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Abstract

Temporal data like time series are often observed at irregular intervals which is
a challenging setting for the existing machine learning methods. To tackle this
problem, we view such data as samples from some underlying continuous func-
tion. We then define a diffusion-based generative model that adds noise from
a predefined stochastic process while preserving the continuity of the resulting
underlying function. A neural network is trained to reverse this process which
allows us to sample new realizations from the learned distribution. We define
suitable stochastic processes as noise sources and introduce novel denoising and
score-matching models on processes. Further, we show how to apply this ap-
proach to the multivariate probabilistic forecasting and imputation tasks. Through
our extensive experiments, we demonstrate that our method outperforms previous
models on synthetic and real-world datasets.

1 Introduction

Time series data is collected from measurements of some real-world system that evolves via a poten-
tially complex unknown dynamics and the sampling rate is often arbitrary and non-constant. Thus,
the assumption that time series follows some underlying continuous function is reasonable; consider,
e.g., the temperature or load of a system over time. Although the values are observed as separate
events, we know the temperature always exists and its evolution over time is smooth, not jittery. The
continuity assumption remains when the intervals between the measurements vary. This kind of data
can be found in many domains, from medical, industrial to financial applications.

Different approaches to model irregular data have been proposed, including neural (ordinary or
stochastic) differential equations (Chen et al., 2018; Li et al., 2020), neural processes (Garnelo et al.,
2018), normalizing flows (Deng et al., 2020) etc. As it turns out, capturing the true generative
process proves to be difficult, especially with the inherent stochasticity of the data.

We propose an alternative method, a generative model for continuous data that is based on the
diffusion framework (Ho et al., 2020) which simply adds noise to a data point until it contains no
information about the original input. At the same time, the generative part of these models learns to
reverse this process so that we can sample new realizations once training is completed. In this paper,
we apply these ideas to the time series setting and address the unique challenges that arise.

Contributions. Contrary to the previous works on diffusion, we model continuous functions, not
vectors (Fig. 1). To do so, we first define a suitable noising process that will preserve continuity.
Next, we derive the transition probabilities to perform the noising and specify the evidence bound
on the likelihood as well as the new sampling procedure. Finally, we propose new models that take
in the noisy input and produce the denoised output or, alternatively, the value of the score function.
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Figure 1: (Left) We add noise from a stochastic process to the whole time series at once. The model
ϵθ learns to reverse this process. (Right) We can use this approach to, e.g., forecast with uncertainty.

2 Background

Given training data {x} where each x ∈ Rd, Sohl-Dickstein et al. (2015); Ho et al. (2020) propose
the denoising diffusion probabilistic model (DDPM) which gradually adds fixed Gaussian noise to
the observed data point x0 via known scales βn to define a sequence of progressively noisier values
x1,x2, . . . ,xN . The final noisy output xN ∼ N (0, I) carries no information about the original
data point. The goal is then to learn to reverse this process which allows generating new samples.

As diffusion forms a Markov chain, the transition between any two consecutive points is defined with
a conditional probability q(xn|xn−1) = N (

√
1− βnxn−1, βnI). Since q is Gaussian, the value at

any step n can be sampled directly from x0. Given αn = 1− βn and ᾱn =
∏n

k=1 αk, we write:

q(xn|x0) = N (
√
ᾱnx0, (1− ᾱn)I). (1)

Further, the probability of any intermediate value xn−1 given its successor xn and initial x0 is

q(xn−1|xn,x0) = N (µ̃n, β̃nI), (2)

where: µ̃n =

√
ᾱn−1βn
1− ᾱn

x0 +

√
αn(1− ᾱn−1)

1− ᾱn
xn, β̃n =

1− ᾱn−1

1− ᾱn
βn. (3)

The generative model learns the reverse process p(xn−1|xn). Sohl-Dickstein et al. (2015) set
p(xn−1|xn) = N (µθ(xn, n), βnI), and parameterized µθ with a neural network. The training
objective is to maximize the evidence lower bound log p(x0) ≥

Eq

[
log p(x0|x1)−DKL(q(xN |x0)||p(xN ))−

∑
n>1

DKL(q(xn−1|xn,x0)||p(xn−1|xn))

]
. (4)

In practice, however, the approach by Ho et al. (2020) is to reparameterize µθ and predict the noise
ϵ that was added to x0, using a neural network ϵθ(xn, n), and minimize the simplified loss function:

L(x0) = Eϵ∼N (0,I),n∼U({0,...,N})
[
||ϵθ(

√
ᾱnx0 +

√
1− ᾱnϵ, n)− ϵ||22

]
. (5)

To generate new data, the first step is to sample a point from the final distribution xN ∼ N (0, I)
and then iteratively denoise it using the above model (xN 7→ xN−1 7→ · · · 7→ x0) to get a sample
from the data distribution. When we take the number of diffusion steps to the limit, we can define
both the forward and reverse processes with a stochastic differential equation (see Appendix A.3).

3 Diffusion for time series data

In contrast to the previous section which deals with data points that are represented by vectors, we
are interested in generative modeling for time series data. We represent time series as a set of points
X = {x(t0), . . . ,x(tM−1)}, t ∈ [0, T ], observed across M timestamps. The observations can be
equally spaced but this formulation encompasses irregularly-sampled data as well. We assume that
each observed time series comes from its corresponding underlying continuous function x(·). Our
approach can be viewed as modeling the distribution “p(x(·))” over functions instead of vectors,
which amounts to learning the stochastic process. To preserve continuity, we cannot apply the ideas
from Section 2 directly, unless we assume measurements are independent of each other.

3.1 Stochastic processes as noise sources for diffusion

Instead of defining the diffusion by adding some scaled noise vector ϵ ∼ N (0, I) to a data vector
x, we add a noise function (stochastic process) ϵ(·) to the underlying data function x(·). The only
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restriction on ϵ(·) is that it has to be continuous so that the output remains continuous as well, which
clearly rules out ϵ(·) ∼ N (0, I). In the following, we present two stationary stochastic processes
that add the continuous-in-time noise and provide tractable training and sampling.

1. Gaussian process prior. Given a set of M time points t, we propose sampling ϵ(t), t ∈ t
from a Gaussian process N (0,Σ), where each element of the covariance matrix is specified with
a kernel cov(t, u) = k(t, u). This produces smooth noise functions ϵ(·) that can be evaluated at
any t. To define a stationary process, we have to use a stationary kernel; we will use a radial basis
kernel k(t, u) = exp(−γ(t − u)2). Adjusting the parameter γ lets us vary the flatness of the noise
curves. Given a set of time points t, we can easily sample from this process by first computing the
covariance Σ = k(t, t) and then sample from the multivariate normal distribution N (0,Σ).

2. Ornstein-Uhlenbeck diffusion. The alternative noise distribution is a stationary OU process
which is specified as a solution to the following SDE: dϵt = −γϵtdt + dWt, where Wt is the
standard Wiener process and we use the initial condition ϵ0 ∼ N (0, I). We can obtain samples
from OU process easily by sampling from a time-changed and scaled Wiener process: e−γtWe2γt .
The covariance can be calculated as cov(t, u) = exp(−γ|t− u|). The OU process is a special case
of a Gaussian process with a Matérn kernel (ν = 0.5) (Rasmussen & Williams, 2005, p. 86). We
discuss different sampling techniques and their trade-offs in Appendix B.2.

3.2 Discrete stochastic process diffusion (DSPD)

We apply the discrete diffusion framework to the time series setting. Reusing the notation from
before, X0 denotes the input data and Xn = {xn(t0), . . . ,xn(tM−1)} is the noisy output after n
diffusion steps. In contrast to the classical DDPM (Section 3) where one adds independent Gaussian
noise to data, we now add the noise from a stochastic process. In particular, given the times of
the input observations, we can compute the covariance Σ and sample noise ϵ(·) from a GP or OU
process as defined in Section 3.1. We can write the transition kernel and the posterior as:

q(Xn|X0) = N (
√
ᾱnX0, (1− ᾱn)Σ), (6)

q(Xn−1|Xn,X0) = N (µ̃n, β̃nΣ), (7)

where the difference to Equations 1 and 2 is the inclusion of Σ. Full derivation is in Appendix A.1.

The generative model is defined with the reverse process p(Xn−1|Xn) = N (µθ(Xn, t, n), βnΣ),
similar to Ho et al. (2020), but we swap the identity matrix for Σ. Another key difference is that the
model now takes the full time series and the time points in order to output the prediction which has
the same size as Xn. The architecture, therefore, has to be a type of a time series encoder-decoder.

Since all the probabilities are still normal, the terms in the ELBO (Equation 4) can be calculated in
closed-form and we adopt the reparameterization which predicts the noise ϵ(·) and minimize:

L(X0) = Eϵ∼N (0,Σ),n∼U({1,...,N})
[
||ϵθ(

√
ᾱnX0 +

√
1− ᾱnϵ, t, n)− ϵ||22

]
. (8)

More details can be found in Appendix A.2. The sampling is similar to Ho et al. (2020) but the noise
comes from a stochastic process instead of an independent normal distributions. In Algorithms 1
and 2 we show the training and the sampling procedure, respectively, when using the GP diffusion.

CSPD. We also define the continuous version using an SDE which we describe in detail in Ap-
pendix B.3. We comment on the implementation details for both approaches in Appendix B.4.

Applications. Besides modeling p(X), one can condition the generative model on additional inputs.
In Appendix C, we introduce three use cases: forecasting, interpolation via neural processes and
imputation. We test out these approaches in the next section.

4 Experiments

Probabilistic modeling. We test our DSPD and CSPD with independent Gaussian noise and noise
from stochastic processes (GP and OU) on six synthetic datasets. We also compare to the estab-
lished baselines for irregular time series modeling, namely, latent ODEs (Rubanova et al., 2019) and
continuous-time flow process (CTFP) (Deng et al., 2020). The detailed experimental setup along
with further results can be found in Appendix D.1. Table 2 shows that using a stochastic process
as the noise source outperforms the independent noise. The ablation in Table 3 shows that using an
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CIR Lorenz OU Predator-prey Sine Sink

CTFP 0.9985±0.0012 0.995±0.0057 0.783±0.0756 0.789±0.0227 0.981±0.0104 0.7265±0.1378
Latent ODE 1.0±0.0 0.998±0.0019 0.512±0.0331 0.958±0.0213 1.0±0.0 0.907±0.0394
DSPD-GP (Our) 0.5115±0.0282 0.5135±0.0288 0.5055±0.0458 0.5855±0.0219 0.5255±0.009 0.513±0.0103

Table 1: Accuracy of the discriminator trained to distinguish real data and model samples.
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Figure 2: Real data and samples from our model based on an Ornstein-Uhlenbeck process.

independent denoising model, i.e., ϵθ that processes time series inputs individually, performs worse
than a model that processes the whole time series at once. Figure 2 demonstrates the quality of the
samples. Finally, Table 1 compares our model with the baselines and demonstrates that our model
produces samples that are indistinguishable to a powerful transformer-based (Vaswani et al., 2017)
discriminator model. The same does not hold for the competing methods.

Forecasting. We test our model as defined in Appendix D.2 and Figure 3 against TimeGrad (Rasul
et al., 2021b) on three established real-world datasets. Due to the limitations of the CRPS-sum
metric (Koochali et al., 2022), we report the NRMSE and the energy score but we note that the
ordering of the models’ performance is preserved using other metrics as well. Table 4 shows that
our method outperforms TimeGrad even though we predict over the complete forecast horizon at
once, and Figure 4 demonstrates the prediction quality alongside the uncertainty estimate.

Neural process. We construct a dataset where each time series X comes from a different stochas-
tic process, by sampling from Gaussian processes with varying kernel parameters and time series
lengths. This is a standard training setting in neural process literature (Garnelo et al., 2018). In
our denoising network, we modify the attention layer to make it stationary and train as described in
Appendix C.2. Due to the use of tanh activations in the final layers, combined with its stationary,
our model extrapolates well, i.e., when tanh saturates the mean and variance do not vary far from
observations. This is the same behaviour we see in the GP with an RBF kernel, for example. The
quantile loss of the unobserved data under the true GP model is 0.845 while we achieve 0.737 which
indicates we capture the true process, which can also be seen in Figure 5. We remark that attentive
neural process (Kim et al., 2019) does not produce the correct uncertainty.

Imputation. We compare to the CSDI model (Tashiro et al., 2021) introduced in Appendix C.3 on
an imputation task. To this end, we use exactly the same training setup, including the random seeds
and model architecture, but change the noise source to a Gaussian process. We update the loss and
sampling accordingly, as in Section 3. Table 5 shows that we outperform the original CSDI model
even though we only changed the noise, and the dataset we used has regular time sampling. For
more details on the experimental setup, see Appendix C.3.

5 Discussion

In this paper, we introduced the stochastic process diffusion framework for time series modeling.
We demonstrated that the improvements over the previous works come from (1) using the stochastic
process as the noise source; and (2) using the model that takes in the whole time series at once,
instead of modeling points independently. We also show how one can condition the generation
to obtain a forecasting model as well as interpolation and imputation models. We outperform
competing models on all of the tasks which demonstrates the practical utility of our method.

Future work. We can improve upon our models by implementing recent advances in diffusion mod-
eling (e.g., Nichol & Dhariwal, 2021), train the latent diffusion (Rombach et al., 2021) or explore
different architecture choices, e.g., learned activations (Ramos et al., 2022). In case we have a large
amount of points, we can consider switching to a sparse GP (Quiñonero-Candela & Rasmussen,
2005). Finally, we can also apply the presented methods beyond time series, e.g, to model point
clouds or even images, as we have demonstrated our method is competitive on regular grids.
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Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations. Institute of Mathematical
Statistics Textbooks. Cambridge University Press, 2019. 8

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based dif-
fusion models for probabilistic time series imputation. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2021. URL https://proceedings.neurips.cc/paper/2021/
file/cfe8504bda37b575c70ee1a8276f3486-Paper.pdf. 4, 11

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2017. URL https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 4

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdi-
nov, and Alexander J Smola. Deep sets. In Advances in Neural Information Processing
Systems (NeurIPS), 2017. URL https://proceedings.neurips.cc/paper/2017/file/
f22e4747da1aa27e363d86d40ff442fe-Paper.pdf. 11

6

https://openreview.net/forum?id=t5s-hd1bqLk
https://openreview.net/forum?id=t5s-hd1bqLk
https://doi.org/10.7551/mitpress/3206.001.0001
https://proceedings.mlr.press/v139/rasul21a.html
https://proceedings.mlr.press/v139/rasul21a.html
https://openreview.net/forum?id=WiGQBFuVRv
https://openreview.net/forum?id=WiGQBFuVRv
https://arxiv.org/abs/2112.10752
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://www.sciencedirect.com/science/article/pii/S0169207019301888
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.neurips.cc/paper/2021/file/cfe8504bda37b575c70ee1a8276f3486-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/cfe8504bda37b575c70ee1a8276f3486-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf


A Derivations and further background

A.1 Discrete diffusion posterior probability

We extend Ho et al. (2020) by using full covariance Σ(t) to define the noise distribution across time
t. If Σ = LLT and keeping the same definitions from Section 3 for βn, αn, and ᾱn, we can write:

Xn =
√

1− βnXn−1 +
√
βnLϵ, (9)

Xn =
√
ᾱnX0 +

√
1− ᾱnLϵ, (10)

with ϵ ∈ N (0, I). This corresponds to the following transition distributions:

q(Xn|Xn−1) = N (
√

1− βnXn−1, βnΣ), (11)

q(Xn|X0) = N (
√
ᾱnX0, (1− ᾱn)Σ). (12)

We are interested in q(Xn−1|Xn,X0) ∝ q(Xn|Xn−1)q(Xn−1|X0). Since both distributions
on the right-hand side are normal, the result will be normal as well. We can write the resulting
distribution as N (µ̃, Σ̃), where:

µ̃ = R(Xn −Aµ1) + µ1

Σ̃ = Σ1 −RAΣT
1

R = Σ1A
T (AΣ1A

T +Σ2)
−1,

with A =
√
1− βnI , µ1 =

√
ᾱn−1X0, Σ1 = (1− ᾱn−1)Σ, and Σ2 = βnΣ. We can now write:

R = (1− ᾱn−1)Σ
√
1− βn

(√
1− βn(1− ᾱn−1)Σ

√
1− βn + βnΣ

)−1

=
(1− ᾱn−1)

√
αn

αn(1− ᾱn−1) + 1− αn
ΣΣ−1

=
1− ᾱn−1

1− ᾱn

√
αn,

and from there:

µ̃ =
1− ᾱn−1

1− ᾱn

√
αn

(
Xn −

√
1− βn

√
ᾱn−1X0

)
+
√
ᾱn−1X0

=
1− ᾱn−1

1− ᾱn

√
αnXn +

√
ᾱn−1

(
1− 1− ᾱn−1

1− ᾱn
αn

)
X0

=
1− ᾱn−1

1− ᾱn

√
αnXn +

√
ᾱn−1

1− ᾱn
βnX0,

(13)

and using the fact that Σ is a symmetric matrix:

Σ̃ = (1− ᾱn−1)Σ− 1− ᾱn−1

1− ᾱn

√
αn

√
1− βn(1− ᾱn−1)Σ

T

=

(
1− ᾱn−1 −

1− ᾱn−1

1− ᾱn
αn(1− ᾱn−1)

)
Σ

=
1− ᾱn−1

1− ᾱn
βnΣ.

(14)

Therefore, the only difference to the derivation in Ho et al. (2020) is the Σ(t) instead of the identity
matrix I in the covariance.

A.2 Discrete diffusion loss

We use the evidence lower bound from Equation 4. The distribution q(Xn−1|Xn,X0) is defined
as N (µ̃, C1Σ), where C1 is some constant (Equations 13 and 14). Similar to Ho et al. (2020),
we choose the parameterization for the reverse process p(Xn−1|Xn) = N (µθ(Xn, t, n), βnΣ),
where:

µθ(Xn, t, n) =
1√
αn

(
Xn − βn√

1− ᾱn
ϵθ(Xn, t, n)

)
.
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Then the KL-divergence is between two normal distributions so we can write the following, where
C2 is a term which does not depend on the parameters θ:

DKL[q(Xn−1|Xn,X0)||p(Xn−1|Xn)] = DKL[N (µ̃, C1Σ)||N (µθ(Xn, t, n), βnΣ)]

=
1

2
(µ̃− µθ)

TΣ−1(µ̃− µθ) + C2.

We found that simplifying this to computing the mean squared error between the true noise ϵ and
the predicted noise ϵθ, as in Ho et al. (2020), leads to faster evaluation and better results. Therefore,
during training we use the loss as described in Equation 8.

Note that in the above notation we have a set of observations X for times t that we feed into the
model ϵθ to predict a set of noise values ϵ(t), t ∈ t, whereas, previous works predicted the noise for
each data point independently.

A.3 SDE diffusion

Instead of taking a finite number of diffusion steps as in Section 3, Song et al. (2021) introduce a
continuous diffusion of vector valued data, x0 7→ xs where s ∈ [0, S] is now a continuous variable.
The forward process can be elegantly defined with an SDE:

dxs = f(xs, s)ds+ g(s)dWs, (15)

where W is a standard Wiener process. The variable s is the continuous analogue of the discrete
steps implying that the input gets noisier during the SDE evolution. The final value xS ∼ p(xS)
will follow some predefined distribution, as in Section 3. For the forward SDE in Equation 15 there
exist a corresponding reverse SDE (Anderson, 1982):

dxs = [f(xs, s)− g(s)2∇xs log p(xs)]ds+ g(s)dWs, (16)

where ∇xs log p(xs) is the score function. Solving the above SDE from S to 0, given initial con-
dition xS ∼ p(xS) returns a sample from the data distribution. The generative model’s goal is to
learn the score function via a neural network ψθ(xs, s), by minimizing the following loss:

L(x0) = Exs∼SDE(x0),s∼U(0,S)

[
||ψθ(xs, s)−∇xs

log p(xs)||22
]
. (17)

Song et al. (2021) define the continuous equivalent to DDPM forward process as the following SDE:

dxs = −1

2
β(s)xsds+

√
β(s)dWs, (18)

where β(s) and S are chosen in such a way that ensures the final noise distribution is unit normal,
xS ∼ N (0, I). Given this specific parameterization, one can easily derive the transition probability
q(xs|x0) and calculate the exact score in closed-form (see Appendix B.3 and Appendix A.4).

A.4 Continuous diffusion transition probability

Given an SDE in Equation 19 we want to compute the change in the variance Σ̃s, where s denotes the
diffusion time. The derivation is similar to that in Song et al. (2021). We start with the Equation 5.51
from Särkkä & Solin (2019):

dΣ̃s

ds
= E[f(Xs, s)(Xs − µ)T ] + E[(Xs − µ)f(Xs, s)

T ] + E[L(Xs, s)QL(Xs, s)
T ],

where f is the drift, L is the SDE diffusion term and Q is the diffusion matrix. From here, the only
difference to Song et al. (2021) is in the last term; they obtain β(s)I while we have a full covariance
matrix from the stochastic process: β(s)Σ. Therefore, we only need to slightly modify the result:

dΣs

ds
= β(s)(Σ− Σ̃s),

which will gives us the covariance of the transition probability as in Equation 20. The derivation for
the mean is unchanged as our drift term is the same as in Song et al. (2021).
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Algorithm 1 Loss (DSPD-GP diffusion)
1: X0, t ∼ pdata(X, t)
2: Σ = k(t, t)
3: L = Cholesky(Σ)
4: ϵ̃ ∼ N (0, I)
5: ϵ = Lϵ̃
6: n ∼ U({1, . . . , N})
7: Xn =

√
αnX0 +

√
1− αnϵ

8: L = ||ϵ̃− ϵθ(Xn, t, n)||22

Algorithm 2 Sampling (DSPD-GP diffusion)

1: input: t = {t0, . . . , tM−1}
2: Σ = k(t, t); L = Cholesky(Σ)
3: XN ∼ N (0,Σ)
4: for n = N, . . . , 1 do
5: z ∼ N (0,Σ)
6: Xn−1 = 1√

αn

(
Xn − 1−αn√

1−ᾱn
Lϵθ(Xn, t, n)

)
+ βnz

7: end for
8: return X0

B Implementation

B.1 Example algorithms

Algorithms 1 and 2 we show the training and the sampling procedure, respectively, when using the
GP diffusion.

B.2 Sampling from an Ornstein-Uhlenbeck process

In the following, we discuss three different approaches to sampling noise ϵ(·) from an OU process
defined by γ at time points t0, . . . , tM−1.

1. Modified Wiener. As we already mentioned in Section 3.1, we can use a time-changed and
scaled Wiener process: e−γtWe2γt . Sampling from a Wiener process is straightforward:
given a set of time increments ∆t0, . . . ,∆tM−1, we sample M points independently from
N (0,∆ti) and cumulatively sum all the samples. The time changed process first needs to
reparameterize the time values. The issue arises when applying the exponential for large t
which leads to numerical instability. This can be mitigated by re-scaling t.

2. Discretized SDE. A numerically stable approach involves solving the OU SDE in fixed
steps. The point at t = 0, ϵ(0) is sampled from unit Gaussian. After that, each point is
obtained based on the previous, i.e., i-th point ϵ(ti) is calculated as ϵ(ti) = cϵ(ti−1) +√
1− c2z, where c = exp(−γ(ti − ti−1)) and z ∼ N (0, 1). This is an iterative procedure

but is quite fast and stable.
3. Multivariate normal. Finally, we can treat the process as a multivariate normal distribu-

tion with mean zero and covariance cov(t, u) = exp(−γ|t− u|). Given a set of time points
t it is easy to obtain the covariance matrix Σ and its factorization LTL. To sample, we first
draw ϵ̃ ∼ N (0, I) and then ϵ = Lϵ̃. Since our model performs best if it predicts ϵ̃, we
opted for this particular sampling approach. If t is not changing, L can be computed once
and the performance impact will be minimal. Also when sampling new realizations, L has
to be computed only once, before the sampling loop (see Algorithm 2).

B.3 Continuous stochastic process diffusion (CSPD)

Similarly to the previous section, we can extend the continuous diffusion framework to use the noise
coming from a Gaussian or OU process. Now, the noise scales β(s) are continuous in the diffusion
time s, see Appendix A.3. Given a factorized covariance matrix Σ = LLT , we modify the variance
preserving diffusion SDE (Song et al., 2021):

dXs = −1

2
β(s)Xsds+

√
β(s)LdWs, (19)

which gives us the following transition probability (see Appendix A.4 for details):

q(Xs|x0) = N (µ̃, Σ̃) = N
(
X0e

− 1
2

∫ s
0
β(s)ds,Σ

(
1− e−

∫ s
0
β(s)ds

))
. (20)

Since this probability is normal, the value of the score function can be computed in closed-form:

∇Xs
log q(Xs|X0) = −Σ̃−1(Xs − µ̃), (21)
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which we can use to optimize the same objective as in Equation 17. Our neural network ϵθ(Xs, t, s)
will take in the full time series, together with the observation times t and the diffusion time s, and
predict the values of the score function. As it turns out, we can again use the reparameterization in
which we predict the noise, whilst the score is only calculated when sampling new realizations.

B.4 Stochastic process diffusion implementation details

In our work, we consider multivariate time series which means each observation at a certain time
point is a d-dimensional vector. In the forward diffusion process we treat the data as d individual
univariate time series and add the noise to them independently. This is in line with the previous
works where, e.g., independent noise is added to the individual pixels in an image. The model takes
in a complete potentially noisy multivariate time series to learn the reverse process.

We note that the best results are obtained if the model is reparameterized to always predict the
independent Gaussian noise. In the discrete diffusion, this means the noise is computed as ϵ = Lϵ̃,
ϵ̃ ∼ N (0, I), where LTL = Σ is the covariance matrix of the stochastic process. The model then
learns to predict ϵ̃. Similarly, in the continuous diffusion, we represent the score as Lϵ̃/σ2, where
σ2 = 1 − exp(−

∫ s

0
β(s)ds) (Equation 21). In both cases, when we sample, the model will output

the prediction of ϵ̃, which we transform to get the sample from the stochastic process or to obtain
the score function value. An example of this can be found in Algorithm 2 for the discrete diffusion.

C Applications

To train a generative model, it must learn to reverse the forward diffusion process by predicting the
noise that was added to the clean data. The input to the model is the time series (X0, t) along with
the diffusion step n or diffusion time s, and the output is of the same size as X0. If additional
inputs are available, we can also model the conditional distribution; for example, time series data
often contains covariates for each time point of t. We can also condition the generation on the past
observations which essentially defines a probabilistic forecaster or condition only on the observed
values which defines a neural process or an imputation model.

C.1 Forecasting multivariate time series

Forecasting is answering what is going to happen, given what we have seen, and as such is the most
prominent tasks in time series analysis. Probabilistic forecasting adds the layer of (aleatoric) uncer-
tainty on top of that and returns the confidence intervals which is often a requirement for deploying
models in real world settings. The neural forecasters are usually encoder-decoders, where the his-
tory of observations (XH , tH) is represented with a single vector z and the decoder outputs the
distribution of the future values XF given z at time points tF . Previous works relied on specify-
ing the parameters of the output distribution, e.g., via a diagonal covariance (Salinas et al., 2020) or
some low-rank approximation (Salinas et al., 2019), relying on normalizing flows (de Bézenac et al.,
2020; Rasul et al., 2021b), or Generative Adversarial Networks (GANs) (Koochali et al., 2021).

Recently, Rasul et al. (2021a) introduced a diffusion based forecasting model to learn the conditional
probability p(XF |XH). In particular, let XH = {x(t0), . . . ,x(tM−1)} be a history window of
size M sampled randomly from the full training data. They specify the distribution p(x(tM )|XH)
using a conditional DDPM model. The forward process adds independent Gaussian noise to x(tM )
the same way as in DDPM. However, the reverse denoising model is conditioned on the history XH

which is represented with a fixed sized vector z. After training is completed the predictions are
made in the following way: (1) XH is encoded with an RNN to obtain z; (2) the initial noisy value
is sampled xN (tM ) ∼ N (0, I); and (3) denoising is performed using the sampling algorithm from
Ho et al. (2020) but conditioned on z to obtain x0(tM ). The final denoised value is the forecast and
sampling multiple values allows computing empirical confidence intervals of interest.

In Rasul et al. (2021a), the timestamps are always discrete and the prediction is autoregressive, i.e.,
the values are produced one by one. Our diffusion framework offers two key improvements: first, the
predictions can be made at any future time point (in continuous time); and second, we can predict
multiple values at the same time which scales better on modern hardware.
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Figure 3: Overview of the forecasting model. The inputs are time series Xn, diffusion step n,
observation times t and the history vector z. The output is the predicted noise value ϵn.

In our case, the prediction XF will not be a single vector but a set {x(tM ), . . . ,x(tM+K)} of size
K. This kind of data is naturally handled by process diffusion as defined in Section 3. The only thing
left to do is to design the suitable denoising model ϵθ. Previous observations are again represented
with an RNN to obtain z and condition the reverse process on it. We propose an architecture similar
to the TimeGrad model from Rasul et al. (2021a) but which outputs multiple values at the same time.
Figure 3 shows the architecture overview: we add t as an input and take the whole time series at
once. Thus, we use 2D convolution where the extra channel corresponds to the time dimension.

C.2 Diffusion process as a neural process

Neural processes (Garnelo et al., 2018) are a class of latent variable models that define a stochastic
process with neural networks. Given a set of data points (a dataset), the model outputs the probability
distribution over the functions that generated this dataset. That is, for different datasets, the model
will define different stochastic processes. Due to this behavior, neural processes bear a resemblance
to the Gaussian processes but can also be viewed as a meta learning model (Hospedales et al., 2021).

Let XA denote the observed data, in our case, a time series, and let XB be the unobserved data
at the time points tB . Garnelo et al. (2018) construct the encoder-decoder model that uses the
amortized variational inference for training (Kingma & Welling, 2014). The encoder takes in a set
of observed points (XA, tA) and outputs the distribution over the latent variable q(z). It is crucial
that the encoder is permutation invariant, i.e., the order in of the input points does not alter the result.
This is easy to achieve using, e.g., deep sets (Zaheer et al., 2017). The decoder takes in the sampled
latent vector z and the query time points tB and predicts the values of the unobserved points XB .

Since our approach samples functions, we can condition the generation on an input dataset (XA, tA)
in order to create our version of a neural process, based purely on the diffusion framework. The
encoder will be a deterministic neural network that outputs the latent vector z, contrary to (Garnelo
et al., 2018) which outputs the distribution. Similar to Appendix D.2, the diffusion is conditioned on
z and we can output samples for any query tB . Therefore, we capture the distribution p(XB |XA)
directly. During training we adopt the approach of feeding in the data such that we learn p(XA ∪
XB |XA) which helps the model learn to output high certainty around tA.

In the end, our model sees many observed-unobserved pairs coming from different true underlying
processes. The model learns to represent the observed points XA such that the denoising process
corresponds to the correct distribution, given XA. After training is completed, we take a time series
XA and output the samples at any set of query time points tB . We can view such an approach as
an interpolation or imputation model that fills-in the missing values across time. The main appeal is
the ability to capture different stochastic processes within a single model.

C.3 Probabilistic time series imputation

Previous section considered interpolating points in time. Now, we look into the filling-in the missing
values across the observation dimensions, i.e., the imputation of the vectors. An element x of the
time series X is assigned a mask m of the same dimension that indicates whether ith value xi has
been observed (mi = 1) or is missing (mi = 0).

Given observed XA and missing points XB , Tashiro et al. (2021) propose a model that learns a
conditional distribution p(XB |XA). The model is built upon a diffusion framework and the reverse
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CIR Lorenz OU Predator–prey Sine Sink

D
SP

D Gauss -0.4830±0.0176 1.4161±0.0987 0.7081±0.0192 -3.8656±0.0347 -1.3978±0.0108 -5.8355±0.0360
OU -0.4694±0.0154 -7.3334±0.1446 0.5298±0.0229 -9.4932±0.0544 -4.2337±0.0577 -11.3145±0.2015
GP -0.4512±0.0606 -8.4433±0.2435 0.5622±0.0050 -10.1138±0.4601 -4.5568±0.0732 -12.0081±0.0404

C
SP

D Gauss -0.4914±0.0079 1.9043±0.3224 0.5333±0.0144 -3.5642±0.2014 -1.1204±0.0580 -5.6209±0.2057
OU -0.4796±0.0109 -6.6638±0.0773 0.4959±0.011 -8.7748±0.1419 -3.9496±0.1669 -10.4739±0.2482
GP -0.4935±0.0052 -7.5565±0.4107 0.5251±0.0145 -9.3409±0.199 -4.3591±0.1242 -11.6571±0.2825

Table 2: Negative log-likelihood on synthetic data (lower is better).

process is conditioned on XA, similar to Appendix C.2. We extend this by introducing noise from
a stochastic process, as presented before. The learnable model remains the same but we introduce
the correlated noise in the loss and sampling.

D Further results

D.1 Probabilistic modeling

Datasets. We generate 6 synthetic datasets, each with 10000 samples, that involve stochastic pro-
cesses, dynamical and chaotic systems.

1. CIR (Cox-Ingersoll-Ross SDE) is the stochastic differential equations defined by:

dx = a(b− x)dt+ σ
√
xdWt,

where we set a = 1, b = 1.2, σ = 0.2 and sample x0 ∼ N (0, 1) but only take the positive
values, otherwise the

√
x term is undefined. We solve for t ∈ {1, . . . , 64}.

2. Lorenz is a chaotic system in three dimensions. It is goverened by the following equations:

ẋ = σ(y − x),

ẏ = ρx− y − xz,

ż = xy − βz,

where ρ = 28, σ = 10, β = 2.667, and t is sampled 100 times, uniformly on [0, 2], and
x, y, z ∼ N (0, 100I).

3. Ornstein-Uhlenbeck is defined as:

dx = (µt− θx)dt+ σdWt,

with µ = 0.02, θ = 0.1 and σ = 0.4. We sample time the same way as for CIR.
4. Predator-prey is a 2D dynamical system defined with an ODE:

ẋ = 2/3x− 2/3xy,

ẏ = xy − y.

5. Sine dataset is generated as a mixture of 5 random sine waves a sin(bx + c), where a ∼
N (3, 1), b ∼ N (0, 0.25), and c ∼ N (0, 1).

6. Sink is again a dynamical system, governed by:

dx

dt
=

[
−4 10
−3 2

]
x,

with x0 ∼ N (0, I).

Results. Table 2 shows the negative log-likelihood (or the ELBO) for synthetic data and diffusion-
based models. Table 3 further shows the quality of the samples as measured by the ability to fool
the discriminator model.

D.2 Forecasting

Table 4 shows the results on three real-world datasets and Figure 4 shows some forecasting samples
on Electricity dataset.
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CIR Lorenz OU Predator-prey Sine Sink
RNN-based model

D
SP

D Gauss 0.5245±0.0252 0.512±0.0212 0.568±0.051 0.5275±0.0383 0.5565±0.0353 0.526±0.0085
GP 0.5115±0.0282 0.5135±0.0288 0.5055±0.0458 0.5855±0.0219 0.5255±0.009 0.513±0.0103
OU 0.514±0.0737 0.6095±0.0964 0.5605±0.0581 0.5865±0.053 0.507±0.11 0.6255±0.1672

C
SP

D Gauss 0.644±0.0373 0.5015±0.0243 0.6105±0.0153 0.548±0.0751 0.611±0.0516 0.5495±0.0313
GP 0.5795±0.0541 0.674±0.0739 0.5025±0.0622 0.607±0.0538 0.5575±0.0376 0.5345±0.0201
OU 0.4535±0.165 0.715±0.0884 0.5255±0.011 0.5835±0.0723 0.556±0.118 0.5795±0.0173

Feedforward model

D
SP

D Gauss 0.624±0.0438 0.713±0.1798 0.5275±0.0371 1.0±0.0 0.7875±0.0585 0.9695±0.0302
GP 0.558±0.0611 0.894±0.212 0.5535±0.1152 0.7565±0.1362 0.735±0.2146 0.784±0.2281
OU 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

C
SP

D Gauss 0.537±0.0458 0.959±0.0808 0.5155±0.0165 0.9995±0.001 0.6335±0.0765 0.9095±0.1306
GP 0.645±0.1034 1.0±0.0 0.507±0.0264 0.894±0.212 0.894±0.212 0.88±0.088
OU 0.984±0.032 1.0±0.0 0.9905±0.019 1.0±0.0 1.0±0.0 1.0±0.0

Table 3: Accuracy of the discriminator trained on samples from a diffusion model. Values around
0.5 indicate the discriminative model cannot distinguish the model samples and real data. Values
closer to 1 indicate the generative model is not capturing the data distribution.

TimeGrad Ours

Electricity 0.064±0.007 0.045±0.002
8425±613 7079±164

Exchange 0.013±0.003 0.012±0.001
0.057±0.002 0.031±0.002

Solar 0.799±0.096 0.757±0.026
150±17 166±12

Table 4: NRMSE and energy score on
real-world forecasting data.
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Figure 4: Forecast and uncertainty intervals on Electricity.

Missing CSDI DSPD-GP (Our)

10% 0.520±0.055 0.498±0.036
50% 0.644±0.024 0.644±0.029
90% 0.818±0.02 0.815±0.019

Table 5: Imputation RMSE on Physionet
data with varying amounts of missingness. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5: Sampled curves given a set of points.
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