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ABSTRACT

Few-shot meta-learning methods aim to learn the common structure shared across
a set of tasks to facilitate learning new tasks with small amounts of data. However,
provided only a few training examples, many tasks are ambiguous. Such ambiguity
can be mitigated with side information in terms of weak labels which is often
readily available. In this paper, we propose a Bayesian gradient-based meta-
learning algorithm that can incorporate weak labels to reduce task ambiguity
and improve performance. Our approach is cast in the framework of amortized
variational inference and trained by optimizing a variational lower bound. The
proposed method is competitive to state-of-the-art methods and achieves significant
performance gains in settings where weak labels are available.

1 INTRODUCTION AND RELATED WORK

A critical issue in few-shot meta-learning problems is the lack of sufficient information contained in
the training examples to uniquely determine the task. Probabilistic meta-learning algorithms address
this task ambiguity problem by learning generalizable priors from a set of related tasks, and leveraging
Bayesian inference to generate several potential neural network solutions to a given ambiguous task
(Finn et al., 2018; Gordon et al., 2019; Yoon et al., 2018; Rusu et al., 2019; Grant et al., 2018; Ravi
& Beatson, 2019). However, existing methods often fail to cover all possible solutions because of
the complexity and multi-modality of their distribution. Moreover, there is no mechanism for a
practitioner to provide extra information to only produce certain types of solutions. One way to
mitigate these issues is by providing side information in terms of weak labels (Denevi et al., 2020).
These labels are often either readily available or can be easily collected with little efforts.

Figure 1: An overview of the proposed VMAML
framework discussed in Section 3.

We introduce a probabilistic meta-learning
framework that enables efficient integration
of weak labels. Our method, called varia-
tional model-agnostic meta-learning (VMAML),
exploits the weak labels to structure a low-
dimensional task latent space of a task embed-
ding trained using amortized variational infer-
ence (AVI) (Ravi & Beatson, 2019). Given a
few-shot task, the embedding assigns a Gaus-
sian distribution over the latent space endowed
with a rejection sampling mechanism that rejects
samples that are inconsistent with the weak la-
bels. In this way, we mitigate the multi-modality
of the distribution over the neural network so-
lutions. Furthermore, this mechanism provides
a way to flexibly choose whether or not to exploit the weak labels at meta-test time. As shown in
Figure 1, VMAML extends MAML (Finn et al., 2017; Rajeswaran et al., 2019) into a conditional and
probabilistic meta-learning algorithm. It obtains initial parameters for the gradient-descent update per
input task instead of a globally-shared initialization (Wang et al., 2020), and finds such initializations
stochastically instead of deterministically.

∗Petra Poklukar and Ali Ghadirzadeh have contributed equally to this work

1



Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

The main contribution of this work is a framework for providing a principled and practical solution
for handling few-shot task ambiguities by exploiting task embedding and weak supervision. We ex-
perimentally evaluate VMAML performance on an ambiguous few-shot regression and classification
tasks, and demonstrate that it achieves competitive performance with state-of-the-art methods without
using weak labels and superior performance when additionally provided with weak labels.

2 THE FEW-SHOT LEARNING SETTING

We consider a few-shot learning task T to be sampled from an unknown task distribution p(T ), and
characterized by a distinct dataset D = {(xi, yi, l) : xi ∈ X, yi ∈ Y, l ∈ L}ni=1 with n independent
and identically distributed input-output pairs (xi, yi) and a weak label l represented by a multi-hot
vector. We denote by φ the parameters of the task-specific neural network f(x;φ) that outputs a
prediction ỹ for a given input x. We focus on conditional and optimization-based meta-learning
algorithms that, given on a few-shot set D, first output initial parameters θ of the neural network
f(x; θ). These are then further optimized using a task-specific loss function L(θ,D) to obtain the
final parameters φ = argminθ L(θ,D) used to solve the task T .

The objective of a meta-learning algorithm, or a meta-learner, is to efficiently solve unseen tasks,
sampled from p(T ), provided with a set of few data points. The meta-learner is trained during
meta-train phase where a nested optimization is performed at two levels: task-level (inner loop) and
meta-level (outer loop). At each training iteration, we first sample a batch of tasks {Tt} represented
by above defined datasets {Dt}, each consisting of a support set DSt , also known as the few-shot
set, and a query set DQt such that Dt = DSt t D

Q
t . For each task Tt in the batch, the inner loop

optimizes the meta-learner’s output θt (initial parameters) using the support set DSt to yield the
final task-specific parameters φt. At the meta-level (the outer loop), the meta-model’s parameters
themselves are updated by optimizing the sum of the task-specific losses on the query samples DQt .
Intuitively, the meta-learner first adapts each task using the support set DSt and then optimizes for
few-shot generalization based on how well the adapted model generalizes to new data points from the
query set DQt . During the meta-test phase, a trained meta-learner is evaluated on a set of held-out
novel tasks Tu ∼ p(T ) that were not used during the meta-train phase. The model is given a few-shot
support set DSu corresponding to the new task Tu and outputs the initial task-parameters θu that are
again further optimized to yield the parameters φu of the task-specific model f(x;φu). The obtained
model f(x;φu) is then used to predict labels for a set of unlabeled inputs {xi ∈ X} for the task Tu.
The performance of the obtained solution φu is evaluated on an unseen but labeled query set DQu
using the task-specific loss function L(φu,DQu ).

3 VARIATIONAL MODEL-AGNOSTIC META-LEARNING (VMAML)

We extend MAML to a conditional and probabilistic meta-learning algorithm that can incorporate
weak labels to mitigate the task ambiguity problem inherent in few-shot learning settings. VMAML,
visualized in Figure 1, consists of three neural networks: (1) a task encoder h(DS ;ψe), (2) a
generative model p(θ|z;ψg) and (3) a classifier C(z;ψd). Their individual network parameters
(ψe, ψg, ψd) make up the parameters of the meta-model that is trained in a nested optimization
scheme containing inner and outer loops similar to Section 2.

VMAML Inner Loop Adaptation The goal of inner loop adaptation procedure is to obtain task-
specific parameters φt provided the values of the meta-learner’s parameters (ψe, ψg, ψd) and a task
support set DSt . First, the task encoder h(DSt ;ψe) takes the support set DSt as input and outputs
parameters of a low-dimensional task latent distribution q(z|DSt ) over a task latent variable z. We
refer to it as the approximate posterior distribution and model it as a multivariate diagonal Gaussian
q(z|DS) = N (z;µz,diag(σ

2
z)) represented by mean vector µz and covariance vector σ2

z .

We incorporate weak labels l into the learning procedure and learn similarities among the encodings z
based on the attributes provided by l. We achieve this by endowing the approximate posterior q with
a rejection mechanism based on a shallow classifier C(z;ψd). The classifier C takes a latent sample
z as an input and outputs softmax probabilities over the weak labels. If the classifier’s prediction
matches the weak label l, the sample z is accepted and further processed by the rest of the network.
In the opposite case, a new sample is drawn from q and the process is repeated. In this way, ensure
that the latent sample that is further processed by the meta-learner is consistent with the provided
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weak label. The proposed mechanism both improves the expressiveness of q and mitigates the
multi-modality of the true distribution over possible solutions.

Few-shot examples
• makeup ........................................................................................... 
• young ........................................................................................... 
• mouth open ........................................................................................... 

Task 1 Task 2 Task 3

✓
✗
✓

✓
✗
✓

✓
✗
✓

pos. neg.
Support set

pos. neg.
Query set 1

pos. neg.
Query set 2

pos. neg.
Query set 3

Figure 2: Visualization of classification of
three different classifiers sampled from a trained
VMAML-info. Left two columns show the support
set DSu , while other columns show images for each
of the three ambiguous modes of the tasks. Each
image is marked with either green dot if the pre-
dicted classification was correct or red otherwise.

The accepted latent sample z is then passed
to the generative model p(θ|z;ψg) to generate
a task-specific neural network initialization θt.
Following the inner loop of MAML, the gener-
ated parameters θt are further optimized by one
gradient-descent step on the same support set
DSt which results in the final task-specific pa-
rameters φt. More precisely, we obtain the final
task parameters φt = θt−α∇θL(θt,DSt ) where
α denotes the learning rate. The final solution of
the inner loop adaptation for a learning task Tt is
the network f(x;φt) which can be used to make
queries on unlabeled inputs. In contrast to prior
work (Rusu et al., 2019; Gordon et al., 2019),
the distribution over φt is modelled implicitly,
and therefore not constrained to be Gaussian.

VMAML Outer Loop Optimization The goal
of the outer loop optimization is to update the pa-
rameters of the meta-learner (ψe, ψg, ψd) such
that the adaptation procedure produces task pa-
rameters φt that generalize to the correspond-
ing query set DQt . The meta-learner is trained
based on two components: (i) a variational lower
bound to find the approximate posterior distri-
bution q of the task latent variable z, and (ii) a cross-entropy term to update the classifier C, by
optimizing the objective

min
ψe,ψg,ψd

∑
t

E zt∼q(z|DS
t )

θt∼p(θ|zt;ψg)

[L(φt,DQt )]− βDKL(q(z|DSt ) ‖ p(z))− lt ∗ logC(zt;ψd), (1)

where φt = θt − α∇θL(θt,DSt ), DKL denotes the Kullback–Leibler (KL-) divergence, p(z) is the
prior distribution modelled as a zero-mean and unit variance Gaussian distribution, β is a parameter
to balance the KL-loss against the task loss, and ∗ represents the scalar product of two vectors. The
first two terms in equation 1 represent the variational lower bound (i), while the last term represents
the cross-entropy update (ii) for the classifier C. The MAML-based gradient-descent step that adapts
the task-specific parameters θt is absorbed into the generative model p in the first term of equation 1.

4 EXPERIMENTS

We evaluated VMAML on the ambiguous version of CelebA few-shot attribute classification, and an
extended version of the ambiguous few-shot multi-modal 1D regression problem, both introduced
by Finn et al. (2018). The details of the tasks can be found in the supplementary materials. We
investigated the importance of weak labels to mitigate the task ambiguity and the effect of the rejection
sampling mechanism by training VMAML under three conditions: (i) without accessing the weak
labels (VMAML-wo), (ii) providing the weak labels as an input to the meta-learner (VMAML-info*),
and (iii) using the rejection sampling mechanism in addition to (ii) (VMAML-info). We compared
VMAML’s performance to the state-of-the-art methods MAML (Finn et al., 2017), PLATIPUS
(Finn et al., 2018), VERSA (Gordon et al., 2019), and LEO (Rusu et al., 2019). In Figure 3, we
show qualitative performance of VMAML trained both without and with access to the weak labels
l. In the left part of the image, we visualize the ground truth by green shaded area. We can see
that VMAML-wo (top row) outputs a variety of functions that are possible solutions for the given
set of support points. When provided with the weak labels l, VMAML-info (bottom row) outputs
significantly improved predictions where the sampled functions match the provided weak labels. In
the bottom right part of Figure 3 weak labels are used as the user’s input to produce specific types of
solutions, i.e., sinusoidal, polynomial and linear, while keeping both the parameters of VMAML-info
and training examples fixed, and changing only samples from the posterior distribution q(z|DS)
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Method Precision Error Recall Error

MAML 0.627 ± 0.008 0.956 ± 0.009
PLATIPUS 0.751 ± 0.009 0.244 ± 0.001
LEO 0.171 ± 0.013 0.230 ± 0.010
VMAML-wo 0.184 ± 0.002 0.249 ± 0.003
VMAML-info∗ 0.170 ± 0.002 0.247 ± 0.002
VMAML-info 0.095 ± 0.001 0.228 ± 0.003

Table 1: Results of the 5-shot regression task.

Method Accuracy Coverage (≤ 3)

MAML 89.7 ± 2.1% 1.00 ± 0.00
PLATIPUS 87.8 ± 0.3% 1.75 ± 0.02
LEO 83.4 ± 0.3% 1.52 ± 0.02
VERSA 87.4 ± 0.4% 1.04 ± 0.01
VMAML-wo 85.4 ± 1.8% 1.25 ± 0.06
VMAML-info∗ 86.2 ± 0.9% 1.37 ± 0.08
VMAML-info 84.2 ± 1.3% 2.34 ± 0.04

Table 2: Results of the CelebA task.
that pass the rejection sampling mechanism. In this way, the behavior of VMAML models can be
controlled by the value of the weak label l.

GT
Predicted
Few-shots

( = [ 1, 0, 0 ]

( = 
[‘sinusoidal’, ‘polynomial’, ‘linear’]

( = [ 0, 1, 0 ] ( = [ 0, 0, 1 ] ( = 1, 0, 0 0, 1, 0 [0, 0, 1]

Without weak supervision - VMAML-wo (( = [ 0, 0, 0 ])

Using weak supervision – VMAML-info

Figure 3: Predictions made by a VMAML-wo (top left) and
VMAML-info (bottom left) on the same support samples (red
dots). The green shaded area represents the ground truth. In the
bottom right, weak labels are used to generate specific solutions.

We quantitatively evaluated the
models based on two introduced
measures: precision error and re-
call error. For a given test few-
shot task Tu, we generate 100
solutions for each method. We
calculate the mean absolute error
(MAE) of each of the generated
solutions and all ground truth so-
lutions. For each task, we choose
the minimum MAE. The preci-
sion error is then defined as the
average over all minimum MAEs
across the test tasks. Similarly,
the recall error is found by choos-
ing 100 distinct solutions from
the ground truth set and calculat-
ing the average over minimum MAEs determined between the sampled ground truth solutions and all
100 generated solutions. Table 1 shows precision and recall errors for VMAML models as well as the
benchmark methods. VMAML-info attains the best precision and recall among all evaluated methods
which demonstrates its ability to exploit weak labels while reasoning about possible solutions. Since
the performance of VMAML-info∗ is only slightly improved compared to that of VMAML-wo but
significantly lower than that of VMAML-info, we conclude that the proposed rejection sampling
mechanism in the latent space beneficially exploits the provided weak labels l. We observe that LEO
performs comparable to VMAML, while PLATIPUS achieves worse precision potentially because
it generates a wide range of possible solutions that are not included in the ground truth evaluation
set. Finally, MAML obtained a deteriorated recall because of its deterministic nature, while its high
precision error is due to the fact that it optimizes only one globally shared set of parameters.

Figure 2 illustrates classifications made by three different sampled classifiers from a trained VMAML-
info on an ambiguous few-shot dataset (see supplementary material for details on the adjusted
VMAML architecture). The support setDSu given as input to the model is shown on the left, while the
rest of the columns show query images that correspond to the three possible modes that are classified
by the generated classifiers. We can see from the figure that VMAML-info can successfully produce
solutions for all three ambiguous query sets. This is supported by our quantitative analysis reported
in Table 2, where VMAML-info achieves coverage of 2.34 covering more than two ambiguous
task modes, while maintaining high accuracy of 84.2% To cover all modes of the task, it is not
sufficient to produce classifiers that perform well on all instances of the ambiguous tasks. Instead,
each sampled classifier must give the highest log-likelihood on at least one of the given modes of the
task provided the same support images DSu . We hypothesise that this could be a reason why even
stochastic approaches such as VERSA fail to cover more than one mode of the task. Among the
considered benchmarks, PLATIPUS achieves the highest coverage of 1.75 which is slightly lower
than the value reported by Finn et al. (2018) potentially due to the fact that we used a different test
split of attributes. Consistent with the results reported by Finn et al. (2018), MAML achieves good
accuracy but can cover only one mode because of its deterministic nature. Similar to the regression
problem, VMAML yields comparable performance to the evaluated state-of-the-art methods in terms
of coverage and accuracy. Moreover, we observe that the rejection sampling mechanism yields
superior coverage compared to the alternative way of receiving the weak labels as an extra input to
the meta-learner (info∗), as shown by the performance of VMAML-info in Table 2.
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A APPENDIX

A.1 RELATED WORK

The aim of meta-learning is to learn a meta-learner for facilitating the learning process of newly
unseen tasks Vanschoren (2018). There are two major categories of meta-learning: metric-based and
gradient-based meta-learning. For metric-based meta-learning, the goal is to learn a well-generalized
embedding space Snell et al. (2017); Vinyals et al. (2016); Sung et al. (2018); Yoon et al. (2019).
However, the applications of metric-based methods are limited to classification. In contrast, we
focus on the gradient-based methods, which are independent of the problem types and regard meta-
knowledge as model parameter initializations Finn et al. (2017; 2018); Grant et al. (2018); Li et al.
(2017); Rajeswaran et al. (2019); Flennerhag et al. (2020); Rusu et al. (2019)). In the next parts, we
will detail two subcategories of gradient-based meta-learning methods related to this paper.

Meta-learning with Task Ambiguity. A common approach to tackle task uncertainty in meta-
supervised learning is by formulating the learning problem as a hierarchical Bayesian framework
(Grant et al., 2018; Kim et al., 2018b; Finn et al., 2018; Gordon et al., 2019; Ravi & Beatson, 2019),
which benefits from the inherent regularization of the Bayesian approaches. In such formulations,
the parameters of each task t are typically modelled as a random variable φt distinct from the
random variable assigned to the meta-level parameters θ. The task-specific random variables {φt} are
mutually dependent where the dependence is realized through individual links to the meta-parameter
variable θ.

In these Bayesian meta-learning algorithms, variational inference has demonstrated promising results
in many recent works Finn et al. (2018); Kim et al. (2018b); Ravi & Beatson (2019); Rusu et al.
(2019); Nguyen et al. (2020). Finn et al. (2018) extended MAML to learn a distribution over the
meta-parameters by optimizing a variational lower bound. In a similar work, Ravi & Beatson (2019)
proposed to leverage MAML to update the amortized variational parameters using gradient descent at
the initialization given by the meta model. Our approach resembles the work of Finn et al. (2018);
Ravi & Beatson (2019) in that we also leverage MAML in an amortized VI framework to adapt
the meta-parameters. However, the key difference is that we amortize a distribution over a low-
dimensional task embedding instead of the high-dimensional parameter space. Our framework also
incorporates a mechanism to reduce ambiguity via weak task labels.

Meta-learning with Task Representations. Besides Bayesian methods, constructing compact task
representations has been shown to be a promising direction to address the task heterogeneity and
uncertainty problems in few-shot learning (Yao et al., 2019; Hausman et al., 2018; Garnelo et al.,
2018; Kim et al., 2018a; Rusu et al., 2019; Gordon et al., 2019; Vuorio et al., 2018). Unlike Rusu
et al. (2019); Gordon et al. (2019), which formulate the task uncertainty by a diagonal Gaussian
distribution in the high-dimensional parameter space, VMAML models the task uncertainty by an
amortized distribution defined over the low-dimensional task embedding. Moreover, Rusu et al.
(2019) integrates SGD optimization in the learning of the embedding space, while we perform SGD
directly on the generated network parameters which scales well to high-dimensional parameter spaces.

The task uncertainty can be further mitigated by providing side information about the tasks in the
form of weak labels, where labels are used to build a graph to express the relations across samples Liu
et al. (2019); Zhang et al. (2020); Denevi et al. (2020). In contrast to these methods, VMAML
exploits the labels to learn a shallow classifier defined in the low-dimensional task latent space, which
is jointly trained with the meta model. Using the well-trained classifier, VMAML can generate
solutions specific to a given label, and thereby improving the coverage of possible solutions.

A.2 DETAILS OF THE 1D REGRESSION TASK

Each task dataset was constructed by uniformly choosing one of the three base functions, and
randomly sampling the corresponding parameters: phase in [0, π] and amplitude in [0.1, 5] for
sinusoidal, slope and intercept in [−3, 3] for linear, and intercept in [−1, 1] and higher degree
coefficients in [−0.1, 0.1] for polynomials. Each support task dataset consisted of n = 5 pairs (xi, yi)
with xi randomly sampled from the interval [−4.0, 4.0] and yi corrupted by Gaussian noise with
standard deviation 0.3. The query dataset consisted of 50 such points. Weak labels l were given
as one-hot vectors: l = [1, 0, 0] for sinusoidal, l = [0, 1, 0] for polynomial, l = [0, 0, 1] for linear
functions, while l = [0, 0, 0] was used for VMAML-wo. We predetermine a set of ground truth
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Table 3: The split of Train/Test/Validation of attributes. The superscript denotes the index of the
weak label: 1 for the attributes in the eyes and eye- brows areas, 2 for the forehead and hair, 3 for the
nose and mouth areas, 4 for the ears, cheeks, jawline, chin and neck areas, and 5 for more general
attributes.

Split Attributes

Meta-training Arched Eyebrows1 , Attractive5 , Bags Under Eyes1 , Bald2 , Bangs2 , Big Lips3 ,
Wearing Earrings4 , Black Hair2 , Blond Hair2 , Blurry5 , Brown Hair2 , Sideburns4 ,
Bushy Eyebrows1 , Chubby5 , Goatee4 , High Cheekbones4 , Wearing Lipstick3 ,
No Beard4 , Oval Face5 , Pointy Nose3 , Receding Hairline2 , Male5 , Rosy Cheeks4 ,
Straight Hair2 , Wavy Hair2 .

Meta-validation Wearing Necklace4 , Smiling3 , Pale Skin5 , Wearing Necktie4 , Big Nose3 .
Meta-testing Eyeglasses1 , Gray Hair2 , Narrow Eyes1 , Wearing Hat2 , Mouth Slightly Open3 ,

Mustache3 , 5 o Clock Shadow4 , Double Chin4 , Young5 , Heavy Makeup5 .

solutions for 200 tasks, each containing 100 possible function solutions. For each test task, the ground
truth solutions were found by extensively searching for function parameters that yielded average error
below a given threshold on the support data points. Note that by construction there might exists many
solutions for a given few-shot task due to the noisy labels and multi-modality of the tasks arising
from the three different base functions.

A.3 DETAILS OF CELEBA CLASSIFICATION TASK

We evaluated VMAML on the ambiguous version of the CelebA few-shot attribute classification
problem introduced by Finn et al. (2018). We consider N = 2 way and K = 5 shot classification
and use the VMAML architecture presented in Section A.4. Each few-shot support dataset DS
contains a positive class of K = 5 images that have three attributes in common and a negative
class containing the same number of images with neither of the attributes. The positive class of the
query set DQ contains images that satisfy only two of the three attributes, hence producing three
possibilities (modes) to interpret the task determined byDS . In this experiment, weak labels are given
by a multi-hot vector representing the categories of the positive attributes which are grouped into
5 categories. We denote by l = [1, 0, 0, 0, 0] the attributes in the eyes and eyebrows areas, such as
”Brushy Eyebrows” and ”Eye Glasses”, l = [0, 1, 0, 0, 0] for the forehead and hair, l = [0, 0, 1, 0, 0]
for the nose and mouth areas, l = [0, 0, 0, 1, 0] for the ears, cheeks, jawline, chin and neck areas, and
l = [0, 0, 0, 0, 1] for general attributes of the face such as ”Young”. A complete description of the
attributes as well as the construction of the weak labels and the train, test and validation splits is given
in the supplementary material.

Similar to Finn et al. (2018), we construct few-shot CelebA attribute classification task using the split
of meta-train/val/test set containing 162770/19867/19962 images with the attribute split presented in
Table 3. Furthermore, we divided the attributes into 5 categories and assigned a one-hot vector as the
weak label l to each category. The index of the categories is provided by superscripts.

We chose the splits such that there are exactly two attributes in each of the five categories of weak
labels to minimize task ambiguity at test time. Note that the tasks are still ambiguous in cases where
two of the positive attributes have the same weak label.

We used the same coverage and accuracy evaluation protocol introduced by Finn et al. (2018). For
every test few-shot dataset Du, we produce several classifier models using the support set DSu , and
assign each of them to one of the three possible classification tasks that yields the highest log-
likelihood. The coverage is determined by measuring the average number of tasks that receive at least
one generated classification model per dataset DSu . Using the assigned classifiers, accuracy is defined
by averaging their accuracy on these tasks.

A.4 EXTENDING VMAML TO N-WAY K-SHOT TASKS

In classification problems, we can avoid generating very high-dimensional parameters by generating
only the top layer weights and biases of the final classifier Rusu et al. (2019); Gordon et al. (2019).
In this case, a feature extractor model can be shared across different tasks to internally process the
inputs x from the support set DS .
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Figure 4: The computational flow of VMAML for an N -way K-shot classification problem, where
N denotes the number of classes and K number of samples per class. Support data points that
belong to the same class c are processed separately by h2 which outputs the parameters µ(c), σ(c) of
the approximated posterior q(c). A latent sample z(c) from q(c) is mapped to θ(c) representing one
column of the weights and biases of the initial linear classifier using the generative model p. The
output parameters are further optimized based on MAML gradient descent update to yield the task
specific parameters φ(c).

Therefore, the architecture of the task encoder h(DS ;ψe) is divided into two smaller neural networks
h1 and h2 parameterized by ψ1

e and ψ2
e , respectively, such that ψe = ψ1

e t ψ2
e . The computational

flow of the adjusted task encoder is visualized in Figure 4. In the inner loop, the entire support
dataset DS is processed by h1(DS ;ψ1

e) which outputs features ξi for each input xi (where weak
labels l are omitted for simplicity). The obtained features belonging to the same class c ∈ {1, . . . , N}
are then concatenated into one feature vector ξ(c) and processed by h2(ξ(c);ψ2

e), which outputs
parameters µ(c), σ(c) of the approximate posterior q(c). A sample z(c) ∼ q(c) accepted by the
rejection sampling mechanism is then given to the generative model p which outputs the initial
parameters θ(c) representing top layer weights and biases of the classifier. As before, these are
further optimized by one gradient descent step to yield the final parameters φ(c). In the outer
loop, a query point xq ∈ DQ is first processed by h1 to extract the features ξq. These are then
fed to the linear classifier with weights and biases given by φ(1), . . . , φ(N) that outputs softmax
probability p(ỹq|ξq, φ) for each of the N classes. In this case, the KL divergence term in the outer
loop optimization in equation 1 is calculated as the sum over individual KL terms for each class c
using q(c).
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