
Mitigating Hallucination Caused by Excessive Reliance on LLM within
MLLM instead of Images

Anonymous ACL submission

Abstract

In the domain of multimodal generation and001
comprehension, multimodal large language002
models (MLLMs), which integrate visual en-003
coders with large language models, have gar-004
nered significant success. However, solely re-005
lying on modal connection layers/modules to006
unify these models can lead to a neglect of007
image information, resulting in visual halluci-008
nations. This manifests as generated text that009
is independent of the image content, such as010
descriptions of objects not present within the011
image. To mitigate this issue, we introduce012
a fine-tuning approach: Adversarial Contrast013
Dual Fine-tuning (ACD for short). This ap-014
proach leverages the MLLM itself and employs015
the Fast Gradient Sign Method (FGSM) to gen-016
erate adversarial image samples. During fine-017
tuning, both the original and adversarial images018
are utilized to perform dual contrastive fine-019
tuning on the MLLM. The experimental results020
show that our method significantly reduces hal-021
lucinations without any external annotations.022

1 Introduction023

In the realm of Natural Language Processing, Large024

Language Models (LLMs) have emerged as fron-025

trunners (OpenAI, 2023a,b; Touvron et al., 2023),026

excelling across a range of tasks encompassing027

language understanding (Hendrycks et al., 2020),028

generation (Zhang et al., 2024), and reasoning (Ji029

et al., 2023; Yu et al., 2023a; Qiao et al., 2022). As030

a notable advancement of LLMs, the multimodal031

large language model (MLLM) combines LLMs032

with visual cues to demonstrate excellent perfor-033

mance in tasks related to multimodal understand-034

ing, reasoning, and interaction (Yang et al., 2023;035

Lu et al., 2023). However, MLLMs sometimes gen-036

erate hallucinations during the reasoning process,037

e.g., the generated content does not exist in the im-038

age or cannot accurately describe the image. This039

Question: 
What color is the 
person headwear?

Original Adversarial

MLLM

Blank

Figure 1: The impact of different visual inputs on the
distribution of token logits values in the model’s output.
The ground truth of “What color is the person head-
wear?” is “red”.

phenomenon severely impacts the reliability and 040

security of MLLMs. 041

In LLMs, the use of a pre-training mechanism 042

causes the model to overly rely on prior knowl- 043

edge obtained from the pre-training data, leading 044

to hallucinations. Similar challenges exist in mul- 045

timodal language models (MLLMs), such as over- 046

reliance on statistical bias (Gong et al., 2023; Goyal 047

et al., 2017) and unimodal priors (Niu et al., 2021; 048

Gupta et al., 2022). To mitigate hallucination, one 049

of the direct methods is to use a stronger LLM 050

(e.g., GPT-4) as an auxiliary model and then di- 051

rectly correct the inference content (Huang et al., 052

2023; Yin et al., 2023). Another approach is to mit- 053

igate hallucination during model decoding (Leng 054

et al., 2023; Zhu et al., 2024). Due to the current 055

MLLM being a combination of a visual pre-trained 056
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Figure 2: The illustration for ACD fine-tuning. Divided into two steps:(1) Visual Adversarial Samples Generation:
Based on the original dataset(left), use FGSM to generate adversarial visual samples(right), the complete dataset
including two types of visual information (original and adversarial); (2) ACD fine-tuning: Use original data to
perform the first update on the model LGen, and use new dataset to complete the ACD update LACD.

model and a pre-trained language model, recent057

research has attempted to enhance modality align-058

ment consistency and reduce hallucinations. Pref-059

erence fine-tuning techniques are the most com-060

mon method, such as direct preference optimiza-061

tion(DPO) (Zhao et al., 2023), or human feedback062

reinforcement learning (RLHF) (Sun et al., 2023).063

Zhou et al. (2024) proposed the Preference Opti-064

mization in MLLM with AI-Generated Disprefer-065

ences (POVID) framework based on DOP, which066

aims to exclusively generate dispreferred feedback067

data using AI models; Yu et al. (2023b) proposed068

RLHF-V, which enhances MLLM trustworthiness069

via behavior alignment from fine-grained correc-070

tional human feedback. However, they often focus071

on the hallucinations caused by modal component072

alignment, without considering the impact of lan-073

guage models in the backbone network, and rely074

on human feedback or external annotations when075

generating fine-tuning datasets.076

In this paper, we delve into how language mod-077

els in MLLM influence the generation of visual078

hallucinations. As shown in Figure 1, for a given079

scene-related question (i.e., “What color is the hu-080

man headwear?”), by inputting the original image,081

adversarial image, and blank image into the model,082

respectively, it can be observed that the distribution083

of logits varies across different tokens. Specifi-084

cally, due to the influence of prior knowledge of085

LLM and different input visual information, the086

tokens corresponding to the maximum logits may087

vary. This suggests that incomplete or incorrect088

image information in MLLMs acts like perturbed089

images, indicating that the source of the hallucina-090

tion still comes from the influence of the LLM’s091

prior knowledge. 092

Inspired by this, we propose a novel method 093

called Adversarial Contrastive Dual Fine-Tuning 094

(ACD). Based on the mechanism of hallucination 095

generation in MLLMs, ACD fine-tuning consists of 096

two primary steps: first, using FGSM to generate 097

adversarial visual samples; second, calculate the 098

contrastive distribution between the original and 099

the adversarial samples and construct a new ACD 100

loss function and fine-tune the model. 101

Our main contributions are summarized as fol- 102

lows: (1) We propose Adversarial Contrastive Dual 103

(ACD) fine-tuning, a new method that combines 104

adversarial and contrastive techniques to mitigate 105

hallucination in MLLMs (Sec.2). (2) We con- 106

ducted hallucination and comprehensive experi- 107

ments to demonstrate the effectiveness of the ACD 108

fine-tuning method in mitigating model hallucina- 109

tions while retaining the comprehensive ability of 110

MLLM (Sec.4.1). 111

2 Method 112

As shown in Figure 2, we propose the Adversarial 113

Contrastive Dual fine-tuning method (ACD) mainly 114

includes two steps: (1) adversarial sample genera- 115

tion, where we use FGSM (Goodfellow et al., 2014) 116

to generate visual adversarial samples. (2) The 117

ACD fine-tuning utilizes original and adversarial 118

data to construct ACD fine-tuning data pairs and 119

calculate the contrastive distribution between pairs 120

to construct a new loss function – ACD loss. 121

2.1 Adversarial Samples Generation 122

From the previous analysis, it can be concluded 123

that using adversarial samples with small perturba- 124
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MODEL Hallucination Benchmark Comprehensive Benchmark

POPE MMHal CHAIRs↓ CHAIRi↓ MMbench MM-Vet GQA

InstructBLIP 77.83 2.10 40.00 8.00 36.00 26.20 49.20
Qwen-VL-Chat 87.07 2.89 48.20 9.10 60.60 41.20 57.50
mPLUG-Owl2 86.20 2.17 54.40 12.00 64.50 36.20 56.10
LLaVA-1.5 85.90 2.42 66.80 12.70 64.30 30.50 62.00

RLHF-V 86.20 2.59 44.60 7.90 63.60 30.90 -
POVID 86.90 2.69 31.80 5.40 64.90 31.80 -

ACD 88.47 2.47 39.80 5.90 71.15 30.60 61.00

Table 1: Compare the performance of the ACD fine-tuning model with other state-of-the-art models and fine-tuning
methods for hallucinations. Evaluate their performance on hallucination and comprehension benchmarks. We bold
the best result and underline the second-best result.

tions stimulates LLMs to generate hallucinations125

based on prior knowledge. Therefore, we first need126

to construct visual adversarial samples. To cre-127

ate these samples from MLLMs, we adopted the128

FGSM, which is related to the model gradient.129

Given the visual input v, use FGSM to generate130

adversarial visual input v′, where θ represents the131

hyper-parameters of MLLM, and ϵ represents the132

disturbance level of FGSM. A smaller ϵ value was133

used to minimize the perturbation.134

v′ = v + ϵ · sign (∇vM(θ)) (1)135

After generating the adversarial samples, we com-136

bine the input text x and output text y, representing137

each dataset item as < v, v′, x, y >.138

2.2 Adversarial Contrastive Dual Fine-tune139

Adversarial Contrastive Dual fine-tuning uses ad-140

versarial and contrastive methods to fine-tune the141

model. Our method merges the original data with142

adversarial data and performs two rounds of fine-143

tuning. The original data is used for the first update144

to prevent the model from forgetting past knowl-145

edge and generating new hallucinations:146

LGen = −
∑N

i=1 yi log p(y
′
i|x, v) (2)147

The second update is ACD fine-tuning. Specifically,148

given a text query x and visual input, two distribu-149

tions are generated: one conditioned on the original150

visual input v and the other on the adversarial visual151

input v′. The difference between these distributions152

yields a contrast distribution C(v, v′, x) between153

the two visual inputs:154

C(v, v′, x) = (1 + δ) · logitsθ(y|(x, v)) 155

− δ · logitsθ(y|(x, v′)) (3) 156

Here, δ controls the significance of the adversarial 157

samples during the decoding process of the LLM. 158

A smaller δ value indicates a weaker influence of 159

the adversarial samples on the LLM. Then, a new 160

contrastive probability distribution C(v, v′, x) is 161

computed by leveraging the difference between the 162

two initially obtained distributions: 163

p(C(v, v′, x)i) =
exp(C(v, v′, x)i)∑N
j=1 exp(C(v, v′, x)j)

(4) 164

Finally, the ACD loss is obtained by calculating the 165

cross-entropy between the adversarial contrastive 166

probability distribution and the ground truth y: 167

LACD = −
∑N

i=1 yi log(p(C(v, v′, x)i)) (5) 168

3 Evaluation Metrics 169

Visual Hallucination Benchmark To evaluate ob- 170

ject hallucinations, we used commonly adopted 171

benchmarks: POPE (Li et al., 2023) and CHAIR 172

(Rohrbach et al., 2018).Here, POPE uses a set of 173

binary classification tasks to prompt MLLM with 174

simple "yes" or "no" questions about the existence 175

of certain objects in the image. CHAIR, includ- 176

ing CHAIRs and CHAIRi, compares the objects 177

mentioned in the title with those appearing in the 178

image. To evaluate the degree of hallucination and 179

informative of the model’s generated content, we 180

evaluate on MMHal (Sun et al., 2023), using GPT-4 181

for evaluation. 182
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Comprehensive Benchmark To demonstrate183

that our method can enhance the model’s compre-184

hensive ability while mitigating hallucinations, we185

evaluated the model using MMbench (Liu et al.,186

2023b), MM-Vet (Yu et al., 2023c), and GQA (Hud-187

son and Manning, 2019). Here, MMbench evalu-188

ates the model’s capabilities in detail across 20189

dimensions; MM-Vet utilizes GPT-4 to assess the190

model based on six core vision-related functions191

(e.g., recognition, OCR); GQA evaluates the mod-192

els’ real-world visual reasoning abilities.193

4 Experiment194

Dataset We use FGSM (Goodfellow et al., 2014) to195

construct adversarial samples for fine-tuning based196

on the LLaVA Instruct-150K dataset1 (Liu et al.,197

2024), which across various task types including198

image captioning, simple VQA, and complex logi-199

cal reasoning.200

Baseline We compare our model with state-of-201

the-art baselines. (1) General baselines: Instruct-202

BLIP (Dai et al., 2024), QwenVL-Chat (Bai et al.,203

2023), mPLUG-Owl2 (Ye et al., 2023) and LLaVA-204

1.5 (Liu et al., 2023a). (2) Different fine-tuning205

methods for LLaVA-1.5(7B): RLHF-V (Yu et al.,206

2023b) and POVID (Zhou et al., 2024), which lever-207

age human feedback and external data annotation,208

respectively.209

4.1 Main results210

We use LLaVa-1.5 (7B)2 as the backbone model,211

with a hyper-parameter ϵ of 1e-5. During the ACD212

fine-tuning process, we use a warmup learning rate213

of 1e-7 and learning rate of 1e-5. This fine-tuning214

process requires only one A100 80G GPU.215

The main experimental results are shown in Ta-216

ble 13: After ACD fine-tuning, the model achieved217

comparable results to the current state-of-the-art,218

surpassing it with 71.15% on the MMbench and219

88.47% on the POPE. In addition, according to220

CHAIR, it significantly reduces object hallucina-221

tions, with CHAIRs of 39.8% and CHAIRi of222

5.90%.223

Compared to RLHF-V and POVID which rely on224

human feedback or AI data annotation, our method225

performs comparably across multiple benchmarks226

1https://huggingface.co/datasets/liuhaotian/
LLaVA-Instruct-150K

2https://huggingface.co/liuhaotian/llava-v1.
5-7b/tree/main

3The results related to GPT-4 may vary due to different
versions.
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Figure 3: The impact of different ϵ values on scene
independence accuracy, hallucination accuracy, error
rate, and overall accuracy during the ACD fine-tuning.

and is more effective at reducing object hallucina- 227

tion on POPE and CHAIR benchmarks. 228

4.2 Analysis results 229

To analyze the impact of ϵ value, We examined the 230

effects of ACD fine-tuning from four aspects: (1) 231

Scene-independent accuracy: reveals the model’s 232

robustness in understanding scenes; higher ϵ val- 233

ues may introduce more significant perturbations. 234

(2) Hallucination accuracy: measures whether the 235

model’s answers are consistent and correct with or 236

without visual information. (3) Error rate: refers to 237

the model’s inconsistent and incorrect answers with 238

or without visual information. (4) Overall accuracy: 239

evaluates the model’s general performance. 240

Figure 3 shows that the ϵ value is not directly 241

proportional to the experimental results, and an 242

optimal ϵ value exists4. Although the overall accu- 243

racy difference is minor between ϵ values of 1e-5 244

and 1e-7, when ϵ is 1e-5, scene-independent accu- 245

racy (22.06%) is highest, hallucination accuracy 246

(9.18%) and error rate (27.28%) are lowest, and 247

overall accuracy (63.55%) is highest. 248

5 Conclusion 249

In this work, we introduce a new method called 250

Adversarial Contrastive Dual fine-tuning (ACD). 251

First, we use MLLM and the Fast Gradient Sym- 252

bolic Method (FGSM) to generate adversarial vi- 253

sual samples, building the ACD fine-tuning dataset. 254

Then, by calculating the contrastive distribution be- 255

tween the original and adversarial samples, we con- 256

struct the ACD loss function to fine-tune the model. 257

Experimental results demonstrate that without any 258

external annotations, ACD effectively reduces hal- 259

lucinations without compromising the model’s un- 260

derstanding ability. 261

4The model used in the experiment is Instructblip, and the
fine-tuning dataset is VQAv2

4

https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K
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Limitation262

Although our work explores LLM hallucinations263

from a visual perspective, it has some limitations.264

We only focus on the impact of visual information265

on MLLM hallucinations and do not consider the266

influence of inputs from other modalities, such as267

text. And despite our method’s significant improve-268

ments over the backbone model, a gap remains269

compared to other fine-tuning methods that use su-270

pervised learning or external data annotation. In271

the future, we plan to evaluate our method’s per-272

formance using more MLLMs as backbones and273

further explore LLM hallucinations from a multi-274

modal perspective.275
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