
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS FINE-GRAINED SAFETY EVALUATION OF
LARGE REASONING LANGUAGE MODELS IN TASK
PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Language Models (LRLMs) show strong potential in robotic
task planning, but their reasoning processes remain unreliable: they may violate
safety constraints, reducing the likelihood of producing correct plans, or show in-
consistencies between the reasoning process and final results, which undermines
interpretability and user trust. Existing evaluations of LRLMs rely mainly on
outcome-based metrics, such as task success rate and token efficiency, which fail
to capture these critical reasoning properties. This gap is especially concerning in
safety-critical planning domains, where verifying the correctness of reasoning is
essential. To address this issue, we propose a fine-grained safety evaluation frame-
work that systematically analyzes the reasoning processes of LRLMs in task plan-
ning problems. Our method segments reasoning into chunks, summarizes each
chunk into explicit planning steps, and verifies them against safety constraints
using an external verifier, while applying rollback techniques to prevent bias in
subsequent reasoning. Using a dataset of Planning Domain Definition Language
(PDDL)-based problems, we conduct extensive experiments on various LLMs and
LRLMs. The experimental results reveal the inconsistency between the reasoning
process and the final output of LRLMs, as well as their limitations in detecting and
correcting safety violation errors in their own reasoning process. These findings
point out directions for future improvements.

1 INTRODUCTION

Generating coherent sequences of executable actions for robotic task planning has long been en-
visioned as a key capability of Large Language Models (LLMs). Unlike traditional planners that
rely on search-based algorithms (Sotirchos & Ajanovic, 2024; Karur et al., 2021; Baier et al., 2009;
Zhu & Givan, 2005) or mathematical optimization techniques (Zhao et al., 2024; Dong et al., 2023;
Janner et al., 2021; Kelly, 2017), LLM-based approaches offer greater flexibility for complex, dy-
namic, and open-ended tasks, as they leverage strong reasoning and natural language understanding
to interpret high-level instructions and adapt plans to changing contexts or user feedback. Building
on this foundation, the emergence of Large Reasoning Language Models (LRLMs), such as GPT-
o1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025), reflects a growing focus on enhancing rea-
soning capabilities, as these models are designed to produce structured multi-hop chains of thought
with intermediate reasoning steps that ensure logical consistency, rather than merely predicting the
next token based on surface-level patterns. Taking advantage of these reasoning capabilities, recent
studies have shown that LRLMs achieve substantial performance gains over conventional LLMs on
safety-critical domains, such as task planning.

Despite their promising reasoning abilities, LRLMs often exhibit reasoning processes whose safety
cannot be guaranteed, which fundamentally limits their reliability in robotic task planning. In par-
ticular, the reasoning process may break important safety constraints in the planning task. Such
violations can make intermediate steps invalid and greatly lower the chance of producing correct
and safe final plans, which leads to a lower overall task success rate. Another common issue is the
inconsistency between the reasoning process and the final results: LRLMs may sometimes produce
correct plans while using unsafe reasoning process, which means the plans are not supported by
reliable reasoning. This inconsistency also reduces interpretability and transparency. When some

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

reasoning chunks are wrong but the final plan looks correct, users cannot use the reasoning to check
safety or find errors, which makes the system harder to trust. This lack of alignment between rea-
soning and results lowers user confidence in using LRLM-based planning systems in safety-critical
settings. Moreover, it is also important to consider whether LRLMs can detect and correct their
own earlier safety violations during the reasoning process. This self-detection and self-correction
ability could, in principle, help enhance the safety of LRLM-driven systems, but its presence and
effectiveness in current LRLMs remain unclear. Evaluating this capability is therefore crucial for
understanding the reliability of their reasoning behavior.

However, current evaluations of LRLMs in the context of the task planning domain largely rely on
metrics that were originally designed for LLMs, such as task success rate and token efficiency. These
metrics (outcome-level) fail to capture the unique reasoning capabilities introduced by LRLMs and
are also unable to assess the safety of the reasoning process. Some efforts in other domains that at-
tempt to assess reasoning process mainly focus on semantic consistency, logicality, informativeness,
and fluency, etc. (Golovneva et al., 2022; Opitz & Frank, 2020; Creswell et al., 2022; Leiter et al.,
2022), yet these criteria (token-level) fall short in safety-critical contexts. To address this problem, it
is necessary to develop comprehensive evaluation frameworks for assessing the safety of LRLMs in
the task planning domain, with a particular focus on their reasoning process. The evaluation should
cover not only correctness and consistency, but also their ability to perform self-correction during
reasoning. Such fine-grained chunk-level safety evaluations would provide a foundation for deploy-
ing LRLMs as the brain of safety-critical robotic systems, guiding future efforts toward improving
both their safety and task success rates.

A key challenge lies in the fact that these reasoning processes are expressed in natural language,
which is often verbose, unstructured, and inherently ambiguous. Unlike formal logic representa-
tions, natural language reasoning steps cannot be directly verified against predefined safety speci-
fications or logical constraints using existing automated verifiers, making systematic evaluation of
their correctness and safety particularly difficult. A second challenge arises when moving from local
evaluation of reasoning chunks to process-level evaluation. The reasoning process can be divided
into multiple chunks, each containing a sequence of action steps. Even if the safety of individual
chunks can be assessed, it is still unclear how to aggregate these results to evaluate the overall rea-
soning process. This requires new ways of analyzing how early safety violations influence later rea-
soning, whether the model is able to repair its own mistakes, and whether different chunks remain
consistent with each other. Addressing these challenges is essential for building comprehensive
evaluation frameworks that can guide the safe and reliable deployment of LRLMs in robotic task
planning.

To address these challenges, we first propose a fine-grained verification framework to evaluate the
safety of the LRLM reasoning process. Specifically, we segment the reasoning process of the
LRLMs by detecting transition words and treating the text generated up to each transition as a
distinct reasoning chunk. After each reasoning chunk is produced, we adopt an approach inspired
by enforced prefixes to prompt the model to summarize the current reasoning chunk into a set of
explicit planning steps. These intermediate plans are then passed on to an external verifier to verify
their compliance with predefined safety constraints. Once each summary is generated and verified,
techniques such as key–value (KV) cache rollback and input truncation are applied to remove any
residual bias introduced by the summarization step, ensuring that the model can continue its reason-
ing process without being influenced by the intermediate summarization and verification. Beyond
chunk-level verification, we further design a set of metrics to assess the safety of LRLM reasoning,
including safety consistency, safety violation detection and correction, and token usage. To sup-
port these evaluations, we construct a dataset of task planning problems expressed in the Planning
Domain Definition Language (PDDL).

Using this framework, we conduct extensive experiments on a range of LLMs and LRLMs, focusing
on their reasoning processes, compliance with safety constraints, and capacity for self-correction.
The experimental results reveal the inconsistency between the reasoning process and the final output
of LRLMs, as well as their limitations in detecting and correcting safety violation errors in their
own reasoning process. These findings point to promising directions for improving the safety and
performance of LRLMs in safety-critical domains, such as task planning. We will release our dataset
and the source code for generation and evaluation to facilitate future research.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 LANGUAGE MODELS FOR TASK PLANNING

With the rise of language models, such as ChatGPT (Achiam et al., 2023) and LLaMA (Touvron
et al., 2023), artificial intelligence has advanced significantly, including in robotic task planning.
Current language model-based methods can be grounded into two categories (Zhao et al., 2024):
LLM-aided planning methods and LLM-native planning methods. LLM-aided methods combine
LLMs with classical techniques to improve efficiency and usability. For example, LLMs can trans-
late natural language tasks into formal PDDL problems solved by symbolic planners (Xie et al.,
2023; Kambhampati et al., 2024), or construct world models to guide heuristic search (Zhao et al.,
2023). LLM-native methods directly generate executable plans without external solvers. Some rely
on domain descriptions (e.g., PDDL) as input, while others process natural language or multi-modal
signals. Jansen (2020) shows LLMs producing robot instructions from text, and Brohan et al. (2023)
integrates images and user prompts for end-to-end planning.

To enhance safety and reliability, Ahn et al. (2022) evaluates and selects feasible LLM-suggested
skills at each step, while Lin et al. (2023) extends this to multi-step planning. Other works (Jha et al.,
2023; Xu et al., 2024) employ external verifiers to ensure plans satisfy safety constraints expressed
in First-Order Logic (FOL) (Barwise, 1977) or Linear Temporal Logic (LTL) (Bauer et al., 2010).

For LRLMs, existing studies (Chen et al., 2025b; Valmeekam et al., 2024; Stechly et al., 2024) pri-
marily focus on replacing the LLMs in prior LLM-based methods with LRLMs, rather than redesign-
ing approaches to leverage the unique reasoning capabilities introduced by LRLMs. While these
efforts demonstrate that LRLMs can improve the performance of LLM-based methods, the results
remain short of being fully satisfactory, indicating the need for further advancements (Valmeekam
et al., 2024).

2.2 LRLM EVALUATION

In evaluating LRLMs, several commonly used metrics focus on evaluating both the effectiveness
of LRLMs in achieving desired outcomes and their learning efficiency. Accuracy or success rate
measures the proportion of correct outputs. Pass@k checks whether at least one correct solution
appears within k attempts, and Cons@k evaluates the consistency of producing correct or logically
coherent outputs across attempts. These metrics primarily focus on evaluating the overall outcomes
of the model.

As for benchmarks, in addition to many outcome-oriented benchmarks, such as (Hendrycks et al.,
2021; Suzgun et al., 2022; Cobbe et al., 2021), there also exist benchmarks that aim to evaluate
the reasoning process itself. (Golovneva et al., 2022; Prasad et al., 2023; Li et al., 2023; Chen
et al., 2025a; Bi et al., 2025) assess the model’s step-by-step reasoning ability along long reasoning
traces. However, these approaches often require training additional evaluators, which introduces
additional costs, including manually annotated datasets and substantial computational resources for
training. Moreover, the quality of the evaluator directly affects the reliability of the results. In
addition, these benchmarks mainly focus on properties such as semantic consistency, logicality,
informativeness, and fluency. These criteria fall short in safety-critical contexts that are essential in
the motion planning domain. In contrast, our approach overcomes these limitations by eliminating
the need for manually annotated datasets or trained evaluators. Instead, it leverages existing formal
verifiers for evaluation, with a focus on safety-critical contexts.

Some studies (Lin et al., 2024; Yan et al., 2024; Huang et al., 2025; Chen et al., 2025b; Abacha
et al., 2024) evaluate the ability of LRLMs to identify, reflect upon, and correct errors during their
reasoning process. For example, FINEREASON (Chen et al., 2025b) is a logic-puzzle benchmark
designed to assess whether LRLMs can detect and fix errors in reasoning. It presents models with
intermediate states from logic puzzles and asks them to judge whether the reasoning is correct.
However, this approach does not directly evaluate the LRLMs’ own reasoning process. It mainly
measures their ability to act as external discriminators. In contrast, our method directly analyzes
how LRLMs handle and correct errors within their own generated reasoning processes.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overall process of our proposed evaluation framework. The process begins with the initial
prompt (red cell) being fed into the LRLM. While the LRLM generates tokens sequentially, the
framework monitors for the occurrence of transition words, such as ‘Wait’. When it is detected, the
generation is paused, and the current output is treated as the first reasoning chunk r1 (yellow cell).
This reasoning chunk is then combined with a prefix prompt p (green cell) that instructs the LRLM
to immediately summarize its reasoning into a partial action sequence. The LRLM outputs this
sequence t1 (purple cell), which is sent to an external formal verifier for checking. The verification
result is recorded in the verification results section on the right. After that, the LRLM is rolled back
to the state at the end of r1. The transaction word is appended, and the model continues generating
to produce the next reasoning chunk r2. This process is repeated until the final conclusion c (blue
cell) is produced, which is also submitted to the external verifier.

2.3 LRLM EVALUATION FOR TASK PLANNING

In the planning domain, beyond basic metrics such as success rate, researchers also focus on the
efficiency of plan execution and the optimality of the generated plans (Jia et al., 2024; Valmeekam
et al., 2023). Other metrics evaluate whether the generated plans are technically sound and practi-
cally implementable, meaning whether they satisfy all specified constraints (Xie et al., 2024; Guo
et al., 2024). However, existing works, such as (Valmeekam et al., 2024; Stechly et al., 2024),
have shown that LRLMs achieve significant improvements over LLMs on classical task planning
problems such as PDDL. But the overall performance is still far from satisfactory, and they do not
provide a fine-grained analysis of the reasoning processes of LRLMs. The limitation of the LRLM
reasoning process in safety-critical problems has not been adequately evaluated. Our work addresses
this gap and offers new insights for improving LRLMs.

3 METHOD

3.1 PRELIMINARIES

Classic Planning Problems. We focus on classic planning problems to reveal the ability of LRLMs
in safety-critical domains. These problems aim to find a sequence of actions that transforms an
initial state into a desired goal state under deterministic and fully observable conditions. Planning
Domain Definition Language (PDDL) is a widely used formalism for describing such problems, and
our main experiments are conducted on several standard PDDL domains.

A PDDL specification consists of three key components: Domain defines the available action types,
their preconditions, and their effects; Initial state specifies the set of facts that are true at the start of
the planning problem; Goal describes the conditions that must hold true in the final state. A plan is
a sequence of actions that, when applied from the initial state, satisfies all constraints and reaches a
state that fulfills the goal conditions. The correctness of a plan can be automatically verified using
external validators such as VAL (Howey et al., 2004).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Large Reasoning Language Models. Traditional LLMs typically follow a System 1-style genera-
tion pattern, which can be represented as:

System 1 : [Prompt] + [Completion]

In contrast, recent LRLMs adapt a System 2-style generation pattern that incorporates an explicit
slow-thinking phase, which can be represented as:

System 2 : [Prompt]+ < think > +[Slow − thinking]+ < /think > +[Conclusion]

where < think > and < /think > denote the beginning and end of the slow-thinking process, i.e.,
the reasoning process. During this phase, the LRLM conducts analysis and incrementally reasons
through the problem step by step before producing the final answer in the conclusion segment.

We model an LRLM as a next token predictor LRLM : V∗ → V , where V is the vocabulary set
and V∗ denotes the set of all possible token sequences over V . Given an input sequence, the model
predicts the most probable next token. Let x = (x1, ..., xn) ∈ V∗ represents an input context, with
each xi ∈ V . We use [a, b] to denote the concatenation of two token sequences a and b.

In the slow-thinking phase, the model first produces a sequence of intermediate reasoning tokens,
referred to as a reasoning process, denoted by r = (r1, ..., rk). Each token in this reasoning pro-
cess is generated auto-regressively based on the input context and all previously generated reasoning
tokens: ri = LRLM([x, r<i]). After completing the reasoning process, the model enters the con-
clusion phase, where it generates the final output y = (y1, ..., ym) ∈ V∗. Each token in the output
is produced by conditioning on the input context, the entire reasoning process, and the previously
generated output tokens: yi = LRLM([x, r, y<i]).

3.2 FINE-GRAINED SAFETY EVALUATION OF REASONING PROCESS

The overall process of our proposed evaluation framework is shown in Fig 1. We use PDDL prob-
lems as inputs to the LRLMs and evaluate their ability to generate valid plans that satisfy all given
constraints and achieve the goal state. To enable fine-grained evaluation of their reasoning pro-
cesses, the first challenge is how to segment the reasoning chain into meaningful units that can each
be evaluated, since it is infeasible to assess the safety of individual tokens from a planning perspec-
tive. Prior studies suggest that the reasoning process can be divided into reasoning chunks based
on the occurrence of transition words such as ”wait”, ”alternatively”, or ”hmm”. The appearance
of these transition markers typically signals that the LRLM has entered a new stage of its reasoning
process. Each reasoning chunk at this stage mainly consists of descriptive natural language rather
than well-structured action sequences in a formal format, and thus cannot be directly verified by
a formal verifier. However, verification is essential for evaluating task planning tasks, which are
inherently safety-critical.

To convert raw reasoning chunks into action sequences that can be formally verified, a straightfor-
ward approach is to apply an external natural language processing model to summarize each chunk.
However, this will make the verification results dependent on the accuracy of the external summa-
rization model and require additional training efforts. Instead, our method leverages an enforced
prefix strategy to prompt the LRLM itself to summarize its own reasoning. Specifically, during the
output generation process, when the LRLM produces a reasoning chunk r = (r1, ..., rk) and the
next token rk+1 is identified as a transition word, we pause the prediction and insert a predefined
prefix prompt p, which ask the model to provide a formatted plan that can be in an unfinished state
based on the current thinking process. We then ask the model to continue predicting according to:
t1 = LRLM([x, r, p]), and get a sequence t = (t1, ..., EOS), where EOS is a termination symbol
for output and t is a partial plan in a structured format summarizing the current reasoning chunk and
can be directly checked by an external formal verifier. It’s important to note that the prefix prompt
p ends with an end of the slow-thinking process tag < /think >, which prevents the LRLM from
continuing its reasoning and instead leads it to directly produce the partial plan corresponding to the
current reasoning chunk.

After this summarization step, the model resumes its normal generation from: rk+2 =
LRLM([x, (r1, ..., rk, rk+1)]). This approach produces verifiable, structured plans that reflect each
reasoning chunk’s reasoning while allowing the LRLM to continue its slow-thinking process with-
out disruption. In addition, it does not require the introduction of additional models. For further
details of our methods, please refer to the Appendix B.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 METRICS

Here we present the results of external verification, which fall into four categories: None, Invalid,
Valid, and Successful. None indicates that no verifiable action sequence is produced, either because
the reasoning chunk is incomplete or the output format is incorrect. Invalid denotes sequences that
violate safety constraints (e.g., attempting to pick up a block while already holding another). Valid
refers to sequences that satisfy safety constraints but fail to reach the goal state. Successful means
the sequence both satisfies safety constraints and achieves the goal. To ensure statistical reliability,
all None cases are excluded from subsequent calculations.

We design four types of metrics to comprehensively evaluate the safety and efficiency of the LRLM
reasoning process. The first type includes classical outcome-based metrics commonly used for LLM
and LRLM, such as success rate and token usage.

The second type focuses on analyzing inconsistencies between the reasoning process and the final
results, measured by two metrics: RsucFnosuc and RnosucFsuc. RsucFnosuc represents the propor-
tion of cases where at least one reasoning chunk produces a successful plan during reasoning, but
the final result is not successful. RnosucFsuc measures the proportion of cases where the reasoning
chunks do not produce a successful plan, yet the final result is successful. These metrics are impor-
tant because such inconsistencies can reduce the interpretability of LRLMs and undermine users’
trust in their outputs. Intuitively, if the final reasoning chunk fails to produce a successful plan, the
model’s conclusion should not be successful either.

The third type of metrics evaluates the ability of LRLMs to detect and reflect on safety violation
errors during their reasoning process. These metrics are crucial for evaluating and improving the
capabilities of LRLMs in safety-critical domains. If the model fails to identify safety violation errors
in time, it may continue to reason along an incorrect path, which wastes resources such as tokens and
computation time. Conversely, triggering reflection on a correct plan can also lead to unnecessary
resource consumption and may even reduce the final success rate. To determine whether the LRLM
engages in reflection between two consecutive reasoning chunks, we compare the plans generated by
these chunks. If the plan in the subsequent reasoning chunk modifies previously generated actions
rather than simply appending new ones, we consider this as evidence of safety violation detection
and reflection. We formulate this evaluation as a binary classification problem. If the plan generated
by the previous reasoning chunk is invalid, we treat it as a true error that requires reflection. If
the previous reasoning chunk is valid or successful, we treat it as a case where reflection is not
needed. We then use standard binary classification metrics–true positive (TP), false positive (FP),
true negative (TN), and false negative (FN)–to measure how well the LRLM can determine whether
its own reasoning violates safety during the reasoning process. It’s worth noting that in our setting,
reasoning chunks labeled as valid are all treated as cases that do not require reflection. In practice,
however, LRLM may sometimes revise plans that do not violate safety constraints in order to reach
the goal more efficiently. This may slightly affect the experimental results, such as increasing the
number of FPs. Nonetheless, such cases are rare because our initial prompt does not explicitly
instruct the model to produce the shortest or most efficient action sequence.

The fourth type measures the ability of LRLM to correct its own safety violation errors during the
reasoning process. Rcorr represents the average number of reasoning chunks required to turn the
plan from invalid to either valid or successful after correct reflection. Ideally, Rcorr should be close
to 1, meaning that the model can immediately recover from an invalid reasoning chunk in the next
reasoning chunk. #Tokens represents the average number of tokens used to correct each safety
violation.

3.4 DATASET CONSTRUCTION

As for dataset construction, we use an open-source PDDL problem generator (Seipp et al., 2022)
to create planning problems in several classical domains: Blocksworld, Logistics, Depots, Gripper,
Ferry, and Miconic. For example, Blocksworld problems involve stacking and unstacking blocks
on a table using a robotic arm. The planner must reorder the blocks from an initial state to a target
state while respecting constraints such as only moving clear blocks and holding one block at a time.
More details about the dataset construction are shown in Appendix A.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Blocksworld Logistics Depots Gripper Ferry Miconic

LLMs
7B 0.00% 0.00% 0.00% 0.00% 5.00% 20.00%
14B 5.00% 0.00% 0.00% 30.00% 11.25% 18.75%
32B 2.50% 1.25% 1.25% 45.00% 36.25% 56.25%

LRLMs
7B 18.18% 0.00% 2.50% 45.00% 42.50% 21.25%
14B 20.91% 2.50% 7.50% 50.00% 69.62% 41.25%
32B 31.81% 5.00% 3.75% 26.32% 32.50% 35.00%

Table 1: Comparison of success rates of LLMs and LRLMs.

For evaluating the generated plans, we use VAL (Howey et al., 2004) to verify their correctness. It is
worth noting that both the PDDL problem generator and the VAL verifier we used support the most
commonly used PDDL problems, such as Rovers, Satellite, Manufacturing, and so on. This feature
allows future researchers to easily expand the dataset using the same tools.

4 EVALUATION

4.1 BASELINES

To evaluate the impact of model size on the reasoning process, we evaluate three LRLMs with
different sizes and their corresponding base LLMs. We intentionally select models with similar ar-
chitectures and training paradigms to minimize the influence of other factors during evaluation. The
LRLMs are DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B, and DeepSeek-R1-
Distill-Qwen-32B. Their corresponding base LLMs are Qwen2.5-Math-7B, Qwen2.5-14B, and
Qwen2.5-32B. Future users can easily replace these models with their own to conduct further eval-
uations using our benchmark framework.

4.2 CONFIGURATION

During evaluation, we fix the decoding setting across all models to ensure comparability and re-
producibility. The maximum token budget is set to 16384, and the think ratio is set to 0.9. The
computations use bfloat16, and sampling is disabled (do sample = False). The initial prompt
follows a one-shot template that includes a system instruction, the PDDL domain file, the PDDL
problem file, and one worked example. For base LLMs that do not natively produce reasoning
traces, we explicitly prompt them to do step-by-step reasoning within < think > ... < /think >
tags first and then give a final plan.

4.3 OUTCOME-BASED PERFORMANCE

Tab 1 and Tab 2 present the performance of six models across six PDDL domains. For clarity,
the 7B, 14B, and 32B labels in the LLMs columns correspond to the base LLMs with the same
parameter sizes introduced in the previous content. The same applies to the LRLMs.

The results show that LRLMs achieve higher success rates than LLMs of the same scale; for instance,
the 32B LRLM reaches 31.81% on Blocksworld. However, these rates remain far from satisfactory,
and LRLMs consume significantly more tokens, even compared to CoT-prompted LLMs. In some
cases, LRLMs exhausted the entire token budget without reaching a conclusion, requiring us to
forcibly trigger the conclusion phase. Inspection of their reasoning process suggests they were stuck
in confusion, underscoring the need for better inference control methods, especially for real-time
domains such as robotics.

4.4 INCONSISTENCY BETWEEN REASONING PROCESS AND FINAL RESULTS

Tab 3 presents our evaluation of inconsistencies between the reasoning process and the final results,
focusing on LRLMs. The results are measured using two metrics: RsucFnosuc and RnosucFsuc.
We observe that LRLMs exhibit a considerable degree of inconsistency in task planning. For ex-
ample, both metrics exceed 10% for the 32B model on the Blocksworld problem. We further find

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Blocksworld Logistics Depots Gripper Ferry Miconic

LLMs
7B 990 212 1646 828 1012 462
14B 962 2669 1863 599 444 480
32B 1016 842 2929 589 545 278

LRLMs
7B 7737 8405 6934 3044 4441 3711
14B 5801 9640 7130 4159 3224 3618
32B 4873 9911 7771 4001 2816 3830

Table 2: Comparison of token usage of LLMs and LRLMs.

RsucFnosuc RnosucFsuc

7B 14B 32B 7B 14B 32B
Blocksworld 5.74% 13.75% 24.32% 65.00% 30.43% 11.42%
Logistics 0.00% 1.36% 0.00% 0.00% 0.00% 0.00%
Depots 0.00% 1.38% 11.43% 50.00% 0.00% 0.00%
Gripper 0.00% 70.00% 92.86% 44.44% 20.00% 0.00%
Ferry 14.29% 75.00% 100.00% 50.00% 1.82% 0.00%
Miconic 53.97% 84.78% 89.58% 5.88% 0.00% 3.57%

Table 3: Evaluation of inconsistency between reasoning process and final results

that larger-parameter models, such as the 32B LRLM, exhibit stronger reasoning capabilities but
do not necessarily achieve higher consistency between the reasoning process and final results. This
is likely due to the lack of explicit emphasis on such consistency during training. This also indi-
cates that larger models do not necessarily yield better performance. For example, the 14B LRLM
achieves the highest success rate on the Gripper domain. A possible reason is that the 32B model
tends to overthink and deviate from the correct answer, as reflected by its highest RsucFnosuc of
92.86% shown in the table. This finding highlights the need for future research to apply fine-tuning
or inference-time techniques to improve consistency, thereby enhancing the transparency and trust-
worthiness of LRLM-based planning. For some cases, such as the 7B model in Blocksworld, the
two metrics differ significantly, which can be attributed to the extremely low success rate according
to Tab 1, resulting in too few samples.

4.5 ERROR RECOGNITION AND REFLECTION ABILITY

As shown in Tab 4, we formulate the problem of whether LRLMs can recognize and reflect on
their own reasoning errors as a binary classification task. This evaluation reveals several noteworthy
trends. LRLMs perform well in terms of true possitive rates (TPR), with most models exceeding
90%. However, they still fall short of 100% in most cases, which is essential in safety-critical do-
mains. Further improvement is necessary. In addition, larger models do not necessarily yield higher
TPR. For example, in the Gripper domain, the 7B model achieves the highest TPR, outperforming
both the 14B and 32B models, which may be due to overthinking in larger models. At the same
time, the true negative rates (TNR) remain low across all models, only around 10–20%, indicating
that LRLMs often trigger reflection even on correct reasoning processes. One possible cause lies in
our evaluation criterion: we determine error recognition and reflection based on whether the LRLM
modifies a previously generated action sequence. Although our prompts does not instructed the
model to focus on execution time (i.e., the length of the action sequence), we observed that LRLMs
frequently revised action sequences even when they were correct, often aiming to shorten the overall
plan length. Such behavior increases the number of false positives, which in turn reduces the TNR.

4.6 ERROR CORRECTION EFFICIENCY

Tab 5 reports the evaluation results of error correction efficiency, measured by two metrics: R corr,
the proportion of reasoning chunks that successfully corrected prior errors, and #Tokens, the num-
ber of tokens consumed during the process. The results show that current LRLMs fall far short
of the ideal R corr value of 1, indicating limited self-correction capability during reasoning. This
limitation leads to substantial token and time consumption. We observe two scenarios in which

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

TP FP TN FN TPR TNR

Blocksworld
7B 511 45 222 27 91.90% 10.84%
14B 543 42 400 45 92.82% 10.11%
32B 492 32 411 52 93.89% 11.23%

Logistics
7B 71 1 89 1 98.61% 1.11%
14B 427 29 132 17 93.64% 11.41%
32B 209 17 73 7 92.47% 8.75%

Depots
7B 107 3 65 0 97.20% 0.00%
14B 408 33 125 12 92.51% 8.76%
32B 387 28 100 14 93.25% 12.28%

Gripper
7B 7 0 14 5 100.00% 26.31%
14B 33 5 106 24 86.84% 18.46%
32B 6 1 52 8 85.71% 13.13%

Ferry
7B 391 24 113 15 94.21% 11.71%
14B 133 6 399 31 95.68% 7.21%
32B 121 0 322 14 100.00% 4.16%

Miconic
7B 44 0 432 29 100.00% 6.29%
14B 22 1 607 57 95.65% 8.58%
32B 15 0 678 22 100.00% 3.14%

Table 4: Error recognition and reflection ability evaluation results

Rcorr #Tokens
7B 14B 32B 7B 14B 32B

Blocksworld 2.88 3.59 3.72 520 572 641
Logistics 1.52 2.54 2.35 513 616 753
Depots 7.40 2.74 3.38 1455 438 673
Gripper 1.57 1.65 2.70 166 240 402
Ferry 2.07 2.32 2.49 329 413 344
Miconic 1.64 2.00 1.36 267 397 178

Table 5: Evaluation of error correction efficiency

Rcorr approaches 1. The first occurs when the LRLM’s success rate is extremely low, leading to
many unverifiable outputs, as in the case of the 7B model on the Logistics domain (1.52%). The
second occurs when the success rate is very high, where the LRLM demonstrates strong problem
understanding and can quickly repair safety violations, as seen with the 7B and 14B models on the
Gripper domain (1.57% and 1.65%). Overall, these findings highlight the urgent need to improve
LRLMs’ self-correction mechanisms, which would not only enhance reasoning safety but also re-
duce unnecessary token consumption.

5 CONCLUSION

This paper studies the fine-grained safety evaluation of the LRLMs for safety-critical domains. We
propose a framework that segments reasoning into chunks, summarizes them into explicit plans,
and verifies them against safety constraints. We also design a set of metrics and construct a dataset
to systematically evaluate the reasoning behavior of LRLMs. Experiments on PDDL-based tasks
confirm both the advantages and the limitations of LRLMs. While LRLMs outperform standard
LLMs, they often generate unsafe or inconsistent reasoning steps that reduce reliability in safety-
critical domains. Moreover, their ability to detect and correct safety violation errors during the
reasoning process is limited. These findings highlight the need for new fine-tuning strategies or
inference-time computation methods to enhance LRLMs and support their deployment in real-world
safety-critical applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen, Fei Xia, and Thomas
Lin. Medec: A benchmark for medical error detection and correction in clinical notes. arXiv
preprint arXiv:2412.19260, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Jorge A Baier, Fahiem Bacchus, and Sheila A McIlraith. A heuristic search approach to planning
with temporally extended preferences. Artificial Intelligence, 173(5-6):593–618, 2009.

Jon Barwise. An introduction to first-order logic. In Studies in Logic and the Foundations of
Mathematics, volume 90, pp. 5–46. Elsevier, 1977.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing ltl semantics for runtime
verification. Journal of Logic and Computation, 20(3):651–674, 2010.

Jinhe Bi, Danqi Yan, Yifan Wang, Wenke Huang, Haokun Chen, Guancheng Wan, Mang Ye, Xun
Xiao, Hinrich Schuetze, Volker Tresp, et al. Cot-kinetics: A theoretical modeling assessing lrm
reasoning process. arXiv preprint arXiv:2505.13408, 2025.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Beiduo Chen, Yang Janet Liu, Anna Korhonen, and Barbara Plank. Threading the nee-
dle: Reweaving chain-of-thought reasoning to explain human label variation. arXiv preprint
arXiv:2505.23368, 2025a.

Guizhen Chen, Weiwen Xu, Hao Zhang, Hou Pong Chan, Chaoqun Liu, Lidong Bing, Deli Zhao,
Anh Tuan Luu, and Yu Rong. Finereason: Evaluating and improving llms’ deliberate reasoning
through reflective puzzle solving. arXiv preprint arXiv:2502.20238, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Xiaoting Dong, Guangxi Wan, Peng Zeng, Chunhe Song, and Shijie Cui. Optimizing robotic task
sequencing and trajectory planning on the basis of deep reinforcement learning. Biomimetics, 9
(1):10, 2023.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning.
arXiv preprint arXiv:2212.07919, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shiguang Guo, Ziliang Deng, Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. Open grounded
planning: Challenges and benchmark construction. arXiv preprint arXiv:2406.02903, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl. In 16th IEEE International Conference on Tools with
Artificial Intelligence, pp. 294–301. IEEE, 2004.

Jinyang Huang, Xiachong Feng, Qiguang Chen, Hanjie Zhao, Zihui Cheng, Jiesong Bai, Jingxuan
Zhou, Min Li, and Libo Qin. Mldebugging: Towards benchmarking code debugging across multi-
library scenarios. arXiv preprint arXiv:2506.13824, 2025.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Peter A Jansen. Visually-grounded planning without vision: Language models infer detailed plans
from high-level instructions. arXiv preprint arXiv:2009.14259, 2020.

Sumit Kumar Jha, Susmit Jha, Patrick Lincoln, Nathaniel D Bastian, Alvaro Velasquez, Rickard
Ewetz, and Sandeep Neema. Neuro symbolic reasoning for planning: Counterexample guided
inductive synthesis using large language models and satisfiability solving. arXiv preprint
arXiv:2309.16436, 2023.

Zixia Jia, Mengmeng Wang, Baichen Tong, Song-Chun Zhu, and Zilong Zheng. Langsuite: plan-
ning, controlling and interacting with large language models in embodied text environments.
arXiv preprint arXiv:2406.16294, 2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Karthik Karur, Nitin Sharma, Chinmay Dharmatti, and Joshua E Siegel. A survey of path planning
algorithms for mobile robots. Vehicles, 3(3):448–468, 2021.

Matthew Kelly. An introduction to trajectory optimization: How to do your own direct collocation.
SIAM review, 59(4):849–904, 2017.

Christoph Leiter, Piyawat Lertvittayakumjorn, Marina Fomicheva, Wei Zhao, Yang Gao, and Steffen
Eger. Towards explainable evaluation metrics for natural language generation. arXiv preprint
arXiv:2203.11131, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–
5333, 2023.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345–1365,
2023.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo, Haowei Liu, and Yujiu Yang. Criticbench: Bench-
marking llms for critique-correct reasoning. arXiv preprint arXiv:2402.14809, 2024.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, September 2024. Accessed: 2025-09-04.

Juri Opitz and Anette Frank. Towards a decomposable metric for explainable evaluation of text
generation from amr. arXiv preprint arXiv:2008.08896, 2020.

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and Mohit Bansal. Receval: Evaluating reasoning
chains via correctness and informativeness. arXiv preprint arXiv:2304.10703, 2023.

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann. PDDL generators. https://doi.org/
10.5281/zenodo.6382173, 2022.

Georgios Sotirchos and Zlatan Ajanovic. Search-based versus sampling-based robot motion plan-
ning: A comparative study. arXiv preprint arXiv:2406.09623, 2024.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? an
analysis of cot in planning. Advances in Neural Information Processing Systems, 37:29106–
29141, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36:38975–
38987, 2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Weizhe Xu, Mengyu Liu, Steven Drager, Matthew Adderson, and Fanxin Kong. Assuring llm-
enabled cyber-physical systems. In ACM/IEEE International Conference on Cyber-Physical Sys-
tems. ACM/IEEE, 2024.

Yibo Yan, Shen Wang, Jiahao Huo, Hang Li, Boyan Li, Jiamin Su, Xiong Gao, Yi-Fan Zhang,
Tianlong Xu, Zhendong Chu, et al. Errorradar: Benchmarking complex mathematical reasoning
of multimodal large language models via error detection. arXiv preprint arXiv:2410.04509, 2024.

Zhigen Zhao, Shuo Cheng, Yan Ding, Ziyi Zhou, Shiqi Zhang, Danfei Xu, and Ye Zhao. A survey of
optimization-based task and motion planning: From classical to learning approaches. IEEE/ASME
Transactions on Mechatronics, 2024.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in neural information processing systems, 36:31967–31987,
2023.

Lin Zhu and Robert Givan. Simultaneous heuristic search for conjunctive subgoals. In PROCEED-
INGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 20, pp.
1235. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DATASET CONSTRUCTION

As for dataset construction, we use an open-source PDDL problem generator Seipp et al. (2022)
to create planning problems from three classical domains: Blocksworld, Logistics, Depots, Gripper,
Ferry, and Miconic.

Blocksworld involves stacking and unstacking blocks on a table using a robotic arm. The planner
must reorder the blocks from an initial configuration to a target configuration while respecting con-
straints such as only moving clear blocks and holding one block at a time. Specifically, for each
problem instance, the number of actions is set to 4, and the number of blocks varies between 2 and
10. In total, 110 problem instances are generated randomly.

Logistics focuses on transporting packages between locations using trucks and airplanes. The plan-
ner must coordinate load, unload, drive, and fly actions while optimizing the delivery of multiple
packages across cities and airports. Specifically, for each problem instance, the number of cities
ranges from 2 to 5, with each city containing 3 to 8 locations. The number of packages varies be-
tween 4 and 15, the number of airplanes between 1 and 6, and the number of trucks is set equal to
the number of cities. In total, 80 problem instances are generated randomly.

Depots combines elements of both Blocksworld and Logistics. It requires managing cranes to load
and unload packages from trucks while organizing the storage of packages in stacks at depots, mak-
ing it more complex and resource-constrained than the other two domains. Specifically, for each
problem instance, the number of depots is set between 1 and 6, distributors between 2 and 6, trucks
between 2 and 6, pallets between 3 and 20, crates between 2 and 20, and hoists between 3 and 15.
In total, 80 problem instances are generated randomly.

Gripper involves moving balls between rooms using a robot equipped with two grippers. The
planner must transfer all balls from the initial room to the target room, while respecting constraints
such as the robot’s location, the availability of grippers, and the carrying capacity. Specifically, for
each problem instance, the number of balls varies between 1 and 20. In total, 20 problem instances
are generated randomly.

Ferry involves transporting cars between multiple locations using a ferry. The planner must load
and unload cars onto the ferry and move the ferry between locations to reach the target goal, subject
to constraints on ferry capacity and location. For each problem instance, the number of locations
is set between 2 and 5, and the number of cars between 1 and 4. In total, 80 problem instances are
generated randomly.

Miconic models an elevator control problem where passengers must be transported between floors.
The planner must move the lift and stop at appropriate floors so that each passenger boards at their
origin floor and debarks at their destination floor, ensuring that all passengers are eventually served.
For each problem instance, the number of floors is set between 2 and 4, and the number of passengers
between 1 and 4. In total, 80 problem instances are generated randomly.

Among all these tasks, Logistics and Depots are the most challenging, as they involve a larger
number of actions and objects.

B FINE-GRAINED SAFETY EVALUATION OF REASONING PROCESS

During the fine-grained safety evaluation of the reasoning process, we leverage several important
prompts to lead the LRLMs, including the initial prompt and the prefix prompt.

As for the initial prompt, we employ a one-shot strategy that supplies the LRLM with essential task
information (such as the domain.pddl file) together with an illustrative problem and its corresponding
correct solution. The format of initial prompt is shown as bellow:

You are a motion planner for PDDL planning problems.
Now we consider the {{domain_name}} planning problem.

Here is the domian.pddl file of this blocksworld planning problem:

{{domain.pddl}}

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Here is a simple problem and it’s answer:

{{example_problem.pddl}}

{{answer}}

Now please give me the result of the new {{domain_name}} problem below.
First, provide detailed reasoning inside the <think></think> tags, and

then give the final answer outside the tags.
The final answer’s format should be the same as the example solution.

Here is the new {{domain_name}} problem:

{{problem.pddl}}

Listing 1: Initial prompt format

where {{·}} denotes the part to be replaced according to the specific problem. For example,
{{domain.pddl}} indicates that it should be replaced with the content of the corresponding do-
main.pddl file for the current problem.

The following provides an example of the initial prompt for a Blocksworld problem.

You are a motion planner for PDDL planning problems.
Now we consider the blocksworld planning problem.

Here is the domian.pddl file of this blocksworld planning problem:

(define (domain blocksworld)
(:requirements :strips)

(:predicates (clear ?x)
(on-table ?x)
(arm-empty)
(holding ?x)
(on ?x ?y))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
:effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))

(not (arm-empty))))

(:action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect (and (clear ?ob) (arm-empty) (on-table ?ob)

(not (holding ?ob))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)

(not (clear ?underob)) (not (holding ?ob))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob)

(not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-empty)
))))

Here is a simple problem and it’s answer:

Here is a simple example:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(define (problem BW-sample-0)
(:domain blocksworld-4ops)
(:objects b1 b2 b3)
(:init
(arm-empty)
(on b1 b2)
(on b2 b3)
(on-table b3)
(clear b1)
)
(:goal
(and
(on b3 b2)
(on b2 b1)
(on-table b1)
)))

Here is a answer of this example problem:
START-PLAN
1. unstack b1 b2
2. put-down b1
3. unstack b2 b3
4. put-down b2
5. pick-up b2
6. stack b2 b1
7. pick-up b3
8. stack b3 b2
END-PLAN

Now please give me the result of the new blocksworld problem below.
First, provide detailed reasoning inside the <think></think> tags, and

then give the final answer outside the tags.
The final answer’s format should be the same as the example solution.

Here is the new blocksworld problem:

(define (problem BW-rand-6)
(:domain blocksworld-4ops)
(:objects b1 b2 b3 b4 b5 b6 )
(:init
(arm-empty)
(on-table b1)
(on b2 b3)
(on-table b3)
(on b4 b2)
(on b5 b6)
(on-table b6)
(clear b1)
(clear b4)
(clear b5)
)
(:goal
(and
(on b1 b5)
(on b2 b6)
(on b4 b2)
(on b5 b4))
)
)

Listing 2: An example of the initial prompt

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Another important prompt is the prefix prompt, which guides the LRLM to generate an incomplete
plan based on the current reasoning process. The detailed content is shown below.

</think>. So far, I get part of the final plan.
I will write it in this format:
START-PLAN
1. ...
2. ...
3. ...
END-PLAN
Here is part of my current plan:

Listing 3: Prefix prompt

The leading < /think > forces the termination of the current reasoning process and the transition to
the conclusion stage, requiring the LRLM to produce a partial plan based on the reasoning generated
so far.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to assist with writing tasks, including grammar checking and improving readability.

16


	Introduction
	Related Work
	Language Models for Task Planning
	LRLM Evaluation
	LRLM Evaluation for Task Planning

	Method
	Preliminaries
	Fine-grained Safety Evaluation of Reasoning Process
	Metrics
	Dataset Construction

	Evaluation
	Baselines
	Configuration
	Outcome-based Performance
	Inconsistency between Reasoning Process and Final Results
	Error Recognition and Reflection Ability
	Error Correction Efficiency

	Conclusion
	Dataset construction
	Fine-grained Safety Evaluation of Reasoning Process
	The use of Large Language Models (LLMs)

