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Interactive Segmentation by Considering First-Click Intentional
Ambiguity

Anonymous Authors

ABSTRACT
Interactive segmentation task aims at taking into account the influ-
ence of user preferences on the basis of general semantic segmen-
tation in order to obtain the specific target-of-interest. Given the
fact that most of the related algorithms generate a single mask only,
the robustness of which might be constrained due to the diversity
of user intention in the early interaction stage, namely the vague
selection of object part/whole object/adherent object, especially
when there’s only one click. To handle this, we propose a novel
framework called Diversified Interactive Segmentation Network
(DISNet) in which we revisit the peculiarity of first click: given an
input image, DISNet outputs multiple candidate masks under the
guidance of first click only, it then utilizes a Dual-attentional Mask
Correction (DAMC) module consisting of two branches: a) Masked
attention based on click propagation. b) Mixed attention within
first click, subsequent clicks and image w.r.t. position and feature
space. Moreover, we design a new sampling strategy to generate
GT masks with rich semantic relations. The comparison between
DISNet and mainstream algorithms demonstrates the efficacy of
our methods, which further exemplifies the decisive role of first
click in the realm of interactive segmentation.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Interactive Segmentation, Multiple Output, First-click, Attention
Mechanism

1 INTRODUCTION
Interactive segmentation can be viewed as a mutable and active
instance segmentation task. Unlike general segmentation meth-
ods that predict solid mask for every latent object in an image,
interaction-based method is capable of making single or multiple
object selection in a human-in-the-loop manner, allowing users to
provide prompts iteratively in order to focus on specific targets,
plus eliminate the mislabeled regions such as holes and flaws, till
harvesting satisfactory results. The advent of DIOS [45] has greatly
promoted the relevant research process, numerous deep-learning
based interactive segmentation algorithms have been proposed,
covering various data categories (e.g., natural image, medical image,
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infrared image) and interaction modalities (e.g., click [7, 21, 43, 46],
scribble [3], extreme points [34, 48], contour [1, 19, 36, 38], prompt
[18, 44, 49]), which have also been popularized in data annotation,
autonomous driving, as well as medical image analysis.

Over the last few years, researchers have made great efforts
to enhance the classical interactive segmentation pipeline using
prevailing computer-vision techniques. A large proportion of lat-
est methods are embedded with attention mechanism (e.g., trans-
former), which proves conducive for long-range context modeling.
The pioneering work SimpleClick [27] adopts an MAE-pretrained
ViT [14] consisting of 12~32 W-MSA layers [30]; SAM [18] and
SEEM [49] also use ViT to pre-compute image features, while they
further measure the cross-attention between image feature and
encoded prompts in a two-way manner, thus facilitates mutual
information flow.

It is also noteworthy that user ambiguity is another crucial as-
pect which has been gradually brought into focus. The meaning of
ambiguity is that a single interaction may correspond to multiple
system feedback, given that the annotated pixels by users might
contain diversified semantics, which is ubiquitous in object/set of
objects that is commonly characterized by structural hierarchy or
spatial adjacency, such as desk vs. book on the desk or man vs.
camera in man’s hand. In terms of interaction modality, the main-
stream click-based methods become susceptible to vague selection
of mask prototypes compared with scribble-based or contour-based
counterparts, since click possesses the sparsest prior knowledge
that it is hard to indicate the accurate range of a specific object.
Previous methods such as LD [21] and MultiSeg [22] attempts to
tackle this issue using additional output channels, while recent
study PiClick [46] reformulates this task on the basis of DETR [2],
using solid number of object queries to generate mask proposals,
which greatly surpasses the former. However, its weakness is also
obvious: a) The rapid decline of ambiguity in the early rounds leads
to output convergence (diverse to single), which causes the waste of
object queries and its highly time-consuming computation (mostly
𝑂 (𝑛2)). b) The generation of diverse GT masks is based on random
merging strategy, hence quite a few semantic or spatial correlation
between those masks, which hinders performance.

Our work makes further investigation into how to elaborately
design an architecture where diversified user intentions are suf-
ficiently parsed during interactive segmentation. We revisit and
summarize two peculiar features of first click: a) Maximum am-
biguity, means the number of diverse mask predictions reaches a
peak when there’s only one click. b) Contextual continuity, means
the role of subsequent clicks is to refine details based on selected
mask proposal (serves as initial template). We propose Diversified
Interactive Segmentation Network (DISNet), a novel framework
that decouples the classical segmentation procedure into two sec-
tions—proposal network and refinement network (see Figure 1).
The main body of proposal network is Mask2Former [5], in which

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: (Top row) Typical interactive segmentation doesn’t account for latent diversity in user intentions, causing flaws and
holes in prediction mask. (Bottom row) In our method, first click takes the role of generating all plausible proposals, a coarse
mask is selected as a guiding template based on IoU or manually by user, which is then refined by subsequent clicks to get final
accurate result.

we use RGB image combined with 1-channel first click map as input
to get diverse mask predictions. Later, a single mask is picked out
according to the largest IoU between predictions and GT mask,
then the selected mask/mask token, image feature, together with
encoded full clicks are sent to refinement network, where we in-
troduce Dual-attentional Mask Correction (DAMC) which can be
regarded as a variant of two-way transformer in SAM, including
a masked click-attention module and a first-click guidance mod-
ule. The former updates mask token using cross-attention between
token and image feature, where the affinity matrix is reweighted
by endowing its elements in the proximity of clicks with a larger
value to emphasize click propagation. The latter updates image
feature by computing a relational vector between first click and
other clicks, then utilizes it to perform channel-wise activation
with image feature. Both modules aim to strengthen cross-over
information flow in terms of robustness and efficiency. Finally, we
design a novel principle to generate sequence of diverse ground-
truth masks on SBD [13] and LVIS [11] datasets. Evaluation on six
benchmarks shows outstanding performance compared with the
existing methods. We achieve 3.07 NoC%85 with 5.11 NoC%90 when
trained with LVIS, which outperforms PiClick [46] (3.11 NoC%85
with 5.32 NoC%90), which is the current SOTA method.

We summarize our contributions as follows:

• We introduce an interactive segmentation framework DIS-
NET that features multiple-output and first-click design, in
which we fully exploit the properties of user’s first click: a)
to represent latent, diverse user intentions (maximum ambi-
guity). b) to guide and constraint the impact of successive
clicks (contextual continuity).

• We propose Dual-attentional Mask Correction (DAMC) com-
ponent, a modified two-way transformer used to mutually
measure the attention among image features, click features
and selected token/mask proposal, which is proved to be

capable of manifesting the decisive effect of user’s first click
in terms of information flow.

• We propose a novel mask-samplingmethod in order to match
our new framework. During training, we generate a set of
semantic-correlated ground-truth mask proposals given the
position of first click, which are then used to supervise the
output from the first stage of DISNET.

• Extensive comparisons with former works, visualization and
ablation studies have demonstrated the necessity of our net-
work design from macro to micro level. We conduct these
experiments on six datasets using two evaluation metrics.

2 RELATEDWORK
2.1 Interactive Segmentation
Interactive segmentation (IS) takes account of the human guidance
to provide single, class-agnostic instance mask, which has been a
long-standing topic since the advent of Intelligent Scissor [36] in
1995. During that period, researchers mainly focus on energy opti-
mization methods, e.g., GrabCut [1] and random walk [10]. Those
methods leverage low-level feature only, which is sub-optimal when
confronting complex scenes. In 2016, the first deep-learning based
algorithm DIOS [45] makes a remarkable breakthrough in IS. In this
work, positive and negative clicks are encoded into two-channel
distance maps concatenated with input image, an arbitrary segmen-
tation model (e.g., FCN [31]) takes it as input to get final result in
an end-to-end manner. Later, ITIS [33] proposes iterative training
strategy to simulate real-word interaction process in training phase,
which is then revisited and further modified by [41]. In terms of in-
teraction type, DEXTR [34] uses extreme points in four directions to
indicate a compact range of object compared to click, while in IOG
[48], a bounding box is drawn for coarse localization, then clicks are
added inside the box to obtain fine-grained mask. In recent studies,
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Figure 2: An overview of our proposed DISNet. The whole network is a combination of proposal generation network 𝑃 and
mask refinement network 𝑅. At first, multiple predictions based on first click are provided by 𝑃 to represent diverse intentions.
Next, a mask is selected based on user preference or the largest IoU score with GT, which will be further refined in 𝑅 using
whole clicks.

attention-based design has gradually become mainstream. CDNet
[4] disseminates pixel features located at positive/negative clicks to
other pixels using self-attention. iFPN [47] adopts sparse GNNs to
propagate click information in a long-range manner. SimpleClick
[27] and iSegFormer [28] are the pioneering works to combine
transformer with IS, which greatly motivate relevant research such
as iCMFormer [20] and InterFormer [16].

2.2 Interactive Segmentation with Diverse
Output

Originated from LD [21], researchers attempt to combine IS with
multiple choice learning[12], which is a strategy that guides the
model to generate more than one feasible solutions and select from
one of these. In LD, the number of output channels is altered to 6,
meanwhile only the minimum loss among those channels is back-
propagated so as to learn discrepancy within channels. MultiSeg
[22] provides multiple scale-aware masks by computing loss in
anchor-truncated areas. SAM [18] utilizes a specific prompt token
as a signal to judge whether to return diverse or single mask based
on the level of ambiguity (number of click), PiClick [46] enables 7
object queries to learn output diversity under the supervision of
multiple GT masks. In comparison, our method generates proposals
only when user clicks for the first time. Even though clicks up to
2~3 rounds may still contain intentional uncertainty, we argue that
a trade-off between low-time cost and performance uprising is of
great necessity in network design.

2.3 Interactive Segmentation with First Click
IS methods concerning about the utility of first click are quite few
till now. In FCANet [26], first click is regarded as a coarse prior
for subsequent clicks to refine, in which they supervise first-click-
only prediction mask as a subtask using auxilliary loss. EMC-Click
[7] improves FCANet by proposing two novel correction modules
which boosts performance. The uniqueness of first click is still lack
of sufficient exploration and it is meant to bring about a brand-new
perspective when diving into relevant research.

3 METHODOLOGY
3.1 Preliminary and Overview
Given an input image I ∈ 𝑅𝐻×𝑊 ×3 with user-annotated set of pix-
els C = {(𝑢𝑖 , 𝑣𝑖 , 𝑝𝑖 ) |𝑖 = 1, 2, · · · , 𝑐}, where (𝑢𝑖 , 𝑣𝑖 ) ∈ [0,𝑊 ] × [0, 𝐻 ]
and 𝑝𝑖 ∈ {0, 1} denotes the coordinates and property (i.e., 𝑝𝑖 = 1 for
positive and 𝑝𝑖 = 0 for negative) of the 𝑖𝑡ℎ click, an encoding func-
tion 𝐸𝑛𝑐2𝐷 (·) converts those clicks into a 2D pattern, e.g., distance
map (denoted as S ∈ 𝑅𝐻×𝑊 ×2), which is concatenated with image
to form a 5-channels input. In a standard segmentation network
𝑓 , a pretrained image encoder scales down the input resolution by
using stride-2 convolutions or pooling (e.g., ResNet-50), followed
by stacks of conv layers to extract high-level feature, which is then
upsampled by a decoder structure for semantic comprehension. The
final output is a sigmoidized maskM ∈ [0, 1]𝐻×𝑊 which indicates
the fine-grained location of user-interest object. Later, user is al-
lowed to add more clicks targeted on the mislabeled region, causing
the iterative change of prediction together with input clicks. There-
fore, we formulate the classical interactive segmentation pipeline
as follows:

M𝑡 = 𝑓

(
I,S𝑡 ,M𝑡−1;𝜃 𝑓

)
(1)

where 𝑡 ∈ {1, 2, · · · ,𝑇 } denotes the 𝑡𝑡ℎ interaction round, 𝜃 𝑓 de-
notes the network parameter.

However, Formula 1 is insufficient when conditioned on multiple
predictions combined with the prominence of first click, which char-
acterizes the main architecture of DISNet. As is shown in Figure 2,
the whole network is split into two stages for proposal generation
and mask refinement, respectively. In the first stage (denoted as
proposal network 𝑃 ), click in the first round (i.e., 𝑡 = 1) is distin-
guished from other clicks in C𝑡 due to the diverse user intentions it
brings about, denoted as C𝐹 , which is then converted by 𝐸𝑛𝑐2𝐷 (·)
to form a single-channel disk map S𝐹 (Here we suppose that C𝐹 is
always positive so we omit the second channel for negative clicks,
since user is fond of clicking around the center of object at first,
according to [26]). Similarly, we take the image I with S𝐹 as in-
put, deliver to the image encoder, while a Mask2Former decoder
is used to generate 𝑁 diverse, ambiguity-aware mask proposals
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M ∈ [0, 1]𝐻×𝑊 ×𝑁 using trainable object queries Q ∈ 𝑅𝑁×𝑑 , to-
gether with a pixel decoder which produces multi-scale features on
the basis of encoder output. Finally, a specific mask M𝑠 is selected
fromM as input to stage 2 (denoted as refinement network 𝑅) to
receive further correction. The above procedure can be formulated
as follows:

M𝑠 = 𝜙𝑠 (M) ,M = 𝑃
(
I,S𝐹 ;𝜃𝑝

)
(2)

where 𝜙𝑠 (·) denotes mask selection principle (see Section 3.2), note
that Q is part of 𝜃𝑝 as network parameters hence absence in the
variable list. It is obvious thatM𝑠 remains solid after the first click is
given, which won’t be altered w.r.t. C𝑡 orM𝑡−1. Therefore, DISNet
only needs to focus on mask refinement from the second round,
which enormously reduces the cost of dense matrix operation in
stage 1.

Next, subsequent click is added in order to refine the erroneous
part ofM𝑠 . The object query Q𝑠 ∈ 𝑅𝑑 (takes charge of predicting
M𝑠 ), together with 4x resolution feature map produced by pixel
decoder (denoted as F −1 ∈ 𝑅𝐻/4×𝑊 /4×𝑑 ), are reused in stage 2
for consistency. Specifically, two elaborately designed attention
module followed by respective type of FFNs act as a modified mask
decoder in SAM to output the final mask M𝑓 , which is formulated
as below:

M𝑡
𝑓
= 𝑅

(
Q𝑠 , F −1,M𝑠 ,S𝑡 ,P𝑡 ;𝜃𝑅

)
(3)

where P𝑡 ∈ 𝑅𝐶×𝑑 is generated using 𝐸𝑛𝑐1𝐷 (·) function to get
a linear representation of C𝑡 . We’ll clarify this function and the
detailed mechanism of stage 2 in Section 3.3.

3.2 Proposal Generation
Masks with all possible semantic combinations (user intentions)
will be provided in this stage.Wemainly follow the design of PiClick
[46] except for some minor adjustments.
Image encoder. A general encoder is often used to extract image
feature as a preprocess in almost all computer vision task. In our
method, a plain ViT pretrained with Masked Image Modeling (MIM)
[14] is adopted, which includes a patch embedding layer and several
window-basedmulti-head self-attention layers (W-MSA).We obtain
feature with 16x resolution and 784 channels (ViT-B version) from
the encoder.
Mask decoder. We constitute our mask decoder with a pixel de-
coder to getmulti-level features {F𝑖 |𝑖 = 1, 2, 3}, plus severalMask2Former
[5] decoder layers which involves: a) self-attention within object
queries Q. b) cross-attention between Q and F𝑖 . c) feedforward net-
work (FFN). Predictions are obtained bymatrix calculating (convolv-
ing) 4x feature F −1 with the updated Q, while a bipartite matching
loss is measured between prediction masks and relation-aware GT
masks (see Section 3.4). The specific mask to refine in stage 2 is
picked out according to its largest IoU with all GT masks(during
training and evaluation) or user selection (during inference). Note
that we abandon the design of parallel IoU predictor (Target Rea-
soning Module) in PiClick [46] since it is an ill-posed problem to
produce accurate IoU without external guidance under first-click-
only circumstance.

3.3 Dual-attentional Mask Correction
Motivated by SAM [18], we propose masked click attention module
(regarded as modified image-to-token) with first-click guidance
module (regarded as modified token-to-image) to progressively
renovate image features and token, as illustrated in Figure 3.
Masked click attention. We start by introducing the masked
attention scheme adopted in DETR series[5, 9]. Suppose we have𝑄 ,
𝐾 , 𝑉 that satisfies 𝑄 = 𝜑 (Q𝑠 ), 𝐾 = 𝜓 (F −1), 𝑉 = Θ(F −1), where
𝜑 , 𝜓 and Θ are linear transformations. In masked attention, the
value of𝑄𝐾𝑇 is summed with a modulation term𝑀 before softmax
operation.

Z𝑀𝐴 = softmax
(
𝑄𝐾𝑇
√
𝑑

+𝑀
)
𝑉 (4)

The above𝑀 enforces all pixels in the background (sigmoid value
less than 0.5) to be infinitesimal so that information flow is limited
into foreground pixels only. When combined with our work,𝑀 is
replaced by log(M𝑠 ), whereM𝑠 is the selectedmask proposal based
on first click. There’re mainly two concerns: a) M𝑠 serves as an
initial template to provide coarse localization, which accelerates the
convergence speed of training. b)M𝑠 is solid, means the contextual
continuity of first click could be kept. We use log(·) instead of
binary threshold to ensure smooth transition, which could also
contribute to efficient training.

We also notice that positive/negative click is also the subset
of foreground and background pixels. From the click perspective,
mask is somewhat a zone of propagation or diffusive growth start
from seeds (clicks). Therefore, another modulation term is required
to manifest the saliency of clicks in masked attention. Hence, we
generate two linear decay maps (denoted as G𝑝 and G𝑛) according
to click positions, which satisfies:

G𝑝/𝑛 (𝑖, 𝑗) = 1 −
min

(
𝑟0, 𝜙

(
C𝑝/𝑛, 𝑝𝑖 𝑗

))
𝑟0

(5)

where C𝑝/𝑛 is the positive/negative click set, 𝜙 (·) is euclidean dis-
tance, 𝑟0 is a radius to control the rate of decay (We set 5 for other
clicks and 15 for the first click). Lastly, the masked click attention
(MCA) is formulated as below:

Z𝑀𝐶𝐴 = Z𝑝 + Z𝑛 (6)

Z𝑝 = softmax
(
𝑄𝐾𝑇
√
𝑑

⊙ G𝑝 + log (M𝑠 )
)
𝑉 (7)

Z𝑛 = softmax
(
𝑄𝐾𝑇
√
𝑑

⊙ G𝑛 + log (1 −M𝑠 )
)
𝑉 (8)

where
⊙

means Hadamard product. It is evident that G𝑝/𝑛 is uti-
lized to reweight𝑄𝐾𝑇 under the constraint ofM𝑠 , thus the feature
of pixels nearby those clicks are the most likely to be gathered,
which realizes delicate, oriented information flow from image to
token.
First-click guidance. We strive to forge a novel token-to-image
module that satisfies: a) low computation cost. b) a thorough ex-
ploitation of the first click. Reviving Formula 3, clicks are encoded
into 1D vectors P𝑡 by initializing two trainable indicators represent-
ing the positive/negative property, a positional embedding function
is used to transform clicks coordinates into a dense vector form,
which is then added with indicator. Followed by concatenation and
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Figure 3: Detailed mechanism of Masked click attention (MCA) and First-click guidance (FCG) module in DAMC.

linear projection, one could obtain click-augmented features which
we denote as follows:

F
′
= LinearProj

(
F −1 ⊕ P𝑡

)
(9)

A latent issue is that clicks may be sub-optimal such as clicking
in regions with blurred patches or low lighting, even the click itself
could be erroneous due to user’s negligence, i.e., mark negative
on foreground. A non-trivial solution is to exclude those clicks
or weaken their influence to the network. Naturally, the first click
contains the user’s most primary impression of object’s global struc-
ture, which is qualified for guidance prior. Therefore, we measure
the feature-space correlation between the first click and other clicks
(denoted as relational vector V) in order to pose a constraint that
only the click which shares similarity with the first click could con-
tribute to mask output. To this end, we split F ′

into F ′

𝑓 𝑐
, F ′

𝑝𝑜𝑠 and

F ′
𝑛𝑒𝑔 , then cross-attention within the three is computed as follows,

where MHA means multi-head attention:

V𝑝𝑜𝑠/𝑛𝑒𝑔 = MHA
(
F

′

𝑓 𝑐
, F

′

𝑝𝑜𝑠/𝑛𝑒𝑔

)
(10)

Later, we integrateV with image feature F −1 by utilizing SENet
[15], which consists of two fully-connected layers, a sigmoid func-
tion, and a channel-wise multiplication between V and F −1. This
is fairly efficient compared with the original token-to-image mod-
ule in SAM, in which a spatially cross-attention between F −1 and
all clicks embedding is implemented. Similar to MCA, we use M𝑠

as a second constraint to limit the scope of V . Thus, the first-click
guidance (FCG) module is formulated as below:

Z𝐹𝐶𝐺 = Z𝑝 + Z𝑛 (11)

Z𝑝 = SENet
(
F −1,V𝑝𝑜𝑠

)
⊙ M𝑠 (12)

Z𝑛 = SENet
(
F −1,V𝑛𝑒𝑔

)
⊙ (1 −M𝑠 ) (13)

Finally, we adopt a depth-wise ConvFFN module to make up
for the lack of spatial attention, which consists of two 1 × 1 conv
layer and a 3× 3 depth-wise separable conv layer. This is a common
practice in many real-time vision transformers.

3.4 Relation-aware Training Samples
The generation of diverse ground-truth masks is a non-trivial task
for the supervision of proposal network in DISNet. Based on SBD
[13] and LVIS [11] datasets, we attempt to discover the best strat-
egy to measure the possible spatial/semantic correlation within
all masks in an image, which we categorize into proximity-based
method and hierarchy-based method. A concrete algorithm descrip-
tion of mask sampling with clicks using the two methods is shown
in supplementary material.
Hierarchy-based method. Thanks to the hierarchy tree provided
in LVIS that enable us to construct a sequence of object masks with
rich semantic relations. In this scenario, a scene could be decoupled
into different levels of scene nodes (may contain multiple objects
for the root, and object part for the leaf) to insinuate the possible
subject-predicate-object (SPO) relations among them. Concretely
speaking, we adopt a bottom-up strategy where we first randomly
pick out a center object (e.g., an apple) and locate its node level.
Then we traverse all of its parent nodes (e.g., a man with an apple)
using depth ordering, until the level of node reaches the top (e.g., a
man with an apple is sitting on a chair). Finally, the center object
along with parents are added into an empty list of diverse ground-
truth masks in an inner-outer manner. We sample the first click
based on the subtracted region between the center object mask
and all of its children masks, while a random mask is selected to
supervise the refinement network.
Proximity-based method. Mask sampling using hierarchy tree
is not feasible in SBD. Therefore, we simply judge whether two
arbitrary masks are spatially proximate by calculating the over-
lapped pixels after a 3 × 3 mask dilation, which is not guaranteed
for semantic relations. We use all combinations of 1-hop neighbors
to get the list of diverse samples.

4 EXPERIMENTS
4.1 Datasets and evaluation metrics
We conduct our experiments on the following datasets: GrabCut
[39], Berkeley [35], DAVIS [37], SBD [13], PascalVOC [8] and a
combination of COCO [24] and LVIS [11]. The GrabCut dataset
contains 50 images with single object. The Berkeley dataset consists
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Table 1: A comprehensive comparison between the mainstream algorithms and our method. Methods marked with ↑means the
first-click is treated specially during segmentation, while ↓means methods with multiple outputs. The best result is marked
with blue (trained with SBD) and red (trained with COCO+LVIS). It is obvious that our method possesses both of the two
characteristics.

Method Dataset Backbone
GrabCut Berkeley DAVIS SBD

NoC%85 NoC%90 NoC%85 NoC%90 NoC%85 NoC%90 NoC%85 NoC%90

DOS w/o GC[45] VOC FCN-8s 8.02 12.59 - - 12.52 17.11 14.3 16.79
DOS with GC[45] VOC FCN-8s 5.08 6.08 - - 9.03 12.58 9.22 12.80
DEXTR[34] VOC ResNet-101 - - - - - - - -
FCANet[26] ↑ VOC ResNet-101 - 2.14 - 4.19 - 7.90 - -
MultiSeg[22] ↓ VOC ResNet-101 - 2.30 - 4.00 - - - -
IOG[48] VOC ResNet-50 - - - - - - - -

f-BRS-B[40] SBD ResNet-101 2.30 2.72 - 4.57 5.04 7.41 4.81 7.73
LD[21] ↓ SBD VGG-19 3.20 4.79 - - 5.59 9.57 7.41 -
IA+SA[42] SBD ResNet-101 - 3.07 - 4.94 5.16 - - -
FocusCut[25] SBD ResNet-101 1.46 1.64 - 3.01 3.40 5.31 4.85 6.22
CDNet[4] ↓ SBD ResNet-101 2.42 2.76 1.47 2.06 5.33 6.97 4.73 7.66
RITM[41] SBD HRNet-18s 1.76 2.04 1.87 3.22 4.94 6.71 3.39 5.43
FCFI[43] SBD ResNet-101 1.64 1.80 - 2.84 4.75 6.48 3.26 5.35
SimpleClick[27] SBD ViT-B 1.58 1.66 1.55 2.37 4.10 5.48 3.24 5.43
Ours ↑↓ SBD ViT-B 1.54 1.68 1.39 2.07 4.07 5.26 3.39 5.24

RITM[41] C+L HRNet-32 1.46 1.56 1.43 2.10 4.11 5.34 3.95 5.71
EMC-Click[7] ↑ C+L SegF-B3 1.42 1.48 - 2.35 4.49 5.69 3.44 5.57
FCFI[43] C+L HRNet-18s 1.50 1.56 - 2.05 3.88 6.24 3.70 5.16
SimpleClick[27] C+L ViT-B 1.38 1.48 1.36 1.97 3.66 5.06 3.43 5.62
ICMFormer[20] C+L ViT-B 1.42 1.52 1.40 1.86 3.40 5.06 3.29 5.30
InterFormer[16] C+L ViT-B - 1.48 - 1.97 - 5.06 3.43 5.62
PiClick[46] ↓ C+L ViT-B 1.18 1.24 1.17 1.78 3.42 4.60 3.11 5.32
Ours ↑↓ C+L ViT-B 1.16 1.16 1.22 1.75 3.80 4.51 3.07 5.11

of 96 imageswith 100 instances. The SBD dataset is divided into 8498
samples for training, and 2857 for validation. The DAVIS dataset
contains 50 videos primarily designed for video-based segmentation
task, here we follow [7, 27, 41] to randomly sample 345 frames for
testing. The PascalVOC dataset contains 1449 testing images with
3427 instances. The COCO+LVIS is a compound dataset which
consists of 118K images with high-quality annotations of about
1.2M instances. In our work, the SBD and COCO+LVIS are used for
training purposes while the rest is for testing.

We follow the commonly used evaluation protocol for interactive
segmentation, including a) Mean intersection-over-union (mIoU),
which measures the percentage of pixels in the overlapped regions
of predicted mask and ground truth. b) Number of clicks (NoC),
which measures the least number of clicks required to reach a given
IoU threshold 𝑥 (denoted as NoC%𝑥 , where 𝑥 takes the value of 85
or 90 as a common practice in previous work [4, 20, 29, 48]).

4.2 Implementation details
Following [46], we adopt a ViT-B as backbone (pretrained by MAE)
together with 3 Mask2Former decoder layers for proposal gener-
ation. The selection of proposal is based on the largest IoU with
current ground-truth mask, or manually by user preference when
the model is online for real world use. In the latter part of DISNet,

the number of DAMCmodule is commonly set to 2 to prevent latent
computation cost. During the training process, We supervise the
whole network with a bipartite matching loss [2] for stage 1 and a
normalized focal loss (NFL) [23] for stage 2, while the learning rate
𝑙𝑟 is set to 5𝑒−5 and 5𝑒−6 for two stages, respectively. We adopt
Adam [17] optimizer with a momentum of 𝛽1 = 0.9 and 𝛽2 = 0.99,
followed by a cosine-annealing scheduler [32] for progressive 𝑙𝑟
decay (we set the warmup step to 2 epochs, and initial 𝑙𝑟 to 5𝑒−8).
We train 55 epochs on SBD dataset and 70 epochs on COCO+LVIS
dataset, both using a batch size of 32. For a training sample, we
randomly crop and resize it to a resolution of 448× 448, followed by
classical data augmentations, i.e., random brightness/contrast, hori-
zontal/vertical flipping, etc. All the experiments are conducted on
Ubuntu-18.04 platform with 4 RTX 4090 GPUs, while our main code
is constructed on two open-source projects (i.e., MMSegmentation
[6] and RITM [41]).

During inference when the first click is positioned, we truncate
the path to refinement network 𝑅 so that the selected mask (output
from proposal network 𝑃 ) is chosen for metric evaluation, since we
notice a subtle performance drop around 0.3 NoC if we evaluate the
refined mask from network 𝑅 instead. Clearly, only the first click
itself provides limited prior knowledge to fix local details. Starting
from second click, we reuse the output from network 𝑃 such that
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Figure 4: Curves to measure the change of mIoU with the number of clicks on 3 datasets. It is manifest that our method
outperforms the others especially when there’s only first click, which proves the efficacy of first click design.

Figure 5: Visualization of output at each stage. The position of first click is marked with yellow dot.

only 𝑅 is utilized, which avoids redundant computation cost. This
time-efficient strategy is similar to [7].

4.3 Comparisons with State-of-the-arts
We make a thorough comparison with the mainstream IS algo-
rithms, the Number of Click (NoC) result is shown in Table 1. To
be fair, we don’t emphasize on the effect of a stronger backbone or
a strong dataset so we group methods with the above similar set-
ting for convenient analysis. We notice that our work outperforms
most of the previous works, where there’s a slight improvement
of 0.02 to 0.08 compared with PiClick on GrabCut and a huge im-
provement over EMC-Click [7] (about 0.2 to 0.3)—the latter method
also attempts to measure the peculiarity of first click but failed to
sufficiently leverage this information. When in terms of dataset, we
argue that a high quality masks annotation is indispensable since
we surpass our own counterpart (trained by SBD) at an astonishing
value of 0.4 to 0.5. Reviving the hierarchy mask sampling strategy
in COCO+LVIS dataset, it is likely to make great contribution not
only for the proposal stage, but also a guidance prior to the final
output. In terms of multiple output mask design, CDNet [4] utilizes

an auxiliary branch to learn the correlated semantic, yet compared
with PiClick [46] or our method, it fails to converge well enough
due to the lack of diverse ground truth masks.

Curves measuring the change of mIoU with respect to number
of clicks are shown in Figure 4. We make a brief comparison among
up to 7 methods on GrabCut, Berkeley, SBD and DAVIS datasets, re-
spectively. It is evident that our method performs the best especially
at first click.

We visualize the outputs from different stage in our framework,
as is illustrated in Figure 5. A specific proposal is selected based on
largest IoU with ground truth, then further refined by successive
clicks.We notice that it is capable of harvesting result with sufficient
accuracy starting from the second click.

We also strive to analyze two main properties in our work, i.e.
first-click and ambiguity-aware mask proposals. As shown in 6,
we visualize and compare the proposals (PiClick) or final result
(FCANet, EMC-Click) at first click, together with IoU with respect
to GT (red region in the middle). Our method tends to produce
more accurate proposals compared to others (i.e., we segment the
click position into sofa cushion/sofa/adjacent sofas).
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Figure 6: Comparison of mask proposals or final mask when
a first click is given. In contrast to other methods, our work
is likely to produce high quality proposals with a larger IoU.

4.4 Ablation Study
In this chapter, we conduct several ablation studies using Berke-
ley and DAVIS dataset, in which we take a deep view over each
component of DISNet.
Impact of whole network. We start by progressively adding
core components to a plain baseline (Here we choose SAM [18]),
including FC (i.e., first-click) and MO (i.e., multiple output) design
in proposal network 𝑃 , together with MCA and FCG module in
refinement network 𝑅. In addition to NoC, we utilize a novel metric
called Number of Failure (NoF%𝑥) which measures the number
of cases where the segmentation mask could not reach a given
mIoU 𝑥% within the maximally allowed number of clicks (default
is 20). Reviving result in Table 2, we could notice that model with
FC achieves a major breakthrough in NoC, which indicates the
importance of first click. Furthermore, a proper integration of these
four components leads to the best result, which means they’re
tightly organized with less redundancy during the whole pipeline.
Impact of MCA. Targeted on the rate of decay around each click,
we design a scheme to record the effect of MCA under different
combination of radius value 𝑟0 for first/other clicks (shown in Table
3). We conclude that setting this two value to 15 and 5 could yield
the best result.
Impact of FCG. To measure the utility of FCG. We split it into two
components: a) whether to use click-augmented feature (simplified
as AC) instead of image feature. b) whether to use ConvFFN mod-
ule in its following. The result in Table 5 demonstrates that each
component is indispensable to the final contribution of evaluation
metrics.
Impact of mask sampling.We apply SBD and COCO+LVIS train-
ing dataset with two relation-aware sampling methods, while we
record our result in Table 4. Evidently speaking, hierarchy-based
method is more likely to produce accurate, semantic-exclusive di-
verse predictions than proximity-based method, which has been
also demonstrated in Table 6.

Table 2: Analysis of First-Click-Guidance (FCG) module on
GrabCut and Berkeley dataset. AC means click-augmented
feature.

FCG components GrabCut Berkeley

AC ConvFFN NoC%85 NoC%90 NoC%85 NoC%90

1.31 1.35 1.29 1.84
✓ 1.17 1.18 1.23 1.79

✓ 1.17 1.21 1.25 1.81
✓ ✓ 1.16 1.16 1.22 1.75

Table 3: Analysis of Mask-Click-Attention (MCA) module on
Berkeley and SBD dataset. We evaluate on different combi-
nation of radius 𝑟0 for first/other click, respectively.

MCA radius 𝑟0 Berkeley SBD

First click Other click NoC%85 NoC%90 NoC%85 NoC%90

5 5 1.51 2.07 3.44 5.25
15 5 1.39 2.07 3.39 5.24
15 15 1.39 2.09 3.39 5.25

Table 4: Comparison with respect to relation-aware sampling
strategy. Due to the lack of hierarchy tree for SBD, we only
implement proximity-based method on this dataset.

Dataset & Sampling
SBD DAVIS

NoC%85 NoC%90 NoF%90 NoC%85 NoC%90 NoF%90

SBD & Proximity 3.39 5.24 112 4.07 5.26 61
C+L & Proximity 3.11 5.23 109 3.95 4.77 49
C+L & Hierarchy 3.07 5.12 107 3.80 4.51 45

Table 5: A thorough plug-in analysis for each of the core
component in our work. FC/MO means first-click/multiple
output design.

Component Berkeley SBD DAVIS

FC MO MCA FCG NoC%90 NoF%90 NoC%90 NoF%90 NoC%90 NoF%90

2.35 9 9.76 216 7.52 168
✓ 2.09 9 7.88 189 7.32 146
✓ ✓ 2.09 7 7.53 177 6.41 93
✓ ✓ ✓ 1.87 5 5.98 145 5.25 59
✓ ✓ ✓ 1.89 6 5.35 133 5.33 63
✓ ✓ ✓ ✓ 1.75 2 5.11 107 4.51 45

5 CONCLUSION
In this paper, we propose a two-stage interactive segmentation
method DISNet, where the peculiarity of first interaction click is
highlighted as maximum intentional ambiguity, together with con-
textual continuity. A novel refinement network DAMC further
corrects details of the selected mask from the proposal network,
which proves robust and efficient as well. Moreover, our proposed
diverse ground-truth sampling strategy plays a crucial role in real-
world simulation of user intentions. Extensive comparison and
ablation studies demonstrates state-of-the-art performance on sev-
eral datasets, which further exemplifies the decisive role of first
click in the realm of interactive segmentation.
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