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Abstract

Nowadays, data augmentation through syn-001
thetic data has been widely used in the field002
of Grammatical Error Correction (GEC) to alle-003
viate the problem of data scarcity. However,004
these synthetic data are mainly used in the005
pre-training phase rather than the data-limited006
fine-tuning phase due to inconsistent error dis-007
tribution and noisy labels. In this paper, we008
propose a synthetic data construction method009
based on contextual augmentation, which can010
ensure an efficient augmentation of the original011
data with a more consistent error distribution.012
Specifically, we combine rule-based substitu-013
tion with model-based generation, using the014
generation model to generate a richer context015
for the extracted error patterns. Besides, we016
also propose a relabeling-based data cleaning017
method to mitigate the effects of noisy labels in018
synthetic data. Experiments on CoNLL14 and019
BEA19-Test show that our proposed augmen-020
tation method consistently and substantially021
outperforms strong baselines and achieves the022
state-of-the-art level with only a few synthetic023
data.024

1 Introduction025

Grammatical Error Correction (GEC) aims to de-026

tect and correct grammatical errors in a text (Wang027

et al., 2020; Bryant et al., 2022). It is a challeng-028

ing task with a wide range of application scenar-029

ios, including search engines, writing assistants030

(Omelianchuk et al., 2020), and Automatic Speech031

Recognition (ASR) systems. Due to the low fre-032

quency of grammatical errors in real corpus, obtain-033

ing and annotating a certain number of high-quality034

GEC datasets is usually difficult and costly. There-035

fore, the currently available high-quality annotated036

GEC data is very limited (Ye et al., 2023), making037

synthetic data an important research direction for038

the data-starved task.039

Nowadays, using synthetic data or data augmen-040

tation to improve the performance of GEC models041
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Figure 1: Illustration of the distribution of error patterns
in each dataset. The x-axis represents the 100 most
frequent error patterns in the annotated dataset W&I+L,
and the y-axis represents the frequency of that error in
the corresponding synthetic dataset.

has become a mainstream approach (Madnani et al., 042

2012; Grundkiewicz and Junczys-Dowmunt, 2014; 043

Grundkiewicz et al., 2019). Common construction 044

methods can be categorized into rule-based substi- 045

tution (Awasthi et al., 2019; Choe et al., 2019) and 046

model-based generation methods (Xie et al., 2018; 047

Lichtarge et al., 2019; Zhou et al., 2019). However, 048

the synthetic data constructed by the above meth- 049

ods are mainly used in the pre-training phase to 050

initialize a better GEC model. The data augmenta- 051

tion methods used for the data-limited fine-tuning 052

phase are of great research value. 053

There are two main reasons why previous syn- 054

thetic data cannot apply to joint training in the 055

fine-tuning phase. (1) Inconsistent Error Distri- 056

bution. The high randomness of synthetic data 057

makes it difficult to perfectly match the distribution 058

of a certain high-quality data, leading joint training 059

to performance degradation. Rule-based substitu- 060

tion methods are limited by the distribution and 061

word frequency of the unlabeled corpus. Although 062
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Wrong Sentence Public transport enables our body to move one place to another.
Correct Sentence Public transport enables our body to move from one place to another.

1-gram Aug
Pattern ∅ → from
Source They are coming ∅ the city center.
Target They are coming from the city center.

3-gram Aug
Pattern move one → move from one
Source They move one place to another.
Target They move from one place to another.

5-gram Aug
Pattern to move one place → to move from one place
Source They will have to move one place to another in order to find the treasure.
Target They will have to move from one place to another in order to find the treasure.

Table 1: An example of the proposed contextual augmentation approach. It achieves the effect of data augmentation
by using a model to re-generate context for error patterns extracted from an existing parallel corpus. Wrong
sentence and correct sentence are taken from the existing dataset. We extract error pattern of varying lengths from it.
N-gram Aug represents the results of augmentation for error pattern of different lengths, where source represents
the ungrammatical sentence, target represents the corretion, red represents grammatical errors and green represents
correction results.

model-based generation methods can generate dif-063

ferent types of grammatical errors (Stahlberg and064

Kumar, 2021), they still do not have stable con-065

trollability for specific errors with a small amount066

of synthetic data. As shown in Figure 1, the dis-067

tribution of our proposed augmentation method068

is most consistent with the original dataset. (2)069

Noisy Label. Synthetic data is not human-labeled070

and cannot avoid introducing some mislabeling071

(inappropriate substitution or ungrammatical gen-072

eration). For example, "I think you are right" may073

be incorrectly annotated as "I think that you are074

right" in synthetic data. As a text generation task075

with token-level metrics, the GEC task is very sen-076

sitive to this type of noise. Directly joint training of077

synthetic and real data brings serious performance078

degradation (Zhang et al., 2019). Recently, Ye et al.079

(2023) propose the MixEdit framework for gram-080

matical error augmentation of the fine-tuning stage081

through pattern replacement. But it is still suffering082

from the two problems mentioned above.083

In this paper, we propose a high-quality syn-084

thetic data construction method for the fine-tuning085

phase based on contextual augmentation. It can086

be viewed as a combination of a rule-based sub-087

stitution approach and a model-based generation088

approach, where the model is utilized to generate a089

rich context for the extracted error patterns. An ex-090

ample of the augmentation data is shown in Table 1.091

Specifically, we first extract the error patterns (con-092

taining correct and incorrect token pairs) present093

in the real corpus through a GEC tool (ERRANT)094

and construct a corresponding error pattern pool.095

After that, we sample error patterns from the pool096

based on the true frequency of the original dataset 097

to regenerate contexts for them. We regard this pro- 098

cess as a hard constraint generation task, allowing 099

the model to generate contextual sentences con- 100

taining the correct pattern, and then obtaining the 101

wrong sentence by rule substitution. We attempt 102

both GPT2 (Radford et al., 2019) supervised gener- 103

ation and LLaMA2-7b-chat (Touvron et al., 2023) 104

few-shot generation for our experiments. Finally, 105

we use the baseline GEC model to relabel the syn- 106

thetic data for joint training to mitigate the noise in 107

the synthetic data. 108

The main contributions of this paper can be sum- 109

marized as follows: 110

• We propose a synthetic data construction 111

method based on contextual augmentation, 112

which can stably generate a rich context for 113

specific grammatical errors. 114

• To mitigate the effect of noisy labels, we intro- 115

duce the re-labeling method into the synthetic 116

data which improves the performance of the 117

GEC model in joint training. 118

• Experiments show that our approach effec- 119

tively enhances the robustness and perfor- 120

mance of the GEC model by augmenting the 121

high-quality annotated data in the fine-tuning 122

phase. 123

2 Method 124

The main flow of our proposed synthetic data con- 125

struction method based on context augmentation is 126

2



Sampled Patterns

that could create that should create

future lives future 's lives

1. Construct input
from sampled confused pairs

[M] that could create [M] future lives [M]

Constructed input for GPT2

{Instruction}
{5-shot examples}
[M] that could create [M] future lives [M]

Constructed input for LLaMA2

Source:
We propose a novel method that should
create a new model for the future 's lives
of people living in developing countries .

Target:
We propose a novel method that could
create a new model for the future lives of
people living in developing countries .

Constructed Synthetic data by GPT2

Source:
That should create problems for future
generations.

Target:
That could create problems for future
generations.

Constructed Synthetic data by LLaMA2

GPT-2 2. Generate contextual corpus 
and complete pattern substitution

Pattern
Substitution

Pattern
Substitution

Figure 2: Illustration of synthetic data construction based on contextual augmentation. We uses both fine-tuned
GPT2 and ICL of llama2 for the experiments. The red in the sampling patterns represents the wrong pattern and
the green represents the correct pattern. Note that we combine the sampled correct patterns into a certain format
for context generation, followed by pattern substitution to obtain a parallel corpus. Due to the sample decoding
strategy, there may be cases where the context does not fully cover the pattern in the input as in the case of LLaMA.
In practice, we generate parallel corpus by directly ignoring the unmatched patterns.

illustrated in Figure 2. First, we generate the syn-127

thetic data with contextual augmentation according128

to Section 2.1’s method. After denoising by re-129

labeling (Section 2.2), we use the synthetic data130

to augment the original data in the joint training131

(Section 2.3).132

2.1 Pattern-based Context Generation133

Both rule-based substitution and model-based gen-134

eration methods generate synthetic data that require135

large amounts of data (in the millions) to guaran-136

tee a wide range of errors (Kiyono et al., 2019).137

However, in the supervised fine-tuning phase, the138

amount of data is very limited (W&I+L only in-139

cludes about 30k), and millions of synthetic data140

for joint training is unrealistic. A more stable aug-141

mentation approach is needed to ensure that the142

original high-quality errors are adequately trained.143

The main motivation for our proposed context144

augmentation is to leverage the modeling capabil-145

ity of language models to generate rich contexts146

for specific high-quality grammatical errors. Com-147

pared with other synthesis methods, we ensure that148

the error distribution is consistent with the original149

dataset through rule-based error patterns and the150

diversity of sample contexts through model-based 151

generation. The synthesis method can be divided 152

into three steps: building the error pattern pool 153

(Section 2.1.1), synthesizing the contextual corpus 154

(Section 2.1.2), and substituting 2.1.3 to get the 155

parallel corpus. 156

2.1.1 Error Patterns Extraction 157

We follow Choe et al.’s (2019) setting and use the 158

parsing tool ERRANT1 to extract the editing opera- 159

tions present in the parallel corpus as error patterns 160

according to the rules. We also extracted error pat- 161

terns of different lengths for our experiments to 162

ensure that the synthetic data contains more real- 163

istic errors. Excessively long patterns will make 164

it difficult to match them in unlabeled text with 165

the original rule-based substitution method, but the 166

contextual augmentation-based generation method 167

can solve this problem well. 168

We finally extract the patterns for each human- 169

labeled GEC dataset, and merge the corresponding 170

patterns into an error pattern pool for the construc- 171

tion of synthetic data. The statistics of extracted 172

patterns can be found in Appendix A. 173

1https://github.com/chrisjbryant/errant
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Stage I Stage II Stage III

Denoising phase

Stage II+ Stage III+

Augmentation Phase

Baseline Model

Pre-training on
synthetic data

Re-labeling of synthetic data

Baseline Model

Stage I Stage II Stage III
Robust Model

Three-stage training
with contextual data augmentation

Stage III+Stage II+

Fine-tuning on
real data

Fine-tuning on
clean real data

Figure 3: Illustration of the three phases of joint training
with augmented data. We first denoise the synthetic data
(Stage II+ & III+) using a baseline model trained in
three stages, and subsequently conduct joint training to
obtain a robust model.

2.1.2 Contextual Corpus Generation174

With the error pattern pool and the frequency of the175

corresponding errors, we can simply obtain a set of176

pattern datasets with the same distribution as the177

annotated corpus by sampling. The goal of the gen-178

erator model can be viewed as a hard-constrained179

text generation task (Welleck et al., 2019), generat-180

ing a context that fully contains the target pattern.181

Considering that existing pre-trained models are182

trained on grammatically correct corpora, we only183

generate the corresponding contextual corpus based184

on the correct patterns and subsequently construct185

the parallel corpus by rule-based substitution.186

In particular, the input to the model will be a187

combination of several randomly sampled patterns,188

which can be formulated as:189

Patterninput = Pattern1 [M ] Pattern2 (1)190

where Patterni represents the correct pattern that191

was sampled and [M ] represents the context place-192

holder that needs to be generated. It should be193

noted that the number of patterns for each sample194

will be randomly selected between 1 and 2, and195

Equation 1 represents the case of 2 patterns only.196

The output of the model is a piece of text containing197

the corresponding input pattern.198

In this paper, we experiment with two models as199

context generators, GPT2 and LLaMA2, represent- 200

ing the two settings of supervised fine-tuning and 201

few-shot generation, respectively. 202

Finetuning for GPT2 We choose GPT2 as the 203

backbone network to represent the performance of 204

the fine-tuned generative model in the contextual 205

augmentation task. The model generates the target 206

corpus directly from the provided pattern, which 207

can be formulated as: 208

S = Patterninput <sep> Sentencetarget (2) 209

where Patterninput is the combination of the pat- 210

terns mentioned in Equation 1 and Sentencetarget 211

is the target corpus containing all the patterns. 212

<sep> is the special token dividing the input S into 213

two parts. 214

For the training phase, we use the autoregressive 215

way consistent with the pre-training: 216

L =
j∑

k=i

−log(P (tk|t0t1...tk−1; θ)) (3) 217

where θ is the set of parameters of the language 218

model, i and j represent the start and the end index 219

of Sentencetarget, and ti represents the i-th token 220

in the model input S like Equation 2. 221

As for the training data, in order to ensure that 222

the style of the generated text is consistent with 223

the training data, we directly adopt the correct sen- 224

tences in the non-native speaker GEC dataset C- 225

Lang8 (Rothe et al., 2021) dataset as the target 226

sentences to construct the training set. Specifically, 227

we randomly replace multiple consecutive text seg- 228

ments in the corpus with [M ] label and train the 229

model to generate the corresponding context based 230

on the remaining text segments (error patterns dur- 231

ing inference). 232

Few-shot generating for LLaMA2 Recently, 233

LLMs (Brown et al., 2020; Wei et al., 2021; Tou- 234

vron et al., 2023) have presented powerful in- 235

context learning capabilities to accomplish com- 236

plex NLP tasks based on a few example samples. 237

Therefore we also try to use the LLM to generate 238

a more appropriate context for the error patterns. 239

We directly use the prompt with the 5-shot setting 240

and ask the LLM to generate the conditional cor- 241

pus. Details of the prompts and input format can 242

be found in Appendix C. In addition, the GEC cor- 243

pus is usually large, and considering the cost issue, 244

we choose the open-source LLM LLaMA2-7b-chat 245

(Touvron et al., 2023) for our experiments. 246
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2.1.3 Pattern Substitution247

Given the contextual corpus and error pattern pairs,248

we can obtain the corresponding GEC parallel249

corpus by simple substitution (Choe et al., 2019).250

To ensure the diversity of the corpus, we choose251

the sampling decoding strategy during generation,252

and we directly ignore the patterns that can’t be253

matched exactly. Besides, we only substitute the er-254

ror patterns for 50% of the synthetic data to ensure255

a consistent error rate with the annotated datasets256

during the joint training process.257

2.2 Synthetic Data Denoising258

Compared to human-annotated data, synthetic data259

is more accessible but inevitably noisy. Previous260

work (Zhang et al., 2019) has proven that direct261

joint training of synthetic and real data affects the262

metrics of the final model. Improper substitutions263

(grammatically correct both before and after sub-264

stitution) are the main cause of noisy synthetic265

data. Yasunaga et al. (2021); Cao et al. (2023) pro-266

pose some sentence-level filtering methods based267

on scores such as PPL, but the filtering granularity268

and accuracy are not sufficient in the joint training269

setting. We need an efficient way of filtering at the270

token level.271

Inspired by Rothe et al.’s (2021) distillation272

method, which mitigates the effects of noisy data by273

relabeling the corpus with a powerful GEC model,274

we also want to denoise the corpus through rela-275

beling. Specifically, we view the synthetic data as276

an unlabeled grammatical error-filled corpus and277

relabel it using a strong baseline model. Since the278

synthetic data is obtained by augmentation using279

the original dataset, relabeling using the original280

model effectively removes the noise while correct-281

ing most of the grammatical errors.282

2.3 Joint Training Process283

To obtain a strong baseline model, we follow Bout284

et al.’s (2023) approach of using three stages for285

training. Our proposed data augmentation method286

will also be applied to the stages of fine-tuning.287

As shown in Figure 3, we divide the available288

dataset into three stages for training. We use289

C4200M (Stahlberg and Kumar, 2021) dataset for290

the pre-training phase (stage I), which generate291

grammatical errors with type distribution consis-292

tent with BEA-Dev (Bryant et al., 2019) based on293

the seq2edit model. For Stage II, we used the com-294

plete available annotated dataset (see Table 2 for295

details) to fine-tune the model, including Lang-8,296

Dateset Errorful% Sentences# Usage

C4200M⋆ 99.4 ∼180M I
Lang-8 48.0 1,037,561 II
NUCLE 38.0 56,958 II
FCE 62.5 28,350 II
W&I+L 67.3 34,304 II&III

StageII-Syn⋆ 50.0 2M II+
StageIII-Syn⋆ 50.0 200,000 III+

BEA19-Dev 64.3 4,384 Dev
Conll14-Test 71.9 1,312 Test
BEA19-Test N/A 4,477 Test

Table 2: Statistical information on grammatical error
correction datasets. Note that ⋆ indicates synthetic
datasets. II+ and III+ represent the augmented dataset
of corresponding stages, which will be mixed with real
data for joint training in the proposed method.

NUCLE, FCE, and W&I+L. As the highest-quality 297

annotated GEC dataset, we individually fine-tune 298

the stage III on W&I+L. 299

Due to data distribution and quality, previously 300

synthetic data are mainly utilized in the pre-training 301

phase (stage I). In contrast, our proposed context 302

augmentation approach is mainly used to adapt a 303

small amount of high-quality fine-tuned data (stage 304

II&III). We generate different amounts of synthetic 305

data (StageII-syn and StageIII-syn in Table 2) for 306

different stages using the corresponding error pat- 307

tern pool. After that, we directly train the synthe- 308

sized data jointly with the real data of fine-tuning 309

stages, as shown in Figure 3. 310

3 Experiment 311

3.1 Setting 312

Datasets In Table 2, we summarize the statisti- 313

cal information for the all relevant datasets. The 314

C4200M (Stahlberg and Kumar, 2021) dataset used 315

for stage I is synthetic data based on Seq2Edit 316

(Stahlberg and Kumar, 2020) model generation. 317

For the other stages, we use the following com- 318

mon GEC datasets: Lang-8 Corpus of Learner 319

English (Lang-8) (Mizumoto et al., 2011; Tajiri 320

et al., 2012) collects from non-native speaker on- 321

line learning websites Lang-82; National University 322

of Singapore Corpus of Learner English (NUCLE) 323

(Dahlmeier et al., 2013) consists of essays written 324

by undergraduate students on a variety of topics 325

and annotated by professional English teachers; 326

First Certificate in English (FCE) (Yannakoudakis 327

2https://lang-8.com/
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Model Model Size CoNLL2014 BEA19-Test
Prec Rec F0.5 Prec Rec F0.5

GECToR♢ (Omelianchuk et al., 2020) 350M 77.5 40.1 65.3 79.2 53.9 72.4
T5-large♡ (Rothe et al., 2021) 770M - - 66.1 - - 72.1
T5-XL♡ (Rothe et al., 2021) 3B - - 67.8 - - 73.9
T5-XXL♡ (Rothe et al., 2021) 11B - - 68.9 - - 75.9
ShallowAD♣ (Sun et al., 2021) ∼240M 71.0 52.8 66.4 - - 72.9
SynGEC♡ (Zhang et al., 2022) 400M 74.7 49.0 67.6 75.1 65.5 72.9
TemplateGEC♡ (Li et al., 2023) 770M 74.8 50.0 68.1 76.8 64.8 74.1
MixEdit♡ (Ye et al., 2023) 400M 75.6 46.8 67.3 76.4 62.7 73.2
MultiTaskBART♠ (Bout et al., 2023) 400M 75.4 51.2 68.9 78.2 65.5 75.3

BART Baseline♠ 400M 73.8 53.5 68.6 74.5 68.9 73.5
+ CDA w/o denoising 400M 76.7 44.8 67.1 76.1 67.3 74.1
+ CDA w/ denoising 400M 76.2 52.2 69.8 77.7 67.5 75.4

Table 3: The results of the strong BART Baseline initialized on C4200M and Context Date Augmentation (CDA)
methods for the single model. CDA w/o denising means directly using the raw synthetic data constructed by the
proposed method without relabeling. In addition to publicly available annotated datasets, existing GEC models also
use: ♢ rule-based synthetic data from one-billion-word (9M), ♡ cleaned version of Lang8 (2.4M), ♣ model-based
synthetic data (300M), ♠ model-based synthetic data (C4200M ).

30 35 40 45 50 55 60 65 70
F0.5 on BEA19-Dev

w/ CDA

w/o CDA

61.53

61.06

53.05

50.02

39.57

39.57 Stage3
Stage2
Stage1

Figure 4: The results of the three-stage model on BEA19-Dev after contextual augmentation respectively.

et al., 2011) primarily contains answers to the328

upper-intermediate level exams written by English329

language learners; Write & Improve + LOCNESS330

Corpus (W&I+L) (Bryant et al., 2019) includes two331

parts of data. The Write & Improve dataset consists332

of chunks of text (articles, letters, etc.) submitted333

to the W&I system written by English learner; In334

contrast, LOCNESS consists of essays written by335

native English-speaking students and is used for336

evaluation purposes only.337

In addition to the existing publicly available338

datasets, we constructed synthetic data for differ-339

ent stages (corresponding to StageX-Syn in the340

Table 2) by contextual augmentation using the pro-341

posed method. As for the amount of synthetic342

data, we heuristically choose 2M pairs for Stage II,343

200,000 pairs for Stage III. We perform ablation344

experiments on the amount of augmented data in345

subsequent analyses.346

Evaluation We use BEA19-Dev (Bryant et al.,347

2019) as a validation set to evaluate the perfor-348

mance of the GEC model. In the main experiments,349

we report results of Conll14-Test (Ng et al., 2014) 350

using the official M2 scorer (Dahlmeier and Ng, 351

2012), and results of BEA19-Test (Bryant et al., 352

2019) using ERRANT (Bryant et al., 2017) on the 353

online platform3. 354

Training Details As described in Section 2.1.2, 355

we use GPT2-base and LLaMA2-7b-chat as con- 356

text generators for our experiments. For the im- 357

plementation of the baseline GEC model, we re- 358

fer to previous setups (Zhang et al., 2022) and use 359

Seq2Seq-based BART-large (Lewis et al., 2019) for 360

the experiments, which is trained using the Fairseq4 361

framework. More details on hyperparameters can 362

be found in Appendix B. 363

3.2 Baseline Approaches 364

We select several recent state-of-the-art methods as 365

baselines for comparison. GECToR (Omelianchuk 366

et al., 2020) is an efficient auto-encoder grammat- 367

ical error correction model, which corrects errors 368

3https://codalab.lisn.upsaclay.fr/competitions/4057
4https://github.com/facebookresearch/fairseq
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by predicting edit tags. Rothe et al. (2021) verify369

the performance of T5 (Raffel et al., 2020) models370

of various scales (from small to xxl) on the GEC371

task. SynGEC (Zhang et al., 2022) incorporates the372

syntactic information of the text into the model us-373

ing GCN. TemplateGEC (Li et al., 2023) fuses the374

seq2edit and seq2seq models to provide a new two-375

stage framework for error detection and correction.376

Ye et al. (2023) propose a data augmentation ap-377

proach MixEdit that strategically and dynamically378

augments realistic data, without requiring extra379

monolingual corpora. Bout et al. (2023) propose380

a multi-task pre-training method and optimization381

strategy, which greatly improved the performance382

of the GEC model.383

In this paper, we use the three-stage training384

model initialized by the C4200M datasets as strong385

baselines. With Contextual Data Augmentation386

(CDA), we integrate contextually augmented syn-387

thetic data for training in the fine-tuning phase, as388

shown in Figure 3.389

3.3 Main Experimental Results390

The experimental results of our proposed augmen-391

tation method on CoNLL14 and BEA19 are shown392

in Table 3. We obtain a strong baseline model393

by training in three stages according to the Bout394

et al.’s (2023) setting. The results show that con-395

textual data augmentation can effectively improve396

the robustness and generalization of the original397

model, and bring significant improvements on both398

CoNLL14 and BEA19-Test datasets. Our 400M399

BART model achieves the state-of-the-art through400

contextual data augmentation, and is comparable to401

the 11B T5-XXL. In addition to this, we find that402

the impact of the augmented data’s noisy labels can403

be well mitigated by simple relabeling. It should be404

noted that the proposed method improves the mod-405

eling precision with a slight loss in recall, which is406

encouraged in GEC tasks since ignoring an error407

is not as bad as proposing a wrong correction (Ng408

et al., 2014).409

4 Analysis410

4.1 Impact of Different Generators411

In this article, we have experiment with two gener-412

ator settings, GPT2 fine-tuning, and LLaMA2 ICL,413

to generate synthetic data. The GPT2 fine-tuning414

model is relatively small, which has a faster gener-415

ation efficiency and follows the task requirements416

better after training. On the contrary, LLaMA2417

Method BEA19-Dev
Prec Rec F0.5

Stage2 Model 61.28 28.84 50.02
+ Stage3 GPT2 64.16 51.13 61.05
+ Stage3 LLaMA2 64.23 51.07 61.08

Stage2 Model 61.28 28.84 50.02
+ Stage3 1-gram 63.73 52.50 61.12
+ Stage3 3-gram 64.39 51.07 61.20
+ Stage3 5-gram 64.16 51.13 61.05

Table 4: Ablation study of the different generators and
the different pattern lengths on BEA19-Dev.

has a larger number of parameters and generates 418

more diverse and fluent texts. But the model gener- 419

ates more slowly and follows the instructions more 420

weakly. 421

To verify the effect of the different generators 422

on the quality of the generated text, we use them 423

to generate 200k synthetic data on the high-quality 424

text of stage III respectively for joint training. The 425

experiment results are shown in Table 4. We 426

find similar conclusions to Xu et al. (2023), that 427

whether the synthetic data generated by the fine- 428

tuned model or the LLM in-context learning has 429

little effect on the final model performance. So we 430

mainly use GPT2 fine-tuning as the generator for 431

experiments for efficiency considerations. 432

4.2 Impact of Pattern Length 433

Unlike previous rule-based substitution approaches 434

(Choe et al., 2019), our proposed method is not re- 435

stricted to the distribution of the unlabeled corpus, 436

so the length of the error pattern is no longer lim- 437

ited to the token level. To obtain the optimal pattern 438

length, we experiment with contextual augmenta- 439

tion using 1-gram, 3-gram, and 5-gram patterns as 440

shown in Table 1. The results are shown in Table 441

4, the model has the best performance with syn- 442

thetic data generated by the 3-gram pattern. We 443

hypothesize that appropriately long patterns make 444

the synthetic data distribution closer to the source 445

data, indirectly improving the quality of the rela- 446

beling. 447

4.3 Impact of Data Mixing Ratio 448

In joint training, the impact of the ratio of synthetic 449

to real data is significant. We conduct joint training 450

experiments with different amounts of synthetic 451

data, and the results are shown in Figure 5. Consis- 452

tent with our analysis, the ratio of synthetic data to 453

real data is a trade-off. As the amount of synthetic 454
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Figure 5: The effect of different amounts of synthetic
data in joint training on the final system.

Synthetic Data BEA19-Dev
Prec Rec F0.5

N/A 63.61 52.59 61.06

PIE 63.89 51.68 61.01
C4200M 63.96 51.42 60.98
CDA (ours) 64.39 52.23 61.53

Table 5: Performance of different synthetic data partici-
pating in joint training after denoising. N/A means the
no data augmentation situation.

data increases, the precision of the system gradu-455

ally increases. At the same time, the proportion456

of higher-quality real data has declined, possibly457

leading to some decline in error recall.458

4.4 Quality Assessment of Synthetic Data459

To compare the quality of our proposed context460

augmentation with other synthetic data. We adopt461

the same three-stage training and denoising for462

synthetic data of different construction methods.463

We choose PIE (Awasthi et al., 2019) and C4200M464

(Stahlberg and Kumar, 2021) as our baselines,465

which represent the rule-based substitution method466

and the model-based generation method, respec-467

tively. The results are shown in Table 5, where468

our proposed CDA method is able to better fit the469

distribution of the original dataset within the lim-470

ited data, thus improving the model performance471

in joint training.472

5 Related Work473

5.1 Synthetic Data for GEC Task474

Construction of Synthetic Data As a data-475

starved field, synthetic data has been proven effec-476

tive in improving the GEC systems (Kiyono et al.,477

2019), which can be categorized into rule-based478

substitution and model-based generation meth- 479

ods. Rule-based methods are mainly constructed 480

through direct noise addition (Xu et al., 2019; Zhou 481

et al., 2019; Kiyono et al., 2020), pattern substitu- 482

tion (Choe et al., 2019), and parsing tools (Grund- 483

kiewicz et al., 2019). Model-based generation 484

methods mainly include back-translation (Xie et al., 485

2018; Stahlberg and Kumar, 2021) and round-trip 486

translation (Zhou et al., 2019) based on Seq2Seq ar- 487

chitecture. (Stahlberg and Kumar, 2021) propose a 488

synthesis method based on the Seq2Edit (Stahlberg 489

and Kumar, 2020) architecture capable of generat- 490

ing synthetic data by specifying grammatical error 491

types. 492

Utilization of Synthetic Data Zhang et al. 493

(2019) have explored the use of synthetic data 494

through detailed experiments. The experiments 495

prove that using synthetic data in the pre-training 496

phase achieves optimal results. Some unsupervised 497

grammatical error correction work (Yasunaga et al., 498

2021; Cao et al., 2023) have used the self-training 499

framework to label and co-train unlabeled error 500

corpus to obtain an improvement in effectiveness. 501

5.2 LLM for GEC Task 502

LLMs (Brown et al., 2020; Wei et al., 2021; Tou- 503

vron et al., 2023) have made significant improve- 504

ments in a wide range of natural language process- 505

ing tasks. However, LLMs do not perform well on 506

common benchmarks (Coyne et al., 2023) due to 507

traditional evaluation metrics and over-corrections. 508

Although Fang et al. (2023) have demonstrated that 509

some improvement is achieved by few-shot and 510

chain-of-thought settings, there is still a big gap 511

between LLMs and traditional fine-tuning models. 512

In view of this, using LLM to construct synthetic 513

data for the GEC task (Fan et al., 2023) can be 514

considered as another feasible direction. 515

6 Conclusion 516

In this paper, we propose a synthetic data construc- 517

tion method based on contextual augmentation. It 518

stably augments the context of the source data and 519

ensures a consistent error distribution. Previous 520

methods suffer from noisy labels of synthetic data. 521

We significantly improve the performance of syn- 522

thetic data in joint training through a re-labeling- 523

based denoising method. We validate the effective- 524

ness of our proposed method on several common 525

datasets. 526
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Limitations527

Firstly, compared to other current synthetic data528

construction methods, generating synthetic data529

based on contextual augmentation takes more time530

and resources. For each sample, we need to com-531

plete the inference process on both sides of con-532

text generation and denoising. Secondly, the re-533

predicted results are not completely correct and534

can only alleviate noise. There are still a small535

number of incorrect labels in the synthetic data. In536

addition, it should be noted that the context aug-537

mentation method we proposed can only provide538

richer context for errors existing in the annotated539

dataset, and cannot introduce new grammatical er-540

rors. We will focus on investigating how to better541

generate high-quality synthetic data that contains a542

wider variety of grammatical errors utilizing LLMs543

in our future work.544

Ethics Statement545

In this paper, we explore the application of contex-546

tual augmentation-based synthetic data on the GEC547

task. The source data for these methods come ex-548

clusively from publicly available project resources549

on legitimate websites and do not involve any sen-550

sitive information. In addition, all baselines and551

datasets used in our experiments are also publicly552

available, and we have acknowledged the corre-553

sponding authors by citing their work.554
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A Error Pattern Information791

We have extracted the error patterns from the ex-792

isting annotated dataset using the ERRANT tool793

(Bryant et al., 2017), as described in Section 2.1.1.794

The number of patterns for each dataset is shown795

in Table 8. We maintain a separate error pattern 796

pool for each dataset, from which we sample each 797

time to generate synthetic data. 798

Configuration Value

Stage1

Backbone BART-large
(Lewis et al., 2019)

Devices 4 Tesla V100S-PCIE-32GB
Epochs 10
Max tokens 4096
Update freq 8
Optimizer Adam

(Kingma and Ba, 2014)
Learning rate 3e-05
Max source length 1024
Dropout-src 0.2
Clip norm 0.1
Label smoothing 0.1

Stage2

Epochs 20
Learning rate 1e-05
Warmup-updates 2000
Patient 5

Stage3

Epochs 50
Learning rate 3e-06
Warmup-updates 200
Patient 10

Table 6: Hyperparametric details of the BART-based
three-stage GEC model. In Stage II,III only the parame-
ters that differ from those in Stage1 are described.

B Hyper-parameters 799

We illustrate the hyper-parameters during training 800

of the baseline model (see Table 6 for details) and 801

the GPT2-based generative model (see Table 9 for 802

details) here. 803

C Instruction Format for Synthetic Data 804

Generation 805

When using LLaMA2-7b-chat for synthetic data 806

generation, we use the 5-shot setting to generate 807

the corresponding context for the sampled error 808

patterns. We have given an example to illustrate 809

the specific input format as shown in Table 7. 810
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Instruction [INST] < <SYS> > You are a helpful assistant.< </SYS> >
Use phrases from input to make sentences.
You should fill in [M] to make input sentence more complete.
You can’t change any form or order of the words in input.
Make sure you fully use the phrases in #input. [/INST]

5-shot #input: [M] sized city with eighty thousand [M]
#output: My town is a medium - sized city with eighty thousand inhabitants .

#input: [M] my own plan too , [M] to be the same as them . [M]
#output: I have my own plan too , but I do n’t want to be the same as them . I want
to become a journalist .

#input: Nowadays , each family has more than 1 [M] one of several reasons why
[M]
#output: Nowadays , each family has more than 1 car for each person , this is only
one of several reasons why people use less public transport .

#input: [M] they might want to safeguard [M]
#output: On the other hand , they might want to safeguard the national image .

#input: Lucy , Molly , and [M] a cowboy , and a [M]
#output: Lucy , Molly , and their parents , a cowboy , and a teacher .

Input #input: And I went [M] important [M]
Output #output: And I went to the library to study for an important exam .

Table 7: An example input format for LLaMA2 ICL synthetic data generation

Dataset Sentence# Error Pattern#

Lang-8 1,037,561 677,475
NUCLE 56,958 49,347

FCE 28,350 43,854
W&I+L 34,304 62,952

Table 8: Statistics of the error pattern pool for each
dataset.

Configuration Value

Backbone GPT2-base
(Radford et al., 2019)

Devices 4 Tesla V100S-PCIE-32GB
Epochs 20
Batch size 32
Update freq 4
Optimizer AdamW

(Loshchilov and Hutter, 2017)
Learning rate 5e-05
Max length 256
Warmup ratio 0.1

Table 9: Hyperparametric details of the GPT2-based
contextual generator.
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