfer/multimodal_supernovae
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spectroscopic observations with mean zero and standard deviation equal to the magnitude of the
reported observational errors.

3 Methodology

Here, our goal is to use contrastive learning to build a shared representation space using photomet-
ric and spectroscopic data from the same event, and to explore the predictive properties of these
representations for downstream tasks.

Modality Encoders Both light curve and spectrum encoders are based on the transformer archi-
tecture [22]. The light curve encoder processes magnitude measurements and their corresponding
observation times X = ((m1, t1), ..., (mn, tn)), where ti is defined as the number of days from the
first observation. The normalized magnitudes are initially linearly projected to a dmodel-dimensional
embedding space of the transformer and then passed through transformer blocks with multi-head
self-attention followed by a 2-layer feedforward network. Layer normalization and residual connec-
tions are applied after attention and the feedforward layer. To account for the temporal nature of light
curves, we use sinusoidal time encodings to project ti to a higher-dimensional space. We concatenate
light curve measurements from multiple photometric filters for each SN and add an additional band
encoding. Different bands are one-hot encoded with integers and then added to light curve magnitude
embeddings before being passed into the transformer encoder. The spectrum encoder utilizes a similar
transformer-based architecture but interprets the input sequence as ((f1, λ1), ..., (fn, λn)), where fi
represents the flux at observer-frame wavelength λi. The positional encoding for wavelengths follows
the same sinusoidal pattern as the light curve encoder, but with λ in place of t.

For both encoders, in addition to deterministic aggregate e.g., mean or max pooling, we consider
attention-based learnable aggregation to convert the per-sequence representation to a 1-D representa-
tion vector. We initialize a learnable query vector Qlearned ∈ Rdemb , where demb is the embedding
dimension. A projection of the encoded sequence after the final transformer layer, Xfinal ∈ Rnseq×dseq

gives the keys and values for the attention mechanism. We use a multi-head attention architecture
with two heads to get xagg = Attention(Qlearned,Kfinal, Vfinal) ∈ Rdemb . In the hyperparameter
tuning process, we consider both mean and attention-based aggregation.

Training After pre-training some of our models on the simulated dataset, we fine-tune on the
small set of ZTF BTS observations. During fine-tuning, we begin with the pre-trained model and
continue training all of its weights using the observed data. We define our hyperparameter-optimized
pre-trained model as ‘Maven’, and our CLIP model without pre-training as ‘Maven-lite’. For both pre-
training and fine-tuning, we use the standard softmax-based bidirectional variant of the InfoNCE [23]
contrastive loss function.

We perform a stratified 5-fold cross-validation on the ZTF observations to quantify model uncer-
tainties. We show results for the mean and standard deviation from these runs. To avoid added
computational overhead, we do not perform it on the simulation-based pre-training.

To determine hyperparameter values for model architecture and training, we perform a hyperparameter
search for our end-to-end baseline and CLIP models using Weights & Biases [24]. A list of parameter
values in our search are provided in configuration files in our public code repository.4

Downstream Tasks We evaluate the performance of Maven and Maven-lite on two primary
downstream tasks: classification and regression. Classification of SNe from photometry alone has
been an area of active study due to the long integration times required for spectroscopy. We present
results for a three-way classification task (SN Ia, SN II, SN Ib/c). In addition to classification, we
attempt to predict the redshift of each SN (which we call our “regression task”). Redshift estimation
is important as a tool for cosmological analyses and for estimating the intrinsic properties of an SN
explosion. To transform our contrastive-trained light curve embeddings into classification predictions,
we explore both support vector classification (SVC) and k-Nearest Neighbors classification (kNN).
For redshift regression, we explore both linear regression and kNN regression. In the following
sections, we only quote results from kNN as it produces the best performance on downstream tasks.

4https://github.com/ThomasHelfer/multimodal-supernovae
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Table 1: Overview of classification model performance. We present three classification models:
the baseline only trained on the ZTF dataset, Maven-lite without synthetic pre-training, and Maven
with synthetic pretraining and observed fine-tuning. A more comprehensive overview of the runs
performed in this paper can be found in Table 3.

Name Pre-trained mac-F1 mic-F1 mac-p mac-r
baseline no 0.701 ± 0.030 0.873 ± 0.021 0.693 ± 0.036 0.753 ± 0.025
Maven CLIP 0.687 ± 0.034 0.925 ± 0.007 0.804 ± 0.083 0.652 ± 0.022

Maven-lite no 0.627 ± 0.023 0.894 ± 0.011 0.667 ± 0.053 0.612 ± 0.012

Table 2: Overview of regression model performance. A more comprehensive overview over the
runs performed in this paper can be found in Table 4.

Name R2 L1 L2 OLF
Maven 0.6496 ± 0.0398 0.0095 ± 0.0004 0.0152 ± 0.0014 0.0002 ± 0.0005

baseline 0.6129 ± 0.0245 0.0104 ± 0.0004 0.0160 ± 0.0010 0.0002 ± 0.0005
Maven-lite 0.6078 ± 0.0408 0.0103 ± 0.0006 0.0161 ± 0.0014 0.0002 ± 0.0005

Lastly, we train supervised models directly on the observational ZTF dataset as our baseline models.
For the classification baseline model, we optimize for the multi-class cross-entropy loss and take the
class with highest pseudo-probability score as the prediction for each event. The regression baseline
model outputs a single value and is optimized using the mean squared error (MSE) loss.

4 Results

Classification Performance A common metric in classification tasks is the F1 score, which for
a class C is defined as the harmonic mean between the class’s recall r and precision p: F1,C :=
2pCrC/(pC + rC). We calculate for each model both the micro-averaged F1 score, which averages
performance across all events irrespective of class, and the macro-averaged F1 score, which averages
the F1 score computed independently for each class. The macro-averaged F1 score is a valuable
indicator for our use case given the significant class imbalance, as the micro-F1 can approach
unity when all events are labeled as the dominant class. We present these results, along with the
macro-averaged precision and recall (‘mac-p’ and ‘mac-r’) in Table 1.

We observe macro-F1 scores within 1-σ of the baseline model for the majority of our pre-trained kNN
classifiers, from a score of 0.6874± 0.0342 for Maven compared to a baseline of 0.7011± 0.0303.
The scores for these models are systematically higher than both Maven-lite and the majority of CLIP
kNN classifiers without pre-training: the average F1 score is 0.68 for all pre-trained kNN classifiers
compared with an average of 0.63 for the kNN classifiers trained with only observed data. Maven’s
classification performance is also comparable with existing classifiers in literature [25, 12].

Regression Performance Next, we consider the task of redshift estimation. We quantify the
performance of our models with the coefficient of determination R2, the L1 and L2 error, and the
outlier fraction ‘OLF’, defined as |zpred − ztrue|/(1 + ztrue) > 0.15. We report these values in
Table 2. We calculate an R2 value of R2 = 0.6496± 0.0398 for Maven compared to the end-to-end
baseline performance of R2 = 0.6129± 0.0245. The L1 and L2 errors are also lower on average for
Maven than for our regression baseline, while the outlier fraction is comparable, demonstrating that
on average, Maven outperforms the baseline. Maven-lite, our model without pre-training, achieves an
R2 value of 0.6078± 0.0408, lower than both Maven and the baseline model.

Though a comparable redshift estimator for low-redshift ZTF SNe does not exist in literature, an
outlier fraction of 0.004 is reported for 289 photometric SNe Ia in the Supernova Legacy Survey
(SNLS), nearly an order of magnitude higher than our best model but with a substantially higher
maximum redshift z < 1.0 [26]. Another photometric redshift estimator proposed by [27] for SNe Ia
discovered by LSST finds an outlier fraction of 0.0023 over z < 1.0, compared to our 0.0002.
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5 Conclusion

We have presented Maven, the first model trained with supernova data for multi-task inference. We
summarize our key findings below:

1. We train Maven through self-supervised contrastive learning on SN spectra and light curves.
Maven achieves state-of-the-art performance on redshift estimation and SN classification.

2. We find that pre-training on simulated data significantly improves Maven’s performance on
downstream tasks over a contrastively-trained model on solely the observed data.

3. Maven does not dramatically outperform supervised models optimized directly for each
downstream task. We hypothesize that this is due to photometry being an information-poor
modality, which limits the amount of information our unsupervised objective can extract.

Traditional multimodal models have considered complementary representations of the same astro-
nomical source (in this case, photometry and spectroscopy of a SN). When neither spectroscopic
or photometric coverage of a transient event is available, however, broad physical properties can be
inferred using data from the event’s host galaxy [28–31]. Early efforts have emphasized the value of
host-galaxy photometry for classification of SNe [32, 33, 10, 34]. LSST data will contain photometry
for tens of billions of galaxies, millions of which will be spectroscopically-confirmed through the
Dark Energy Spectroscopic Instrument [DESI; 35] or 4MOST [36]. Additional work should be
dedicated to exploring the linking of modalities spanning distinct lengthscales, which would allow
for both SN and host-galaxy information to be consolidated in a single pre-training scheme.
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A Appendix / supplemental material

A.1 Data

Here, we provide more details about the SNe simulation datasets used for pre-training and the ZTF
dataset used for fine-tuning and inference.

A.1.1 Simulating Supernovae with the SNANA Simulation Code

We generate synthetic SN samples using the SNANA simulation code. SNANA mimics the observing
process beginning from a rest-frame spectral energy distribution (SED) of an astrophysical transient.
A volumetric rate is chosen and the sky is populated at random with transients. A survey strategy,
detection efficiency, and the survey’s estimated noise properties (zeropoint and sky noise) are
provided to construct synthetic observations. Our 500,000 simulated events are evenly split between
five different SN classes: SNe Ia (using the SALT2 model; [37]); SNe Ib/c (SNIbc-Templates;
[38]); SLSNe-I (using the model SLSNI-MOSFIT; [39]); and SNe II (SNII-Templates; [38]), which
includes both SNe IIP/IIL; and SNe IIn (SNIIn-MOSFIT; [39])

To produce our simuations, we use the same volumetric rates for SNE II, SNe IIn, and SNe Ib/c
as in the PLAsTiCC challenge [40], re-scaled to match the fractional rates presented in [41]. The
volumetric rate for SNe Ia is taken from [42], and that for SLSNe-I traces the star-formation history
parameterized in [43]. Our simulations mimic the ZTF survey strategy, filter transmissions, and
reported sky noise. This results in a similar selection function favoring low-redshift (z < 0.1) SNe as
our observed sample, although we do not explicitly define a brightness threshold for photometry as is
done with the BTS sample [21] and our sole quality cut is removing events with fewer than 4 total
photometric observations. As a result, our simulated events are intrinsically fainter and lower-quality
than our observed events.

In addition to the previously-developed simulations, we define a spectrograph object in SNANA with
wavelength bins corresponding to the wavelength coverage of the ZTF SED machine [44], with which
the vast majority of our observed SNe were classified. To mimic the stochasticity inherent to SN
classification in practice, we allow synthetic spectra to be obtained randomly from explosion to peak
light, and with sufficient exposure time to achieve S/N of 5 within an arbitrary wavelength window.
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Galactic extinction is applied to both modalities at the simulated SN location following the extinction
law from [45]. We then pre-process all spectra in the same manner as in [46]. we apply low-pass
median filtering to remove high-frequency noise, re-bin the data to log-wavelength space, and estimate
the flux continuum using a polynomial fit and divide it out. While this continuum-division step
removes color information, it has been shown that it has a negligible impact on redshift estimation
[47]. The spectra are kept in the observer frame (not redshift-corrected).

A.1.2 The Zwicky Transient Facility Bright Transient Survey

Since 2019, the Zwicky Transient Facility (ZTF; [3]) has conducted a wide-field public survey
consisting of photometry obtained with the Palomar 48-inch Schmidt telescope at a cadence of
roughly 2 nights. The telescope observes in three photometric filters: ZTF-g, ZTF-r, and ZTF-i.
Photometry is promptly reduced and streamed to alert brokers including ANTARES [the Arizona-
NOIRLab Temporal Analysis and Response to Events System; 48]. For non-Galactic transients
observed at or expected to peak brighter than an apparent magnitude of ∼18.5, a classification
spectrum is automatically obtained using the Spectral Energy Distribution Machine (SEDM; [49–
51]), a low-resolution spectrograph mounted on the Palomar 60-inch telescope [52]. SEDM spectra
are then uploaded to the Transient Name Server and the Weizmann Interactive Supernova Data
Repository [WISeREP; 53]. 5,377 SNe have been spectroscopically confirmed at the time of writing
as part of this Bright Transient Survey.

We obtain metadata for 4,702 spectroscopically-classified SNe on June 18th, 2024 from the ZTF
Bright Transient Survey [21] after applying all quality and purity cuts available on the ZTF BTS
webpage5 (described in detail in [54]). The subsequent SNe have photometric coverage before and
after peak light, good visibility throughout the photospheric phase, an uncontaminated reference
image, and occurred in low extinction fields.

Next, we use the Python client of the antares alert broker [48] to consolidate difference photometry
for all SNe in ZTF-g and ZTF-r [ZTF-i observations are mainly private, comprising ∼10% of all
observations; 19], and download their associated SEDM spectra from the Transient Name Server6

and WISEReP7 8. We pre-process the observed spectra following the same procedure as our synthetic
ones.

A.2 Metadata CLIP

In addition to SN spectrum and light curve measurements, we also considered SN metadata as an
additional modality for training a CLIP model. The metadata modality used in our training includes
supernovae redshifts and class labels. We encode each class label with a learnable embedding vector.
The metadata encoder consists of a multilayer perceptron (MLP) that takes in the concatenated vector
of class embedding and redshift and outputs the final embedding. The number of hidden layers and
the hidden layer dimension in the MLP were chosen from a hyperparameter search.

The models which directly align event photometry with relevant metadata (redshift and class) in
pre-training do not significantly outperform the models in which photometry and spectroscopy alone
are aligned. Considering only pre-trained models for the task of classification, we observe comparable
three-way macro-F1 scores when aligning light curves with metadata (0.692± 0.022), light curves
with spectra (0.687± 0.034), and light curves with both spectra and metadata (0.685± 0.019). Each
of our CLIP objectives featured photometry as a modality, and we predict that this more information-
poor modality is driving the observed performance across each of these models, as we discuss in
additional detail in section 5.

5https://sites.astro.caltech.edu/ztf/bts/bts.php
6https://www.wis-tns.org/
7https://www.wiserep.org/
8Despite spectroscopic classifications being available on the ZTF website for all listed SNe, SEDM spectra

could not be found for a few objects. When an SEDM spectrum is not available, we instead use the first reported
spectrum. A positional encoding is used for the wavelengths of each spectrum, so in principle our spectrum
encoder has the capacity to generalize to multiple spectrographs.
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Table 3: Classification performance for three classes by model configuration : This table presents
the classification performance of various models using light curve data from the ZTF dataset. The
models are categorized based on whether they utilized simulation pre-training (‘pre-trained’), the
type of last layer added to embedding models (‘last-layer’). The modalities taken into account
when training on the real ZTF dataset are indicated in ‘real-pre’ (lc - light curve, sp - spectrum, m
- metadata) as well as whether a SVC or kNN. Performance metrics include macro-F1 (mac-f1),
micro-F1 (mic-f1), macro-precision (mac-p), and macro-recall (mac-r). The results are presented
as mean ± standard deviation, calculated over five folds. Baseline models, trained in an end-to-end
supervised fashion using only the ZTF data, are included for comparison.

pre-trained last-layer real-pre mac-f1 mac-p mac-r
no end-to-end baseline 0.7011 ± 0.0303 0.6934 ± 0.0360 0.7527 ± 0.0247
clip kNN lc-m 0.6920 ± 0.0217 0.7286 ± 0.0377 0.6721 ± 0.0183
clip kNN lc-sp 0.6874 ± 0.0342 0.8041 ± 0.0833 0.6516 ± 0.0216
clip kNN lc-sp-m 0.6849 ± 0.0194 0.7280 ± 0.0334 0.6643 ± 0.0161
clip SVC lc-m 0.6747 ± 0.0297 0.8026 ± 0.0257 0.6435 ± 0.0257
clip SVC lc-sp-m 0.6522 ± 0.0237 0.7892 ± 0.0975 0.6247 ± 0.0215
no kNN lc-sp-m 0.6268 ± 0.0251 0.7204 ± 0.0701 0.6000 ± 0.0199
no kNN lc-sp 0.6265 ± 0.0231 0.6670 ± 0.0532 0.6119 ± 0.0121
no kNN lc-m 0.6249 ± 0.0228 0.7309 ± 0.0661 0.6035 ± 0.0184
clip SVC lc-sp 0.6195 ± 0.0190 0.7753 ± 0.0994 0.6056 ± 0.0172
no SVC lc-m 0.5971 ± 0.0220 0.7871 ± 0.1858 0.5842 ± 0.0163
no SVC lc-sp-m 0.5938 ± 0.0156 0.7892 ± 0.1873 0.5802 ± 0.0077
no SVC lc-sp 0.5749 ± 0.0099 0.5857 ± 0.0126 0.5686 ± 0.0102

Table 4: Regression Performance by Model Configuration: This table presents the regression
performance of various models using light curve data from the ZTF dataset. The models are
categorized based on whether they utilized simulation pre-training (‘pre-trained’), the type of last
layer added to embedding models (‘last-layer’). The modalities taken into account when training on
the real ZTF dataset is indicated in ‘real-pre’ (lc - light curve, sp - spectrum, m - metadata) as well
weather we use a linear or kNN layer to translate our embedding to a redshift prediction (‘last-layer‘).
Performance metrics include the coefficient of determination (R2), L1 loss, and L2 loss. The results
are presented as mean ± standard deviation, calculated over five folds. Baseline models, trained in an
end-to-end supervised fashion using only the ZTF data, are included for comparison.

pre-trained last-layer real-pre R2 L1 L2
clip kNN lc-m 0.6543 ± 0.0280 0.0094 ± 0.0005 0.0152 ± 0.0010
clip Linear lc-sp-m 0.6513 ± 0.0440 0.0096 ± 0.0005 0.0152 ± 0.0016
clip kNN lc-sp 0.6496 ± 0.0398 0.0095 ± 0.0004 0.0152 ± 0.0014
clip kNN lc-sp-m 0.6470 ± 0.0422 0.0094 ± 0.0006 0.0152 ± 0.0012
clip Linear lc-sp 0.6386 ± 0.0447 0.0099 ± 0.0003 0.0155 ± 0.0016
clip Linear lc-m 0.6345 ± 0.0444 0.0100 ± 0.0006 0.0156 ± 0.0014
no kNN lc-m 0.6150 ± 0.0294 0.0103 ± 0.0003 0.0160 ± 0.0012
no end-to-end baseline 0.6129 ± 0.0245 0.0104 ± 0.0004 0.0160 ± 0.0010
no kNN lc-sp-m 0.6090 ± 0.0464 0.0102 ± 0.0005 0.0161 ± 0.0015
no kNN lc-sp 0.6078 ± 0.0408 0.0103 ± 0.0006 0.0161 ± 0.0014
no Linear lc-sp 0.5948 ± 0.0402 0.0107 ± 0.0007 0.0164 ± 0.0015
no Linear lc-sp-m 0.5938 ± 0.0450 0.0108 ± 0.0004 0.0164 ± 0.0016
no Linear lc-m 0.5927 ± 0.0399 0.0107 ± 0.0004 0.0165 ± 0.0015
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