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Abstract

In high-stakes environments where uncertainties abound, set-valued prediction offers a
cautious and robust mechanism by presenting multiple potential labels as the prediction
for each test instance to mitigate the potential risk associated with prediction errors. Yet,
integrating this paradigm with out-of-distribution (OOD) detection remains scarcely explored
in such settings as online learning with bandit feedback. The bandit feedback mechanism
informs the learner about the correctness of the pulled arm/action instead of the explicit
ground truth label, leaving the true class label unknown when an incorrect action is taken.
To address this challenge, we introduce BanditGPS which conducts set-valued prediction
with OOD detection in the bandit feedback setting, using an estimation to the ground truth
of class labels. BanditGPS achieves three objectives: render small/informative prediction
sets, enhance the OOD detection performance, and control the recall for all normal classes
to meet prescribed requirements. Our approach is characterized by the loss function, which
trades off between high OOD detection and small prediction sets. Theoretically, we prove
that the convergence rate of the regret is O(T~'/2). The empirical results further show that
BanditGPS effectively controls the recalls with promising performances on OOD detection
and informative prediction.

1 Introduction

Conventional single-valued prediction assigns only a single class label to each instance without a provable
confidence guarantee. This paradigm could be overly-confident for some data instances, and thereby lead to
erroneous decisions with severe consequences. Such an issue is particularly pronounced in critical domains
where instances are characterized by high uncertainties. For example, in medical triage, based on a single-label
prediction, an Al system might incorrectly categorize a patient with subtle symptoms of a severe condition
as low-risk, delaying the critical treatment and hence endangering the patient’s life. Similarly, in financial
fraud detection, a single-valued prediction system might not adequately account for the nuanced behaviors of
complex fraud schemes, resulting in either over-blocking of legitimate transactions (causing inconvenience
and potential loss of business) or under-detecting sophisticated fraud tactics (leading to financial losses). To
reduce these associated risks from those observations with high uncertainty, set-valued classification, which
reports multiple possible class labels, may be employed. This approach allows for human intervention in
those difficult data instances, enabling further error reduction through follow-up investigations.

The literature on set-valued prediction is diverse, with several different types of methodologies. (1) Classifica-
tion with Reject Option (CRO) (Herbei & Wegkamp, [2006; Bartlett & Wegkamp), |2008; |(Charoenphakdee et al.,
2021)) incorporates a rejector into the loss function, which is used to abstain from classification if an instance
is highly ambiguous. This is equivalent to assigning all labels to the instance, resulting in a less informative
prediction set. Zhang et al| (2018) introduces a refined option to produce a more informative/smaller
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prediction set. However, CRO and its variants, despite considering the uncertainty of instances, do not control
the “accuracy” under the set-valued prediction paradigm, i.e., the probability of the true label being included
in the prediction set. (2) In contrast, Conformal Prediction (CP) (Shafer & Vovk, 2008; [Vovk et al.| [2005])
offers a prediction set with a theoretical guarantee of accuracy control. CP, assuming data exchangeability,
is a distribution-free framework that works alongside machine learning models, e.g., neural networks, to
facilitate set-valued prediction. The caveat with CP is that the prediction set may be less informative due
to not explicitly minimizing the set size. |[Romano et al.| (2020)); |/Angelopoulos et al.[(2021) have focused on
developing score functions to reduce the prediction set size to alleviate this limitation. (3) Confidence Set
Learning (CSL) (Wang & Qiaol [2018; |2022a; Sadinle et al., [2019) approaches set-valued prediction from a
constrained optimization perspective, explicitly minimizing the prediction set size while controlling accuracy.
Conversely, Denis & Hebiri (2017; 2020) seek to maximize the accuracy of the prediction given a size budget.

All the above three camps concentrate on set-valued prediction within a closed-world assumption, where
each instance is guaranteed at least one known class label. Nevertheless, the dynamic nature of the open
world presents the inevitability of encountering new, unknown classes over time. This reality necessitates
the unified process of not only classifying known entities but also detecting novel classes, a task termed
out-of-distribution (OOD) detection or open-set recognition (Yang et al., [2021} |Lee et all 2018). Traditional
approaches to OOD detection encounter limitations akin to those of single-valued prediction systems. In
an effort to bridge this gap, by admitting an empty set for potential atypical points, recent innovations
have expanded set-valued classification to incorporate an OOD detection component, such as Cautious Deep
Learning (CDL) (Hechtlinger et al., 2018), Balanced Conformal Prediction Set (BCOPS) |Guan & Tibshirani
(2022)), Generalized Prediction Set (GPS) (Wang & Qiao, 2023; [2022b), and Deep Generalized Prediction Set
(DeepGPS) (Wang & Qiaol 2024a)). CDL and BCOPS, rooted in Conformal Prediction (CP), unfortunately
inherit its predisposition towards larger prediction sets. Conversely, GPS and DeepGPS strive for informative
prediction by explicitly minimizing prediction set sizes, aligning with the principles of Confidence Set Learning

(CSL).

However, these advancements predominantly address scenarios of offline learning with full feedback, where
detailed label information for each instance is accessible—even following an incorrect prediction. This starkly
contrasts with the online bandit feedback setting, where a learner’s received feedback is limited to the binary
outcome of an arm/action’s success, devoid of explicit insights across all labels. For example, within clinical
trials, an adaptive trial design system (learner) might select a treatment (arm), e.g., a type of drug, without
knowing its efficacy beyond the absence of disease remission, thus lacking comprehensive feedback on optimal
treatments. Although Bandit Class-specific Conformal Prediction (BCCP) (Wang & Qiaoj, 2024b)) represents
a step towards accommodating set-valued classification in a closed world under bandit feedback, it lacks
mechanisms for OOD detection. Given the limited research in this domain, our study pioneers the exploration
of generalizing the set-valued prediction to have the capacity of OOD detection under the bandit feedback
setting.

In this article, we have made the following four major contributions. Methodologically, we introduce
BanditGPS, an adaptation of the Generalized Prediction Set for online learning with bandit feedback,
marking a novel intersection of these research areas. Without accessing the explicit label information, the
proposed approach handles the bandit feedback by utilizing an estimation of the ground truth of the class
label. Secondly, unlike the offline training regime of DeepGPS (Wang & Qiao, [2024a)), BanditGPS dynamically
adjusts to maintain class-specific recall (to be defined later) for normal classes with fewer manual parameter
adjustments, leading to a feasible deployment for real-world online learning applications. Thirdly, unlike its
predecessors, the BanditGPS allows explicit control of the balance between informative prediction and OOD
detection effectiveness, making it easy for practitioners to use given their specific business needs. Lastly, we
theoretically prove a regret convergence rate of @(T -1/ 2) which is competitive in the literature; the empirical
study confirms the efficacy of BanditGPS.

The rest of this article is organized as follows. In Section [2 we delve into key notations and review works that
lay the groundwork for our study. Section [3|articulates the problem formulation and introduces the BanditGPS
method with an algorithm. The convergence rate of regret for the algorithm is theoretically explored in
Section [d In Section [f] we present empirical evidence demonstrating the effectiveness of BanditGPS. A
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conclusion is offered in Section [7} Additional materials, including detailed proofs and extended experiments,
are provided in Section [A]

2  Preliminary

In this section, we discuss some notions and briefly review seminal works across three pivotal areas: set-valued
classification, out-of-distribution detection, and the multi-armed Bandit problem.

Set-valued Classification: Let (X,Y) € X x ) be an observation generated from an unknown distribution,
where ) = {1,..., K}. A set-valued classifier is a map ¢ : X — 2% to return a prediction set ¢(X) for the
instance X based on a certain rule. Commons metrics (Vovk et all [2017)) to evaluate the performance of a
set-valued classifier include the (expected) prediction set size and the accuracy. The prediction set size is
defined through the cardinality of the prediction set, i.e., |¢(X)|, which gauges the number of class labels
predicted for instance X. Because both the classifier ¢(-) and the instance X are random, we typically focus
on E[|¢(X)|]. The accuracy in the set-valued prediction paradigm is defined as the probability that the true
label of an observation is included in its prediction set, i.e., P[Y" € ¢(X)], which is also referred to as coverage
probability in the CP literature (Vovk et al., 2005).

The accuracy P[Y € ¢(X)] represents the overall performance of the classifier over all classes. For each class,
we denote the (class-specific) recall as P[Y € ¢(X) | Y = k] to measure the classifier’s performance on class
k. Intuitively speaking, there is a trade-off between prediction set size and recall. Higher recall for normal
classes often comes with a larger prediction set ¢(X) (because this allows an increased likelihood for the
true class label being included in ¢(X)). While CP-based classifiers (Vovk et al., |2005; [Romano et al., 2020;
|Angelopoulos et all, [2021)) offer a controlled recall guarantee, their prediction set sizes are contingent on the
chosen score function. In contrast, CSL-based approaches (Sadinle et al.| |2019; Wang & Qiaol [2018; 2022a;
2023)) strive to minimize prediction set sizes while maintaining the normal class recall.

Out-of-distribution (OOD) Detection and Open-set Recognition (OSR): The goal of OOD and
OSR (Bendale & Boult, [2016} [Lee et al. 2018; |Charpentier et al., 2020; |[Yang et al., 2021)) is to conduct
single-valued prediction for instances in the normal classes in addition to rejecting atypical observations
that potentially comes from a new or anomaly class that was not present in the training data. Recently,
Selective Classification with OOD detection (SCOD) (Xia & Bouganis| [2022; |Zhu et all [2023) and Unified
Open-set Recognition (UOSR) (Kim et al., [2023; |Cen et all 2023) further consider identifying difficulty
observations (hard to distinguish among existing normal classes) when they are not rejected as OOD points.
The difficult observations and OOD points in both SCOD and UOSR can be respectively viewed as the
ambiguous instances with prediction set sizes greater than 1 and the atypical instances with the empty
prediction set in the set-valued prediction paradigm.

Multi-armed Bandit (MAB): The MAB framework (Lai & Robbins| |1985; [Auer et al., 2002)) concerns
a decision-making scenario where a learner sequentially pulls an arm A from a set {1,..., K} to maximize
cumulative rewards over time. To this end, various policies 7 (could be either a probability distribution or
deterministic rule) are proposed to guide the arm pulling, e.g., epsilon-greedy (Sutton & Bartol [2018), Upper
Confidence Bound (Auer et al., 2002)), and Thompson sampling strategies (Thompsonl |1933), etc. The policy
7 and the pulled arm A in the MAB can be conceptually treated as a form of decision rule and a predicted
label in the classification problem.

MAB problems are prevalent in various fields, such as online advertising, clinical trials, and recommendation
systems, where a context X informs personalized decision-making. Specifically, after receiving the context X
from an environment, a learner pulls an arm A that follows 7 (- | X), and then receives a feedback 1{A =Y}
returned by the environment. Such bandit feedback only indicates the correctness of the pulled arm. If
the feedback is 0, the learner does not know the ground truth and hence faces a challenge in optimizing
reward strategies. While existing studies (Kakade et al., 2008; Wang et al., 2010; |(Crammer & Gentile, 2013;
[Abbasi-Yadkori et al [2011} |Gollapudi et al., 2021; van der Hoeven et al., 2021)) have explored linear and
neural network-based (Zhou et al. 2020} |Jin et al., [2021}; |Zhang et al. 2021} Xu et al.| 2022)) approaches to the
bandit problem, they seldom address set-valued classification and/or OOD detection within this framework.




Published in Transactions on Machine Learning Research (05/2025)

Notably, while research (Taufiq et al. [2022; [Zhang et al., |2023; |Stanton et al., |2023) has explored set-valued
prediction in reinforcement learning, their focus diverges from our bandit-centric investigation. The recent
work BCCP (Wang & Qiaol [2024Db)) is most aligned with our work, yet it does not directly consider the task of
OOD detection, a practical requirement in applications. For instance, in social content moderation, a system
needs to flag user-generated content into some categories (safe, offensive, etc), and detect new types of harmful
content as well. Our study, therefore, introduces a novel approach, considering set-valued classification with
OOD detection in the context of bandit feedback, addressing a significant gap in the literature.

Set-valued Prediction with Bandit Feedback: The learning framework operates under bandit feedback,
where only correctness information for a selected action is observed. At each time step ¢, given a context
X, a learner first produces a set-valued prediction ¢;(X;) with a certain theoretical guarantee, indicating a
subset of potential labels. Subsequently, a learner takes an action A; (denoting a single label) according to
the policy 7, where A; is sampled from all possibilities. The environment provides a binary feedback signal
that whether the pulled arm A; confirms the ground true label of X; (see Algorithm .

3 Methodology

In this section, we develop and optimize our set-valued classifier, BanditGPS, for the online bandit feedback
environment. BanditGPS is engineered to accomplish three critical objectives: (1) generate small/informative
prediction sets; (2) proficiently detect OOD queries; and (3) maintain the recall for each normal class to
be above a threshold of 1 — -y, where v is a tolerance level prescribed by practitioners. The algorithmic
framework and operational flow of BanditGPS are outlined in Algorithm [I] Throughout the article, we use
[K] to denote the set {1,..., K} for convenience.

Consider a sequence of i.i.d. samples with inaccessible labels (X, Y;) € X x Y,t = 1,---,T generated
from the environment. Within this setting, we assume K established normal classes known from historical
data. Nonetheless, we anticipate the emergence of OOD instances over time, which may not fit within these
predefined classes and potentially signify novel, yet-to-be-identified classes.

To navigate this task, we leverage a neural network as our hypothesis class F. Specifically, we de-
fine a decision function vector fyy: € F, parameterized by weights W* at time ¢, where fyy:(X) :=

(e (X), -+, fR:(X))T € RE encapsulates the decision functions for each of the K normal classes. For any
given query X; revealed at time ¢, the prediction set is constructed as,

Intuitively speaking, class k is considered to be a plausible label for query X, if the query falls into the
acceptance region for class k defined by {x : f{fvt (x) > 0}. Note that the union of all the K many acceptance
regions may not cover the entire space X, and regions may overlap with each other.

Prediction Set Size Minimization: Based on the above def- 3] =0

inition of the prediction set, the prediction set size for the query . — [1+ul,

X is naturally quantified as |¢:(Xy)| := 2211 1{f%,: (X;) > 0}, ' [1-uly

which ranges from 0 to K. In particular, size 0 denotes that the 2.0

classifier believes X; is an OOD instance, indicating its distinc- 1]

tiveness from all normal classes. Conversely, size K signifies the Lol

maximal ambiguity associated with the query, suggesting that '

it blurs the lines across all normal classes. 0.5

Due to the discontinuous, and hence, computationally intractable 0'0’_2 T o 5t o5 o5 1o 1= 3%
0-1 loss 1{u > 0} involved in the definition of prediction set size, Ty T

we employ a surrogate hinge loss ¢1 (u) := [1+u]+ = max(0, 14+u)
as a proxy for the 0-1 loss (see Figure [1)). This substitution
enables a practical way to return a smaller (more informative) prediction set by minimizing the loss

Figure 1: Surrogate loss functions

K

K
DG (X)) = Y [+ fye (X)) (2)
k=1

k=1
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OOD Detection Maximization: A query instance X; is not flagged as OOD if and only if its prediction
set is non-empty, i.e., |¢+(X¢)| > 0. This is equivalent to the existence of at least one class k € [K] such that
f{ﬁ\,t (X¢) > 0, or equivalently, maxjex] f{fvt(Xt) > 0. Therefore, to enhance the OOD detection performance,
it is imperative to penalize the indicator function of the occurrence of this event, 1{maxyc(s] fry: (X:) = 0}.
Given the similar challenge imposed by the 0-1 loss as mentioned above, to effectively tackle the OOD
detection task, we instead minimize the following:

f1(max (X)) =1+ max Fove(X0)] - (3)

Recall Control for Normal Classes: By relating the definition of prediction set , the class-specific
recall is further expressed as P[Y; € ¢,(X,) | Vi =k] = P[f},.(X;) >0|Y, =k|. Thus, controlling the
class-specific normal class recall to the prescribed value at least 1 — v, that is,

Pfie(Xe) >0|Y, =k =E[L{f5e(X:) >0} | YV =k] >1—1, forke K]

is equivalent to E[1{Y; = k} - [1{f},.(X:) <0} —~]] <0, for k € [K] due to the Bayes theorem and
some algebra (see details in Appendix . This inequality can be viewed as a constraint in constrained
optimization problems. Equivalently, our objective function incorporates the left-hand side of this constraint
as additional regularization terms, that is,

E[1{Y; = k} - [L{fp:(X:) <0} —7]], for k € [K]. (4)

In the bandit feedback setting, the ground truth Y; and hence the quantities 1{Y; = k}, k € [K] are
unobservable since the learner has no direct access to the ground truth of the label Y; once receives the
query X;. Instead, it only knows whether its pulled arm A; based on a policy m; is correct or not, i.e., the
feedback 1{A; = Y;}. Particularly, if the feedback is 0, the learner has no idea which label is the true class.
To overcome this challenge, in practice, the ground truth 1{Y; = k} (the first indicator function in ) can
be replaced by an unbiased estimation conditional on (X, Y}),

_ HA =k} _

Ay g = k[ X) 1{A4; =Y}, (5)
due to the fact Er, [As | Xi, Y] = 1{Y; = k}, where m; governs the distribution of A, given X,. Different
from the K-arm policy, with arms from [K] reviewed in Section |2, we utilize an augmented policy with an
additional arm, namely 00D, corresponding to the case that the instance comes from the OOD class. The
definition of policy 7 is deferred to the next subsection.

To the same token, the intractable 0-1 loss 1{u < 0} in the second indicator function in () can be substituted
by the surrogate hinge loss [1 — u]; := max(0,1 — «). This amounts to replacing 1{u < 0} —~ in by

0 (u) := [1 —u]4 —~. Thus, instead of working with the loss function in (@), we can minimize the empirical
average of the following loss function in practice:
Btk ooy (Fiye (X)) = B [[L= Fhn (X)), =] (©)
Policy Design: In this article, our policy m; is constructed based on the scoring function fiy:(x) =
(fiye (@), -+, fvl\(,t (x))T associated with the normal classes. Specifically, the policy is defined as,
k . X
ik | X) = oDy (Xe)) ke [K],

exp(— max;e x| fiy: (Xe)) + S0 exp(fy (X))
exp(— maX;e (K] fi\;t (X)) A _
exp(— max;e (x| fiy: (Xe)) + S0 exp(fiy. (Xi))

(00D | X4) :

Note that mi(a | X:), a € {1,..., K,00D}, sum up to 1 and hence is a legitimate probability distribution for
A;. Under this policy, the probability of pulling arm k is proportional to the exponentiated score for class k,
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while the probability of pulling OOD is proportional to the exponentiated negative maximum score over all
normal classes. Hence, a small score across all normal classes indicates a strong likelihood of the query being
from the OOD class.

The Overall Objective Function: Finally, taking into consideration three goals, i.e., minimizing prediction
set size , enhancing OOD detection , and controlling class-specific recall @ for normal classes, the
unified risk function for each data instance that we aim to minimize is

K K
LX; W) = 2 3 G (fhe (X)) + (1 - N (mex ot (X)) + 32 MeeBeplay (i (Xr),  (7)
k=1 k=1
where the neural network fyy: is updated by the stochastic gradient descent (or its variants). Here A € [0, 1]
is a user-specified value to indicate the trade-off between prediction set size and OOD detection performance.
Note that we do not treat A as a tuning parameter and rather leave it to be specified by the user according
to their unique needs.

As for the parameter ); ;, an improperly c.hosen Algorithm 1 BanditGPS

At may lead to two cases: a Ay that is too

small might fail to control the recall for normal Require: Initialize weight matrices W' and Ay x, k € [K].

classes, while a A ; that is too large can cause Given A and learning rates 71, 2.

the empirical normal recall highly above the pre- fort=1,2,3,...,T do

requisite 1 — v and hence enlarge the prediction 2 Learner receives X; and returns a prediction set

sets and impair the OOD detection performance.

Additionall; an appropriate value of I)’\M can vary $u(Xi) = {k c[K]:f {j\/t (X:) > O}

across tasks, making it difficult to predefine an

optimal value. To address these limitations, we

employ the primal-dual algorithm to dynamically

opt-imize the valu.e of /\t,k. (see Equation .in .Al— { WL — Wt mVowL(Xy; Wt)

gorithm . Specifically, if the current prediction 5

is over control, i.e., o~ (fh:(X¢)) < 0, Equa- Asrk = [Ak +772At,k€2,~/(fwt(Xt))]+ (8)
5: end for

3:  Learner pulls an arm A; ~ 7, and computes Ay j
4:  Update parameters:

tion will adaptively lead to a smaller value of
the parameter A;41  in the next iteration. Such
adjustment helps potentially return smaller prediction sets. Similarly, when f5 ( f{fvt (X:)) > 0, Equation
will lead to a larger value of Ary; ; in the next iteration. This automatic updating rule frees us from the
burden of manually selecting the value of A¢11  with excessive effort.

4 Main Theorems

This section provides the convergence rate analysis concerning the regret associated with prediction set size
and OOD detection performance. Our analysis builds upon foundational work in over-parameterized neural
networks (Du et al., |2019; |Allen-Zhu et al., 2019; |Cao & Gu, 2019; 2020; |Chen et al., [2023)), i.e., sufficiently
wide neural networks.

Let the hypothesis class of ReLU neural networks with depth L and a constant width m be
Fi={fw R =RY| fn()=Wrop_1(Wr_1oL2(-- 01 (Wi(")) },

where W := (Vec(W;)T, -+ Vec(W)T)T denotes a concatenated long vector by vectorizing W €
R™XP 'W; € R™*™ for 2 <[ < L — 1, and W € REX™_ The ReLU activation functions o;,l € [L — 1]
are element-wisely applied on each layer. Additionally, we define the ball around the neural network’s
initialization as BOV!,w) := {W : |[W; — W}||s < w,l € [L]}. In this article, the Frobenius norm of a matrix
is denoted by || - |2 and this notation extends to tensors.

Consider a restricted hypothesis class that adheres to the empirical normal recall control within this ball
whose radius scales in the order of m~=1/2:

Ft= {fw €EF: 4% fj {Y; = k} - Lo (f (X)) <0,k € [K] and W € B(Wl,Rmfl/Q)},
t=1
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Figure 2: Updated A for normal class across three datasets when A =1

where R > 0 is a fixed constant. We define the loss function as £(fyy(X)) := & Zle O (X)) + (1 —
M)t (maxge(x) fry (X)) which consists of the loss on prediction set size and the loss on OOD detection; they
may be viewed as a negative reward and both are parts of the objective function £(X; W) in Equation .
In this context, regret is defined as the difference between the loss achieved by the algorithm and the least
loss that could have been achieved by the best possible action taken in every iteration. To derive the rate of
convergence for the regret, we use the following three assumptions.

Assumption 1. We assume the entries in W}, € [L — 1] are initialized with Gaussian distribution A/(0, 2)
and the entries in W1 are initialized with Gaussian distribution A/(0, %)

Assumption 2. The instance X; € R? ¢ € [T] is normalized to have a unit norm, i.e., || X2 = 1.
Assumption 3. 3 Cy,Ca > 0, s.t. for each k € [K],t € [T], App < Cx,Ar < Ca.
Remark 4. Assumption [T and Assumption [2] are standard assumptions in the regime of over-parameterized

neural networks. |Cao & Gul (2020) extends Assumption [2| to the one with bound norms.

The assumption of the bounded A; ; is empirically verified as in Figure [2|for the case of A = 1. It shows that
Atz < 6 holds for all ¢t and k across the three datasets we work with. The assumption of the boundness of
Ay i is not strong either because its upper bound is inversely related to the lower bound of m(k | X;) # 0
(see Equation ), which can be manually manipulated in practice.

Theorem 5. Let py, := P[Y; = k] be the prior probability for normal class k € [K]. The average recall for
any class k over all time for the prediction sets returned by Algorithm[1] is guaranteed:

7 Tnopi

T
Z Y € u(Xy) | YVi=k] > 1—

The above probability is taken over all the randomness during the learning process. If the learning rate
ny = O(T~%) with a € [0,1), Theorem [5| implies that, on average, the accumulative normal recall approaches
to the prescribed value 1 — v with rate O(T*~!). Note that the recall bound may be less meaningful in a
short-term regime. Intuitively, if p; is very small, it means that we may not collect sufficient samples for
class k within a finite time horizon, leading to potential failures in recall control. However, the denominator
in Theorem 5 includes T', compensating for this issue in the long run.

Theorem 6. Define an optimal learner with controlled normal recalls from the hypothesis class F as
P = argming, -+ % Zthl Lfw(Xy)). There exists an absolute constant k satisfying that, for any
constant R > 0, m > O(k~2R2L'?[log(m)]?), and the learning rate 1, = O(\/%m), with probability at least

— O(TL?) exp(—Q(mw?/3L)) over the randomness of the initialization W*, the regret is bounded as

- a 3R*/3, /log(m
Regret(T) = - U (X0) = § X 1w (X)) < 20 LK 4 20yl
t=

t=1
where the constant c* 1= (\f +1 =X+ VEKC\Ch)? —|— + \ﬁ A 4+ KC\Cha.

Theorem [6] shows that when the width of the neural network is sufficiently large, Algorithm [I] leads to the
regret convergence rate with the order O(T~'/2 4 m =16, /log(m)). Particularly, if the width further satisfies
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Figure 3: Comparison among methods based on accumulative performance.

m > O(T?), then the regret is close to the parametric rate O(T~'/?), which is similar to the convex online
learning. Similar convergence rate results were previously shown in |Allen-Zhu et al| (2019)); |Cao & Gul (2019);
|Chen et al| (2023)) despite different settings.

5 Experiments

Baselines: Due to the unique setting and task, BCCP (Wang & Qiao, 2024Db) represents the most aligned
approach to our context even though it lacks mechanisms for OOD detection. To establish a baseline for
comparison, we extend BCCP to also output an empty set, indicating OOD instances. Additionally, we
present the performance of our model under the full feedback scenario, where the model is trained based on
the labeled data, in order to show the performance in an ideal setting as a benchmark.

Set-up: We compare the methods by evaluating them on CIFAR10, CIFAR100, and SVHN datasets. For
CIFARI0, we set {Bird, Cat, Deer, Dog, Frog, Horse} as normal classes while all the remaining { Airplane, Car,
Ship, Truck} as the OOD class; for CIFAR100, we treat 10 coarser classes {Aquatic mammals, Flowers, Fruit
and vegetables, Natural outdoor scenes, Omnivores and herbivores, Medium-sized mammals, Invertebrates,
Reptiles, Small mammals, Trees} as normal classes, and the remaining 10 coarser classes as the entire OOD
class; for SVHN, we let Digits {1, 2, 4, 6, 7, 9} as the normal classes and the remaining Digits {0, 3, 5, 8} be
the OOD superclass.

We let all the experiments have the same desired recall 1 — v = 0.95 across datasets, utilizing ResNet
as the backbone architecture, Adam for optimization, learning rate n; = 10~* for network
updates, and 7y = 1a(t) = t~'/2 for optimizing \; x. To improve the computational efficiency, model updates
employ batch data with a size of 256 in each iteration, with about 6000 total iterations.

Metrics: For each iteration ¢t € [T'], we report several accumulative quantities (see definitions in Table :
Acum_OOD(t), Acum_ Normal_Min(¢), Acum_ Normal Max(¢) show the OOD detection performance and
the recall control on normal classes while Acum_ Card(¢), Acum_ Cond_ Card(¢) assess the prediction set
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Table 1: Displayed Metrics for Comparison

‘ Metric on the hold-out dataset

‘ Hdt_Normal Min(t) = minge(x) Hdt_recall(t, k)

Acum_ Normal Max(t) = maxyex] Acum_recall(t,k) | Hdt_Normal Max(t) = maxye (k) Hdt_recall(t, k)
Acum_OOD(t) = Acum_ recall(¢, OOD) ‘ Hdt  OOD(t) = Hdt_ recall(¢, OOD)

Accumulative metric

Acum_ Normal_Min(t) = minge[x) Acum_recall(t, k)

t
¢¢(X:)|-1{¥;00D}
Acum_ Cond_ Card(t) = 2 tZXigss
Zs:l inggs 1{Y; 200D}

: 60 (X))
Acum_Card(t) = Z%‘\B 3
s=1 s

Hdt Cond Card(t) — Zisy |90l 1{:200D}

T 1{¥;#00D}

Hdt_ Card(t) = %Z?:l | (X))

size. Additionally, we assess classifiers’ performance on a fixed holdout labeled dataset after each iteration. In
Table [T} Bs denotes the batch of data at iteration s, and n denotes the sample size of the holdout dataset, and

Acum__recall(t, k) Acum_recall(t, 00D)
— Zi:l Poxen, HYi =k &Y € 0u(X)} k € [K] — Zi:l Y x,en, HYi = 00D & |¢:(X;)| = 0}
7 22:1 inegs 1{Y; = OOD}

Zi:l iness 1{Y; =k}
Hdt_ recall(t, k) Hdt_ recall(¢t, OOD)
I LY =k &Y € 0u(X0) S, 1{Y; = 00D & |¢:(X,)| = 0}

= k€ [K] =
. n ) . n
Zi:l ]l{Yi = k} Zi:l ]l{Yi = OOD}
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Figure 4: Comparison among methods based on performance on the fixed holdout datasets.
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Particularly, the first two rows in Table [I] show the extreme cases of recall control on normal classes in each
iteration. The third row displays the OOD detection performance. In terms of prediction informativeness,
the fourth row reports the prediction set size exclusively on all normal classes while the last row presents the
prediction set size on all observations, including those from the OOD class.

Results: For a fair comparison with the BCCP where OOD detection is not particularly targeting, we first
set A = 1 in the risk function L(-,-) of BanditGPS, implying that the optimization of the OOD section
performance is not a priority either. The top panel in Figure [3| demonstrates that both BanditGPS and
BCCP effectively manage the accumulative class-specific normal recall, as illustrated by the colored dashed
curves showing the smallest recall over all normal classes, which approach 1 — v as iterations progress. On
the other hand, BanditGPS distinguishes itself from BCCP with superior OOD detection capabilities (solid
curves in the top panel) and smaller prediction sets (bottom panel). Further assessment on a holdout labeled
dataset (see Figure [4) reinforces BanditGPS’s enhanced performance over BCCP, showcasing its robust and
improved OOD detection and informative prediction set. With the full feedback information, metrics in
Figures [3] and [4] quickly improve as shown in green curves.

Trade-offs between Prediction Set Size and OOD Recall Driven by A: The parameter A affects the
trade-off between metrics on prediction set size and OOD recall. In this section, we study these two metrics
by varying the values of A, i.e., 0,0.25,0.5,0.75, and 1. As shown in Figures[f]and [6] the smaller the \ is, the
larger the prediction set will be, despite the improvement in the OOD recall.

CIFAR10 100 CIFAR100 SVHN
0.75
B
K 0.50
o
0.25
—— Acum_Normal_Max —— Acum_Normal_Max —— Acum_Normal_Max
0.00 0.00 0.00
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
100 |
0.75
g
> { 0.50
o 1 ——
0.25 :' —— Acum_OOD 0.25 —— Acum_OOD 0.25 —— Acum_0OD
| ---- Acum_Normal_Min ---- Acum_Normal_Min ---- Acum_Normal_Min
0.00 L 0.00 0.00
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
6 6
(0]
N
7] 5
D 4
@ 4
c
Re]
o2 3
8 —— Acum_Card —— Acum_Card SIIIzzoo-
Q’: ---- Acum_Cond_Card 4| ——-- Acum_Cond_Card === 2
0
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
t t t
A —1 —075 — 05 —025 —0

Figure 5: Trade-off among accumulative metrics when varying the value of .

6 Discussions

This work introduces a novel online set-valued prediction framework with out-of-distribution (OOD) detection
under bandit feedback. While we provide theoretical guarantees and empirical validation, we acknowledge
several modeling assumptions and algorithmic components that deserve further clarification and suggest
directions for future work.
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Figure 6: Trade-off among metrics for the fixed holdout dataset when varying the value of \.

First, the theoretical analysis in Theorem [f] relies on Assumption [3] which requires the boundedness of both
the importance-weighted estimator A; ; and the Lagrange multiplier A; . In practice, A; depends inversely
on the action sampling policy m(k | X;). To ensure A, ; remains bounded, a simple yet effective solution is
to clip the policy from below by a constant p, which guarantees Ay, < max{1/p,1/(1 — Kp)}. This design
consideration can be naturally incorporated into the algorithm to ensure numerical stability and theoretical
validity.

On the other hand, the multiplier A; ;, is dynamically updated to enforce recall constraints for normal classes.
While our method adopts a primal-dual approach, its precise theoretical bound is not given in this work. A
promising direction is to build upon frameworks from online constrained optimization (Yu et al.,|2017; [Yu &/
, which offer high-probability or expectation-based bounds for Lagrange multipliers under mild
conditions. We plan to incorporate these insights into future extensions of BanditGPS.

Lastly, our current formulation operates in a binary bandit feedback setting, where a single arm is pulled after
set-valued prediction. This separates the prediction step (generating a set) from the feedback step (observing
a label). An interesting future direction is to unify these steps within a combinatorial bandit framework,
where the predicted set itself is treated as the action, and partial or structured feedback is received over the
set. Such a generalization could enhance learning efficiency and better reflect real-world applications where
multiple predictions are jointly evaluated.

7 Conclusions

In the high-risk scenarios exacerbated by uncertainties from ambiguous instances and the emergence of new
classes in dynamic environments, we introduced BanditGPS, a novel set-valued classification method tailored
for online bandit feedback settings. BanditGPS navigates the uncertainties by offering a set of plausible
labels for ambiguous instances and an empty label set for an OOD observation.
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BanditGPS handles the challenge of inaccessible label information inherent in bandit feedback by utilizing an
estimation of the ground truth of class labels. Leveraging a primal-dual algorithm, BanditGPS dynamically
adjusts tuning parameters in response to its performance history, facilitating an adaptive and automatic
risk management mechanism. Furthermore, by enabling the weight between informative prediction and
OOD detection, BanditGPS empowers practitioners to tailor the system based on their specific operational
requirements. The theoretical and empirical validations of BanditGPS affirm its efficacy in managing the
challenges of providing informative predictions while accurately detecting OOD instances under the control
of class-specific normal recall.

There are limitations in this initial work that warrant further investigation and improvement. Beyond those
discussed in Section [ one promising direction is to integrate BanditGPS with alternative multi-armed
bandit strategies that offer theoretical performance guarantees, such as Thompson Sampling or the Upper
Confidence Bound algorithm, to further enhance its decision-making capabilities. Additionally, rather than
treating all abnormal inputs as belonging to a single super OOD class, adapting BanditGPS to support
class-incremental learning could enable more refined discovery and assimilation of newly emerging classes in
dynamic environments.
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A Appendix

A.1 Experiments Compute Resources

All experiments are conducted on an NVIDIA P100 GPU with CUDA 11.3. The empirical metrics presented
in all figures are computed and averaged over 4 runs, with the shaded regions representing the standard error.

A.2 Derive for Normal Recall Control

E [1{fl (X0) > 0} | Yy = k] > 1
E[l_]l{fwt(Xt)>0} VY= }SO
E [1{fjy:(X:) <0} =~ | Yi=k| <0

E (1Y =k} [ (X) <0} =a]] _

P[Y; = 4
E[1{Y; = k} - [L{ff (X)) <0} —]] <0

A.3 Proofs
Proof of Theorem[5: From the updating rule Equation , we have

Atk = P\t,k + 7I2At,k€2,v(f1’5vt (Xt))h_

> Mg+ 12l ilo~ (fre (X))
T

A C
=Y Arilon(fin (X)) < —Zmlk — g < Tﬂ*;’“ < 772
t=1

By taking the expectation for both sides of the last inequality, we have

- C
STE[Aklon (fy (X)) < =
t=1 T2
= ; C
> B [E[Awkla s (fye (X)) | {mstact, {(Xe, Yo) o<, W] < 77;
=1
t . C
= Y E[L{Yi =k} Loy (i (X)) < 77;
t=1 . O
= B[ (X)) YK < N
T o
;E []l{f{fvt(Xt) = O} - | o= k} = 2Pk

T
Cy
= Y P[f(X) <0]|Yi=k] <Ty+
=1 2Dk

where @ holds due to the (conditional) unbiased estimator A, ; . ) holds due to the Bayes theorem, and
. ) holds due to the substitution with the surrogate hinge loss as mentioned in @ Therefore, the last

inequality concludes
Ci
Tnapr

T
Z Vi€ 6u(Xy) | Vi=k] >1—~—

’% \
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Our derivation for Theorem [6] highly relies on some commonly used lemmas and propositions in the over-
parameterized neural network literature. We skip their proofs to avoid redundancy. We leave their details to
the main literature |Allen-Zhu et al.| (2019)); (Cao & Gu| (2019; |2020) for the reader’s interest.

Additionally, consider two sequences {an} and {bn}. We employ some asymptotic notations as follows:
an = O(by,) if limsup,,_, ., |$* n = O(b,) to indicate an additional logarithmic factor within O(-);
and a,, = Q(b,) if lim mfnﬁoo

an

>0

For a fixed instance X, the neural network can be re-written in the form of matrix products as below:
fw(X) =WrDy 1 Wi _1Dyp_o---Dy WDy 1Dy ;W X, (12)
We define hyj := Dy W;_1Dp_o---Dy1 W1 X,,1 € [L — 1], where

D, = Diag(l{(wlht,l1)1 >0}, H{(Wihej—1)m > 0})
Thus, the gradient can be written as

exh, ifl1=1

Vw, fin (X)) = L1 T 13
wifw(X1) <ht711eEWL< 11 mer>Du) ifle[L—1] (13)
r=Il+1

where e;, € R¥ is the column vector with value 1 in k-th entry and 0 otherwise. When W in Equation is
particularly set as the initialization W, the associated W, Dy ; in Equation will be denoted by W}, D},
accordingly.

Lemma 7. If K < O(ﬁ”)), with the probability at least 1—exp(—Q(mw?/3L1og(m))) over the randomness
of W1,1 € [L], for any perturbation matrices W/, 1 € [L] with ||[W||2 < w = O(L™), any diagonal matrices
DY, € [—3,3]’””“,[ € [L — 1] with at most O(mw?/3L) non-zero entries, we have

L

w3 L2\ /mlog(m)
H (Wi +W7)(Dg_; + D7) H WD, , SO( i )
l=a+1 l=a+1
Proof of Lemma [
L
H (W11+W;/)(Dtl,l—l +Dg,l 1 H WlDtl 1
l=a+1 l=a+1 2

Z WLDt L1 Wi b (W] + W) (Dg,a + D:E/,a)

- Z WLDtL 1 W11+1D W”(D%l 1t tl 1)(W1171+ 2L1)"'(D%,a+Dg,a)
l=a+1

2

<Z IWiD} - Wi, DY,

D, - 1PV (Wi + W) - (D, + D)

t=a Allen—Zhuet al.| (2019, Lemma 7.4(a)) Allen—Zhuet al.| (2019, Lemma 8.6(b))
+ Z IWo_y - Wi Dyll, || W7, [(Dii—y + DY) (Wiiy + WiLy) - (D, + D)

l=a+1
at Allen—Zhuet al.| (2019, Lemma 7.4(b)) Allen—Zhuet al.| (2019, Lemma 8.6(b))

<L~O( W) -0(\/Z)+L-O<\/?) w-OWL)
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where the structure of D, / is same as the one in [Allen-Zhu et al., (2019)). We direct the reader to the

corresponding literature for any interest. O

Lemma 8. (Cao & Gu, 2019, Lemma D.1) If w < O(L™%/?[log(m)]=3/?), then with probability at least
— O(TL) - exp(—Q(mw*3L)) over W, for all W, W € BOV',w),t € [T] and | € [L — 1],

ID¢; — Dyllo < O(mw?/3L).

We will use Lemmas [7] and [§] to prove the below Theorem [9

Theorem 9. Let BOV!,w) := {W : |[W, — W}||s < w,l € [L]} be an w-neighborhood of the initialization.
There exists an absolute constant k such that, with probability at least 1 — O(TL?) exp(—Q(mw?/3L)) over the
randomness of W', for all t € [T], and W, W' € BOV',w) with w < kL ~%[log(m)]~3/2, it holds uniformly

that 373
< O(w L mlog(m)).
VK

wa<xt> (X — (Vi fi (X0, — W)

2
Proof of Theorem[9: For W, W € BOW w) i={W: ||[W, - W}2 <w,l € [L]}, we have

fw(@) = F(@) = (V3 Fp (@), W = W)

=Wrhyr_1— WLilt,L—1 —(ht, 1, Wy, — WL Z WL( H Dt r >f)t,l(wl—1 - Wl—l)i"t,l—l
r=I[+1

=Wpr(hip 1 —hip 1) Z WL( H D,, W )f)t,l(wl—l - Wl—l)i"t,l—b
r=Il+1

Similar to Claim 11.2 in Allen-Zhu et al.| (2019), there exists D ; such that

-1, L-1
hir—1—her1= Z( II ®@u. + DQ,T)WT> (D + Dy ) ) (Wit = Wisi)hy 1,
=1 “r=Il+1

where diagonal matrices Dy ;,1 € [L — 1] has entries [—1, 1] such that [[Dj o < O(mw?3L). Therefore,

wat) — ) — (V5 f ), W — W)

2

L—1 L L—-1 L
Z( I Ww.(Di,-1+Dj, 1)>(W11—W11)ht,11—z< II WTDt,H)(WH—WH)ﬁtH

=1 “r=l+1 =1 “r=l+1 2
< max ]‘[ W, (D1 + D}, ) H W, D, Y IWist = Wisila - [[Bei—1l
r=l+1 r=l+1 2 =1
%)O(wl/SLQ mlog(m)) Wl = O<w4/3L3 mlog(m)),
VK VK

where (D) is due to

HWDtr 1+Dtr1 HWDtrl

r=i+1 r=l+1 2
L L
H W, (D, 1+ D}, ) H WD}, [T Ww.Diri - [[ WiD;,
r=l+1 r=l+1 2 r=l+1 r=l4+1 2
® 1/372
§O<w L mlog(m)>7
VK
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where (2) holds by using Lemma H This is because W, W € B(W!', w). By Lemma [8) we have ||]5t7,4,1 —
D}, 1l € O(muL) and [y 1 — D}, 4o < O(mew?/L). Hence [Dy -1 + D}, ; — D}, 4o <
D1 = Di,yllo+ D7,y llo < O(mw?/PL) for any r € [L —1]. 0

The below Proposition [I0]is directly derived based on Theorem [9] by utilizing the convexity and Lipchitzness
of a given function ¢. This proposition implies ¢ is near convex with respect to the neural network parameter
W, although the neural network is not convex.

Proposition 10. Let the £ : REX — R be a convex and c-Lipschitz function. There exists an absolute constant
r such that, with probability at least 1 — O(TL?) exp(—Q(mw?/3L)) over the randomness of W', for all
t € [T], and W, W' € BV, w) with w < kL=%[log(m)]~3/2, it holds uniformly that

(fw (X)) = L(fw (X)) < (Vwl(fw (X)), W = W) + O

<0w4/3L3\/ﬁl log(m) > .
K

Proof of Proposition [I0:
(v (X)) — L (X))
< (v (X)) T (fn(Xe) — P (X)) b/c £ is convex
= ' (fw (X)) T (Fw(X0) = Fvr (Xo) = (Vi (X)W = W)
(P (X)) (Y (X)W = W)
4/3713 1
() 4 (Tt (X)W = W), (14)
where the last inequality holds due to the Lipschitzness of £(-) and the usage of Theorem @ O

The below Theorem 1] shows the boundness for the gradient of the neural network with respect to the
parameters V.

Theorem 11. There exists an absolute constant k such that, with probability at least 1 —
O(TL?) exp(—Q(mw?/3L)) over the randomness of W', for all t € [T],1 € [L], and W € BON!,w) with
w < kL™%[log(m)] =3, it holds uniformly that ||[Vyy f(Xy)|l2 = O(K'/2w'/3L%% /mlog(m)) < O(VLKm).

Proof of Theorem[11]: This theorem is adapted from [Cao & Gul (2019, Lemma B.3). From Equation we
have

K K
IVw, fw(@)I5 = D IIVw. Av(@)3 =Y lexhi,1ll3 = O(K),

k=1 k=1
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and for [ € [L — 1],

L—1
Y F(@le = 3 o 1ekwL< II Dtrwr>Dt,l||2
k=1 r=I[+1
<Znhu iz |ekwL< I[ p.w )Dt,lnz
r=Il+1

IA
M= T
S

- H W, Dy 12

r=Il+1

E
I
—

L
<OE)-| ] WiDerll2

r=Il+1
L L L
<O(K)- [H II WD = IT WiDg, il + 1 1T WiD%,r_1||2]
r=l+1 r=l+1 r=l+1
w312 /mlog(m) mw2/3L10g(m)>
<OWK)-|O +0 —_— 15
o o g o .

= O(K1/2w1/3L2 mlog(m)) < O(WKm),

where holds due to Lemma 7| and Lemma 7.4(a) in [Allen-Zhu et al.| (2019), and the last equality holds
due to the upper bound of w. Consequently,

IV fw (Xi)|l2 = O<K1/2w1/3L5/2 mlog(m)) < O<v LKm). (16)
O

Proof of Theorem[f]: Note that the hinge loss ¢; is a convex 1-Lipschitz function. It is clear to see that £(u)
is convex with respect to u € R¥. To show its Lipschitzness, take u, @ € R¥. Thus,

[f(u) — (a)|
N K
= [ 00— a3+ (0= N g )~ s )|
31K
< [t - 4(@) |+ (1) s (s~ )
< 2wl + (1 - Vlu — a
SR 2 2
A
=(—=+1-N|u—u
(et 1=Vl il
implies £(+) is a function with Lipschitz constant \/% +1— ), and hence ||¢/(u)|2 < \/—% +1—A. Additionally,
assume Ay < C\, A < Ca for all t € [T,k € |K], thus £(X ;W) is Lipschitz mapping with respect to

Sw(X) with Lipschitz constant f +1 - A+ VEKC\Ca.
Recall the risk function then can be rewritten as

K

L (X)) + 3 Ak - Dvplan (Fi (X)),
k=1
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and the updating rule is

K
WtJrl Wt —m [Vwé(fwf (Xt + Z )\t kAt kVW£2 ’y(fwf (wt))]
k=1

For notation simplicity, substitute w in the first term of as \/% and let

L ((A/\FH— NRY3L3 10g(m)>.

MK
Therefore, for W* € BW?, \ﬁ) we have [|[W* — W1y < R‘\ﬁrl, and

T
L e () Z (fw= (1))

N[ =
Mﬂ

#
Il
_

(Vwl(Fwe (1)), W = W*) + v b/c of Proposition
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WE=WHHEWE W)+ 23N (N kA b Viwlay (e (@), W = W' + v

t=1 k=1

Nl =

- %12
(=Wt e = w5 = [P = )

T

[\
=
=
o~
Il
—

Mk Dt Vo lo s (Flie (2)), W =W + v

+
N =
M=
M=

t=1 k=1
2 2
m o, A 2 w L
< A (L= +1-A+VEKC\Cr)?-O(KLm) +
= 21;1(\5( 2Ca)® - O( ) 2T
T
1
+ 7 E C\Ca - |ty (VK - vatfwt(Xt) . VILw+v,
m )\ w?L
< 1= _ .
< 2(\F+1 A+ VEC\CA)? O(KLm)+2mT

+ C\Ch - C’)(\/KLw K213 5/2 mlog(m)) + v,

A 2 m LR2
< (—— — vV .
_(\/I—{Jrl A+ VEKC)\CA) O( KLm >+2771Tm
OO KL3*R*3,/log(m) (A/\/ +1 = N RY3L3\/log(m)
+ AUA m1/6 m1/6\/7 9

where the last inequality is due to telescoping sum, Proposition [I0} and the below fact

2

W= W2 = 02 ||V £( X, W)
2
2 2
< 7|V g0 (x) £, W] ’VWtfwt(Xt)
2 2
A
< (== +1-A+VKC\C 2-0<Kw2/3L5m10 m>, 17
=M (\/E A A) g( ) ( )

where holds due to the Lipschitzness of the function £(X;;W?) with respect to fyy:(X;) and the usage

of (16)).
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Thus, by sefting a constant ¢* = (ﬁ +1-A+VKC\CaA)? + % + % + KC\Ca and choosing m = ﬁv

we have

- d 3R4/3 . floe(m
;f;f(fvw(xt)) - %Zf(fw(xt» < c*o<“3§ LR ml/i g >>.

t=1
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