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Abstract
In the paradigm of AI-generated content (AIGC),
there has been increasing attention to transferring
knowledge from pre-trained text-to-image (T2I)
models to text-to-video (T2V) generation. De-
spite their effectiveness, these frameworks face
challenges in maintaining consistent narratives
and handling shifts in scene composition or ob-
ject placement from a single abstract user prompt.
Exploring the ability of large language models
(LLMs) to generate time-dependent, frame-by-
frame prompts, this paper introduces a new frame-
work, dubbed DirecT2V. DirecT2V leverages
instruction-tuned LLMs as directors, enabling the
inclusion of time-varying content and facilitating
consistent video generation. To maintain tempo-
ral consistency and prevent mapping the value to a
different object, we equip a diffusion model with
a novel value mapping method and dual-softmax
filtering.

1. Introduction
Within the paradigm of AI-generated content (AIGC), there
has been increasing attention in expanding the capabilities
of pre-trained text-to-image (T2I) models to text-to-video
(T2V) generation (Khachatryan et al., 2023; Singer et al.,
2022; Hong et al., 2022; Singer et al., 2022; Blattmann et al.,
2023; Zhou et al., 2022a). One notable advancement in this
area is the Text2Video-Zero (T2V-Z) framework, which in-
troduced a fine-tuning-free approach utilizing a pre-trained
T2I diffusion model (Rombach et al., 2022; Saharia et al.,
2022) for generating videos from text descriptions (Khacha-
tryan et al., 2023) in a zero-shot manner. Additionally,
several other studies (Khachatryan et al., 2023; Wu et al.,
2022b; Qi et al., 2023) have focused on enhancing temporal
consistency in existing text-to-image diffusion models by
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redesigning the self-attention module, enabling video gener-
ation without the need for further training. These methods
have successfully reduced the requirement for expensive
fine-tuning processes, saving both time and resources while
ensuring accessibility.

Although these methods have proven effective (Khachatryan
et al., 2023; Wu et al., 2022b; Qi et al., 2023), they are not
without drawbacks. One significant challenge is the use of a
single user prompt to condition all frames, which may strug-
gle to maintain consistent narratives and varying contexts
over time. In contrast to images, which can be described
by one or a few sentences, videos contain sequences of
time-varying actions and contexts, requiring much more de-
scriptive information. This challenge is not fully addressed
in such works, as they all assume a single prompt conditions
the entire video. Consequently, the limited ability to com-
prehend the temporal dynamics of complex actions from
a single prompt, which provides only abstract information,
can result in videos that overlook important aspects such as
motions, actions, or events.

To address these limitations, we devise DirecT2V, a novel
framework that utilizes instruction-tuned large language
models (LLMs) (Ouyang et al., 2022; Wei et al., 2021; Ope-
nAI, 2023; Google, 2023) to generate frame-by-frame de-
scriptions for zero-shot video creation from a single abstract
user prompt. LLM directors divide user inputs into sepa-
rate prompts for each frame, separating static and dynamic
elements, enabling the integration of time-varying content
into text-to-image models. To achieve temporal coherence
and flexibility between frames, we propose methods that
adaptively integrate into the self-attention mechanism in T2I
diffusion models: value mapping, which selects an arbitrary
frame and propagates the self-attention value to others based
on diffusion timesteps, and dual-softmax filtering, which ob-
tains and leverages confidence masks from the self-attention
layers to eliminate unreliable mappings between frames,
thereby addressing the challenges of creating temporally
cohesive and visually captivating videos from text-to-image
models.

1



Large Language Models are Frame-Level Directors for Zero-Shot Text-to-Video Generation

Frame #1 (00:00)
“A corgi running joyfully …”
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“… second corgi appears …”
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Figure 1. Overall pipeline of our DirecT2V framework. DirecT2V consists of two parts: directing an abstract user prompt with an
LLM director (e.g., GPT-4 (OpenAI, 2023)) and video generation with a T2I diffusion (e.g., Stable Diffusion (Rombach et al., 2022))
equipped with modulated self-attention.

2. Method
2.1. Frame-wise directing with LLM

In order to effectively leverage instruction-tuned
LLMs (Ouyang et al., 2022; OpenAI, 2023; Google,
2023; Wei et al., 2021) for video generation, we claim that
it is crucial to take into account the narrative consistency, in
other words, the storyline reflected to the video. To achieve
this goal, we propose a dynamic prompting strategy, in
order to grant controllability over the desired attributes
of the video without hurting the narratives. For this, we
provide LLMs with a user prompt indicating the narrative
for the overall scene with a task description to ensure the
continuity of the narrative and controllability of the various
attributes of the video, such as the number of frames and
frames per second (FPS).

As shown in Fig. 1, given a prompt “A corgi is running,
and another corgi joins later,” we expect the frame-level
prompts to describe a single corgi in the earlier frames and
to have two corgis in the latter frames. This is achieved by
leveraging the LLM for complementing the user prompt by
accounting for different items we mentioned in Sec. ??. We
show the resultant generated prompts in Fig. 7.

2.2. Incorporating various contexts with rotational
value mapping

Given frame-level dynamic prompts that account for the
story within the video, the remaining challenge for lifting
T2I models for T2V is generating frames satisfying the tem-
poral consistency while harmonizing with descriptive frame-
level prompts. This requires adjacent frames to have similar
time-invariant components, such as object appearances and
the background, while still allowing temporal variations,
such as movements, to happen. Partially addressing this
challenge, T2V-Z (Khachatryan et al., 2023) propagates the

key and value projection of the first frame of the video across
every other frames. However, this constrains the context
and content of the overall video to resemble the first frame,
without the ability to distinguish time-variant/invariant com-
ponents. Not only this limits the flexibility of the video, but
also dissatisfies the narrative consistency as dynamic mo-
tions and transitions can be introduced to the scene through
time-variant components.

To overcome these, we introduce value mapping (VM), a
method that injects temporal consistency, while enabling the
use of diverse contents, such as objects and textures, across
the video frames. Different from prior works (Khachatryan
et al., 2023; Qi et al., 2023), this method adjusts the value
of self-attention in relation to the timestep, effectively pre-
venting the objects visual collapsing and ensuring temporal
consistency.

Given the formal definition of self-attention layer within a
diffusion U-Net (Ho et al., 2020; Ronneberger et al., 2015):

Attention(Qf ,Kf , Vf ) = Softmax
(
Qf (Kf )

T
√
d

)
Vf (1)

for all frames f in the set {1, . . . , F}, where d is a channel
dimension, and the notation Qf , Kf , and Vf is the query,
key, and value of the f -th frame, respectively. In VM, we
modify Eq. 1 to following:

VM(Qf ,K1:F , V1:F ) = Softmax
(
Qf (Kr(t′))

T

√
d

)
Vr(t′)

(2)

for all f ’s, where r : {1, . . . , T ′} → {1, . . . , F}. Here, t′

is the number of timesteps from the timestep at which we
initiate the value mapping in the diffusion reverse process.

To decide the reference frame r(t′) for value mapping, we
can simply consider randomly selecting r(t′) every timestep
for allowing bidirectional flow of value mapping. However,
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Figure 2. The proposed frame interaction mechanism. Within our augmented self-attention layers in a diffusion U-Net (Ronneberger
et al., 2015), value mapping and dual-softmax are introduced to ensure temporal consistency and reduce unreliable matching between
frames, respectively.

we find this stochastic approach to often result in degenerate
results due to the finite number of frames and timesteps. In
this regard, we introduce rotational value mapping (RVM),
sequentially applying the value of self-attention based on the
timestep by rotating over the frames periodically. On a high
level, RVM not only enables the complete, bidirectional
flow of value mapping but also makes each frame equally
contributable. Specifically, we define the reference frame
as r(t′) = Mod(⌊t′/m⌋, F ) + 1, where m represents the
period of timesteps. By setting m to a sufficiently large
value, RVM becomes equivalent to the cross-frame attention
in the original T2V-Z model (Khachatryan et al., 2023).
Empirically, setting m to 4 stabilizes the outcome while
maintaining the capability to incorporate various content
specified in the frame-level prompts.

2.3. Reducing unreliable matching via dual softmax
filtering

Although VM can diversify the contextual information
within the generated video, on its own, it face difficulties
when accounting for rapid movements or drastic changes. In
Eq. 2, VM enforces a mapping from Vr(t′) to Vf , where the
query-key map Qf (Kr(t′))

T can be viewed as a correspon-
dence map (Teed & Deng, 2020) that establishes a matching
between source frame r(t′) and target frame f . However,
when drastic changes happen between frames, there may
exist cases where a reliable matching cannot be established,
as an object may not co-occur between the frames. This
restricts the target frame from incorporating attributes that
are absent in the source frame, thereby preventing desired
variations.

To address the issue of unreliable matching, we propose a
means for mapping values when a reliable correspondence
is established (Mac Aodha et al., 2012; Cheng et al., 2021;
Truong et al., 2021; Seo et al., 2022). This allows us to
account for unreliable matching by propagating the original
value of the target frame Vf instead of mapping from the

reference frame, Vr(t′). To derive confidence values, we
leverage dual softmax (Cheng et al., 2021) and apply a
threshold to these values using a specified quantile. Starting
from Eq. 2, the dual softmax (Cheng et al., 2021), denoted
as Cdual, is defined as follows:

Cdual = Softmax(Qt(Kr(t′))
T)⊙ Softmax(Kr(t′)(Qt)

T),
(3)

where ⊙ represents the Hadamard product. This is followed
by masking to map only the reliable values:

VM′(Qf ,K1:F , V1:F )

= (1−Mf )⊙ Attention(Qf ,Kf , Vf )

+Mf ⊙ VM(Qf ,K1:F , V1:F )

(4)

for all f ’s, where Mf = 1(A(Cdual) > ϕ) for an averaging
and broadcasting operation denoted as A(·), and ϕ is a
pre-defined quantile of A(Cdual). This method allows only
confident inter-frame matching, reflecting desired variances
while preventing distortion throughout the video sequence.

3. Experiments
3.1. Zero-shot video generation results

Qualitative results. In Fig. 3, we showcase the zero-shot
video generation capabilities of DirecT2V. Our framework
generates per-frame prompts based on a user’s description
of a general scene, and with our attention mechanism, the
prompts are animated into a video containing dynamic ac-
tions and time-varying content.

From the results, given the prompt “A corgi is running and
another corgi joins later,” DirecT2V successfully portrays
the second corgi appearing in the intermediate frames. In
contrast, the second corgi is either always present or entirely
absent for T2V-Z. As shown with the other prompt, “A rain-
bow forming after a rain shower,” our method demonstrates
the ability to synthesize videos with narrative consistency,
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DirecT2V
(Ours)

T2V-Z

CogVideo

“A butterfly leaving a flower”

“A rainbow forming after a rain shower”

“A group of dolphins swimming and jumping in the ocean”

DirecT2V
(Ours)

T2V-Z

CogVideo

DirecT2V
(Ours)

T2V-Z

CogVideo

Figure 3. Zero-shot video generation results. Given an abstract
user prompt, we compare DirecT2V with T2V-Z (Khachatryan
et al., 2023) and CogVideo (Hong et al., 2022). Note that CogVideo
is trained with video-text dataset, instead of zero-shot generation.

“A panda waving its hand”

“A hummingbird hovering around a flower”

Figure 4. Lifted frame rate. By iteratively dividing frame-wise
prompts, we can generate a video with an arbitrary frame rate.

whereas T2V-Z, with just the user prompt, shows the rain-
bow existing in every frame.

Notably, the generated video from CogVideo (Hong et al.,
2022) also lacks some components of the given user
prompts, even though the model is fine-tuned using text-
video pairs. For example, the addition of another corgi or
a change in weather is not incorporated into the generated
videos. These results corroborate the effectiveness of our
frame-wise prompting approach.

Quantitative results. Although our zero-shot lifting from
image diffusion models does not have a ground-truth video
reference dataset, several works use the CLIP score as a
metric to evaluate faithfulness. Following this, we display
in Fig. 5 the CLIP similarity score comparison for each
frame. For the comparison, we used the proposed atten-
tion mechanism in Text2Video-Zero (T2V-Z) (Khachatryan
et al., 2023), Tune-A-Video (TAV) (Wu et al., 2022b), our
rotational value mapping, and rotational value mapping with
dual softmax filtering. Note that for TAV, we only leveraged
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Figure 5. Lifted frame rate. By iteratively dividing frame-wise
prompts, we can generate a video with an arbitrary frame rate.

the attention mechanism for zero-shot video generation. In
terms of average similarity, our attention mechanism clearly
outperforms the others. Avg. Dist. in this table refers to the
average L1 distance between frame 1 and the other frames,
and we can observe that both T2V-Z and TAV are only
faithful to the first prompt.

3.2. Controlling video attributes with LLMs

In this section, we show that by providing specific instruc-
tions to LLMs, we can control the attributes of the video,
such as the number of frames and frames per second (FPS).
For lifting FPS, we provide instructions to the LLM to divide
the prompts. This approach effectively handles situations
where the number of frames exceeds the batch size.

Originally, the frame-wise director extracts F frames at
a specified frame rate R. We then provide the following
prompt: “Now, at a frame rate of {2×R} fps, divide each
frame in the previous result into two separate image descrip-
tions. This should eventually result in {2×F} frames.” We
repeat this process with the new F := 2F .

For the caching process, if the number of frames exceeds the
batch size, we divide it into sections with a size of floored
half of the batch size. Initially, we perform rotational value
mapping for the frames, the number of which is the floored
half of the batch size. We utilize the cached attention from
the first process to perform rotational value mapping for the
full batch size. The results are displayed in Fig. 4.

4. Conclusion
In this paper, we present a novel approach for zero-shot
video creation from textual prompts, tackling the intricate
challenges of maintaining temporal consistency and visual
quality in the generated videos. By employing GPT-4, we
demonstrate its capability to generate detailed and tempo-
rally consistent image descriptions, which can be effectively
integrated into text-to-image models. We introduce two key
innovations for frame interactions, rotational value mapping
and dual softmax filtering, which significantly enhance the
flexibility and overall quality of the generated videos.

4



Large Language Models are Frame-Level Directors for Zero-Shot Text-to-Video Generation

References
An, J., Zhang, S., Yang, H., Gupta, S., Huang, J.-B., Luo, J.,

and Yin, X. Latent-shift: Latent diffusion with temporal
shift for efficient text-to-video generation. arXiv preprint
arXiv:2304.08477, 2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your latents: High-
resolution video synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 22563–22575, 2023.

Brooks, T., Holynski, A., and Efros, A. A. Instructpix2pix:
Learning to follow image editing instructions. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18392–18402, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, R., Chen, Y., Jiao, N., and Jia, K. Fantasia3d: Disen-
tangling geometry and appearance for high-quality text-
to-3d content creation. arXiv preprint arXiv:2303.13873,
2023a.

Chen, W., Wu, J., Xie, P., Wu, H., Li, J., Xia, X., Xiao,
X., and Lin, L. Control-a-video: Controllable text-to-
video generation with diffusion models. arXiv preprint
arXiv:2305.13840, 2023b.

Cheng, X., Lin, H., Wu, X., Yang, F., and Shen, D. Improv-
ing video-text retrieval by multi-stream corpus alignment
and dual softmax loss. arXiv preprint arXiv:2109.04290,
2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Ding, M., Zheng, W., Hong, W., and Tang, J. Cogview2:
Faster and better text-to-image generation via hierarchical
transformers. arXiv preprint arXiv:2204.14217, 2022.

Esser, P., Chiu, J., Atighehchian, P., Granskog, J., and Ger-
manidis, A. Structure and content-guided video synthesis
with diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7346–
7356, 2023.

Google. Palm 2 technical report, 2023.

Guo, Y., Yang, C., Rao, A., Wang, Y., Qiao, Y., Lin, D.,
and Dai, B. Animatediff: Animate your personalized
text-to-image diffusion models without specific tuning.
arXiv preprint arXiv:2307.04725, 2023.

Hao, Y., Chi, Z., Dong, L., and Wei, F. Optimizing
prompts for text-to-image generation. arXiv preprint
arXiv:2212.09611, 2022.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. NeurIPS, 33:6840–6851, 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation
with diffusion models. arXiv preprint arXiv:2210.02303,
2022a.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M.,
and Salimans, T. Cascaded diffusion models for high
fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022b.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. arXiv preprint
arXiv:2204.03458, 2022c.

Hong, S., Ahn, D., and Kim, S. Debiasing scores and
prompts of 2d diffusion for robust text-to-3d generation.
arXiv preprint arXiv:2303.15413, 2023.

Hong, W., Ding, M., Zheng, W., Liu, X., and Tang, J.
Cogvideo: Large-scale pretraining for text-to-video gener-
ation via transformers. arXiv preprint arXiv:2205.15868,
2022.

Huang, H., Feng, Y., Shi, C., Xu, L., Yu, J., and
Yang, S. Free-bloom: Zero-shot text-to-video genera-
tor with llm director and ldm animator. arXiv preprint
arXiv:2309.14494, 2023.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
NeurIPS, 2022.

5



Large Language Models are Frame-Level Directors for Zero-Shot Text-to-Video Generation

Khachatryan, L., Movsisyan, A., Tadevosyan, V., Henschel,
R., Wang, Z., Navasardyan, S., and Shi, H. Text2video-
zero: Text-to-image diffusion models are zero-shot video
generators. arXiv preprint arXiv:2303.13439, 2023.

Koizumi, Y., Ohishi, Y., Niizumi, D., Takeuchi, D., and Ya-
suda, M. Audio captioning using pre-trained large-scale
language model guided by audio-based similar caption
retrieval. arXiv preprint arXiv:2012.07331, 2020.

Li, J., Li, D., Xiong, C., and Hoi, S. Blip: Bootstrapping
language-image pre-training for unified vision-language
understanding and generation. In International Confer-
ence on Machine Learning, pp. 12888–12900. PMLR,
2022a.

Li, S., Puig, X., Paxton, C., Du, Y., Wang, C., Fan, L.,
Chen, T., Huang, D.-A., Akyürek, E., Anandkumar, A.,
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DirecT2V
(Ours)

T2V-Z

CogVideo

Prompt: “A corgi is running and another corgi joins later”

Figure 6. Zero-shot video generation. DirecT2V, using LLMs as frame-level directors, enables zero-shot narrative text-to-video
generation, while current zero-shot (e.g., Text2Video-Zero (Khachatryan et al., 2023)) or tuned (e.g., CogVideo (Hong et al., 2022))
baselines do not contain high-level stories, e.g., joining of the second corgi.

A. Background
Numerous works in text-to-image (T2I) field, which include GLIDE (Nichol et al., 2021), Dall-E 2 (Ramesh et al., 2022),
latent diffusion models (LDM) (Rombach et al., 2022) and Imagen (Saharia et al., 2022), have been actively employing
diffusion models for their high-fidelity generation. In this section, we first explain details of LDM (Rombach et al., 2022)
whose methods are adopted in Stable Diffusion.

LDM (Rombach et al., 2022) is a diffusion model that performs the forward and reverse process within the latent space of an
autoencoder denoted as D(E(·)), where E(·) and D(·) symbolize the encoder and decoder, respectively. Given an input
image x ∈ RH×W×3 and its latent tensor z0 := E(x) ∈ Rh×w×c where h < H and w < W , during the forward process,
Gaussian noise is progressively added to z0 as follows:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (5)

where t = 1, . . . , T , and q(zt|zt−1) denotes the conditional density of zt given zt−1, and βt for all t’s are hyperparameters
that defines the noise schedule. The forward process is repeated until the initial signal z0 is entirely obscured, yielding
zT ∼ N (0, I). The objective of the diffusion models is then to learn the reverse process defined as:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (6)

where t = T, . . . , 1. This enables the discovering of a valid signal z0 from the standard Gaussian noise zT . To sample
from pθ(zt−1|zt), LDM (Rombach et al., 2022) instead predicts the reparametrization ϵθ(zt, t). To achieve text-conditioned
image sampling, the text embedding of a user prompt ω is conditioned along the intermediate features via the cross-attention
layers (Vaswani et al., 2017; Rombach et al., 2022), resulting in the conditional prediction term ϵθ(zt, t, ω), and classifier-free
guidance (Ho & Salimans, 2021) is leveraged for better alignment to user prompts.

B. Zero-shot video generation results with motion dynamics
Our framework can naturally be extended to provide motion dynamics (Khachatryan et al., 2023), a feature that enables the
capturing of explicit camera movement, i.e., translation. Given accurately predicted motion dynamics, our approach would
not only encapsulate the context of the narrative but also dynamically move with it. The results are provided in Fig. 11 and
Fig. 12, and the video is available on our homepage.

C. Implementation details
In this work, we employ GPT-4 (OpenAI, 2023) as our instruction-tuned LLM and T2V-Z (Khachatryan et al., 2023),
utilizing a single NVIDIA 3090 RTX GPU for efficient video sampling. For the generation process, we employ the PNDM
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Object Setting CameraAction

Object Setting CameraAction

User Prompt “A nuclear explosion”
Frame 1 (00:00) A desert landscape extends to the horizon under a clear, azure sky. At the center of the frame, a tall, metallic tower
stands isolated, with a distinctively shaped, ominous device at the top. The camera angle is wide, capturing the vast emptiness of the 
surroundings.
Frame 2 (00:01) The tower's top, housing the nuclear device, starts to glow with a bright, white light. The surrounding desert maintains 
its stark contrast, silent and untouched. The camera angle remains wide, focusing on the impending change.
Frame 3 (00:02) The blinding light from the device intensifies, casting long, dark shadows across the desert landscape. Sand particles 
begin to stir, reacting to the imminent force. The camera has slightly zoomed in on the tower, anticipating the blast.

···
Frame 8 (00:07) The mushroom cloud dominates the sky, the base of the explosion obscured by the continuing dust and debris. The 
shockwave is now dissipating, leaving behind a transformed landscape. The camera captures the final scene from a distance, showing 
the aftermath of the nuclear explosion.

User Prompt “A corgi is running and another corgi joins later”
Frame 1 (00:00) A bright, sunny park, trees lining the edges, grass freshly cut. In the center, a single corgi, with a red and white coat, is 
joyfully bounding forward, its tail in the air, ears flapping.
Frame 2 (00:01) Close-up on the corgi's paws, kicking up small tufts of grass as it continues its sprint. The park's greenery and distant 
laughter of children form the blurred background.
Frame 3 (00:02) From a low side-angle, the corgi leaps over a small puddle, water droplets scattering in the sunlight. Its tongue is out, 
eyes focused ahead, showing pure exhilaration.

···
Frame 8 (00:07) Aerial view of the park, the two corgis now running side by side, leaving a trail of stirred grass behind them. Their 
joyful chase continues under the sunny sky.

Figure 7. Examples of frame-level directing with LLM. Given an abstract user prompt, our LLM director outputs frame-wise prompts
that complement the initial prompts with insufficient information. For complete instructions, see the appendix.

scheduler (Liu et al., 2022), which is a member of the deterministic diffusion samplers family (Karras et al., 2022; Song
et al., 2021; Liu et al., 2022). We employ the same scheduling mechanism as T2V-Z (Khachatryan et al., 2023) and configure
the scheduler parameters of the diffusion models with T = 100 and T ′ = 96. Furthermore, we adopt the classifier-free
guidance (Ho & Salimans, 2021), using a scale of 12.0. Both T2V-Z and our method employ motion dynamics; however, for
a fair comparison, we refrain from using it in the main paper by setting its intensity to zero.

We present examples of the full prompts used to produce the results shown in Fig. 7. These examples are depicted in Fig. 15.
Additionally, in Fig. 16, we provide examples of the frame-wise prompts utilized in creating videos.

D. User study

Table 1. User study.
Method Faithfulness Realism Narrative

T2V-Z 21.39% 19.47% 20.67%
Ours 78.61% 80.53% 79.33%

We also conducted a user study on the faithfulness to the
user prompt, realism, and narrative of the generated videos,
comparing them with the state-of-the-art zero-shot text-to-
video baseline (Khachatryan et al., 2023). The results are
shown in Table 1, which demonstrate that ours is preferable
to human evaluators.

In each case, two videos were provided, showing our results compared to the baseline. The identity of the videos (such as
which video is ours) was completely concealed, and the placement of the videos was also randomized. This questionnaire
was distributed over three days to local communities and universities, and stakeholders of the study were strictly excluded.
We aggregated 416 answers from 52 participants, each of whom was asked to answer three questions about eight assigned
cases. The questions were as follows:

• The videos in the first and second rows are the results generated from different models.

– Which video is better aligned with the text displayed at the top of the videos?
– Which video appears more realistic and natural?
– Which video better demonstrates the narrative given in the text?

E. Ablation study
Rotational value mapping. In Fig. 8, we display the ablation study for our Rotational Value Mapping (RVM) approach.
This experiment showcases the generated video outcomes alongside the results obtained without employing rotational
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DirecT2V
(Ours)

DirecT2V
(w/o RVM)

DirecT2V
(Ours)

DirecT2V
(w/o RVM)

“A thunderstorm developing over a sea”

“A cheetah sitting suddenly sprints at full speed”

Figure 8. Ablation study on RVM. With frame-wise directing, RVM is essential for achieving narrative consistency, since its ablated
counterpart (without RVM) does not reflect the frame-wise prompt well. Note that the same frame-wise prompts are used for both, while
they show different results because RVM mixes various contexts across the frames to better reflect the upsampled prompts.

“… green glow intensifies, 
…”

“… purple join the green, …” “… cat's eyes close fully, …”

“… cat is si�ng upright, …”“… lush, green forest, …”

“… snowy, winter landscape, …”

(b) RVM + DSF(a) RVM (b) RVM + DSF(a) RVM (b) RVM + DSF(a) RVM

Figure 9. Ablation study on DSF. For each prompts, results on the left are only with RVM, while the right are with RVM and Dual-
Softmax Filtering (DSF).

selection, i.e., utilizing only the keys and values of the initial frame, as seen in (Khachatryan et al., 2023).

When given a prompt like “A thunderstorm developing over a sea,” DirecT2V effectively depicts the thunderstorm’s
subsequent progression, as described by the GPT-4-generated prompt for that specific frame. On the other hand, the ablated
version, with a fixed value in the second row, fails to develop a thunderstorm using the given fixed value. For another prompt,

“A cheetah sitting suddenly sprints at full speed,” our technique illustrates its capacity to create videos that maintain narrative
coherence. In contrast, DirecT2V without RVM leads to a persistent first-frame prompt. These findings emphasize RVM’s
ability to generate videos featuring dynamic actions and preserved time-varying content.

Dual-softmax filtering. In the experiment depicted in Fig. 9, we present the outcomes obtained when applying dual-
softmax filtering, which successfully addresses the negative impact of inaccurate matches. For this study, we select two
separate frames from the generated video and exhibit them along with the prompt proportion. It is worth noting that in the
third column, the absence of dual-softmax filtering results in inevitable inaccurate matching due to value mapping, leading
to the cat’s eyes from a different frame being mapped onto the closed eyes.

Attribute controls. In the main paper, we discuss the effects of regulation of frame rate control. In this section, we also
provide our results for attribute control. These results are presented in Fig. 13. In this experiment, we demonstrate the
capability to manipulate the number of frames effectively, as well as to remove or add the camera setting of the video scene
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Random

Rotational

Figure 10. Examples of results from the different value mappings.

from a simple prompt.

Rotational and random value mapping. We also test the random method of value mapping, which can replace our
RVM. This means the reference frames are randomly selected contrary to RVM. The results, however, show that the method
adopting random mapping obtains results with occasionally distorted objects, possibly due to the instability caused by the
small number of timesteps.

Comparison of GPT-4, GPT-3.5, and Bard. We compare the frame-level directing abilities of GPT-4 (OpenAI, 2023),
GPT-3.5 (OpenAI, 2022), and Bard (Google, 2023). In Fig. 14, we present the conversations with those LLMs. We find that
they generally follow the instruction prompt well.

F. Related work
Incorporating large language models. Large language models (LLMs), such as GPT-3 (Brown et al., 2020),
PaLM (Chowdhery et al., 2022), and BLOOM (Scao et al., 2022), have been shown to be effective in a wide range
of tasks, e.g., decision making (Li et al., 2022b), program synthesis (Austin et al., 2021), and prompt engineering (Zhou
et al., 2022b). Notably, their zero-shot capabilities have demonstrated strong generalization power that almost resembles
the linguistic ability of humans. By transferring such knowledge, numerous methods (Saharia et al., 2022; Li et al.,
2022a; Koizumi et al., 2020; Brown et al., 2020) have excelled at even tasks involving different modalities, i.e., audio,
text, and images. Specifically, a recently introduced technique called instruction-finetuning, achievable via supervision or
RLHF (Stiennon et al., 2020; Christiano et al., 2017), enabled accurate manipulation of LLMs that aligns with human intent.
Another line of works, including (Brooks et al., 2023; Hao et al., 2022), have proposed to combine pre-trained language
models with diffusion-based generative models, aiming to generate prompts that produce more reliable results. However, the
capability of LLMs to recognize the time variation of a video scene or to generate time-varying prompts for a single user
prompt has rarely been explored.

Text-to-video generation. In the stream of research on AI-generated content (AIGC), text-to-video generation has been
receiving considerable attention as a forefront research area, exploring various methodologies to generate videos from
textual inputs. Among them, some methods employ autoregressive transformers or diffusion processes (Wu et al., 2022a;
Villegas et al., 2022; Ho et al., 2022a;b). NÜWA (Wu et al., 2022a) introduces a 3D transformer (Vaswani et al., 2017)-based
encoder-decoder framework and aims to tackle various tasks, including text-to-video generation, while Phenaki (Villegas
et al., 2022) presents a bidirectional masked transformer for a video creation from arbitrary-length text prompt sequences.
Similarly, Imagen Video (Ho et al., 2022a) leverages diffusion models for cascading pipeline (Ho et al., 2022b) and
introduces a freamework to spatial and temporal super-resolution.

Notably, a recent trend is that owing to remarkable generation ability of large-scale text-to-image models, numerous methods
attempted to transfer their knowledge and even extend to other tasks, including text-to-video generation. CogVideo (Hong
et al., 2022) builds upon CogView2 (Ding et al., 2022), a text-to-image model, and employs a multi-frame-rate hierarchical
training strategy, encouraging text and video alignment. Make-a-video (Singer et al., 2022) tackles T2V task more efficiently
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by using the synthetic data for self-supervision. Another line of works (Ho et al., 2022c; Zhou et al., 2022a) that exploit
LDM (Rombach et al., 2022) enables high-resolution video generation by introducing temporal tuning technique that
efficiently fine-tunes the parameters. Taking a step forward, Text2Video-Zero (T2V-Z) (Khachatryan et al., 2023) introduces
tuning-free zero-shot video generation without requiring intensive training or large-scale video datasets.

Although aforementioned works may synthesize temporally consistent and high fidelity videos, it is notable that a single user
prompt is responsible for the actions in all the frames in a video, making the output videos lacking story. As illustrated in
Fig. 6, the time-dependent dynamics are often disregarded and only limitedly expressed. In this work, we obtain time-varying
prompts from a single user prompt using an instruction-tuned LLM (Ouyang et al., 2022; OpenAI, 2023; Google, 2023; Wei
et al., 2021), and use them to synthesize videos that successfully capture both static and dynamic components.

G. Discussion
Concurrent work. In a short time since this paper, there have been a large number of works on text-to-video using image
or video diffusion models (Huang et al., 2023; Blattmann et al., 2023; Esser et al., 2023; Guo et al., 2023; An et al., 2023;
Luo et al., 2023; Chen et al., 2023b; Li et al., 2023a). Among these, there is a concurrent endeavor that also leverages
LLMs for zero-shot text-to-video generation, Free-Bloom (Huang et al., 2023), which serves as supporting evidence for
our motivation to use LLMs in this task. Free-Bloom adopts the previously known attention mechanism, which we have
experimented with in our ablation study, with the key difference being its cessation of references to other frames at a
timestep. Furthermore, it employs a different noise sampling technique. Overall, their work is mostly orthogonal to ours in
terms of the attention mechanism and video generation.

Limitations. The performance of the proposed method, DirecT2V, may vary depending on the instruction-tuned large
language models (LLMs) (OpenAI, 2023; 2022; Google, 2023) (see Fig. 14). As a result, any biases or limitations within
these models may adversely affect the quality of the resulting videos. This is because LLMs can produce ambiguous or
distracting descriptions, leading to less accurate or coherent video frames. Further research might explore the incorporation
of additional constraints to create more vision-friendly frame-by-frame prompts. Moreover, DirecT2V’s dependence
on pre-trained text-to-image diffusion models introduces another layer of dependency. These models have encountered
challenges in accurate counting and positioning (Saharia et al., 2022; Li et al., 2023b). A potential solution to this problem
could involve the use of the encoder from an even larger language model (Saharia et al., 2022).

In essence, the development and enhancement of both instruction-tuned LLMs and T2I diffusion models equipped with
attention mechanisms present promising landmarks for the future improvement of DirecT2V.

Impact statement. To the best of our knowledge, our research presents DirecT2V as the first framework that explicitly
leverages the temporal and narrative knowledge embedded within large language models for high-level visual creation,
specifically video creation (Khachatryan et al., 2023; Singer et al., 2022; Hong et al., 2022; Singer et al., 2022; Ho et al.,
2022a; Villegas et al., 2022; Wu et al., 2022a; Zhou et al., 2022a). This philosophy can be extended to other high-level
visual tasks, such as zero-shot text-to-3D (Hong et al., 2023; Poole et al., 2022; Wang et al., 2022; Metzer et al., 2022;
Lin et al., 2022; Chen et al., 2023a; Seo et al., 2023b; Xu et al., 2022; Seo et al., 2023a). Nevertheless, the ability of
DirecT2V to generate realistic videos from textual prompts raises concerns about its potential to contribute to the spread of
misinformation and deepfake content. The increased difficulty in distinguishing between authentic and fabricated videos
may exacerbate existing concerns about the dissemination of false information.
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DirecT2V
(Ours)

T2V-Z

“A cat lying down”

DirecT2V
(Ours)

T2V-Z

“A horse and its rider jumping over an obstacle in an equestrian competition”

DirecT2V
(Ours)

T2V-Z

“A tornado sweeping across a flat plain”

DirecT2V
(Ours)

T2V-Z

“A hummingbird swiftly hovering and darting between flowers”

DirecT2V
(Ours)

T2V-Z

“A fireworks display lighting up the night sky”

Figure 11. Zero-shot video generation results with motion dynamics (Khachatryan et al., 2023). We compare our method with
T2V-Z (Khachatryan et al., 2023).
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DirecT2V
(Ours)

T2V-Z

“A surfer riding a big wave”

DirecT2V
(Ours)

T2V-Z

“An eagle soaring through a mountain landscape”

DirecT2V
(Ours)

T2V-Z

“A skier carving down a snowy mountain”

DirecT2V
(Ours)

T2V-Z

“A rainbow forming after a rain shower”

DirecT2V
(Ours)

T2V-Z

“A thunderstorm developing over a sea”

Figure 12. Zero-shot video generation results with motion dynamics (Khachatryan et al., 2023). We compare our method with
T2V-Z (Khachatryan et al., 2023).
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Number of frames (8 → 16)
1. A wide-angle shot of a verdant park, bustling with people and their pets. A small, enthusiastic Corgi enters the frame from the right, ears flopping and tail wagging.
2. The Corgi running at full speed across the grass, its small legs moving quickly. The camera pans to follow its motion.
3. The camera zooms in on the Corgi's determined face, its tongue hanging out due to the exertion, and eyes focused ahead.
4. The camera pulls back to a medium shot, showing the Corgi darting past a group of park-goers who stop to watch.
5. The Corgi slows down momentarily to sniff at a tree. Leaves rustle in the wind and people walk by in the background.
6. Suddenly, the Corgi perks up its ears, looking towards the left side of the frame. The camera follows its gaze.
7. Cut to a medium shot of another Corgi at the edge of the frame, standing a few meters away. This Corgi looks curious and eager.
8. The second Corgi starts running towards the first. Its fur is a little darker and it has a distinctive marking on its face.
9. The camera switches to a low-angle shot, capturing the second Corgi's joyful leap as it begins to sprint.
10. The two Corgis run towards each other, the green of the park providing a vibrant backdrop. The camera follows the second Corgi's movements.
11. A brief close-up of the first Corgi’s surprised and delighted expression as it notices the other Corgi.
12. Both Corgis are now in the same frame, their paths meeting. They sniff each other in greeting, tails wagging excitedly.
13. A medium shot showing the two Corgis beginning to run together, bounding across the grass and away from the camera.
14. The camera tracks their movement as they chase each other around a tree, barking playfully.
15. An aerial shot shows the two Corgis circling the tree, their path weaving through the park-goers.
16. The final shot pulls back to a wide angle, capturing the whole park. The two Corgis continue to play, becoming small, joyous specks in the bustling scene.

Camera constraint (with → without)
1. An open grassy field, a bright day. In the center of the frame, a spirited Corgi, with its golden-brown coat, is in mid-stride, its small legs blurring with motion.
2. The Corgi's ears flap in the breeze as it continues its run, a trail of kicked-up grass particles floats behind it. The background reveals a distant wooden fence enclosing the field.
3. A fallen Frisbee appears in the scene, halfway between the running Corgi and the fence. The Corgi's focused eyes indicate its target.
4. Close up on the Corgi as it nimbly dodges a patch of wildflowers, its body slightly tilted to the side, showcasing its agility.
5. The Corgi reaches the Frisbee and chomps down on it, its eyes squinting as it does. Evident joy and accomplishment are on its face.
6. A movement at the edge of the frame; another Corgi, this one with a black and white coat, is shown behind the wooden fence, peeking through a gap.
7. The second Corgi, visibly excited, slips through the fence gap, its eyes fixed on the Frisbee-holding Corgi.
8. The two Corgis, now both in full run, are moving towards each other, the Frisbee held triumphantly by the first. Their tails are wagging, illustrating the joy of their shared activity.

Figure 13. Video attribute control using LLMs.

Prompt:
Given a user prompt, envision a video scene and create eight distinct brief image descriptions at a frame rate of 1 fps. Ensure that each description is self-contained, encompassing all 
objects and their properties within the scene. The difference between two adjacent descriptions must be small, considering the small interval. Use the following format: ["", "", ..., ""].

Prompt: A corgi is running and another corgi joins later

GPT-4:
["A golden corgi stands alert on a green park lawn, a blue tennis ball at its feet.",
"A blur of golden fur as the corgi lunges forward, the blue tennis ball securely in its mouth.",
"The corgi, ball in mouth, streaks across the lawn leaving shallow imprints on the dewy grass.",
"From the corner of the frame, another corgi, this one tri-colored, enters, watching the golden corgi's progress intently.",
"The tri-colored corgi, with a wagging tail, dashes onto the lawn, giving chase to the golden corgi.",
"Both corgis now running parallel, their small legs moving in a blur against the verdant backdrop of the park.",
"Golden and tri-colored fur mix as the second corgi reaches the first, both bounding joyously with the blue ball still in the golden corgi's mouth.",
"Both corgis pause momentarily, panting lightly, before the golden corgi drops the ball, an invitation for the next round of the chase."]

GPT-3.5:
["A grassy field is stretched out under a bright blue sky. A lively corgi with short legs and a fluffy coat runs towards the camera, its ears flapping in the wind.",
"The first corgi continues its sprint, its paws kicking up small tufts of grass as it dashes across the field.",
"The second corgi, identical in appearance to the first, bounds into the frame from the left side, wagging its tail eagerly.",
"The two corgis now run side by side, their short legs propelling them forward in a synchronized motion.",
"Both corgis display excitement and joy as they frolic through the field, their tongues hanging out and happy barks escaping their mouths.",
"A gentle breeze rustles the nearby trees as the corgis continue their playful run, their fluffy coats catching the sunlight.",
"The two corgis effortlessly navigate through the field, their movements fluid and graceful despite their small stature.",
"With the vast expanse of the field behind them, the corgis sprint ahead, their tails wagging in unison, disappearing into the distance."]

Bard
["A corgi is standing in the middle of a field.",
"The corgi starts to run.",
"Another corgi enters the scene from the left.",
"The two corgis run towards each other.",
"The corgis collide and tumble to the ground.",
"The corgis get up and shake themselves off.",
"The two corgis continue to run together.",
"The corgis run out of the scene."]

Figure 14. Comparison between frame-level prompting of GPT-4 (OpenAI, 2023), GPT-3.5 (OpenAI, 2022), and Bard (Google,
2023).
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Object Setting CameraActionComplete instruction for Fig 2, including task description
Given a user prompt, envision a video scene and create eight distinct brief image descriptions at a frame rate 
of 1 fps. Ensure that each description is self-contained, encompassing all objects and their properties within 
the scene. The difference between two adjacent descriptions must be small, considering the small interval. 
Use the following format: ["", "", ..., ""].

Before you write each description, you must follow these instructions. These are of primary importance:
1. Identify and decompose specific actions or events included in the user prompts
2. Detect and describe objects mentioned in the user prompts
3. Describe environmental settings, which include contexts and backgrounds
4. Infer the desired camera angles and movements

Prompt: {user prompt}

Figure 15. The complete instruction for Fig. 7, including the task description.

A corgi is running and another corgi joins later

Frame #1 (00:00) A corgi is running on a grassy field, its ears flopping as it moves.

Frame #2 (00:01) The corgi continues running, a second corgi starts to appear in the background.

Frame #3 (00:02) The second corgi starts to run, playfully chasing the first corgi.

Frame #4 (00:03) The first corgi maintains its pace, the second corgi getting closer.

Frame #5 (00:04) Both corgis are running side by side, their short legs moving quickly.

Frame #6 (00:05) The second corgi starts to take the lead, the first corgi following closely.

Frame #7 (00:06) Both corgis continue running, their tails wagging happily as they race.

Frame #8 (00:07) The first corgi begins to catch up, the two corgis running neck and neck.

A rainbow forming after a rain shower

Frame #1 (00:00) Raindrops fall against a backdrop of cloudy sky, the smell of fresh rain in the air.

Frame #2 (00:01) The rain starts to lighten, the clouds beginning to break, allowing a few beams of sunlight through.

Frame #3 (00:02) A faint arc of color starts to form in the sky, the first hint of a rainbow.

Frame #4 (00:03) The colors become more vibrant as the sunlight strengthens, the rain shower coming to an end.

Frame #5 (00:04) A full arc of a rainbow becomes visible against the partly cloudy sky, each band of color distinct.

Frame #6 (00:05) The rainbow’s colors become even more vibrant, reflected in the puddles left by the rain shower.

Frame #7 (00:06) The rainbow stands bright and complete against the clearing sky, a beautiful result of the passing storm.

Frame #8 (00:07) The scene ends with the full rainbow stretching across the sky, a symbol of calm after the storm.

A group of dolphins swimming and jumping in the ocean

Frame #1 (00:00) A calm ocean surface, ripples indicating movement beneath the water.

Frame #2 (00:01) A dolphin's dorsal fin emerges from the water, followed by a sleek, silver body.

Frame #3 (00:02) The first dolphin leaps out of the water, arcing through the air.

Frame #4 (00:03) As the first dolphin re-enters the water, two more dolphins break the surface.

Frame #5 (00:04) The group of dolphins swim in unison, their bodies gliding effortlessly through the waves.

Frame #6 (00:05) Another dolphin leaps, twisting in the air before diving back into the sea.

Frame #7 (00:06) The dolphins continue their aquatic ballet, their jumps punctuating the oceanic rhythm.

Frame #8 (00:07) As the dolphins submerge, the ocean surface returns to its serene state, waiting for the next performance.

Figure 16. Examples of frame-level prompts directed by LLMs.
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