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ABSTRACT

The prevailing paradigm for enhancing the reasoning abilities of Large Lan-
guage Models (LLMs) revolves around post-training on high-quality, reasoning-
intensive data. While emerging literature suggests that reasoning data is increas-
ingly incorporated also during the mid-training stage—a practice that is relatively
more proprietary and less openly characterized—the role of such data in pretrain-
ing remains unclear. In particular, due to the opaqueness of pretraining corpora in
most frontier models, the effect of reasoning data introduced at different phases of
pre- and/or post-training is relatively less reported in the scientific literature. This
raises several important but unsettled questions: Is adding reasoning data ear-
lier during pre-training any better than introducing it during post-training, when
the token counts are controlled? Could earlier inclusion risk overfitting and harm
generalization, or instead establish durable foundations that later fine-tuning can-
not recover? To address these questions, we conduct the first systematic study of
how reasoning data—varying in scale, diversity, and quality—affects LLM per-
formance when introduced at different stages of training. Our findings reveal that
front-loading reasoning data into pretraining is critical (19% average gain), es-
tablishing foundational capabilities that cannot be fully replicated by later-stage
SFT, even with more data. We uncover an asymmetric principle for optimal data
allocation: pretraining benefits most from broad diversity in reasoning patterns
(11% average gain), while SFT is more sensitive to data quality (15% average
gain with high quality data). Furthermore, we show that high-quality pretraining
data has latent effects, activated only after SFT, and that naively scaling SFT data
can be detrimental, washing away the benefits of early reasoning injection. Col-
lectively, our results challenge the conventional separation of language modeling
and reasoning, providing a principled guide for strategically allocating data across
the entire training pipeline to build more capable models.

1 INTRODUCTION

The reasoning abilities of Large Language Models (LLMs) have advanced considerably, with post-
training on reasoning data driving significant breakthroughs in reasoning tasks, such as math compe-
titions (Hendrycks et al., 2021b), PhD-level scientific QA (Rein et al., 2024; Phan et al., 2025), and
software engineering (Jimenez et al., 2024). This progress has been largely driven by mid- or post-
training LLMs on high-quality, reasoning-intensive datasets—often featuring long chain-of-thought
(CoT) examples (Guha et al., 2025; Moshkov et al., 2025; Zhou et al., 2025; Gandhi et al., 2025;
Wang et al., 2025). While this approach has proven effective, it treats reasoning as a specialized skill
to be layered onto a generalist base. In addition, the impact of incorporating reasoning data during
pretraining—and the potential synergistic effects on subsequent post-training—remains a critical
yet less explored frontier. This research gap persists due to the prohibitive computational cost of
end-to-end pretraining experiments and the opacity surrounding proprietary training recipes, which
has concentrated community efforts on the more accessible post-training phase.

The synergy between post-training phases has been widely explored (Liu et al., 2025; Chen et al.,
2025b; Chu et al., 2025), yet conclusions vary with training data and scale, and their applicability
to pretraining remains vague in the current literature. In this work, we investigate not just which
reasoning data, but when to train with such reasoning data by studying the synergy between pre-
training and post-training. Our central goal is to determine the ideal balance of such reasoning data
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Figure 1: We systematically inject reasoning-style data (Dres) at different phases of train-
ing—pretraining versus SFT—while varying its diversity, quantity, and quality. Our results show an
asymmetric principle: diversity and scale matter most during pretraining, whereas quality dominates
in SFT. This allocation strategy compounds through reinforcement learning (RL), yielding sustained
gains across complex reasoning benchmarks.

across the two phases in order to maximize downstream accuracies after reinforcement learning.
This motivates the following research questions:

• Is a reasoning-rich pretraining essential, or can a model “catch up”? We investigate whether a
model pretrained without reasoning data can match the performance of its reasoning-aware coun-
terparts by simply undergoing a more intensive SFT phase.

• Does inclusion of reasoning data make the base LLM overfitted and less generalizable to sus-
tain gains in subsequent training phases? While recent literature highlights overspecialization of
reasoning during post-training can be detrimental (Gupta et al., 2025; Luo et al., 2025b), investi-
gations of this effect in pretraining remain limited.

• Does data diversity in pretraining impact stability and specialization during SFT? Specifically,
does using the same reasoning data in both pretraining and SFT lead to robust skill mastery, or
does a narrow pretraining focus risk catastrophic forgetting when the model is later fine-tuned?

• Does the complexity and quality of reasoning data matter when incorporated during pretraining
of the base model? Current literature explores this mostly from SFT stage (Zhou et al., 2023;
Guha et al., 2025), making it obscure whether difficulty or noisiness in the early phase of training
directly impacts reasoning development or not.

This work provides a systematic analysis of the interplay between reasoning data and the distinct
phases of LLM training. Our primary findings are summarized as:

• Front-loading reasoning data into pretraining creates a durable, compounding advantage.
Injecting reasoning data during pretraining establishes a superior foundation that widens at every
stage of post-training, culminating in a +19% lead on expert-level benchmarks. This refutes the
catch-up and overfitting hypotheses, proving that SFT cannot compensate for a weak foundation
and that pretraining choices dictate the final performance ceiling.

• The optimal data strategy is asymmetric: prioritize diversity in pretraining and quality
in SFT. Our results reveal a clear, phase-dependent principle. Pretraining benefits most from
diversity and scale (a +11% gain with diverse corpus), while SFT is dominated by data quality
(a +15% gain with high-quality reasoning data). This provides an actionable heuristic for data
allocation that is more nuanced than simplistic “more is better” approaches.

• Naive scaling of SFT data is ineffective and harmful. Blindly scaling SFT with mixed-quality
data yields no average improvement and actively harmed mathematical reasoning by -5% on av-
erage, while a marginal (0.4%) addition of high-quality data consistently improved performance.

• High-quality pretraining data can have a latent effect unlocked by SFT. We found that high-
quality data added to a diverse pretraining mix showed minimal immediate benefit but “unlocked”
an additional +4% gain over model pretrained with diverse, mixed quality data after SFT—
revealing a deeper synergy where pretraining can instill a latent potential in the model that is
only activated during the alignment phase.
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2 METHODOLOGY

Our methodology is designed to systematically determine the optimal strategy for allocating rea-
soning data between the pretraining and supervised fine-tuning stages of LLM development. We
frame this as an optimization problem where the goal is to maximize the final model’s downstream
accuracies, P . This is a function of the reasoning data introduced during pretraining, DPT

res , and the
data used for supervised fine-tuning, DSFT

res . Our objective is to find the optimal data configurations,
(DPT∗

res ,DSFT∗
res ), that solves the following:

(DPT∗
res ,DSFT∗

res ) = arg max
DPT

res ,DSFT
res

P(θfinal)

where θfinal represents the parameters of the final model trained on data recipes defined by the choice
of reasoning data at both stages.

Let Dbase denote the general pretraining corpus and we define a model M(θ) with parameters θ
trained in two stages:

Pretraining: θPT = argmin
θ

E(x,y)∼Dbase∪DPT
res
LLM(fθ(x), y),

SFT: θSFT = argmin
θ

E(x,y)∼DSFT
res
LSFT(fθ(x), y),

Evaluation Objective. The central research question can be expressed as analyzing the function:

P(DPT
res ,DSFT

res ) = Et∼T

[
Acc

(
fθSFT

(t)
)]
, (1)

where T is a set of downstream reasoning tasks (math, science, code, general reasoning) and the
expectation Et∼T defines a single fine-tuned model that is evaluated across T .

Our study can be summarized as optimizing the allocation of Dres between pretraining and SFT:

max
DPT

res , DSFT
res

P(DPT
res ,DSFT

res ) s.t. B = |DPT
res |+ |DSFT

res |, (2)

where B is the total budget of reasoning data available. This captures the trade-off of early, scale/di-
versity vs late, quality/complexity: DPT

res ←→ DSFT
res

2.1 MODEL ARCHITECTURE AND BASELINE

We select a hybrid transformer with a mixture of Mamba 2 (Dao & Gu, 2024), self-attention and
FFN layers (NVIDIA, 2025a) with an 8B parameter for our base model,M and pretrain from scratch
for 1 trillion tokens. This size strikes a balance between computational feasibility and the capacity
to learn complex reasoning patterns.

2.2 DATA PIPELINE

Our experimental design relies on a careful distinction between two categories of data: (1) a large-
scale, general-purpose pretraining corpus, and (2) a reasoning-focused, instruction-tuning (SFT-
style) datasets of varying quality and scale. This separation allows us to precisely control the injec-
tion of reasoning data at different stages of training.

General Pretraining Corpus (Dbase). For the base training corpus, we adopt the dataset intro-
duced in NVIDIA (2025b), which contains 6.2T tokens drawn from high-quality Common Crawl,
mathematics, and code sources. This corpus provides broad coverage of languages and technical
domains, serving as the backbone of all pretraining experiments.

Reasoning Datasets (Dres). To investigate the impact of data quality, diversity, and complexity,
we curate four distinct reasoning-focused datasets in the question-answer format:

• Large-Scale, Diverse Data (DLDQ). To simulate a “quantity-over-quality” strategy, we em-
ploy the Nemotron-Pretraining-SFT-v1 dataset (NVIDIA, 2025b). This massive 268M samples of
dataset offers extensive domain coverage, with a composition of approximately 56% math, 17%
code, and 27% science and general-purpose reasoning. The dataset covers tasks ranging from sim-
ple Q&A to multi-turn dialogues, but with heterogeneous quality and reasoning depth, reflecting
large-scale real-world availability.

3
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• Small-Scale, High-Quality Data (DSHQ). To capture the effect of long chain-of-thought traces
from strong teacher models, we include the dataset of Guha et al. (2025), comprising 1.2M care-
fully curated examples (71% math, 21% code, 8% science). Compared to DLMQ, this corpus is
smaller, less diverse, but significantly higher quality, emphasizing detailed reasoning paths.

• Large-Scale, Mixed-Quality Data (DLMQ). To balance diversity with quality, we construct a
combined dataset that is a straightforward union of the two datasets above: DLMQ = DLDQ +
DSHQ, i.e., DLMQ contains 269.2M samples in total. This mix preserves large-scale coverage
while injecting a fraction of curated, high-quality reasoning traces.

• Answer-Length Filtered Data (DALF). To investigate the feature of data quality, we create a sub-
set (7.1M samples) ofDLDQ by retaining examples where the answer length exceeds 4096 tokens,
based on the principle that longer responses often correspond to more complex CoT reasoning.
This dataset allows us to isolate the impact of reasoning complexity in different training phases.

2.3 SYNERGY BETWEEN PRETRAINING AND SFT

In this work, we aim to disentangle the contribution of reasoning data when incorporated at different
points in the training pipeline. We structure the study into three stages: (i) large-scale Pretraining,
where reasoning data may or may not be injected alongside the base corpus, (ii) Supervised Fine-
tuning (SFT), where pretrained models are further adapted on reasoning data of varying quality
and diversity, and (iii) Reinforcement Learning (RLVR) to determine the sustainability of early
reasoning gain in the final model.

Phase 1: Pretraining. Prior work has primarily explored reasoning supervision either on top of
fully pretrained LLMs (Wang et al., 2025) or by introducing small amounts of long chain-of-thought
(CoT) data into intermediate checkpoints (AI et al., 2025). These approaches leave open two ques-
tions: how to inject reasoning data at scale during end-to-end pretraining, and whether the benefits
persist when combined with high-quality base corpora. To address these questions, we pretrain all
models from scratch for 1T tokens using a mix of Dbase and different types of Dres (See Appendix
A for distribution of pretraining corpora).

Based on the reasoning data introduced, we train four distinct models:

• Mbase: This model serves as our baseline and is pretrained without any reasoning data.
• MLDQ: Pre-trained with large-scale, diverse DLDQ reasoning dataset along with Dbase.
• MSHQ: Pre-trained with DSHQ and Dbase allowing us to isolate the effect of data quality versus

the quantity and diversity ofMLDQ.
• MLMQ: Finally, this model is exposed to our combined reasoning DLMQ dataset.

In the subsequent analysis, we use Mres to denote the aggregate performance of the models pre-
trained with reasoning data, representing the average score acrossMSHQ,MLDQ, andMLMQ.

Phase 2: Supervised Finetuning. Following pretraining, each of the four model variants (Mbase,
MLDQ, MSHQ, MLMQ) is adapted through supervised finetuning (SFT). This second phase is
crucial for understanding the synergies, redundancies, and trade-offs between the data introduced
during pretraining versus the SFT stage. To this end, we design a controlled set of SFT experiments,
where each pretrained model is finetuned on different reasoning corpora introduced in Section 2.2
to address the following rearch questions:

• The “Catch-Up” Hypothesis: Can intensive SFT on high-quality reasoning data allow the base-
line model, Mbase, to match or exceed the accuracy of models that were exposed to reasoning
data during pretraining? This directly tests the criticality of early data injection versus late-stage
specialization.

• Impact of Pretraining Data Scale and Diversity: We investigate how the scale and diversity of
reasoning data used during pretraining influence the final model’s capacity to absorb high-quality
instruction data. Specifically, we ask: Does scaling up diverse reasoning data in pretraining
provide lasting benefits even after all models are finetuned on the same high-quality SFT corpus?
By fine-tuning both the model pretrained on large, diverse data (MLDQ) and on smaller, less

4
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diverse data (MSHQ) on the same high-quality SFT set, we can determine whether a broad or a
deep initial exposure to reasoning yields a better foundation for downstream specialization.

• Impact of SFT Data Quality and Complexity: By fine-tuning all four base models on datasets
of varying quality (DLDQ vs. DSHQ) and complexity (DALF), we can measure the marginal utility
of data quality at the SFT stage as a function of the model’s initial pretraining condition.

This design enables us to address three critical dimensions: (1) the synergy between pretraining
and SFT data, (2) the gains of increasing SFT data scale when reasoning was already introduced in
pretraining, and (3) the role of data complexity and diversity in determining whether reasoning
supervision should be injected early, late, or across both stages. Together with the pretraining ex-
periments, these SFT studies form a fully crossed setup, providing the first systematic assessment of
how reasoning-style SFT data interacts with pretraining to shape the reasoning abilities of LLMs.

Phase 3: Reinforcement Learning. To further observe the impact of reasoning centric pretraining
and heavy supervised finetuning, we deploy RL using Group Relative Policy Optimization (GRPO)
(Shao et al., 2024) with verifiable rewards on top of the base models. Here we use NEMOTRON-
CROSSTHINK (Akter et al., 2025) which has shown to be effective for multi-domain reasoning.

3 EXPERIMENTAL SETUP

3.1 TRAINING

Pretraining. To prepare base models, we pretrain a 8B LLM on our pretraining data blend till
1T tokens using 512 H100 80GB SXM5 GPUs. During training, we use the AdamW optimizer
(Loshchilov & Hutter, 2019) with β1 = 0.9, β2 = 0.95 and weight decay of 0.1. We use a 8-way
tensor and pipeline parallelism to train the model. We set the maximum value of learning rate to
3e−4, minimum to 3e−6, and use a batch size of 6M tokens with a 8192 context length.

Post-Training. After pretraining, each 8B LLM is finetuned on 4.8M reasoning samples from
Dres. SFT uses AdamW with (β1, β2) = (0.9, 0.95), weight decay 0.01, warmup ratio 0.05,
learning rate 5×10−6, batch size 512, and context length 32k. We then apply GRPO via the veRL
framework1 for one epoch on NEMOTRON-CROSSTHINK data with constant LR 1×10−6, batch size
128, PPO mini-batch 128, and context length 8192. Each step samples 128 prompts with 8 rollouts
(temperature= 1.0, top-p = 1.0), and a KL penalty coefficient of 0.001.

3.2 EVALUATION METRICS

We report average accuracies of all tasks under each of the following categories.

Base Model Evaluations. We conduct a thorough benchmark assessment to evaluate the general-
izability of the base models, using a series of datasets using LM Eval Harness (Gao et al., 2024).

• General Purpose Reasoning (GPRPT AVG). We consider four standard commonsense and logical
reasoning tasks in 0-shot: ARC challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), and reading comprehension task: RACE (Lai et al., 2017).

• Math Reasoning (MATHPT AVG). We evaluate the math reasoning ability with two benchmarks–
they encompass math challenges from elementary to college level complexity demanding qualita-
tive reasoning (8-shot GSM8K (Cobbe et al., 2021), 4-shot MATH-500 (Hendrycks et al., 2021b)).

• Science Reasoning (SCIENCEPT AVG). We evaluate on 5-shot MMLU (Hendrycks et al., 2021a)
and MMLU-Pro (Wang et al., 2024) that spans multiple domains, from professional to academic,
testing the model on specialized subjects.

• Code Reasoning (CODEPT AVG). For code tasks (HumanEval (Chen et al., 2021), MBPP (Odena
et al., 2021)) we evaluate the EvalPlus variants along with the sanitization of generations (Liu
et al., 2023), in a 0-shot setup. We estimate avg@32, pass@1 from 32 generations per prompt.

1https://github.com/volcengine/verl
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SFT Model Evaluations. To evaluate the reasoning ability of different SFT models, we focus on
reasoning centric benchmarks unlike in base model evaluations, where mostly focus on the general-
izability of the LLM. We conduct evaluations using NeMo-Skills2.

• Math Reasoning (MATHSFT AVG). In addition to the GSM8K and MATH-500, we evaluate the
models on two more complex math tasks—AIME24 and AIME25 (Veeraboina, 2023).

• Science Reasoning (SCIENCESFT AVG). On top of MMLU and MMLU-Pro, we evaluate on
graduate level QA task: GPQA-Diamond (Rein et al., 2024).

• Code Reasoning (CODESFT AVG). We choose LiveCodeBench (Jain et al., 2025) to test complex
code reasoning ability.

• Instruction Following (INSSFT AVG). For broader evaluation on diverse capabilities, we use IFE-
val (Zeng et al., 2024).

We report Pass@1 average of 16 runs for AIME-2024, AIME-2025 and average of 4 runs for MATH-
500, GSM8K, MMLU, MMLU-Pro, GPQA-Diamond, LiveCodeBench and IFEval.

RL Model Evaluations. In this phase, we evaluate the models on complex reasoning tasks such
as AIME24,25, MATH-500, GSM8K, MMLU, MMLU-Pro, GPQA-Diamond, LiveCodeBench fol-
lowing the evaluation metric in SFT phase.

4 EXPERIMENTS AND RESULTS

Immediate Foundational Gains from Reasoning Data in Pretraining. Table 1 shows the aver-
age accuracies of our four model variants immediately after the 1T token pretraining phase. The
results provide clear evidence that integrating reasoning-style corpora from the start builds a signifi-
cantly more capable foundation. Every model exposed to reasoning data surpasses baselineMbase.
The largest improvements come from models trained on large-scale, diverse data;MLDQ achieves
highest average, driven by a +28.4% gain in mathematics and a +9% gain in code over the baseline.
Interestingly, the smaller, less diverse, high-quality dataset (MSHQ) provides a modest lift, suggest-
ing that at this early stage, the scale and diversity of the reasoning data are more critical than its
curated quality for establishing a broad and robust reasoning foundation.

Model Average MATHPT AVG SCIENCEPT AVG CODEPT AVG GPRPT AVG

Mbase 52.70 47.17 47.13 40.89 75.63

MSHQ 54.98 52.60 46.90 44.32 76.09
MLDQ 64.09 75.56 54.38 49.94 76.48
MLMQ 64.07 72.37 54.49 52.60 76.83

Mres 61.05 66.84 51.92 48.95 76.46

Table 1: Average Accuracies of base models trained without or with varying Dres. Pretraining
with diverse reasoning data yields immediate gains, with scale and diversity driving math and code
improvements, more than quality.

Pretraining Advantage is Maintained and Amplified Post-SFT. We evaluate whether a strong
SFT phase can close the accuracy gap established during pretraining with diverse reasoning data
Dres. At the same time, we examine whether the inclusion of such data causes the model to overfit
and reduce generalization, thereby diminishing subsequent post-training gains. We finetune each
pretrained model on three reasoning datasets (DSHQ, DLDQ, DLMQ), producing 12 models in total.
We report the average results in Table 2 and include the full breakdown in Table 11. The results
in Table 2 indicate that the advantage gained during the pre-training phase not only persists but
is amplified. The group of models pretrained with reasoning data (Mres + SFT) outperforms the
baseline group (Mbase + SFT) by a significant 9.3% on average. This result strongly refutes the
“catch-up” hypothesis, showing that SFT is not a substitute for a strong reasoning foundation built
during pretraining. While recent works have found reasoning-centric post-training to be most effec-
tive on math domains, the improvement on science is minimal (Prabhakar et al., 2025; Luo et al.,

2https://github.com/NVIDIA/NeMo-Skills
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2025a; Huan et al., 2025). However, the accuracy disparity in our findings is most prominent in
science domains, an area often overlooked in reasoning-focused post-training work. This suggests
that pretraining with reasoning data does more than teach facts; it helps the model develop effective
internal representations for abstract and logical structures to enhance problem solving ability across
domains. It does not overfit the model rather infuses the critical thinking ability that comes into
full potential after post-training (Appendix B). Consequently, the model’s capacity to absorb and
leverage the SFT data is fundamentally enhanced, leading to greater learning efficiency and a higher
performance ceiling. SFT acts as a powerful enhancer, but its ultimate effectiveness is constrained
by the quality of the foundation established during pretraining.

Model Average MATHSFT AVG SCIENCESFT AVG CODESFT AVG INSSFT AVG

Mbase + SFT 26.62 34.48 20.92 7.09 43.98
Mres + SFT 35.92 40.61 34.77 16.75 51.52

Table 2: Average Accuracies of SFT models pretrained with varying Dres. SFT amplifies the
pretraining advantage—models with reasoning-rich pretraining significantly outperform baseline.

Model Avg. Math Reasoning Science & Code Reasoning
MATH-500 GSM8K AIME24 AIME25 GPQA MMLU MMLU-PRO LCB

Mbase + SFTSHQ +RL 37.92 72.05 83.83 12.29 16.04 28.16 41.10 36.69 13.16
MLMQ + SFTSHQ +RL 56.66 87.13 93.07 45.21 33.96 31.69 72.91 56.91 32.43

Table 3: Average accuracies of RL models pretrained and fine-tuned with varying Dres. Intro-
ducing reasoning data early provides significant reasoning boost after post-training.

Pretraining Strategy Dictates Final Accuracy on Expert-Level Tasks. The final RL phase re-
veals the definitive impact of our pretraining interventions, particularly on expert-level reasoning
benchmarks. We select MLMQ + SFTSHQ and Mbase + SFTSHQ finetuned using DSHQ as our
two extreme pretraining backbones. As shown in Table 3, the accuracy gap between the two models
continues to diverge, with the fully-alignedMLMQ models achieving a 18.57% lead over theMbase

model on average. The most striking results appear on the highly challenging AIME competition
math problems, where the reasoning-pretrained models deliver a 39.32% improvement over the base-
line. This provides conclusive evidence that early investment in reasoning data yields compounding
returns, becoming the decisive factor in achieving frontier accuracies on the most demanding tasks.

5 ABLATIONS

Does the scale and diversity of the reasoning data matter in Pretraining? As detailed in Ta-
ble 1, plainly increasing size and diversity of Dres in pretraining has significant improvement on
the base model. The model pretrained on large, diverse data (MLDQ) achieves an absolute +9.09%
average gain over the model trained on the smaller, less diverse corpus (MSHQ), with the largest
gains observed in math, science, and code—domains that explicitly demand structured reasoning.
GPRPT AVG shows limited sensitivity to diversity due to the nature of tasks that require commonsense
and general knowledge. In contrast, scaling DLDQ with DSHQ (high-quality but less diverse) as in
MLMQ provides minimal further benefit on the reasoning tasks—underscoring that broad exposure
to diverse reasoning patterns during pretraining is impactful for building a strong foundation.

The Pretraining Advantage Persists and Resists “Catch-Up” Attempts via SFT. A central ques-
tion is whether a model without a reasoning-rich pretraining (Mbase) can compensate for this deficit
by undergoing a more intensive SFT phase. We test this “catch-up” hypothesis by fine-tuningMbase

with two times more epochs using the same SFT data (DSHQ). The results in Table 4 prove this hy-
pothesis false. While doubling the SFT epochs improves the baseline’s average score by 4.09%, this
enhanced baseline still fails to match the performance of even our weakest reasoning-pretrained
model,MSHQ + SFTSHQ (+3.32%). This provides strong evidence that pretraining instills a foun-
dational reasoning capability that cannot be fully replicated by simply scaling the SFT phase.
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Model Average MATHSFT AVG SCIENCESFT AVG CODESFT AVG INSSFT AVG

Mbase + SFTSHQ 29.92 42.79 35.83 10.48 30.59
Mbase + SFTSHQ(2×epochs) 34.01 48.05 40.69 14.60 32.70

MSHQ + SFTSHQ 37.33 50.52 40.00 24.76 34.06
MLDQ + SFTSHQ 46.70 60.79 50.67 28.57 46.79
MLMQ + SFTSHQ 50.95 64.67 53.74 35.55 49.82

Table 4: Impact of diverse pretraining Dres on SFT phase. Doubling SFT for the baseline fails to
“catch up” to reasoning-pretrained models, while the latent advantage of the mixed-quality pretrain-
ing (MLMQ) emerges, making it the top performer.

Post-SFT, high-quality data reveals latent value. The downstream consequences of these pretrain-
ing choices become more nuanced after SFT. To isolate and test whether these effects persist into
post-training, we finetune all base models with the same high-quality SFT recipe (DSHQ). Results
in Table 4 confirm that models pretrained on diverse corpora continue to substantially outperform
less diverse counterparts even after SFT, confirming that a diverse pretraining foundation enhances a
model’s capacity to benefit from SFT. More surprisingly, while the immediate gains of scaling with
high-quality but narrow data (MLMQ) were muted at the pretraining stage, SFT reveals a latent ad-
vantage: MLMQ achieves an additional +4.25% gain overMLDQ post-SFT. This reveals a critical
finding that high-quality but less diverse data may act as a complementary amplifier, whose benefits
emerge after alignment—underlining the latent impact of quality of data during the pretraining.

Model Average MATHSFT AVG SCIENCESFT AVG CODESFT AVG INSSFT AVG

Mbase + SFTSHQ 29.92 42.79 35.83 10.48 30.59

Mres + SFTLMQ 31.21 30.91 27.73 9.79 56.41
Mres + SFTLDQ 31.54 32.28 28.43 10.85 54.61
Mres + SFTSHQ 44.99 58.66 48.14 29.63 43.56

Table 5: Impact of diverse SFT Dres on SFT phase. Fine-tuning on the small, high-quality corpus
(DSHQ) is highly effective, while using large, diverse corpora (DLDQ) degrades reasoning.

SFT is dominated by data quality, not diversity. We finetune all reasoning-pretrained models
(Mres) on each of our distinct reasoning datasets, and report the averaged results in Table 5. The
findings reveal a striking contrast: while diversity is beneficial in pretraining, blindly scaling diverse
reasoning data during SFT degrades performance. Models trained with DLDQ or DLMQ during
SFT underperform relative to those finetuned on the smaller, high-quality, long-CoT dataset, DSHQ,
despite having been exposed to reasoning data during pretraining. In fact, the use of large-scale,
mixed-quality data at the SFT stage not only erodes the benefits of reasoning-rich pretraining but
can even lead to worse outcomes than the baselineMbase finetuned with DSHQ in math, code, and
science tasks which benefit from reasoning. This result confirms the widely held view that data
quality and long reasoning data is critical for effective SFT (Zhou et al., 2023; Zhao et al., 2024;
Prabhakar et al., 2025). Our findings, however, extend this understanding by showing that simply
applying high-quality data at every stage is not optimal. Instead, the most effective strategy is asym-
metric: pretraining benefits most from broad and diverse reasoning data to establish generalizable
priors, whereas SFT requires high-quality, reasoning-heavy data for targeted refinement.

How should we expand reasoning data during SFT? We next ablate the effect of scaling reason-
ing data during the SFT phase by contrasting two strategies: (i) scaling with data of similar quality
and diversity, and (ii) scaling with data of higher quality and reasoning depth. As shown in Ta-
ble 6, simply doubling the amount of diverse but mixed-quality data yields negligible improvement
in average accuracy with a 4.92% drop in math accuracy—suggesting that increasing the volume of
noisy or shallow reasoning data may dilute the useful signal and actively harm reasoning-specific
domains. The small gains in science and code do not offset this regression, highlighting the limits of
quantity-driven scaling in SFT. In contrast, when scalingDALF with high-qualityDSHQ (D′

ALF), the
average accuracy improves further, with math and instruction-following tasks benefiting most. Im-
portantly, this qualitative expansion is achieved with only a marginal increase in dataset size (0.4%
more samples). These contrasting outcomes provide clear evidence that SFT is a phase of targeted
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Model Average MATHSFT AVG SCIENCESFT AVG CODESFT AVG INSSFT AVG

MLDQ + SFTLDQ 32.84 28.38 35.22 10.16 57.61
MLDQ + SFT2×LDQ 32.99 23.46 39.65 11.75 57.10

MLDQ + SFTALF 42.66 60.95 47.29 22.54 39.87
MLDQ + SFTALF

′ 43.04 61.61 45.78 22.53 42.23

Table 6: Impact of scaling reasoning data in SFT phase. Naively doubling mixed-quality data is
detrimental to math reasoning, whereas targeted scaling of high-quality data yields consistent gains.

refinement, not broad data absorption; the most effective scaling strategy is to strategically enhance
the training corpus with high-quality, reasoning-intensive examples.

6 RELATED WORK

Reasoning in Pretraining and Midtraining. Cheng et al. (2024) study instruction pretraining
by converting raw text into short QA pairs and report gains on general-purpose reasoning tasks
that require minimal reasoning. While effective for broad linguistic alignment, their setup does
not explicitly target reasoning-intensive domains such as mathematics, graduate level science, or
code. Moreover, their pipeline of self-distilled instruction generation demonstrates that Instruct-
PT outperforms vanilla PT after instruction tuning, but it does not assess whether these marginal
pretraining gains persist once models undergo reasoning-heavy SFT and reinforcement learning.
In contrast, our work systematically varies the complexity, quantity, and diversity of reasoning-
style SFT data—containing intermediate thoughts and answers—across both pretraining and SFT,
allowing us to probe whether early exposure yields durable downstream advantages.

More recent efforts have begun to explore the interplay between pretraining and instruction tun-
ing. Liang et al. (2025) augment the instruction-tuning pool to better align with the distribution of
pretraining data, reinforcing consistency between the two stages. While complementary in spirit,
their method is applied only during SFT and does not address whether reasoning-specific supervi-
sion at the pretraining stage provides sustained benefits. Similarly, Wang et al. (2025); AI et al.
(2025) introduce a mid-training phase, continuing pretraining on a small but high-quality reasoning
dataset before SFT and RLVR. They report substantial downstream gains, particularly in mathe-
matics benchmarks, highlighting the promise of mid-training interventions. However, because their
corpus is heavily math-centric, it is difficult to disentangle whether the improvements stem from
scale, complexity, or domain diversity, and the generalizability to science or code remains unclear.

A complementary direction is pursued by Gandhi et al. (2025), who inject algorithmically generated
“cognitive behavioral” reasoning traces during mid-training, demonstrating improvements after re-
inforcement learning. This underscores the potential of early reasoning supervision but remains
limited in scope: the interventions are restricted to small datasets and narrow tasks, leaving open
questions about scalability, diversity, and phase-specific allocation of reasoning data. Our work
builds on these insights by conducting the first systematic, large-scale analysis of reasoning data
across both pretraining and SFT, providing a principled framework for understanding when and how
reasoning supervision should be applied.

7 CONCLUSION

Our study provides the first systematic investigation of how reasoning data, varying in scale, diver-
sity, and quality, influences LLMs across the entire training pipeline. We show that reasoning must be
introduced early: front-loading into pretraining creates durable foundations that post-training alone
cannot recover. Crucially, we uncover an asymmetric allocation principle—diversity drives pre-
training effectiveness, while quality governs SFT—providing a clear, actionable blueprint for data
strategy. Further, we demonstrate that high-quality pretraining data can yield latent benefits activated
only during SFT, and that naive SFT scaling with noisy data can be actively harmful. Collectively,
these findings challenge the conventional division between pretraining and reasoning, positioning
reasoning-aware pretraining as a critical ingredient in building more capable, generalizable, and
compute-efficient language models.
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A EXPERIMENTS AND RESULTS

Data Distribution in Pretraining. Across all models, we keep the token ratio between Dbase

andDres fixed during pretraining. When a reasoning dataset is small, it is repeated so that the model
still observes the same total volume of reasoning tokens. To correctly state the data distribution, we
pretrain all models for 600B tokens usingDbase followed by 400B tokens on a mixture of 80%Dbase

and 20% Dres. This results in a constant budget of 80B reasoning tokens across all experiments.
Dres can be any one source of data among the three reasoning datasets we have defined in Section 2
(DSHQ, DLDQ, DLMQ). This token ratio has been maintained across all three pretraining runs with
reasoning data.

B ADDITIONAL ABLATIONS

Anatomy of high-quality reasoning data in SFT. Our previous results establish that SFT bene-
fits immensely from high-quality data, but what precisely constitutes “quality” remains unclear. In
this ablation, we investigate a defining characteristic of such data: the depth and complexity of its
reasoning traces. Specifically, we compare datasets that differ both in reasoning length and con-
struction method. The high-quality corpus DSHQ consists of answers generated by strong teacher
models, characterized by long chain-of-thoughts with an average length exceeding 10k tokens. In
contrast, DLDQ provides reasoning data from diverse domains but with much shorter and noisier
reasoning traces (average ∼550 tokens). This distinction highlights a potential mechanism underly-
ing quality: longer reasoning chains may serve as richer supervisory signals, encouraging models to
internalize structured multi-step inference rather than surface-level heuristics.

To test this hypothesis, we extract from DLLQ only the longest reasoning traces, creating a new
dataset DALF . Although it represents only ∼2% of the original DLLQ corpus, DALF is highly
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Benchmark Mbase MSHQ MLDQ MLMQ Mres

ARC-C 80.89 80.46 81.40 81.83 81.15
RACE 73.59 75.41 78.28 79.43 76.68
WINOGRANDE 70.64 71.43 69.53 69.38 70.25
HELLASWAG 77.38 77.06 76.69 76.67 76.95

GSM8K 59.74 65.20 82.71 85.14 73.20
MATH-500 34.60 40.00 68.40 59.60 50.65

MMLU 61.67 61.45 65.87 65.42 63.60
MMLU-PRO 32.59 32.34 42.89 43.56 37.85

HUMANEVAL 37.44 41.04 48.63 51.68 44.70
HUMANEVALPLUS 32.59 35.03 42.74 46.28 39.16
MBPP 41.64 47.47 48.85 51.47 47.36
MBPP[SANITIZED] 51.87 53.74 59.53 60.97 56.53

MATHPT AVG 47.17 52.60 75.56 72.37 61.92
SCIENCEPT AVG 47.13 46.90 54.38 54.49 50.72
CODEPT AVG 40.89 44.32 49.94 52.60 46.94
GPRPT AVG 75.63 76.09 76.48 76.83 76.25

Overall 52.70 54.98 64.09 64.07 61.05

Table 7: Breakdown of base model accuracies across benchmarks. With increasing diversity and
quality, the difference betweenMbase and models pretrained with reasoning data increases.

SFT Dataset: DSHQ

Benchmark Mbase + SFT MSHQ + SFT MLDQ + SFT MLMQ + SFT Mres + SFT

IFEVAL 30.59 34.06 46.79 49.82 43.56

AIME-24 8.12 18.33 35.21 41.88 31.81
AIME-25 11.88 18.12 29.38 33.12 26.87
GSM8K 81.24 86.58 91.05 92.84 90.16
MATH-500 69.90 79.05 87.50 90.85 85.80

MMLU 52.14 62.90 71.15 73.49 69.18
MMLU-PRO 39.45 48.63 53.45 55.54 52.54
GPQA-DIAMOND 15.91 8.46 27.40 32.20 22.69

LIVECODEBENCH 10.48 24.76 28.57 35.55 29.63

MATHSFT AVG 42.79 50.52 60.79 64.67 58.66
SCIENCESFT AVG 35.83 40.00 50.67 53.74 48.14
CODESFT AVG 10.48 24.76 28.57 35.55 29.63
INSSFT AVG 30.59 34.06 46.79 49.82 43.56

Overall 35.52 42.32 52.28 56.14 50.25

Table 8: Breakdown of model accuracies across benchmarks after training SFT phase on the DSHQ.

skewed toward domains with inherently deeper reasoning (75% math, with the remainder in science,
code, and general reasoning). We then conduct SFT on top of the Mllq model using both DLLQ

(quantity and diversity) and DALF (length-filtered complexity).

As shown in Table 12, emphasizing depth in reasoning traces has a significant impact on downstream
reasoning tasks. While finetuning with DLLQ yields only modest improvements, switching to the
50 times smaller, filtered by reasoning depth via answer length DALF boosts the overall score to
9.87%, with particularly strong gains in math, science and code. Interestingly, this comes at the cost
of slightly reduced accuracy on instruction-following tasks, reflecting a trade-off between breadth
and reasoning-specific depth. These results provide strong evidence that longer chain-of-thought
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SFT Dataset: DLDQ

Benchmark Mbase + SFT MSHQ + SFT MLDQ + SFT MLMQ + SFT Mres + SFT

IFEVAL 50.86 47.01 57.61 59.21 54.61

AIME-24 1.15 2.50 6.37 4.90 4.59
AIME-25 0.83 3.12 7.71 9.38 6.74
GSM8K 73.56 75.11 59.81 77.62 70.84
MATH-500 46.70 44.98 39.63 56.28 46.96

MMLU 15.25 9.95 49.15 56.81 38.64
MMLU-PRO 16.26 14.24 30.50 33.51 26.08
GPQA-DIAMOND 8.97 7.39 26.01 28.35 20.58

LIVECODEBENCH 6.04 10.48 10.16 11.91 10.85

MATHSFT AVG 30.56 31.43 28.38 37.04 32.28
SCIENCESFT AVG 13.49 10.52 35.22 39.55 28.43
CODESFT AVG 6.04 10.48 10.16 11.91 10.85
INSSFT AVG 50.86 47.01 57.61 59.21 54.61

Overall 25.24 24.86 32.84 36.93 31.54

Table 9: Breakdown of model accuracies across benchmarks after training SFT phase on the DLDQ.

SFT Dataset: DLMQ

Benchmark Mbase + SFT MSHQ + SFT MLDQ + SFT MLMQ + SFT Mres + SFT

IFEVAL 50.50 52.65 57.78 58.79 56.41

AIME-24 1.25 3.13 8.23 4.69 5.35
AIME-25 0.84 2.92 6.98 7.09 5.66
GSM8K 72.93 74.03 57.70 76.27 69.33
MATH-500 45.33 42.18 36.93 50.75 43.28

MMLU 15.75 6.90 50.90 55.15 37.65
MMLU-PRO 15.57 13.18 32.09 33.37 26.21
GPQA-DIAMOND 8.97 4.87 23.17 29.99 19.34

LIVECODEBENCH 4.76 9.37 10.95 9.05 9.79

MATHSFT AVG 30.09 30.56 27.46 34.70 30.91
SCIENCESFT AVG 13.43 8.31 35.39 39.50 27.73
CODESFT AVG 4.76 9.37 10.95 9.05 9.79
INSSFT AVG 50.50 52.65 57.78 58.79 56.41

Overall 24.69 25.22 32.89 35.51 31.21

Table 10: Breakdown of model accuracies across benchmarks after training SFT phase on theDLMQ.

supervision is a critical marker of quality in SFT data. Even when drawn from a noisy, large-scale
corpus, selecting for reasoning depth alone can yield outsized improvements, making length-filtering
a simple yet cost-effective heuristic for constructing impactful reasoning datasets for SFT phase.

Data Redundancy Reinforces Foundational Skills, Not Overfitting. A critical consideration in
our two-phase approach is whether using the same reasoning data in both pretraining and SFT leads
to catastrophic forgetting or brittle overfitting, a known concern in sequential fine-tuning (Luo et al.,
2025b; Chen et al., 2025a).

Our results, shown in Figure 2, suggest this concern is unfounded and that the opposite is
true: for reasoning, strategic redundancy is highly beneficial. The baseline model, Mbase, ex-
posed to the high-quality DSHQ data only during SFT, is the lowest performer across all cate-
gories. In contrast, MSHQ, which sees this same data in both phases, demonstrates a significant
performance uplift, indicating that the second exposure reinforces rather than overwrites learn-
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Model MATHSFT AVG SCIENCESFT AVG CODESFT AVG INSSFT AVG

Mbase + SFTSHQ 42.79 35.83 10.48 30.59
Mbase + SFTLDQ 30.56 13.49 6.04 50.86
Mbase + SFTLMQ 30.09 13.43 4.76 50.50

Mbase + SFT 34.48 20.92 7.09 43.98

MSHQ + SFTSHQ 50.52 40.00 24.76 34.06
MLDQ + SFTSHQ 60.79 50.67 28.57 46.79
MLMQ + SFTSHQ 64.67 53.74 35.55 49.82
MSHQ + SFTLDQ 31.43 10.52 10.48 47.01
MLDQ + SFTLDQ 28.38 35.22 10.16 57.61
MLMQ + SFTLDQ 37.04 39.55 11.91 59.21
MSHQ + SFTLMQ 30.56 8.31 9.37 52.65
MLDQ + SFTLMQ 27.46 35.39 10.95 57.78
MLMQ + SFTLMQ 34.70 39.50 9.05 58.79

Mres + SFT 40.62 34.77 16.75 51.52

Table 11: Results of all SFT models with varying pretraining and SFT data. Model pretrained
with reasoning data obtains the highest gain after SFT phase of training.

Model Average MATHSFT AVG SCIENCESFT AVG CODESFT AVG INSSFT AVG

MLDQ + SFTLDQ 32.84 28.38 35.22 10.16 57.61
MLDQ + SFTALF 42.71 60.95 47.50 22.54 39.87

Table 12: Impact of depth in reasoning traces in data on SFT phase. Model trained on longer
CoT reasoning data outperforms the one trained on diverse reasoning traces.

ing. We hypothesize this occurs because the two training phases serve different learning func-
tions. During pretraining, the reasoning data is integrated slowly into the model’s core represen-
tations alongside vast, diverse knowledge, forcing an internalization of abstract logical patterns.

+ SFT[ ]

+ SFT[ ]

+ SFT[ ]

+ SFT[ ]

Figure 2: The model that saw the same high-quality data in
both pretraining and SFT (MSHQ) handily beats the base-
line (Mbase) that only saw the data once.

The SFT phase then acts not as a
new learning task, but as a powerful
reinforcement signal on an already-
prepared foundation. This benefit
is amplified by a diverse pretraining
context: the top-performing MLMQ

model leverages its broad exposure to
various reasoning styles to most ef-
fectively capitalize on the repeated,
high-quality signal from DSHQ. This
suggests that data redundancy be-
tween pretraining and SFT should be
viewed as a powerful mechanism for
skill consolidation, where a diverse
pretraining builds the capacity for
reasoning and redundant SFT sharp-
ens it.
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