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ABSTRACT

Training a neural network using one-hot targets often leads to the issue of over-
confidence. To address this, Label Smoothing has been introduced, modifying
the targets to a mix of one-hot encoding and a uniform probability vector. How-
ever, the uniform probability vector indiscriminately assigns equal weights to all
categories, thereby undermining inter-category relationships. To overcome these
challenges, we propose a novel solution, Learnable Label Smoothing (LLS), that
aims to regulate training by granting networks the ability to assign optimal tar-
gets. Unlike conventional methods, Learnable Label Smoothing utilizes proba-
bility vectors unique to each category, resulting in diverse targets. The acquired
relationships are beneficial for regularization and also prove to be transferable,
facilitating knowledge distillation even in the absence of a Teacher model. Our
extensive experiments across multiple datasets highlight the advantages of our
method in addressing both overfitting and the preservation of inter-category rela-
tionships in neural network training.

1 INTRODUCTION

The traditional method of training neural networks involves the utilization of one-hot targets and
cross-entropy loss, a long-standing practice in the field. However, the use of one-hot targets has been
recognized for its tendency to instigate overconfidence within the network, potentially hampering its
generalization capabilities [Szegedy et al.| (2016). Over the years, various regularization techniques,
such as Cutout (Devries & Taylor (2017)), Mixup (Zhang et al.[(2018))), CutMix (Yun et al.[(2019)),
and others (Hendrycks et al.|(2020); |Gong et al.|(2021)), have been introduced to address this issue,
often involving modifications to the input data. An alternative strategy is Label Smoothing, which
adjusts target labels during training by adding a uniform label distribution over the categories to
the one-hot target (Szegedy et al.| (2016))). Training with Label Smoothing has proven effective in
enhancing generalization and has been widely adopted.

Despite the advantages of Label Smoothing, it is known to disrupt the relationships between cate-
gories (Miiller et al.[(2019)). This problem arises from the use of a uniform probability vector in
generating smoothed targets, assigning equal importance to all negative categories. Consequently,
the network is instructed to treat all categories as equally distinct from each other, leading to com-
pact and equidistant category clusters in the feature space (Miiller et al.[|(2019)). This outcome is
undesirable; for e.g., targets for the Dog class should have a relatively higher similarity with the
Cat class, as compared to the Truck class. Enforcing uniform inter-category relationships limits the
model’s performance Zhang et al.|(2021). Inter-category relationship is crucial for applications such
as Knowledge Distillation, dealing with missing data, and learning from noisy labels (Hinton et al.
(2015); Miiller et al.| (2019); |[Zhang et al.| (2021)). This prompts two fundamental questions: (1) Is
it possible to regulate confidence while preserving the inter-category relationship? and, (2) What
alternative should be employed in place of the uniform probability vector?

This paper introduces a novel solution, termed Learnable Label Smoothing (LLS), to address these
questions. Our approach aims to train the network to learn the optimal target vector, as illustrated in
Figure I} We propose a category-wise learnable probability vector. By combining these probability
vectors with the one-hot labels, similar to Label Smoothing, we create targets unique to each cat-
egory. For a dataset with K categories, these category-wise learnable probability vectors together
form the K x K (Q-matrix, whose rows Qi encode the inter-category similarities.
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Figure 1: Toy Diagram. Our method seeks to regulate training by empowering the network to
determine its optimal targets.

We demonstrate empirically that Learnable Label Smoothing outperforms Label Smoothing and
its other variations. Furthermore, networks trained with Learnable Label Smoothing prove to be
more effective Teacher models for Knowledge Distillation. The learned (Q-Matrices enable seamless
knowledge transfer and distillation even in the absence of the Teacher network. A (Q-Matrix learned
from a large dataset can be used to regularize its subsets (category-wise and sample-wise) of the data
and reduces the necessity for frequent relearning of the (-Matrix. These characteristics enhance the
@-Matrix’s versatility and widen the scope of Learnable Label Smoothing’s potential applications.

2 RELATED WORK

Training neural networks with 1-hot targets are well-known for inducing overconfidence and ad-
versely affecting generalization (Szegedy et al.| (2016)). Numerous regularization techniques have
been proposed to mitigate this issue, with a predominant focus on enhancing input data
(2018);|Yun et al.|(2019); | Devries & Taylor (2017)). Label regularization techniques seek to modify
targets to alleviate overconfidence. Label smoothing is one of the straightforward solutions that mix
the 1-hot vector with a uniform vector, weighted by a hyper-parameter o (Szegedy et al. (2016)
Despite its merits, Label Smoothing has the drawback of disrupting inter-category relationships by
assigning equal weights to all negative categories (Miller et al.| (2019)). Our novel approach di-
verges from a uniform vector, opting instead to learn the probability vector for mixing to prevent
disrupting inter-category relationships.

~

Entropy maximization on network predictions emerges as an alternative to Label Smoothing
(Pereyra et al. (2017)). This technique provides greater flexibility to samples, allowing them to
determine the weight of negative categories instead of adhering to uniform weights. Our approach
leverages entropy maximization loss on network predictions and trains the network to learn the tar-
gets. Focal loss was proposed as a modification of the cross-entropy loss function (Mukhoti et al.
(2020); [Lin et al.] (2017)). It allocates higher weights to samples with low confidence and lower
weights to those with high confidence. This loss works by minimizing a regularized KL divergence
and preventing the model from becoming excessively overconfident. This further underscores our
selection of entropy maximization in regulating targets.

Knowledge Distillation is recognized as a form of label regularization (Hinton et al.| (2015); Yuan
(2020)). It involves producing targets from a larger network (the Teacher) and passing this
knowledge to a smaller network (the Student) on a per-sample basis. The relationship of each sam-
ple to negative categories, as learned by the teacher, aids in regulating the Student networks
(2015)). In line with this concept, a trained network was employed to train another (same
architecture) network in Teacher-Free Knowledge Distillation (Yuan et al.| (2020)). However, this
approach incurs significant computational expenses as it necessitates training a network twice and
generating outputs using online training. An alternative, Teacher-Free regularization, behaves sim-
ilarly to Label Smoothing but utilizes a high mixing coefficient of 0.9 to generate a smoothened
probability vector (2020)). The network is trained to align predicted probabilities with
this vector at a high temperature, reducing computational costs but still relying on a uniform vector.
Our method departs from a uniform probability vector when generating a regularized target. Online
Label Smoothing is another approach based on network predictions (Zhang et al.[(2021))). It com-
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putes average network predictions for each category and mixes them with a 1-hot probability vector.
While it diminishes the need to train the network twice, it still carries a substantial computational
overhead as average network predictions must be computed every epoch on the training set. Also, if
the predictions become close to 1-hot, it results in training vectors to become 1-hot.

3 METHOD

3.1 PRELIMINARIES

Let D be a dataset with image label pairs {x, y} where x represents an image, and y € {1,..., K}
is the ground truth label. The ground truth labels are also represented as 1-hot vectors p =
[p1,...,pK] ", where p; € {0, 1}. Correspondingly, p; = 1 when index i = y, else it is 0. The neu-
ral network with parameters 6 is represented as fy(.). For a sample z, the output probability vector
is denoted by p = fy(x). The standard cross-entropy objective H (p, p) is minimized for network
training, and is computed as,

K

H(p,p) = —plogp=—> _p;logp; = —logp,. )

i=1

However, the conventional training approach utilizing a 1-hot vector is known to induce overconfi-
dence (Szegedy et al.[(2016)) and lead to poor calibration and over-fitting (Mukhoti et al.| (2020);
Lin et al|(2017)). To address this issue, Label Smoothing introduces a regularization technique
by creating a modified target p'* (Szegedy et al. (2016)). This is achieved by combing the 1-hot
probability p with a uniform probability vector u = [, ..., %}T, resulting in,
P = (1 —a)p + au. (2)

Here, « is the smoothing hyper-parameter, typically set to 0.1. The network trained using the cross-
entropy with the modified targets (p'®), mitigates the problem as,

H®p",p) = —p'*logp 3)
= (1 —a)H(p,p) + oH (u,p)
= (1 —-a)H(p,p) + aK L(ul[p) + oH (u).

Here, the first term is the cross-entropy between H (p, p) scaled by (1 — «). The second term is
the Kullback-Leibler Divergence between v and p driving the predictions to become more uniform
and reducing the confidence of predictions. The last term is the entropy over u, where H(u) =
— >, u;logu,;, which is a constant.

3.2 LEARNABLE LABEL SMOOTHING (LLS)

Our approach proposes to replace the uniform vector u in Label Smoothing with a learnable proba-
bility vector, granting the network the ability to select optimal targets. Our learned target vector is of
the form, p!'* = (1—a)*p-+a*q where, ¢ is learned through network training. We argue that a 1-hot
target vector is an overconfident and hard assignment of the image category. Label Smoothing ame-
liorates the effect of overconfidence by assuming a uniform prior label distribution. However, Label
Smoothing could introduce unwanted biases when uniformly smoothing the probabilities (Lienen &
Hiillermeier| (2021))). We propose to learn the distribution ¢ and estimate the ‘moving’ target label
p''s even as the network trains to align the prediction p with p'’*. We share a probability vector ¢
between all samples within a category, due to their shared relationships with other categories and
employ distinct g for each category. Hence, we learn a matrix ) of dimensions K x K, where row i

signifies a learnable probability vector Q; = [¢i1, g2, - - - , ¢ix] for category i. For a training sample
(x,7), the modified label is given as p''® where,
PP =(1—-a)sxp+axQ,, (4)

with p as the 1-hot vector corresponding to ground truth label y, and @), the y-th row of the learned
(@ matrix. « is the hyper-parameter similar to Label Smoothing. The purpose of the ()-Matrix is
to facilitate the acquisition of the optimal mixing probability vectors during Label Smoothing. We
refer to our framework as Learnable Label Smoothing (LLS).
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Figure 2: An overview of the proposed approach. Our approach utilizes a matrix ) with dimensions
K x K that serves as the repository for learnable probability vectors for each category. A given 1-hot
vector p of a category is mixed with its associated probability vector ), from matrix ), governed
by the hyperparameter . This operation results in the target p!** which is used for training with £;;
loss.

3.3 TRAINING USING LLS

!s and the network predic-

Given the Learnable Label Smoothing (LLS) target probability vector p
tion p, the standard training objective is the minimization of the cross-entropy loss H (p ”S, p) =
- pi*log p;. The cross-entropy is an upper-bound on the KL-divergence between p''* and p,
where H(p''*,p) = KL(p"*||p) + H(p'"*). The second term H (p''*) is the entropy of p!’* which
is 0 when p'*® is 1-hot. When p'’® is not 1-hot, minimizing cross-entropy H (p'**, p) also minimizes
the entropy of H (p'**), making p''® more 1-hot. This does not serve our purpose where we aim to
retain the inter-category relationships in the target label. We propose to instead directly minimize
the KL-divergence objective K L(p"*||p).

We term K L(p!'*||p) as the Forward-KL. In standard Forward-KL divergence objectives, for e.g.,
K L(r||s), the distribution r is fixed, and s is optimized to align with r. With K L(p"*||p), we have
the challenge of a moving target where p''* is being learned as p aligns with it. That means we need
both $ and p'*® need to be optimized to align with each other, respectively. However, Forward-KL
produces disproportionate updates to the p and p'**. This is mitigated when we also have a Reverse-
KL term K L(p||p'**), which provides symmetry to the training loss function and ensures the target
p''s and predictions p are updated with equal emphasis. We discuss this more using the derivatives
of the Forward-KL and Reverse-KL in the Appendix (Section [B]). We also showcase the impact of
not including Reverse-KL in the ablation study (Section[5.I]and Appendix Section[H). The objective
for training using the LLS is the sum of Forward-KL and Reverse-KL objectives.

Lus = KL(p"*,p) + KL(p,p"*) (5)

= p"*logp"* — p'*logp + plogp — plogp''*
= —H@")+ H(p",p) — H(p) + H(p,p'").

The first term —H (p”s) is the negative entropy of the target, which, when minimized, drives the
target p'** towards a uniform distribution. The target is p''* = (1 — a)p + a@y, where only Q)
varies. Minimizing —H (p'**) effectively drives Q, to estimate inter-category relationships as @,
becomes more uniform. Similarly, the third term —H (p) is the negative entropy of the predictions,
which, when minimized, drives the predictions p towards a uniform distribution. This plays the role
of Label Smoothing, which penalizes overconfidence in the predictions and alleviates overfitting.
We name the second term —H (p"®, ), Forward Cross-Entropy, which aligns distributions p'** and
p. Similarly, we name the 4th term —H (p, p'**) Reverse Cross-Entropy. Minimizing these terms
aligns the target p''* with the predictions p.
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Table 1: Results on CUB-200 and Flowers-102 for fine-grain classification. MV2: MobileNetV2
and RX denote the ResNet network with X number of layers.

Dataset CUB-200 Flowers-102

Network MV2 RI18 R50 RI101 | MV2 RIS R50 RI101
1-Hot 7776  78.08 80.81 81.71 | 91.03 90.37 90.69 91.74
LS (Szegedy et al.| (2016)) 78.67 78.56 81.89 82.62 | 91.94 90.50 92.42 92.73
TF-KDreq (Yuanet al.|(2020)) | 77.64 - 80.96 - 91.95 - 91.30 -
OLS (Zhang et al.|(2021))) 79.95 - 82.47 - 92.73 - 92.86 -
LLS (Ours) 79.84 78.86 8291 83.48 | 93.02 91.02 93.64 92.89

3.4 THE Q-MATRIX

Minimizing —H (p''*) maximizes the entropy of the target p!"* = (1 — a)p + aQ,,, where only
@y varies. The entropy of p'* can be increased only by reducing @4y and increasing the other
components of (), because the y-th component p”S is greater than the other components by a fixed
constant term (1 — «). This propels the network to set )y, — 0 and assign that probability to
the other categories, thereby identifying inter-category relationships. Consequently, the () matrix
exhibits the lowest values at the diagonals and higher values for semantically closer categories.
The @-Matrix is generally asymmetric, as we found the relation of a category to another does not
reciprocate the same way. For e.g., using Figure [4b] the Pullover category has the highest similarity
with the Shirt category, but the Shirt gets a higher similarity with the T-shirt category than the
Pullover.

We learn a (), vector for every category. This results in a K x K -matrix where every row (),
models the similarities of category y with the other categories. The similarities learned by the Q-

Matrix allow for knowledge transfer between different networks, especially when a teacher model
can’t be employed (More details in [5.3). Similarly, a Q-Matrix learned from a large dataset can
be used to transfer its knowledge to its subsets (category-wise and sample-wise) of the data, which
reduces the necessity for frequent relearning of the ()-Matrix (More details in Appendix Section[DJ.
The LLS method is depicted in the model diagram in Figure[2]

4 EXPERIMENTS

4.1 DATASETS AND SETUP

We evaluated our methodology across diverse settings, encompassing small-scale objects, large-
scale objects, and scenarios demanding fine-grained classification. In the realm of small-scale clas-
sification, we used FashionMNIST (Xiao et al.| (2017))), CIFAR10 (Krizhevsky et al.| (2009)), and
SVHN (Netzer et al.[(2011))) datasets. These datasets, with images sized at 32 x 32, offer both di-
versity and challenges with 10-way classifications. SVHN presents an intriguing challenge as digits
lack prominent inter-category relationships. For large-scale classification, our evaluation extended
to CIFAR100 (Krizhevsky et al.|(2009)), Tiny-ImageNet, and ImageNet-100. Due to hardware con-
straints, we leveraged Tiny-ImageNet and ImageNet-100 [URL], both subsets of the original Ima-
geNet dataset (Deng et al.| (2009)). Tiny-ImageNet possesses 200 categories with 64 x 64 images,
while ImageNet-100, featuring the original 224 x 224 image size, encompasses 100 categories. In
the fine-grained classification domain, our experiments focused on distinguishing between various
bird species using the CUB-200 dataset (Wah et al.| (2011)), different types of flowers using the
Flowers-102 dataset (Nilsback & Zisserman| (2008)), and different animals using the Animals-10N
dataset (Song et al.[(2019)).

We evaluated our approach on these datasets using different networks that are mentioned in their
respective tables. We store ()-matrix as logits which are converted to probabilities using Softmax.
The @-matrix is initialized with zeros, leading to a uniform distribution as the starting point. The
hyper-parameter « is set to 0.1 for all experiments but optimizing « can provide additional gains
(Explored in Appendix Section [C). Detailed training procedure, the pseudo-code, and the code are
provided in Appendix Section[[} Section[A] and the supplementary, respectively.


https://www.kaggle.com/datasets/ambityga/imagenet100
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Table 2: Results on CIFAR100 and Tiny-ImageNet datasets. RX denotes the ResNet network with
X number of layers.

CIFAR100 Tiny-ImageNet
Method R18 R34 R50 RI101 | R18 R50 R101
1-Hot 75.87 79.38 78.79 79.66 | 63.20 67.47 67.93
LS|[Szegedy et al.|(2016)) 7726 79.06 78.80 79.88 | 63.13 67.63 68.31
FL-3 Mukhoti et al.| (2020) - - 77.25 - - 50.31  62.97
FLSD-53 Mukhoti et al.| (2020) - - 76.78 - - 50.94 62.96
TF-KD,; ¢ |Yuan et al.| (2020) 77.10 - - - - 68.18 -
TF-KD,..4 [Yuan et al.{(2020) 77.36 - - - - 67.92 -
Zipf|Liang et al.| (2022]) 7738 77.38 - - 59.25 - -
OLS Zhang et al.| (2021]) - 79.96 79.35 80.34 - - -
LLS (Ours) 79.69 80.71 81.04 81.21 | 64.58 68.28 69.42

Table 3: Results on SVHN, CIFAR10, FashionMNIST (FMNIST), Animals10N and ImageNet-100.

Dataset SVHN CIFAR10 FMNIST Animals10ON | ImageNet-100
Network LeNet AlexNet AlexNet ResNet18 R18 R50

1-Hot 89.404+0.03 | 79.98+0.17 | 80.94+£0.22 | 85.00+0.11 | 81.72 83.96
LS 89.35+0.09 | 80.66+0.20 | 81.15+£0.24 | 86.13+0.19 | 82.22 84.58
TFKD,., | 89.42£0.31 | 80.78+£0.17 | 81.384+0.24 | 85.994+0.10 | 82.44 84.72
OLS 89.194+0.43 | 80.714+0.28 | 81.21£0.30 | 86.35+0.38 | 82.56 84.71
LLS 89.514+0.15 | 80.88+0.04 | 81.56+0.23 | 86.69+0.23 | 82.72 84.90

4.2 RESULTS

We conduct a comprehensive comparison of our approach against prominent label regularization
techniques, including Label Smoothing (Szegedy et al.|(2016))), Focal Loss (Mukhoti et al.[(2020)),
Teacher-Free Knowledge Distillation (Yuan et al.| (2020)), and Online Label Smoothing (OLS)
(Zhang et al. (2021)). The results are detailed in Table I} 2] and [3] When results were not avail-
able in the original paper, we indicated them with ‘-’. Notably, for Tables |3} baseline experiments
were conducted by us using the same setup as ours. Our approach consistently outperforms the
alternatives across all the cases. Our approach imposes minimal overhead while achieving superior
performance. We analyze the computation overhead of Learnable label smoothing in the Appendix
Section[Gl

4.3  @Q-MATRIX

We present (Q-Matrices for CIFAR-10, Animals-10N, SVHN, and CIFARI100 in Figure E} show-
casing their learned relationships. The ()-Matrix notably reveals distinct connections among the
categories. For CIFAR-10, we can observe that LLS assigns high values to similar categories and
low values to dissimilar categories showcasing the learned inter-category relationship. Similarly, for
Animals-10N, which is a fine-grain classification dataset and has 5 pairs of confusing pairs, high
values are assigned to the other animals of the pair in (Q-Matrix, showcasing their strong relation-
ships. Furthermore, we depict the confusion matrix for the test set of the FashionMNIST in Figure
It reveals a pattern consistent with the ()-Matrix showcased in Figure For instance, Shirts
frequently get misclassified as T-shirts, followed by pullovers and coats, owing to their close seman-
tic ties in that order. This correlation serves as a useful tool for estimating prediction uncertainty.
For example, when an image is misclassified as a T-shirt, there is a higher likelihood of it being a
Shirt and a significantly lower chance of being a Bag. We also show (Q-Matrix for a larger number
of classes (CIFAR100) in Figure [3d| We can observe the same behavior here. For e.g., the Maple
Tree has a similarity of 0.45 with the Oak Tree, 0.2 with the Pine Tree and Willow Tree, 0.02 with
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Figure 3: Learned Q Matrices. We can observe (J-Matrix favors semantically closer categories. The
final training label is obtained by mixing the (J-Matrix with the 1-hot vector of ground truth based
on the o hyperparameter.
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Figure 4: (a) Confusion Matrix on the validation set of FashionMNIST dataset and (b) Learned
(Q-Matrix from train set. We can observe misclassification in [da follow the same trend as the rela-
tionship learned [4b}

the Forest, and very low with the rest. Another good example is the category Woman, which gets
0.3 similarity with Girl, 0.2 with Man, 0.13 with Boy, and 0.07 with Baby.
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Table 4: Ablation Study experiments on Tiny-ImageNet and CUB-200 with ResNet-18 and ResNet-
50. No FCE: No cross-entropy loss; No RCE: No reverse cross-entropy loss; No Pred EM: No
entropy maximization loss on predictions; No Targets EM: No entropy maximization loss on targets;
FCE only: Forward cross-entropy; Symmetric CE: Forward cross-entropy + Reverse cross-entropy.

Descripti Loss Terms Tiny-ImageNet CUB-200
escription

Hp",p) H@pp"™) —H(p) —H@E) | RI8 RS0 | RIS RSO
No FCE X v v v 2644 1191 | 46.84 51.26
No RCE v X v v 64.14 68.04 | 78.84 82.88
No Pred EM v v X v 63.26 67.48 | 78.34 82.57
No Targets EM v v v X 63.80 67.51 | 78.10 82.78
FCE only v 63.40 66.83 | 78.46 82.66
Symmetric CE v v X X 6291 66.80 | 78.13 82.07
Forward KL v X X v 63.03 67.87 | 7822 8252
Reverse KL X v v X 26.58 1440 | 46.62 53.56
LLS v v v v 64.58 68.28 | 78.86 8291

5 ANALYSIS

5.1 ABLATION STUDY

We conduct an ablation study on diverse loss components, as presented in Table [d] utilizing the
Tiny-ImageNet and CUB-200 datasets. The initial four rows of the table demonstrate the outcomes
obtained by excluding each individual component. The fifth and sixth rows correspond to the cross-
entropy and symmetric cross-entropy loss, respectively. Subsequently, the sixth and seventh rows
represent the forward and Reverse KL divergence losses. Based on the first and the last row, we can
observe that the cross-entropy loss is crucial, and this component’s absence results in a failure of
network convergence. Removing reverse cross-entropy has the least impact on the performance of
the network. However, this results in a non-optimal Q-Matrix (Refer to Appendix Figure [Ob). We
showcase the learned Q matrices for all these discussed scenarios in Appendix [H We can conclude
that achieving the network’s optimal performance necessitates the inclusion of all loss components.

5.2 CLUSTERS VISUALIZATION

We present a visual analysis of clusters formed by 1-hot, Label Smoothing, and Learnable Label
Smoothing targets using TSNE (Van der Maaten & Hinton| (2008)). Following the experimental
setup outlined in (Miiller et al.| (2019)) for CIFAR-10, we display the penultimate layer features in
Figure[5|for all the categories. In the upper row, it is evident that clusters formed by 1-hot targets are
dispersed, while those generated by Label Smoothing and Learnable Label Smoothing result in more
cohesive and compact clusters. Moving to the second row, we delve into illustrating inter-category
relationships by examining distances among cluster centers of the training data. We employed L1-

normalized cosine distances, defined as %, where cd(i,j) = 1 — and ¢; and c;
; cd(i,

Ci*Cj
leall-les 11>
represent the cluster centers of categories ¢ and j, respectively. Notably, Label Smoothing disrupts
the inter-category relationship, rendering all categories equidistant from each other in feature space.
In contrast, both 1-hot and Learnable Label Smoothing maintain the inter-category relationship. To
further reinforce our findings, we provide more fine-grain visualizations in the Appendix Section [E]

To further reinforce our findings, we narrow down the focus to visualize the class-wise distances
among select trios from CIFAR-10 and CIFAR-100, mirroring the approach in (Miiller et al.| (2019)).
For these experiments, we concentrated on the Dog, Cat, and Truck classes from CIFAR-10, and
the Beaver, Dolphin, and Otter classes from CIFAR-100. The results are showcased in Figure [6]
significantly reinforcing our findings. In this figure, we can visualize the distance between the
semantically related classes, such as Cat and Dog in CIFAR-10, or Beaver and Otter in CIFAR-100
being disrupted by Label Smoothing but remaining intact with Learnable Label Smoothing.
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Figure 5: Upper Row: TSNE visualization depicting penultimate features of CIFAR-10. Lower
Row: L1 normalized cosine distance among category centers to depict inter-category relationships.
In the upper row, it is evident that the category clusters associated with 1-hot targets exhibit dis-
persion, while those of Label Smoothing and LLS appear more concentrated. In the lower row, it
becomes apparent that Label Smoothing disrupts the inter-category relationships, resulting in equal
distances between features of all categories. Conversely, 1-hot targets and LLS maintain and have
similar inter-category relationships. Our approach provides the advantages of both techniques.

@ Cat ® Dog Truck
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Figure 6: Fine-grain TSNE visualizations illustrating three classes from CIFAR-10 (Cat, Dog,
Truck) in the top and CIFAR-100 (Beaver, Dolphin, Otter) in the bottom row. We observe the same
behavior as Figure [§] The clusters formed by employing one-hot targets appear scattered whereas
label smoothing and LLS result in tightly knit clusters. Furthermore, we can visualize the distance
between the semantically related classes, such as Cat and Dog in CIFAR-10, or Beaver and Otter in
CIFAR-100 being disrupted by Label Smoothing but remaining intact by LLS.
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Table 5: Knowledge Distillation experiments. RX: ResNet-X and M2: MobileNetV2. YV — Z
denotes distillation from Y (Teacher) to Z (Student). The rows labeled 1-Hot, LS, and LLS corre-
spond to scenarios where the Teacher network was trained using 1-hot encoding, Label Smoothing,
and Learnable Label Smoothing, respectively. For LLS-ST (Learnable Label Smoothing-Substitute
Teacher), only the learned Q-Matrix from the LLS Teacher network is used for distillation.

Dataset CIFAR100 Tiny-ImageNet | IN100 CUB200 Flowers102
Teacher | R34 R34 R34 R50  R101 R50 R101 R101 | R101  R101
Student R18 R34 R50 R18 R18 R18 R50 M2 R50 M2

1-Hot 78.67 79.09 80.83 | 63.76 6393 | 83.44 | 81.57 7882 | 92.00 91.64
LS 7940 80.15 81.15 | 6431 64.02 | 83.32 | 8291 79.70 | 92.86 92.44
LLS 79.66 80.19 81.26 | 65.69 66.11 | 83.62 | 83.38 80.15 | 93.40 92.63
LLS-ST | 79.57 79.66 81.24 | 63.79 64.09 | 8250 | 83.02 79.62 | 93.14 92.49

5.3 SUBSTITUTE TEACHER FOR KNOWLEDGE DISTILLATION

Knowledge distillation employs a pre-trained teacher model f; on dataset to instruct the student
model fs. The teacher model generates targets for each sample, which the student model then uses
to learn. The training loss for the student network is defined as:

»CKD:5H(fs(x)7y)+(1_ﬁ)H(.ﬂ‘(x)/T»ft(x)/T) (6)

Here, H represents the cross-entropy loss, [ is a parameter balancing the use of one-hot labels
and teacher targets, and 7' is the temperature-regulating knowledge transfer from teacher to student.
However, the availability of a Teacher network can be constrained by computational or privacy
considerations. In such scenarios, the Q-matrix of the Teacher network can serve as a substitute
Teacher for Knowledge Distillation, denoted as LLS-ST. While a Teacher model furnishes targets
on a per-sample basis, LLS-ST exclusively offers category-wise targets only.

Across all datasets, we adopted their original training setup for knowledge distillation but altered
the training loss function. Following the recent setup of knowledge distillation experiments, we
set 8 = 0, implying that student networks are exclusively trained using teacher predictions, and
used a temperature of 1 for all experiments. The results are presented in Table [5] The outcomes
indicate that networks trained with LLS exhibit superior teaching capabilities during the distillation
process. Remarkably, LLS-ST, despite imparting limited knowledge, imparts a performance boost
comparable to employing a fully trained Teacher network (refer Table[T]and 2).

6 LIMITATIONS

The biggest drawback of our approach is that it requires &2 additional parameters. This becomes
a concern when the number of classes grows large, like ImageNet-21k. In such a case, the number
of parameters becomes substantially high (441M parameters for ImageNet-21k). To solve this, we
propose to merge non-similar categories and keep a fixed number of top similar N during training
for each category. The Q-Matrix will start with K x K parameters but will reduce it to K x N where
N << K, thereby reducing the number of parameters. We will keep it as part of future exploration
work.

7 CONCLUSIONS

In our paper, we introduce an innovative label regularization technique named Learnable Label
Smoothing (LLS). Our approach focuses on empowering networks to learn optimal target labels
for regularization. Consequently, our method effectively produces compact feature clusters while
preserving the inter-category relationships. Furthermore, the acquired understanding of these inter-
category relationships is transferable, aiding in Knowledge Distillation even in scenarios where a
Teacher network is unavailable. We believe Learnable Label Smoothing will play a transformative
role in knowledge transfer paradigms for neural networks.

10
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A PYTORCH PSEUDO CODE

# Define LLS
class LLS (nn.Module) :
def __init__ (self, K, alpha=0.1):
super () .__init__ ()
self.K = K
self.alpha = alpha
self.gmatrix = nn.Parameter (torch.zeros (K, K), requires_grad=True)

def forward(self, logits, vy):
pred = F.softmax(logits, 1)

y_tgt = (1- a) x F.one_hot(y, num_classes=self.K)
+ a » F.softmax (self.gmatrix[y], 1)

forward_kl = KL(y_tgt, pred)
backward_kl = KL(pred, y_tgt)
loss = (forward_kl + backward_kl)/2

return loss

# Define loss function
loss_fn = LLS(K, «)

# Add Q-Matrix parameters to Optimizer
params = list (net.parameters()) + list (loss_fn.parameters())
optimizer = SGD (params, lr, mom, wd)

B NECESSITY OF REVERSE KL USING GRADIENT DERIVATION OF LLS

In this section, we present the derivatives of all components comprising our loss function £;;5 with
respect to the (Q-Matrix and compare them against the gradient of forward KL for the network.
To facilitate the derivations, We employ specific notations: let ¢ = Q, = [¢1,¢2, ..., qK|, Where
q; represents the probability of the i-th category for the y-th row of the @Q-Matrix. The entries in
the (Q-Matrix are generated from logits. For e.g., [t1,¢2,...,txk]| are the logits that generate the
y-th row in Q. Here, ¢ = softmax([t1,ts,...,tk]), indicating that ¢ is obtained by applying
the Softmax activation function to the logits values. Likewise, We use z = [z1,22,...,2K] tO
represent the logits from the network fy which are then converted to predicted probabilities p. Here,
p = softmax([z1, 22, . .., 2K])-

t
€

Firstly, We derive the gradient of the softmax probability ¢; = s, ; — with respect to logits ¢;, as
this derivation will be utilized in subsequent derivative calculations,

eti

qi = W
9g; _ e -I{i=j} >, e el el
ot Dok et dopetr Dopete Yo etk
=q;I{i = j} — ¢q;
=q({i=7}—a) (7

Similarly, We have the derivative,

Op;
6‘zj

=pi(I{i=j}—pi) 8
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We show the derivative of the forward KL loss £ f3; w.r.t. network logits z;:

Ly = KLE"™[1p) = H'"™,p) — Hp'™)
== p*logpi+ ) pi*logp" )

Lk Z zzsalogpz o

8Zj
lls A
:_Zp’ bi usingEq
0z,
Us

—Z”Z i(I{i = 3} — )

1
p] s lls

A"#Z ;Z Dj - Pi

_pils +p] Zplls

p; — ol (10)

Next, We derive the gradient of forward KL loss L; w.r.t. Q-Matrix logits ¢;:

L = KL ||p) = HP"™,p) — HP")
== pilogpi+ Y pi*logpl"

Define Lfc. = — z:pél‘g logp; and

Leme = Zp”s log p}'* (a1

Next, We will solve derivatives of L. and L., separately and then combine them later to get the
derivative of L.

Derivative of Forward Cross-Entropy loss L yc. W.r.t. Q-Matrix logits ¢;:
Lfce = — Z [(1 = a)pi + agi] log p; (12)
8;:;;06 = - Z a% log pi
= _q Z log P; using Eq
= —az 4 I{z’ =J} = )] logp;
= —ag, Z [(I{i =7} — )] - log p;

—agq;(logp; — Z% log p;)

ag; (Z gi - log pi — logpy> (13)
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Derivative of Entropy Maximization loss on targets Ly, W.r.t. Q-Matrix logits ¢;:

emt — Zpile logp”G

%

= [(1— a)p; + ag;] log[(1 — a)p; + aq;] (14)
8‘Ce’mt 8%
= 1 . .
1 0q;

3(12

= Z
= az 8tqt {1+ 1og[(1 — @)p; + ag;]}

=« Z (1 + log pil®) —; using EqH

= O‘Z (1 +logpt) - q;(I{i = j} — @)

a)p; + ag;] + aZ

ag Z 1+logpi*)(I{i = j} - ¢;)

= ag; [(1 +logp”s Z% (1 +1ngl_15)]
= ag;[(1+logp*) — Z g — Z g:log pi'*]
=aq;[1+ logp”s 1- Z 4 logp”s

= ag; logplls qu logplls

= ag;(logp* — qulogp”s (15)

The Final derivative of Forward KL £, w.r.t. t; can be obtained as:

8£fkl o a»cfce a»Cemif
ot ot o, using qu & qu

= Qqj qu Ingz Ing]

7

+ ag; (log plf* — Zqzlogp”s

:a(Ij(ZQi'Ingl_lis o plfs) (16)

J

It can be observed that there is a notable disparity in the gradient of forward KL with respect to ¢;
as seen in Eq. [I6] which is consistently one to two orders of magnitude smaller compared to its
counterpart concerning z; in Eq. [T0} This discrepancy arises due to the logarithmic scaling effect
on the gradients, resulting in a reduction in magnitude. To enhance the flow of gradients into the
(-Matrix without resorting to increasing the learning rate, we incorporate reverse KL £, in the
training loss function. Next, we show the gradient of the reverse KL £,;; w.r.t. logits t; of (J-Matrix
to understand its impact.
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The gradient of reverse KL £, w.r.t. logits ¢; of ()-Matrix can be derived as:
Ly = KL(p|[p"*) = H(p,p"™*) — H(p)

=- Zpl logp'* + > pilog p;
[

= - Zﬁi log[(1 — a)p; + agi] + Y _ pilogp; (17)
OL ki Di 9q;
ot 2 T—aptaa “ot,

Pi 9q; .
- D Eql7
D A q
¢ I{i=j}—q
azl_apﬁaqz (i =7} — @)

=04 3 g rag (=7~ 0)

pz + adq;

= @ ¥errerr
(1—0¢p]—|—aq] 1—0¢p1+o¢q1

— o [ sz z:|
95| s : lle
=g (Z% F-= u) ()

bp; pj

By examining Eq. and it becomes apparent that the gradients of forward and reverse KL

exhibit strong similarities, differing primarily due to the presence of the log function in the plffs

terms. log function diminished the gradient values in the forward KL scenario, whereas, in reverse
KL, the unscaled values are employed. Interestingly, the gradients derived from reverse KL align in
magnitude order with those of forward KL concerning z in Eq[I0} This leads to a better convergence
of the ()-Matrix.
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Figure 7: Results on varying o on CIFAR100, Flowers-102, and, CUB200 dataset with ResNet-18.
We can observe that o € (0.1, 0.4) provides the best overall performance.

Table 6: The comparison between applying the learned (Q-Matrix from the full data vs. employing
1-hot encoding, Label Smoothing, and Learnable Label Smoothing on sample-wise subsets. The
results demonstrate a significant boost in generalization when the learned (Q-Matrix is applied to the
sample-wise subsets.

ImageNet100 TinyImageNet FMNIST CIFAR100
1-Hot 77.22 54.26 86.49 73.70
LS 78.62 54.70 87.01 74.56
LLS 78.66 54.85 87.13 74.75
LLS-ST 79.02 55.21 87.56 74.92

C VARYING HYPERPARAMETER «

We show outcomes obtained by varying the values of hyperparameter « (0.05, 0.1, 0.2, 0.3, 0.4, and
0.5) using a ResNet18 on CIFAR-100, Flowers-102, and CUB-200 datasets in Figure Our results
indicate that the range o € (0.1,0.4) consistently delivers the optimal performance across these
datasets.

D EFFECTIVENESS ON SUBSETS OF DATA

It’s expected that the ()-Matrix is predominantly shaped by the characteristics of the training data,
and any alterations to the training dataset consequently influence the learned )-Matrix. However,
once the ()-Matrix has been acquired, it remains applicable to both its category-wise and sample-
wise subsets.

In this experiment, we meticulously examine these two types of subsets: (1) selecting the first 50%
of categories and (2) randomly choosing 50% of samples from ImageNet-100, TinyImageNet, Fash-
1onMNIST, and CIFAR-100 datasets. Employing these data subsets, we train a ResNet-18 with
1-hot targets, Label Smoothing, and Learnable Label Smoothing as baselines. Subsequently, we
delve into the impact of applying the learned ()-Matrix from the entire dataset, similar to the substi-
tute Teacher experiments (LLS-ST). For category subsets, we extract the logits corresponding to the
selected categories from the ()-Matrix and exclusively apply Softmax to these chosen values.

The results of these experiments are detailed in Table[6|and[7] Notably, the learned QQ-Matrix exhibits
superior performance when applied to a subset of samples. When dealing with a subset of categories,
learning a new (Q-Matrix enhances generalization, with the learned matrix closely approaching the
performance of a newly trained matrix, outperforming 1-hot targets and Label Smoothing.
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Table 7: The comparison between applying the learned (Q-Matrix from the full data vs. employing
1-hot encoding, Label Smoothing, and Learnable Label Smoothing on class-wise subsets. When
working with a subset of categories, acquiring a new (Q-Matrix results in superior performance.
However, the learned ()-matrix demonstrates a close alignment with the performance of a freshly
trained Q-matrix.

ImageNet100 TinyImageNet FMNIST CIFAR100
1-Hot 76.68 66.90 89.86 83.24
LLS 78.56 67.48 91.12 83.66
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Figure 8: Upper Row: TSNE visualization depicting penultimate features of FashionMNIST. Lower
Row: L1 normalized cosine distance between class cluster centers. In the upper row, it is evi-
dent that the class clusters associated with one-hot targets exhibit dispersion, while those of Label
Smoothing and Learnable Label Smoothing appear more concentrated. Moving to the lower row,
it becomes apparent that label smoothing disrupts the inter-class relationships, resulting in equal
distances between all classes. Conversely, one-hot targets and Learnable Label Smoothing maintain
and preserve these inter-class relationships. Notably, Learnable Label Smoothing combines the ad-
vantages of both techniques.

E MORE CLUSTER VISUALIZATIONS

We replicated the experiment outlined in the cluster visualization section of the main text using the
FashionMNIST dataset with a LeNet architecture. The outcomes of these experiments are presented
in Figure[§] In the top row of visualizations, we visualize the features using TSNE. In the bottom

row, we calculated class cluster centers using the training data and presented L1-normalized cosine

%, where cd = 1 — and ¢; and c¢; denote the cluster
5 cd(i,

centers of class ¢ and j, respectively.

distances among classes as HC-CH»\C\C-H’
g J

These comparisons underline that clusters formed by 1-Hot targets demonstrate dispersion, while
those formed by label smoothing and learnable label smoothing exhibit a more cohesive and com-
pact nature. Notably, label smoothing consistently disrupts inter-class relationships, equidistantly
positioning classes within the feature space—a salient observation underscored in our findings. In
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Table 8: Application of Label Smoothing++ with Input Augmentations techniques - Co: Cutout,
Mx: Mixup, Cx: CutMix, RA: RandAugment.

Dataset Animals-10N  ImageNet-100
1-hot 85.00 81.72
LLS 86.69¢ 82.724
Co (Devries & Taylor| (2017)) 86.80 82.86
Co+LLS 88.044 82.964
Mx (Zhang et al.| (2018)) 87.37 81.88
Mx + LLS 87.504 82.48;
Cx (Yun et al.| (2019)) 88.00 83.50
Cx +LLS 88.58; 83.68;
RA (Cubuk et al.|(2020)) 86.62 82.88
RA +LLS 87.244 83.504

Table 9: Comparison of the number of training parameters and training time on Tiny-ImageNet with
ResNet-18 and ResNet-101.

ResNet-18 ResNet-101
Parameters Time (mins) Parameters Time (mins)
1-hot 11,578,632 142 44,131,080 674
LS 11,578,632 142 44,131,080 674
LLS 11,618,632 (0.3%1) 146 (1.4%71) | 44,171,080 (0.1%71) 680 (0.89%1)

contrast, both One-hot encoding and learnable label smoothing methods consistently uphold and
sustain inter-class relationships effectively. Significantly, learnable label smoothing emerges clearly
superior by showcasing the strengths of both methods.

F  COMPATIBILITY WITH INPUT AUGMENTATIONS

In this section, we assess the compatibility of our approach with input augmentation techniques such
as Cutout, Mixup, Cutmix, and Randaugment. The results of this experiment are presented in Table
using CIFAR100, FashionMNIST, Tiny-ImageNet, and ImageNet-100 datasets with ResNet34,
ResNet18, ResNetl8, and ResNetl8, respectively. Our findings indicate that label regularization
seamlessly integrates with input regularization techniques. Employing input and label regularization
together yields optimal performance, as evidenced by the results in the table.

G COMPUTATION OVERHEAD OF LLS

We examine the computation overhead of learnable label smoothing. LLS adds K2 extra parameters
which scales quadrically with the number of classes. Hence, we use the Tiny-ImageNet dataset
as it has the highest number of classes (200) in our experiments. We show the total number of
trainable parameters and training time with ResNet-18 and ResNet-101 in table[9} As per the results,
Learnable Label Smoothing adds less than 0.3% parameters in both cases and increases training time
by about 1%.

H Q-MATRICES FROM ABLATION STUDY

In the main text, we conducted an ablation study to assess and compare their outcomes in terms of
performance. In this section, we present the learned Q-Matrices on CIFAR-10 for the same experi-
ments. The outcomes are illustrated in Figure[9] Notably, it’s apparent that the Q-Matrix achieves its
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Figure 9: Learned Q-Matrix on CIFAR-10 as per the ablation study experiments.

optimal state exclusively with backward KL and forward-backward loss functions. Conversely, em-
ploying the Forward KL approach results in slower convergence (as shown in Section[B}), ultimately
leading to suboptimal values.

I TRAINING SETUP

I.1 DATASET DETAILS
CIFAR10 and CIFAR100

* Augmentations: Utilized padding of size 4, Random Crops, and random horizontal flips
during training.

* Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of 5e-4.

* Training specifics: Networks were trained with a batch size of 128 for 300 epochs. The
learning rate initiated at 0.1 and warmed up linearly for the first 10 epochs. Then, it decayed
by a factor of 0.1 at the 150th and 225th epochs.

FashionMNIST

» Augmentation: Applied padding of size 2 with random crops as the sole augmentation.
* Network Configuration: Set the input channels to 1 for grayscale images.
* Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of le-4.

* Training specifics: Networks were trained with a batch size of 128 for 200 epochs. The
learning rate began at 0.1, underwent a linear warm-up for the initial 5 epochs, and decayed
by a factor of 0.1 at the 100th and 150th epochs.

SVHN
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* No augmentation was used for this dataset.
* Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of le-4.

* Training specifics: Networks were trained with a batch size of 128 for 200 epochs. The
learning rate started at 0.1, had a linear warm-up for the first 5 epochs, and decayed by a
factor of 0.1 at the 100th and 150th epochs.

TinyImageNet

» Image size: Images in TinyImageNet data were of size 64 x 64.

* Augmentations: Implemented padding of size 4, Random Crops, and random Horizontal
flips.

* Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of 1e-4.

* Training specifics: Networks were trained with a batch size of 64 for 100 epochs. The
learning rate began at 0.1, underwent a linear warm-up for the first 5 epochs, and decayed
by a factor of 0.1 at the 40th and 60th epochs.

Animals10N

* Image size: Images in Animals1ON data were of size 64 x 64.

* Augmentations: Implemented padding of size 4, Random Crops, and random Horizontal
flips.

* Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of le-4.

* Training specifics: Networks were trained with a batch size of 64 for 100 epochs. The
learning rate began at 0.1, underwent a linear warm-up for the first 5 epochs, and decayed
by a factor of 0.1 at the 40th and 60th epochs.

ImageNet-100

* Image size: Training images were of the original ImageNet dataset size 224 x 224.

e Augmentations: Employed (1) Standard augmentation of random resized crops of 224
along with random Horizontal flips. (2) Standard augmentation with RandAugmentation.

* Optimizer: Utilized SGD optimizer with 0.9 momentum and weight decay of le-4.

* Training specifics: Networks were trained with a batch size of 64 for 90 epochs. The
learning rate began at 0.1, underwent a linear warm-up for the first 5 epochs, and decayed
by a factor of 0.1 at the 30th, 60th, and 80th epochs.

CUB200 and Flowers102

* Approach: Utilized pretrained networks for these datasets, adapting the last classification
layer based on the dataset’s class count.

* Augmentation: Images were scaled to 256 and then randomly cropped to 224 for augmen-
tation, along with random horizontal flips.

* Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of le-4.

* Training specifics: Networks were trained with a batch size of 64 for 100 epochs. The
learning rate initiated at 0.01, underwent a linear warm-up for the first 5 epochs, and de-
cayed by a factor of 0.1 at the 45th and 80th epochs.
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