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Abstract

In the domain of multimodal generation and
comprehension, multimodal large language
models (MLLMs), which integrate visual en-
coders with large language models, have gar-
nered significant success. However, solely re-
lying on modal connection layers/modules to
unify these models can lead to a neglect of
image information, resulting in visual halluci-
nations. This manifests as generated text that
is independent of the image content, such as
descriptions of objects not present within the
image. To mitigate this issue, we introduce
a fine-tuning approach: Adversarial Contrast
Dual Fine-tuning (ACD for short). This ap-
proach leverages the MLLM itself and employs
the Fast Gradient Sign Method (FGSM) to gen-
erate adversarial image samples. During fine-
tuning, both the original and adversarial images
are utilized to perform dual contrastive fine-
tuning on the MLLM. The experimental results
show that our method significantly reduces hal-
lucinations without any external annotations.

1 Introduction

In the realm of Natural Language Processing, Large
Language Models (LLMs) have emerged as fron-
trunners (OpenAl, 2023a,b; Touvron et al., 2023),
excelling across a range of tasks encompassing
language understanding (Hendrycks et al., 2020),
generation (Zhang et al., 2024), and reasoning (Ji
et al., 2023; Yu et al., 2023a; Qiao et al., 2022). As
a notable advancement of LLMs, the multimodal
large language model (MLLM) combines LLMs
with visual cues to demonstrate excellent perfor-
mance in tasks related to multimodal understand-
ing, reasoning, and interaction (Yang et al., 2023;
Lu et al., 2023). However, MLLMs sometimes gen-
erate hallucinations during the reasoning process,
e.g., the generated content does not exist in the im-
age or cannot accurately describe the image. This
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Figure 1: The impact of different visual inputs on the
distribution of token logits values in the model’s output.
The ground truth of “What color is the person head-
wear?” is “red”.

phenomenon severely impacts the reliability and
security of MLLMs.

In LLMs, the use of a pre-training mechanism
causes the model to overly rely on prior knowl-
edge obtained from the pre-training data, leading
to hallucinations. Similar challenges exist in mul-
timodal language models (MLLMs), such as over-
reliance on statistical bias (Gong et al., 2023; Goyal
et al., 2017) and unimodal priors (Niu et al., 2021;
Gupta et al., 2022). To mitigate hallucination, one
of the direct methods is to use a stronger LLM
(e.g., GPT-4) as an auxiliary model and then di-
rectly correct the inference content (Huang et al.,
2023; Yin et al., 2023). Another approach is to mit-
igate hallucination during model decoding (Leng
et al., 2023; Zhu et al., 2024). Due to the current
MLLM being a combination of a visual pre-trained
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Figure 2: The illustration for ACD fine-tuning. Divided into two steps:(1) Visual Adversarial Samples Generation:
Based on the original dataset(left), use FGSM to generate adversarial visual samples(right), the complete dataset

including two types of visual information (

and

); (2) ACD fine-tuning: Use original data to

perform the first update on the model L., and use new dataset to complete the ACD update £ ¢ p.

model and a pre-trained language model, recent
research has attempted to enhance modality align-
ment consistency and reduce hallucinations. Pref-
erence fine-tuning techniques are the most com-
mon method, such as direct preference optimiza-
tion(DPO) (Zhao et al., 2023), or human feedback
reinforcement learning (RLHF) (Sun et al., 2023).
Zhou et al. (2024) proposed the Preference Opti-
mization in MLLM with Al-Generated Disprefer-
ences (POVID) framework based on DOP, which
aims to exclusively generate dispreferred feedback
data using Al models; Yu et al. (2023b) proposed
RLHF-V, which enhances MLLM trustworthiness
via behavior alignment from fine-grained correc-
tional human feedback. However, they often focus
on the hallucinations caused by modal component
alignment, without considering the impact of lan-
guage models in the backbone network, and rely
on human feedback or external annotations when
generating fine-tuning datasets.

In this paper, we delve into how language mod-
els in MLLM influence the generation of visual
hallucinations. As shown in Figure 1, for a given
scene-related question (i.e., “What color is the hu-
man headwear?”), by inputting the original image,
adversarial image, and blank image into the model,
respectively, it can be observed that the distribution
of logits varies across different tokens. Specifi-
cally, due to the influence of prior knowledge of
LLM and different input visual information, the
tokens corresponding to the maximum logits may
vary. This suggests that incomplete or incorrect
image information in MLLMs acts like perturbed
images, indicating that the source of the hallucina-
tion still comes from the influence of the LLM’s

prior knowledge.

Inspired by this, we propose a novel method
called Adversarial Contrastive Dual Fine-Tuning
(ACD). Based on the mechanism of hallucination
generation in MLLMs, ACD fine-tuning consists of
two primary steps: first, using FGSM to generate
adversarial visual samples; second, calculate the
contrastive distribution between the original and
the adversarial samples and construct a new ACD
loss function and fine-tune the model.

Our main contributions are summarized as fol-
lows: (1) We propose Adversarial Contrastive Dual
(ACD) fine-tuning, a new method that combines
adversarial and contrastive techniques to mitigate
hallucination in MLLMs (Sec.2). (2) We con-
ducted hallucination and comprehensive experi-
ments to demonstrate the effectiveness of the ACD
fine-tuning method in mitigating model hallucina-
tions while retaining the comprehensive ability of
MLLM (Sec.4.1).

2 Method

As shown in Figure 2, we propose the Adversarial
Contrastive Dual fine-tuning method (ACD) mainly
includes two steps: (1) adversarial sample genera-
tion, where we use FGSM (Goodfellow et al., 2014)
to generate visual adversarial samples. (2) The
ACD fine-tuning utilizes original and adversarial
data to construct ACD fine-tuning data pairs and
calculate the contrastive distribution between pairs
to construct a new loss function — ACD loss.

2.1 Adversarial Samples Generation

From the previous analysis, it can be concluded
that using adversarial samples with small perturba-



MODEL ‘

Hallucination Benchmark

‘ Comprehensive Benchmark

‘ POPE MMHal CHAIRs| CHAIRi] ‘ MMbench MM-Vet GQA
InstructBLIP 77.83 2.10 40.00 8.00 36.00 2620  49.20
Qwen-VL-Chat | 87.07 2.89 48.20 9.10 60.60 41.20 5750
mPLUG-Owl2 | 86.20 2.17 54.40 12.00 64.50 36.20  56.10
LLaVA-1.5 85.90 242 66.80 12.70 64.30 30.50  62.00
RLHF-V 86.20 2.59 44.60 7.90 63.60 30.90 -
POVID 86.90 2.69 31.80 5.40 64.90 31.80 -
ACD 88.47 247 39.80 5.90 71.15 30.60  61.00

Table 1: Compare the performance of the ACD fine-tuning model with other state-of-the-art models and fine-tuning
methods for hallucinations. Evaluate their performance on hallucination and comprehension benchmarks. We bold

the best result and underline the second-best result.

tions stimulates LLMs to generate hallucinations
based on prior knowledge. Therefore, we first need
to construct visual adversarial samples. To cre-
ate these samples from MLLMs, we adopted the
FGSM, which is related to the model gradient.

Given the visual input v, use FGSM to generate
adversarial visual input v/, where 6 represents the
hyper-parameters of MLLM, and ¢ represents the
disturbance level of FGSM. A smaller € value was
used to minimize the perturbation.

v = v+ e sign (V,M(0)) (1)

After generating the adversarial samples, we com-
bine the input text  and output text y, representing
each dataset item as < v,v’, z,y >.

2.2 Adversarial Contrastive Dual Fine-tune

Adversarial Contrastive Dual fine-tuning uses ad-
versarial and contrastive methods to fine-tune the
model. Our method merges the original data with
adversarial data and performs two rounds of fine-
tuning. The original data is used for the first update
to prevent the model from forgetting past knowl-
edge and generating new hallucinations:

Lgen =~ yi log p(y}|z, v) (2)

The second update is ACD fine-tuning. Specifically,
given a text query x and visual input, two distribu-
tions are generated: one conditioned on the original
visual input v and the other on the adversarial visual
input v’. The difference between these distributions
yields a contrast distribution C'(v, v, z) between
the two visual inputs:

C(v,0', ) = (14 6) - logitsy (y|(z, v))
— 6 - logits(y[(x,v))  (3)

Here, § controls the significance of the adversarial
samples during the decoding process of the LL.M.
A smaller § value indicates a weaker influence of
the adversarial samples on the LLM. Then, a new
contrastive probability distribution C'(v,v’, x) is
computed by leveraging the difference between the
two initially obtained distributions:

exp(C(v, v, );)
S exp(Clo, o, 2))

Finally, the ACD loss is obtained by calculating the
cross-entropy between the adversarial contrastive
probability distribution and the ground truth y:

p(C(v, v, x);) =

“)

Lacp =~ yilog(p(C(v,v',2);))  (5)
3 Evaluation Metrics

Visual Hallucination Benchmark To evaluate ob-
ject hallucinations, we used commonly adopted
benchmarks: POPE (Li et al., 2023) and CHAIR
(Rohrbach et al., 2018).Here, POPE uses a set of
binary classification tasks to prompt MLLM with
simple "yes" or "no" questions about the existence
of certain objects in the image. CHAIR, includ-
ing CHAIRs and CHAIRI, compares the objects
mentioned in the title with those appearing in the
image. To evaluate the degree of hallucination and
informative of the model’s generated content, we
evaluate on MMHal (Sun et al., 2023), using GPT-4
for evaluation.



Comprehensive Benchmark To demonstrate
that our method can enhance the model’s compre-
hensive ability while mitigating hallucinations, we
evaluated the model using MMbench (Liu et al.,
2023b), MM-Vet (Yu et al., 2023c), and GQA (Hud-
son and Manning, 2019). Here, MMbench evalu-
ates the model’s capabilities in detail across 20
dimensions; MM-Vet utilizes GPT-4 to assess the
model based on six core vision-related functions
(e.g., recognition, OCR); GQA evaluates the mod-
els’ real-world visual reasoning abilities.

4 Experiment

Dataset We use FGSM (Goodfellow et al., 2014) to
construct adversarial samples for fine-tuning based
on the LLaVA Instruct-150K dataset' (Liu et al.,
2024), which across various task types including
image captioning, simple VQA, and complex logi-
cal reasoning.

Baseline We compare our model with state-of-
the-art baselines. (1) General baselines: Instruct-
BLIP (Dai et al., 2024), QwenVL-Chat (Bai et al.,
2023), mPLUG-OwI2 (Ye et al., 2023) and LLaVA-
1.5 (Liu et al., 2023a). (2) Different fine-tuning
methods for LLaVA-1.5(7B): RLHF-V (Yu et al.,
2023b) and POVID (Zhou et al., 2024), which lever-
age human feedback and external data annotation,
respectively.

4.1 Main results

We use LLaVa-1.5 (7B)? as the backbone model,
with a hyper-parameter € of 1e-5. During the ACD
fine-tuning process, we use a warmup learning rate
of le-7 and learning rate of 1e-5. This fine-tuning
process requires only one A100 80G GPU.

The main experimental results are shown in Ta-
ble 13: After ACD fine-tuning, the model achieved
comparable results to the current state-of-the-art,
surpassing it with 71.15% on the MMbench and
88.47% on the POPE. In addition, according to
CHAIR, it significantly reduces object hallucina-
tions, with CHAIRs of 39.8% and CHAIRi of
5.90%.

Compared to RLHF-V and POVID which rely on
human feedback or Al data annotation, our method
performs comparably across multiple benchmarks

"https://huggingface.co/datasets/liuhaotian/
LLaVA-Instruct-150K

2https://hugging1°ace.co/liuhao’cian/llava—v1 .
5-7b/tree/main

3The results related to GPT-4 may vary due to different
versions.
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Figure 3: The impact of different ¢ values on scene
independence accuracy, hallucination accuracy, error
rate, and overall accuracy during the ACD fine-tuning.

and is more effective at reducing object hallucina-
tion on POPE and CHAIR benchmarks.

4.2 Analysis results

To analyze the impact of € value, We examined the
effects of ACD fine-tuning from four aspects: (1)
Scene-independent accuracy: reveals the model’s
robustness in understanding scenes; higher € val-
ues may introduce more significant perturbations.
(2) Hallucination accuracy: measures whether the
model’s answers are consistent and correct with or
without visual information. (3) Error rate: refers to
the model’s inconsistent and incorrect answers with
or without visual information. (4) Overall accuracy:
evaluates the model’s general performance.

Figure 3 shows that the e value is not directly
proportional to the experimental results, and an
optimal € value exists*. Although the overall accu-
racy difference is minor between e values of 1e-5
and le-7, when € is le-5, scene-independent accu-
racy (22.06%) is highest, hallucination accuracy
(9.18%) and error rate (27.28%) are lowest, and
overall accuracy (63.55%) is highest.

5 Conclusion

In this work, we introduce a new method called
Adversarial Contrastive Dual fine-tuning (ACD).
First, we use MLLM and the Fast Gradient Sym-
bolic Method (FGSM) to generate adversarial vi-
sual samples, building the ACD fine-tuning dataset.
Then, by calculating the contrastive distribution be-
tween the original and adversarial samples, we con-
struct the ACD loss function to fine-tune the model.
Experimental results demonstrate that without any
external annotations, ACD effectively reduces hal-
lucinations without compromising the model’s un-
derstanding ability.

*The model used in the experiment is Instructblip, and the
fine-tuning dataset is VQAv2
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Limitation

Although our work explores LLM hallucinations
from a visual perspective, it has some limitations.
We only focus on the impact of visual information
on MLLM hallucinations and do not consider the
influence of inputs from other modalities, such as
text. And despite our method’s significant improve-
ments over the backbone model, a gap remains
compared to other fine-tuning methods that use su-
pervised learning or external data annotation. In
the future, we plan to evaluate our method’s per-
formance using more MLLMs as backbones and
further explore LLLM hallucinations from a multi-
modal perspective.
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