
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLS: REGULATING NEURAL NETWORK TRAINING
VIA LEARNABLE LABEL SMOOTHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training a neural network using one-hot targets often leads to the issue of over-
confidence. To address this, Label Smoothing has been introduced, modifying
the targets to a mix of one-hot encoding and a uniform probability vector. How-
ever, the uniform probability vector indiscriminately assigns equal weights to all
categories, thereby undermining inter-category relationships. To overcome these
challenges, we propose a novel solution, Learnable Label Smoothing (LLS), that
aims to regulate training by granting networks the ability to assign optimal tar-
gets. Unlike conventional methods, Learnable Label Smoothing utilizes proba-
bility vectors unique to each category, resulting in diverse targets. The acquired
relationships are beneficial for regularization and also prove to be transferable,
facilitating knowledge distillation even in the absence of a Teacher model. Our
extensive experiments across multiple datasets highlight the advantages of our
method in addressing both overfitting and the preservation of inter-category rela-
tionships in neural network training.

1 INTRODUCTION

The traditional method of training neural networks involves the utilization of one-hot targets and
cross-entropy loss, a long-standing practice in the field. However, the use of one-hot targets has been
recognized for its tendency to instigate overconfidence within the network, potentially hampering its
generalization capabilities Szegedy et al. (2016). Over the years, various regularization techniques,
such as Cutout (Devries & Taylor (2017)), Mixup (Zhang et al. (2018)), CutMix (Yun et al. (2019)),
and others (Hendrycks et al. (2020); Gong et al. (2021)), have been introduced to address this issue,
often involving modifications to the input data. An alternative strategy is Label Smoothing, which
adjusts target labels during training by adding a uniform label distribution over the categories to
the one-hot target (Szegedy et al. (2016)). Training with Label Smoothing has proven effective in
enhancing generalization and has been widely adopted.

Despite the advantages of Label Smoothing, it is known to disrupt the relationships between cate-
gories (Müller et al. (2019)). This problem arises from the use of a uniform probability vector in
generating smoothed targets, assigning equal importance to all negative categories. Consequently,
the network is instructed to treat all categories as equally distinct from each other, leading to com-
pact and equidistant category clusters in the feature space (Müller et al. (2019)). This outcome is
undesirable; for e.g., targets for the Dog class should have a relatively higher similarity with the
Cat class, as compared to the Truck class. Enforcing uniform inter-category relationships limits the
model’s performance Zhang et al. (2021). Inter-category relationship is crucial for applications such
as Knowledge Distillation, dealing with missing data, and learning from noisy labels (Hinton et al.
(2015); Müller et al. (2019); Zhang et al. (2021)). This prompts two fundamental questions: (1) Is
it possible to regulate confidence while preserving the inter-category relationship? and, (2) What
alternative should be employed in place of the uniform probability vector?

This paper introduces a novel solution, termed Learnable Label Smoothing (LLS), to address these
questions. Our approach aims to train the network to learn the optimal target vector, as illustrated in
Figure 1. We propose a category-wise learnable probability vector. By combining these probability
vectors with the one-hot labels, similar to Label Smoothing, we create targets unique to each cat-
egory. For a dataset with K categories, these category-wise learnable probability vectors together
form the K ×K Q-matrix, whose rows Qk encode the inter-category similarities.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Toy Diagram. Our method seeks to regulate training by empowering the network to
determine its optimal targets.

We demonstrate empirically that Learnable Label Smoothing outperforms Label Smoothing and
its other variations. Furthermore, networks trained with Learnable Label Smoothing prove to be
more effective Teacher models for Knowledge Distillation. The learned Q-Matrices enable seamless
knowledge transfer and distillation even in the absence of the Teacher network. A Q-Matrix learned
from a large dataset can be used to regularize its subsets (category-wise and sample-wise) of the data
and reduces the necessity for frequent relearning of the Q-Matrix. These characteristics enhance the
Q-Matrix’s versatility and widen the scope of Learnable Label Smoothing’s potential applications.

2 RELATED WORK

Training neural networks with 1-hot targets are well-known for inducing overconfidence and ad-
versely affecting generalization (Szegedy et al. (2016)). Numerous regularization techniques have
been proposed to mitigate this issue, with a predominant focus on enhancing input data (Zhang et al.
(2018); Yun et al. (2019); Devries & Taylor (2017)). Label regularization techniques seek to modify
targets to alleviate overconfidence. Label smoothing is one of the straightforward solutions that mix
the 1-hot vector with a uniform vector, weighted by a hyper-parameter α (Szegedy et al. (2016)).
Despite its merits, Label Smoothing has the drawback of disrupting inter-category relationships by
assigning equal weights to all negative categories (Müller et al. (2019)). Our novel approach di-
verges from a uniform vector, opting instead to learn the probability vector for mixing to prevent
disrupting inter-category relationships.

Entropy maximization on network predictions emerges as an alternative to Label Smoothing
(Pereyra et al. (2017)). This technique provides greater flexibility to samples, allowing them to
determine the weight of negative categories instead of adhering to uniform weights. Our approach
leverages entropy maximization loss on network predictions and trains the network to learn the tar-
gets. Focal loss was proposed as a modification of the cross-entropy loss function (Mukhoti et al.
(2020); Lin et al. (2017)). It allocates higher weights to samples with low confidence and lower
weights to those with high confidence. This loss works by minimizing a regularized KL divergence
and preventing the model from becoming excessively overconfident. This further underscores our
selection of entropy maximization in regulating targets.

Knowledge Distillation is recognized as a form of label regularization (Hinton et al. (2015); Yuan
et al. (2020)). It involves producing targets from a larger network (the Teacher) and passing this
knowledge to a smaller network (the Student) on a per-sample basis. The relationship of each sam-
ple to negative categories, as learned by the teacher, aids in regulating the Student networks (Hinton
et al. (2015)). In line with this concept, a trained network was employed to train another (same
architecture) network in Teacher-Free Knowledge Distillation (Yuan et al. (2020)). However, this
approach incurs significant computational expenses as it necessitates training a network twice and
generating outputs using online training. An alternative, Teacher-Free regularization, behaves sim-
ilarly to Label Smoothing but utilizes a high mixing coefficient of 0.9 to generate a smoothened
probability vector (Yuan et al. (2020)). The network is trained to align predicted probabilities with
this vector at a high temperature, reducing computational costs but still relying on a uniform vector.
Our method departs from a uniform probability vector when generating a regularized target. Online
Label Smoothing is another approach based on network predictions (Zhang et al. (2021)). It com-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

putes average network predictions for each category and mixes them with a 1-hot probability vector.
While it diminishes the need to train the network twice, it still carries a substantial computational
overhead as average network predictions must be computed every epoch on the training set. Also, if
the predictions become close to 1-hot, it results in training vectors to become 1-hot.

3 METHOD

3.1 PRELIMINARIES

Let D be a dataset with image label pairs {x, y} where x represents an image, and y ∈ {1, . . . ,K}
is the ground truth label. The ground truth labels are also represented as 1-hot vectors p =
[p1, . . . , pK]⊤, where pi ∈ {0, 1}. Correspondingly, pi = 1 when index i = y, else it is 0. The neu-
ral network with parameters θ is represented as fθ(.). For a sample x, the output probability vector
is denoted by p̂ = fθ(x). The standard cross-entropy objective H(p, p̂) is minimized for network
training, and is computed as,

H(p, p̂) = −p log p̂ = −
K∑
i=1

pi log p̂i = − log p̂y. (1)

However, the conventional training approach utilizing a 1-hot vector is known to induce overconfi-
dence (Szegedy et al. (2016)) and lead to poor calibration and over-fitting (Mukhoti et al. (2020);
Lin et al. (2017)). To address this issue, Label Smoothing introduces a regularization technique
by creating a modified target pls (Szegedy et al. (2016)). This is achieved by combing the 1-hot
probability p with a uniform probability vector u = [1K , . . . , 1

K]⊤, resulting in,

pls = (1− α)p+ αu. (2)

Here, α is the smoothing hyper-parameter, typically set to 0.1. The network trained using the cross-
entropy with the modified targets (pls), mitigates the problem as,

H(pls, p̂) = −pls log p̂ (3)
= (1− α)H(p, p̂) + αH(u, p̂)

= (1− α)H(p, p̂) + αKL(u||p̂) + αH(u).

Here, the first term is the cross-entropy between H(p, p̂) scaled by (1 − α). The second term is
the Kullback-Leibler Divergence between u and p̂ driving the predictions to become more uniform
and reducing the confidence of predictions. The last term is the entropy over u, where H(u) =
−
∑

i ui log ui, which is a constant.

3.2 LEARNABLE LABEL SMOOTHING (LLS)

Our approach proposes to replace the uniform vector u in Label Smoothing with a learnable proba-
bility vector, granting the network the ability to select optimal targets. Our learned target vector is of
the form, plls = (1−α)∗p+α∗q where, q is learned through network training. We argue that a 1-hot
target vector is an overconfident and hard assignment of the image category. Label Smoothing ame-
liorates the effect of overconfidence by assuming a uniform prior label distribution. However, Label
Smoothing could introduce unwanted biases when uniformly smoothing the probabilities (Lienen &
Hüllermeier (2021)). We propose to learn the distribution q and estimate the ‘moving’ target label
plls even as the network trains to align the prediction p̂ with plls. We share a probability vector q
between all samples within a category, due to their shared relationships with other categories and
employ distinct q for each category. Hence, we learn a matrix Q of dimensions K×K, where row i
signifies a learnable probability vector Qi = [qi1, qi2, . . . , qiK] for category i. For a training sample
(x, y), the modified label is given as plls where,

plls = (1− α) ∗ p+ α ∗Qy, (4)

with p as the 1-hot vector corresponding to ground truth label y, and Qy the y-th row of the learned
Q matrix. α is the hyper-parameter similar to Label Smoothing. The purpose of the Q-Matrix is
to facilitate the acquisition of the optimal mixing probability vectors during Label Smoothing. We
refer to our framework as Learnable Label Smoothing (LLS).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: An overview of the proposed approach. Our approach utilizes a matrix Q with dimensions
K×K that serves as the repository for learnable probability vectors for each category. A given 1-hot
vector p of a category is mixed with its associated probability vector Qy from matrix Q, governed
by the hyperparameter α. This operation results in the target plls which is used for training with Llls

loss.

3.3 TRAINING USING LLS

Given the Learnable Label Smoothing (LLS) target probability vector plls and the network predic-
tion p̂, the standard training objective is the minimization of the cross-entropy loss H(plls, p̂) =
−
∑

i p
lls
i log p̂i. The cross-entropy is an upper-bound on the KL-divergence between plls and p̂,

where H(plls, p̂) = KL(plls||p̂) +H(plls). The second term H(plls) is the entropy of plls which
is 0 when plls is 1-hot. When plls is not 1-hot, minimizing cross-entropy H(plls, p̂) also minimizes
the entropy of H(plls), making plls more 1-hot. This does not serve our purpose where we aim to
retain the inter-category relationships in the target label. We propose to instead directly minimize
the KL-divergence objective KL(plls||p̂).
We term KL(plls||p̂) as the Forward-KL. In standard Forward-KL divergence objectives, for e.g.,
KL(r||s), the distribution r is fixed, and s is optimized to align with r. With KL(plls||p̂), we have
the challenge of a moving target where plls is being learned as p̂ aligns with it. That means we need
both p̂ and plls need to be optimized to align with each other, respectively. However, Forward-KL
produces disproportionate updates to the p̂ and plls. This is mitigated when we also have a Reverse-
KL term KL(p̂||plls), which provides symmetry to the training loss function and ensures the target
plls and predictions p̂ are updated with equal emphasis. We discuss this more using the derivatives
of the Forward-KL and Reverse-KL in the Appendix (Section B). We also showcase the impact of
not including Reverse-KL in the ablation study (Section 5.1 and Appendix Section H). The objective
for training using the LLS is the sum of Forward-KL and Reverse-KL objectives.

Llls = KL(plls, p̂) +KL(p̂, plls) (5)

= plls log plls − plls log p̂+ p̂ log p̂− p̂ log plls

= −H(plls) +H(plls, p̂)−H(p̂) +H(p̂, plls).

The first term −H(plls) is the negative entropy of the target, which, when minimized, drives the
target plls towards a uniform distribution. The target is plls = (1 − α)p + αQy , where only Qy

varies. Minimizing −H(plls) effectively drives Qy to estimate inter-category relationships as Qy

becomes more uniform. Similarly, the third term −H(p̂) is the negative entropy of the predictions,
which, when minimized, drives the predictions p̂ towards a uniform distribution. This plays the role
of Label Smoothing, which penalizes overconfidence in the predictions and alleviates overfitting.
We name the second term −H(plls, p̂), Forward Cross-Entropy, which aligns distributions plls and
p̂. Similarly, we name the 4th term −H(p̂, plls) Reverse Cross-Entropy. Minimizing these terms
aligns the target plls with the predictions p̂.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Results on CUB-200 and Flowers-102 for fine-grain classification. MV2: MobileNetV2
and RX denote the ResNet network with X number of layers.

Dataset CUB-200 Flowers-102

Network MV2 R18 R50 R101 MV2 R18 R50 R101

1-Hot 77.76 78.08 80.81 81.71 91.03 90.37 90.69 91.74
LS (Szegedy et al. (2016)) 78.67 78.56 81.89 82.62 91.94 90.50 92.42 92.73
TF-KDreg(Y uanet al. (2020)) 77.64 - 80.96 - 91.95 - 91.30 -
OLS (Zhang et al. (2021)) 79.95 - 82.47 - 92.73 - 92.86 -
LLS (Ours) 79.84 78.86 82.91 83.48 93.02 91.02 93.64 92.89

3.4 THE Q-MATRIX

Minimizing −H(plls) maximizes the entropy of the target plls = (1 − α)p + αQy , where only
Qy varies. The entropy of plls can be increased only by reducing Qyy and increasing the other
components of Qy because the y-th component pllsy is greater than the other components by a fixed
constant term (1 − α). This propels the network to set Qyy → 0 and assign that probability to
the other categories, thereby identifying inter-category relationships. Consequently, the Q matrix
exhibits the lowest values at the diagonals and higher values for semantically closer categories.
The Q-Matrix is generally asymmetric, as we found the relation of a category to another does not
reciprocate the same way. For e.g., using Figure 4b, the Pullover category has the highest similarity
with the Shirt category, but the Shirt gets a higher similarity with the T-shirt category than the
Pullover.

We learn a Qy vector for every category. This results in a K × K Q-matrix where every row Qy

models the similarities of category y with the other categories. The similarities learned by the Q-
Matrix allow for knowledge transfer between different networks, especially when a teacher model
can’t be employed (More details in 5.3). Similarly, a Q-Matrix learned from a large dataset can
be used to transfer its knowledge to its subsets (category-wise and sample-wise) of the data, which
reduces the necessity for frequent relearning of the Q-Matrix (More details in Appendix Section D).
The LLS method is depicted in the model diagram in Figure 2.

4 EXPERIMENTS

4.1 DATASETS AND SETUP

We evaluated our methodology across diverse settings, encompassing small-scale objects, large-
scale objects, and scenarios demanding fine-grained classification. In the realm of small-scale clas-
sification, we used FashionMNIST (Xiao et al. (2017)), CIFAR10 (Krizhevsky et al. (2009)), and
SVHN (Netzer et al. (2011)) datasets. These datasets, with images sized at 32 × 32, offer both di-
versity and challenges with 10-way classifications. SVHN presents an intriguing challenge as digits
lack prominent inter-category relationships. For large-scale classification, our evaluation extended
to CIFAR100 (Krizhevsky et al. (2009)), Tiny-ImageNet, and ImageNet-100. Due to hardware con-
straints, we leveraged Tiny-ImageNet and ImageNet-100 [URL], both subsets of the original Ima-
geNet dataset (Deng et al. (2009)). Tiny-ImageNet possesses 200 categories with 64 × 64 images,
while ImageNet-100, featuring the original 224 × 224 image size, encompasses 100 categories. In
the fine-grained classification domain, our experiments focused on distinguishing between various
bird species using the CUB-200 dataset (Wah et al. (2011)), different types of flowers using the
Flowers-102 dataset (Nilsback & Zisserman (2008)), and different animals using the Animals-10N
dataset (Song et al. (2019)).

We evaluated our approach on these datasets using different networks that are mentioned in their
respective tables. We store Q-matrix as logits which are converted to probabilities using Softmax.
The Q-matrix is initialized with zeros, leading to a uniform distribution as the starting point. The
hyper-parameter α is set to 0.1 for all experiments but optimizing α can provide additional gains
(Explored in Appendix Section C). Detailed training procedure, the pseudo-code, and the code are
provided in Appendix Section I, Section A, and the supplementary, respectively.

5

https://www.kaggle.com/datasets/ambityga/imagenet100

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Results on CIFAR100 and Tiny-ImageNet datasets. RX denotes the ResNet network with
X number of layers.

CIFAR100 Tiny-ImageNet

Method R18 R34 R50 R101 R18 R50 R101

1-Hot 75.87 79.38 78.79 79.66 63.20 67.47 67.93
LS Szegedy et al. (2016) 77.26 79.06 78.80 79.88 63.13 67.63 68.31
FL-3 Mukhoti et al. (2020) - - 77.25 - - 50.31 62.97
FLSD-53 Mukhoti et al. (2020) - - 76.78 - - 50.94 62.96
TF-KDself Yuan et al. (2020) 77.10 - - - - 68.18 -
TF-KDreg Yuan et al. (2020) 77.36 - - - - 67.92 -
Zipf Liang et al. (2022) 77.38 77.38 - - 59.25 - -
OLS Zhang et al. (2021) - 79.96 79.35 80.34 - - -
LLS (Ours) 79.69 80.71 81.04 81.21 64.58 68.28 69.42

Table 3: Results on SVHN, CIFAR10, FashionMNIST (FMNIST), Animals10N and ImageNet-100.

Dataset SVHN CIFAR10 FMNIST Animals10N ImageNet-100

Network LeNet AlexNet AlexNet ResNet18 R18 R50

1-Hot 89.40±0.03 79.98±0.17 80.94±0.22 85.00±0.11 81.72 83.96
LS 89.35±0.09 80.66±0.20 81.15±0.24 86.13±0.19 82.22 84.58
TFKDreg 89.42±0.31 80.78±0.17 81.38±0.24 85.99±0.10 82.44 84.72
OLS 89.19±0.43 80.71±0.28 81.21±0.30 86.35±0.38 82.56 84.71
LLS 89.51±0.15 80.88±0.04 81.56±0.23 86.69±0.23 82.72 84.90

4.2 RESULTS

We conduct a comprehensive comparison of our approach against prominent label regularization
techniques, including Label Smoothing (Szegedy et al. (2016)), Focal Loss (Mukhoti et al. (2020)),
Teacher-Free Knowledge Distillation (Yuan et al. (2020)), and Online Label Smoothing (OLS)
(Zhang et al. (2021)). The results are detailed in Table 1, 2, and 3. When results were not avail-
able in the original paper, we indicated them with ‘-’. Notably, for Tables 3, baseline experiments
were conducted by us using the same setup as ours. Our approach consistently outperforms the
alternatives across all the cases. Our approach imposes minimal overhead while achieving superior
performance. We analyze the computation overhead of Learnable label smoothing in the Appendix
Section G.

4.3 Q-MATRIX

We present Q-Matrices for CIFAR-10, Animals-10N, SVHN, and CIFAR100 in Figure 3, show-
casing their learned relationships. The Q-Matrix notably reveals distinct connections among the
categories. For CIFAR-10, we can observe that LLS assigns high values to similar categories and
low values to dissimilar categories showcasing the learned inter-category relationship. Similarly, for
Animals-10N, which is a fine-grain classification dataset and has 5 pairs of confusing pairs, high
values are assigned to the other animals of the pair in Q-Matrix, showcasing their strong relation-
ships. Furthermore, we depict the confusion matrix for the test set of the FashionMNIST in Figure
4a. It reveals a pattern consistent with the Q-Matrix showcased in Figure 3b. For instance, Shirts
frequently get misclassified as T-shirts, followed by pullovers and coats, owing to their close seman-
tic ties in that order. This correlation serves as a useful tool for estimating prediction uncertainty.
For example, when an image is misclassified as a T-shirt, there is a higher likelihood of it being a
Shirt and a significantly lower chance of being a Bag. We also show Q-Matrix for a larger number
of classes (CIFAR100) in Figure 3d. We can observe the same behavior here. For e.g., the Maple
Tree has a similarity of 0.45 with the Oak Tree, 0.2 with the Pine Tree and Willow Tree, 0.02 with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) CIFAR-10 (b) Animals-10N (c) SVHN

(d) CIFAR100

Figure 3: Learned Q Matrices. We can observe Q-Matrix favors semantically closer categories. The
final training label is obtained by mixing the Q-Matrix with the 1-hot vector of ground truth based
on the α hyperparameter.

(a) Confusion Matrix of test set (b) Q-Matrix from train set

Figure 4: (a) Confusion Matrix on the validation set of FashionMNIST dataset and (b) Learned
Q-Matrix from train set. We can observe misclassification in 4a follow the same trend as the rela-
tionship learned 4b.

the Forest, and very low with the rest. Another good example is the category Woman, which gets
0.3 similarity with Girl, 0.2 with Man, 0.13 with Boy, and 0.07 with Baby.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Ablation Study experiments on Tiny-ImageNet and CUB-200 with ResNet-18 and ResNet-
50. No FCE: No cross-entropy loss; No RCE: No reverse cross-entropy loss; No Pred EM: No
entropy maximization loss on predictions; No Targets EM: No entropy maximization loss on targets;
FCE only: Forward cross-entropy; Symmetric CE: Forward cross-entropy + Reverse cross-entropy.

Description Loss Terms Tiny-ImageNet CUB-200

H(plls, p̂) H(p̂, plls) −H(p̂) −H(plls) R18 R50 R18 R50

No FCE ✗ ✓ ✓ ✓ 26.44 11.91 46.84 51.26
No RCE ✓ ✗ ✓ ✓ 64.14 68.04 78.84 82.88
No Pred EM ✓ ✓ ✗ ✓ 63.26 67.48 78.34 82.57
No Targets EM ✓ ✓ ✓ ✗ 63.80 67.51 78.10 82.78

FCE only ✓ 63.40 66.83 78.46 82.66
Symmetric CE ✓ ✓ ✗ ✗ 62.91 66.80 78.13 82.07
Forward KL ✓ ✗ ✗ ✓ 63.03 67.87 78.22 82.52
Reverse KL ✗ ✓ ✓ ✗ 26.58 14.40 46.62 53.56

LLS ✓ ✓ ✓ ✓ 64.58 68.28 78.86 82.91

5 ANALYSIS

5.1 ABLATION STUDY

We conduct an ablation study on diverse loss components, as presented in Table 4, utilizing the
Tiny-ImageNet and CUB-200 datasets. The initial four rows of the table demonstrate the outcomes
obtained by excluding each individual component. The fifth and sixth rows correspond to the cross-
entropy and symmetric cross-entropy loss, respectively. Subsequently, the sixth and seventh rows
represent the forward and Reverse KL divergence losses. Based on the first and the last row, we can
observe that the cross-entropy loss is crucial, and this component’s absence results in a failure of
network convergence. Removing reverse cross-entropy has the least impact on the performance of
the network. However, this results in a non-optimal Q-Matrix (Refer to Appendix Figure 9b). We
showcase the learned Q matrices for all these discussed scenarios in Appendix H. We can conclude
that achieving the network’s optimal performance necessitates the inclusion of all loss components.

5.2 CLUSTERS VISUALIZATION

We present a visual analysis of clusters formed by 1-hot, Label Smoothing, and Learnable Label
Smoothing targets using TSNE (Van der Maaten & Hinton (2008)). Following the experimental
setup outlined in (Müller et al. (2019)) for CIFAR-10, we display the penultimate layer features in
Figure 5 for all the categories. In the upper row, it is evident that clusters formed by 1-hot targets are
dispersed, while those generated by Label Smoothing and Learnable Label Smoothing result in more
cohesive and compact clusters. Moving to the second row, we delve into illustrating inter-category
relationships by examining distances among cluster centers of the training data. We employed L1-
normalized cosine distances, defined as cd(i,j)∑

j cd(i,j) , where cd(i, j) = 1 − ci·cj
||ci||·||cj || , and ci and cj

represent the cluster centers of categories i and j, respectively. Notably, Label Smoothing disrupts
the inter-category relationship, rendering all categories equidistant from each other in feature space.
In contrast, both 1-hot and Learnable Label Smoothing maintain the inter-category relationship. To
further reinforce our findings, we provide more fine-grain visualizations in the Appendix Section E.

To further reinforce our findings, we narrow down the focus to visualize the class-wise distances
among select trios from CIFAR-10 and CIFAR-100, mirroring the approach in (Müller et al. (2019)).
For these experiments, we concentrated on the Dog, Cat, and Truck classes from CIFAR-10, and
the Beaver, Dolphin, and Otter classes from CIFAR-100. The results are showcased in Figure 6,
significantly reinforcing our findings. In this figure, we can visualize the distance between the
semantically related classes, such as Cat and Dog in CIFAR-10, or Beaver and Otter in CIFAR-100
being disrupted by Label Smoothing but remaining intact with Learnable Label Smoothing.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) 1-hot Target (b) Label Smoothing (c) LLS

Figure 5: Upper Row: TSNE visualization depicting penultimate features of CIFAR-10. Lower
Row: L1 normalized cosine distance among category centers to depict inter-category relationships.
In the upper row, it is evident that the category clusters associated with 1-hot targets exhibit dis-
persion, while those of Label Smoothing and LLS appear more concentrated. In the lower row, it
becomes apparent that Label Smoothing disrupts the inter-category relationships, resulting in equal
distances between features of all categories. Conversely, 1-hot targets and LLS maintain and have
similar inter-category relationships. Our approach provides the advantages of both techniques.

(a) 1-Hot Target (b) Label Smoothing (c) LLS

(d) 1-Hot target (e) Label Smoothing (f) LLS

Figure 6: Fine-grain TSNE visualizations illustrating three classes from CIFAR-10 (Cat, Dog,
Truck) in the top and CIFAR-100 (Beaver, Dolphin, Otter) in the bottom row. We observe the same
behavior as Figure 5. The clusters formed by employing one-hot targets appear scattered whereas
label smoothing and LLS result in tightly knit clusters. Furthermore, we can visualize the distance
between the semantically related classes, such as Cat and Dog in CIFAR-10, or Beaver and Otter in
CIFAR-100 being disrupted by Label Smoothing but remaining intact by LLS.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Knowledge Distillation experiments. RX: ResNet-X and M2: MobileNetV2. Y → Z
denotes distillation from Y (Teacher) to Z (Student). The rows labeled 1-Hot, LS, and LLS corre-
spond to scenarios where the Teacher network was trained using 1-hot encoding, Label Smoothing,
and Learnable Label Smoothing, respectively. For LLS-ST (Learnable Label Smoothing-Substitute
Teacher), only the learned Q-Matrix from the LLS Teacher network is used for distillation.

Dataset CIFAR100 Tiny-ImageNet IN100 CUB200 Flowers102

Teacher R34 R34 R34 R50 R101 R50 R101 R101 R101 R101

Student R18 R34 R50 R18 R18 R18 R50 M2 R50 M2

1-Hot 78.67 79.09 80.83 63.76 63.93 83.44 81.57 78.82 92.00 91.64
LS 79.40 80.15 81.15 64.31 64.02 83.32 82.91 79.70 92.86 92.44
LLS 79.66 80.19 81.26 65.69 66.11 83.62 83.38 80.15 93.40 92.63
LLS-ST 79.57 79.66 81.24 63.79 64.09 82.50 83.02 79.62 93.14 92.49

5.3 SUBSTITUTE TEACHER FOR KNOWLEDGE DISTILLATION

Knowledge distillation employs a pre-trained teacher model ft on dataset to instruct the student
model fs. The teacher model generates targets for each sample, which the student model then uses
to learn. The training loss for the student network is defined as:

LKD = βH(fs(x), y) + (1− β)H(fs(x)/T, ft(x)/T) (6)

Here, H represents the cross-entropy loss, β is a parameter balancing the use of one-hot labels
and teacher targets, and T is the temperature-regulating knowledge transfer from teacher to student.
However, the availability of a Teacher network can be constrained by computational or privacy
considerations. In such scenarios, the Q-matrix of the Teacher network can serve as a substitute
Teacher for Knowledge Distillation, denoted as LLS-ST. While a Teacher model furnishes targets
on a per-sample basis, LLS-ST exclusively offers category-wise targets only.

Across all datasets, we adopted their original training setup for knowledge distillation but altered
the training loss function. Following the recent setup of knowledge distillation experiments, we
set β = 0, implying that student networks are exclusively trained using teacher predictions, and
used a temperature of 1 for all experiments. The results are presented in Table 5. The outcomes
indicate that networks trained with LLS exhibit superior teaching capabilities during the distillation
process. Remarkably, LLS-ST, despite imparting limited knowledge, imparts a performance boost
comparable to employing a fully trained Teacher network (refer Table 1 and 2).

6 LIMITATIONS

The biggest drawback of our approach is that it requires K2 additional parameters. This becomes
a concern when the number of classes grows large, like ImageNet-21k. In such a case, the number
of parameters becomes substantially high (441M parameters for ImageNet-21k). To solve this, we
propose to merge non-similar categories and keep a fixed number of top similar N during training
for each category. The Q-Matrix will start with K×K parameters but will reduce it to K×N where
N << K, thereby reducing the number of parameters. We will keep it as part of future exploration
work.

7 CONCLUSIONS

In our paper, we introduce an innovative label regularization technique named Learnable Label
Smoothing (LLS). Our approach focuses on empowering networks to learn optimal target labels
for regularization. Consequently, our method effectively produces compact feature clusters while
preserving the inter-category relationships. Furthermore, the acquired understanding of these inter-
category relationships is transferable, aiding in Knowledge Distillation even in scenarios where a
Teacher network is unavailable. We believe Learnable Label Smoothing will play a transformative
role in knowledge transfer paradigms for neural networks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. CoRR, abs/1708.04552, 2017. URL http://arxiv.org/abs/1708.04552.

Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra, and Qiang Liu. Keepaugment: A simple
information-preserving data augmentation approach. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 1055–1064, 2021.

Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
S1gmrxHFvB.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Jiajun Liang, Linze Li, Zhaodong Bing, Borui Zhao, Yao Tang, Bo Lin, and Haoqiang Fan. Efficient
one pass self-distillation with zipf’s label smoothing. In European conference on computer vision,
pp. 104–119. Springer, 2022.

Julian Lienen and Eyke Hüllermeier. From label smoothing to label relaxation. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 8583–8591, 2021.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Doka-
nia. Calibrating deep neural networks using focal loss. Advances in Neural Information Process-
ing Systems, 33:15288–15299, 2020.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Ad-
vances in neural information processing systems, 32, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E. Hinton. Regu-
larizing neural networks by penalizing confident output distributions. In 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
HyhbYrGYe.

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. SELFIE: Refurbishing unclean samples for robust
deep learning. In ICML, 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

11

http://arxiv.org/abs/1708.04552
https://openreview.net/forum?id=S1gmrxHFvB
https://openreview.net/forum?id=S1gmrxHFvB
https://openreview.net/forum?id=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation
via label smoothing regularization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3903–3911, 2020.

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), Oc-
tober 27 - November 2, 2019, pp. 6022–6031. IEEE, 2019. doi: 10.1109/ICCV.2019.00612. URL
https://doi.org/10.1109/ICCV.2019.00612.

Chang-Bin Zhang, Peng-Tao Jiang, Qibin Hou, Yunchao Wei, Qi Han, Zhen Li, and Ming-Ming
Cheng. Delving deep into label smoothing. IEEE Transactions on Image Processing, 30:5984–
5996, 2021.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=r1Ddp1-Rb.

12

https://doi.org/10.1109/ICCV.2019.00612
https://openreview.net/forum?id=r1Ddp1-Rb

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PYTORCH PSEUDO CODE

1 # Define LLS
2 class LLS(nn.Module):
3 def __init__(self, K, alpha=0.1):
4 super().__init__()
5 self.K = K
6 self.alpha = alpha
7 self.qmatrix = nn.Parameter(torch.zeros(K, K), requires_grad=True)
8

9 def forward(self, logits, y):
10 pred = F.softmax(logits, 1)
11

12 y_tgt = (1- α) * F.one_hot(y, num_classes=self.K)
13 + α * F.softmax(self.qmatrix[y], 1)
14

15 forward_kl = KL(y_tgt, pred)
16 backward_kl = KL(pred, y_tgt)
17 loss = (forward_kl + backward_kl)/2
18

19 return loss
20

21 # Define loss function
22 loss_fn = LLS(K, α)
23

24 # Add Q-Matrix parameters to Optimizer
25 params = list(net.parameters()) + list(loss_fn.parameters())
26 optimizer = SGD(params, lr, mom, wd)

B NECESSITY OF REVERSE KL USING GRADIENT DERIVATION OF LLS

In this section, we present the derivatives of all components comprising our loss function Llls with
respect to the Q-Matrix and compare them against the gradient of forward KL for the network.
To facilitate the derivations, We employ specific notations: let q = Qy = [q1, q2, . . . , qK], where
qi represents the probability of the i-th category for the y-th row of the Q-Matrix. The entries in
the Q-Matrix are generated from logits. For e.g., [t1, t2, . . . , tK] are the logits that generate the
y-th row in Q. Here, q = softmax([t1, t2, . . . , tK]), indicating that q is obtained by applying
the Softmax activation function to the logits values. Likewise, We use z = [z1, z2, . . . , zK] to
represent the logits from the network fθ which are then converted to predicted probabilities p̂. Here,
p̂ = softmax([z1, z2, . . . , zK]).

Firstly, We derive the gradient of the softmax probability qi =
eti∑
k etk

with respect to logits tj , as
this derivation will be utilized in subsequent derivative calculations,

qi =
eti∑
k e

tk

∂qi
∂tj

=
eti · I{i = j}∑

k e
tk

·
∑

k e
tk∑

k e
tk

− eti∑
k e

tk
· etj∑

k e
tk

= qjI{i = j} − qiqj

= qj(I{i = j} − qi) (7)

Similarly, We have the derivative,

∂p̂i
∂zj

= p̂j(I{i = j} − p̂i) (8)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We show the derivative of the forward KL loss Lfkl w.r.t. network logits zj :

Lfkl = KL(plls||p̂) = H(plls, p̂)−H(plls)

= −
∑
i

pllsi log p̂i +
∑
i

pllsi log pllsi (9)

∂Lfkl

∂zj
= −

∑
i

pllsi
∂ log p̂i
∂zj

+ 0

= −
∑
i

pllsi
p̂i

∂p̂i
∂zj

using Eq.8,

= −
∑
i

pllsi
p̂i

p̂j(I{i = j} − p̂i)

= −
pllsj
p̂j

p̂j +
∑
i

pllsi
p̂i

p̂j · p̂i

= −pllsj + p̂j
∑
i

pllsi ·

= p̂j − pllsj (10)

Next, We derive the gradient of forward KL loss Lfkl w.r.t. Q-Matrix logits tj :

Lfkl = KL(plls||p̂) = H(plls, p̂)−H(plls)

= −
∑
i

pllsi log p̂i +
∑
i

pllsi log pllsi

Define Lfce = −
∑
i

pllsi log p̂i and

Lemt =
∑
i

pllsi log pllsi (11)

Next, We will solve derivatives of Lfce and Lemt separately and then combine them later to get the
derivative of Lfkl.

Derivative of Forward Cross-Entropy loss Lfce w.r.t. Q-Matrix logits tj :

Lfce = −
∑
i

[(1− α)pi + αqi] log p̂i (12)

∂Lfce

∂tj
= −

∑
i

α
∂qi
∂tj

log p̂i

= −α
∑
i

∂qi
∂tj

log p̂i using Eq.7,

= −α
∑
i

[qj(I{i = j} − qi)] · log p̂i

= −αqj
∑
i

[(I{i = j} − qi)] · log p̂i

= −αqj(log p̂j −
∑
i

qi · log p̂i)

= αqj

(∑
i

qi · log p̂i − log p̂j

)
(13)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Derivative of Entropy Maximization loss on targets Lemt w.r.t. Q-Matrix logits tj :

Lemt =
∑
i

pllsi log pllsi

=
∑
i

[(1− α)pi + αqi] log[(1− α)pi + αqi] (14)

∂Lemt

∂tj
=

∑
i

α
∂qi
∂tj

log[(1− α)pi + αqi]

+
∑
i

[(1− α)pi + αqi] ·
1

[(1− α)pi + αqi]
· α ∂qi

∂tj

=
∑
i

α
∂qi
∂tj

log[(1− α)pi + αqi] + ·α
∑
i

∂qi
∂tj

= α
∑
i

∂qi
∂tj

{1 + log[(1− α)pi + αqi]}

= α
∑
i

(1 + log pllsi)
∂qi
∂tj

using Eq.7,

= α
∑
i

(1 + log pllsi) · qj(I{i = j} − qi)

= αqj
∑
i

(1 + log pllsi)(I{i = j} − qi)

= αqj
[
(1 + log pllsj)−

∑
i

qi(1 + log pllsi)
]

= αqj
[
(1 + log pllsj)−

∑
i

qi −
∑
i

qi log p
lls
i

]
= αqj

[
1 + log pllsj − 1−

∑
i

qi log p
lls
i

]
= αqj

[
log pllsj −

∑
i

qi log p
lls
i

]
= αqj

(
log pllsj −

∑
i

qi log p
lls
i

)
(15)

The Final derivative of Forward KL Lfkl w.r.t. tj can be obtained as:

∂Lfkl

∂tj
=

∂Lfce

∂tj
+

∂Lemt

∂tj
using Eq.13,& Eq.15,

= αqj
(∑

i

qi · log p̂i − log p̂j
)

+ αqj
(
log pllsj −

∑
i

qi log p
lls
i

)
= αqj

(∑
i

qi · log
p̂i
pllsi

− log
p̂j
pllsj

)
(16)

It can be observed that there is a notable disparity in the gradient of forward KL with respect to tj
as seen in Eq. 16, which is consistently one to two orders of magnitude smaller compared to its
counterpart concerning zj in Eq. 10. This discrepancy arises due to the logarithmic scaling effect
on the gradients, resulting in a reduction in magnitude. To enhance the flow of gradients into the
Q-Matrix without resorting to increasing the learning rate, we incorporate reverse KL Lrkl in the
training loss function. Next, we show the gradient of the reverse KL Lrkl w.r.t. logits tj of Q-Matrix
to understand its impact.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The gradient of reverse KL Lrkl w.r.t. logits tj of Q-Matrix can be derived as:

Lrkl = KL(p̂||plls) = H(p̂, plls)−H(p̂)

= −
∑
i

p̂i log p
lls
i +

∑
i

p̂i log p̂i

= −
∑
i

p̂i log[(1− α)pi + αqi] +
∑
i

p̂i log p̂i (17)

∂Lrkl

∂tj
= −

∑
i

p̂i
(1− α)pi + αqi

· α ∂qi
∂tj

+ 0

= −α
∑
i

p̂i
(1− α)pi + αqi

· ∂qi
∂tj

using Eq.7,

= −α
∑
i

p̂i
(1− α)pi + αqi

· qj(I{i = j} − qi)

= −αqj
∑
i

p̂i
(1− α)pi + αqi

· (I{i = j} − qi)

= −αqj

[
p̂j

(1− α)pj + αqj
−

∑
i

p̂i · qi
(1− α)pi + αqi

]
= −αqj

[
p̂j
pllsj

−
∑
i

p̂i · qi
pllsi

]
= αqj

(∑
i

qi ·
p̂i
pllsi

− p̂j
pllsj

)
(18)

By examining Eq. 16 and 18, it becomes apparent that the gradients of forward and reverse KL
exhibit strong similarities, differing primarily due to the presence of the log function in the p̂i

plls
i

terms. log function diminished the gradient values in the forward KL scenario, whereas, in reverse
KL, the unscaled values are employed. Interestingly, the gradients derived from reverse KL align in
magnitude order with those of forward KL concerning z in Eq 10. This leads to a better convergence
of the Q-Matrix.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Results on varying α on CIFAR100, Flowers-102, and, CUB200 dataset with ResNet-18.
We can observe that α ∈ (0.1, 0.4) provides the best overall performance.

Table 6: The comparison between applying the learned Q-Matrix from the full data vs. employing
1-hot encoding, Label Smoothing, and Learnable Label Smoothing on sample-wise subsets. The
results demonstrate a significant boost in generalization when the learned Q-Matrix is applied to the
sample-wise subsets.

ImageNet100 TinyImageNet FMNIST CIFAR100

1-Hot 77.22 54.26 86.49 73.70
LS 78.62 54.70 87.01 74.56
LLS 78.66 54.85 87.13 74.75

LLS-ST 79.02 55.21 87.56 74.92

C VARYING HYPERPARAMETER α

We show outcomes obtained by varying the values of hyperparameter α (0.05, 0.1, 0.2, 0.3, 0.4, and
0.5) using a ResNet18 on CIFAR-100, Flowers-102, and CUB-200 datasets in Figure 7. Our results
indicate that the range α ∈ (0.1, 0.4) consistently delivers the optimal performance across these
datasets.

D EFFECTIVENESS ON SUBSETS OF DATA

It’s expected that the Q-Matrix is predominantly shaped by the characteristics of the training data,
and any alterations to the training dataset consequently influence the learned Q-Matrix. However,
once the Q-Matrix has been acquired, it remains applicable to both its category-wise and sample-
wise subsets.

In this experiment, we meticulously examine these two types of subsets: (1) selecting the first 50%
of categories and (2) randomly choosing 50% of samples from ImageNet-100, TinyImageNet, Fash-
ionMNIST, and CIFAR-100 datasets. Employing these data subsets, we train a ResNet-18 with
1-hot targets, Label Smoothing, and Learnable Label Smoothing as baselines. Subsequently, we
delve into the impact of applying the learned Q-Matrix from the entire dataset, similar to the substi-
tute Teacher experiments (LLS-ST). For category subsets, we extract the logits corresponding to the
selected categories from the Q-Matrix and exclusively apply Softmax to these chosen values.

The results of these experiments are detailed in Table 6 and 7. Notably, the learned Q-Matrix exhibits
superior performance when applied to a subset of samples. When dealing with a subset of categories,
learning a new Q-Matrix enhances generalization, with the learned matrix closely approaching the
performance of a newly trained matrix, outperforming 1-hot targets and Label Smoothing.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: The comparison between applying the learned Q-Matrix from the full data vs. employing
1-hot encoding, Label Smoothing, and Learnable Label Smoothing on class-wise subsets. When
working with a subset of categories, acquiring a new Q-Matrix results in superior performance.
However, the learned Q-matrix demonstrates a close alignment with the performance of a freshly
trained Q-matrix.

ImageNet100 TinyImageNet FMNIST CIFAR100

1-Hot 76.68 66.90 89.86 83.24
LS 77.88 66.98 90.56 83.56
LLS 78.56 67.48 91.12 83.66
LLS-ST 78.20 67.08 90.96 83.64

(a) One-Hot Target (b) Label Smoothing (c) LLS

Figure 8: Upper Row: TSNE visualization depicting penultimate features of FashionMNIST. Lower
Row: L1 normalized cosine distance between class cluster centers. In the upper row, it is evi-
dent that the class clusters associated with one-hot targets exhibit dispersion, while those of Label
Smoothing and Learnable Label Smoothing appear more concentrated. Moving to the lower row,
it becomes apparent that label smoothing disrupts the inter-class relationships, resulting in equal
distances between all classes. Conversely, one-hot targets and Learnable Label Smoothing maintain
and preserve these inter-class relationships. Notably, Learnable Label Smoothing combines the ad-
vantages of both techniques.

E MORE CLUSTER VISUALIZATIONS

We replicated the experiment outlined in the cluster visualization section of the main text using the
FashionMNIST dataset with a LeNet architecture. The outcomes of these experiments are presented
in Figure 8. In the top row of visualizations, we visualize the features using TSNE. In the bottom
row, we calculated class cluster centers using the training data and presented L1-normalized cosine
distances among classes as cd(i,j)∑

j cd(i,j) , where cd = 1 − ci·cj
||ci||·||cj || , and ci and cj denote the cluster

centers of class i and j, respectively.

These comparisons underline that clusters formed by 1-Hot targets demonstrate dispersion, while
those formed by label smoothing and learnable label smoothing exhibit a more cohesive and com-
pact nature. Notably, label smoothing consistently disrupts inter-class relationships, equidistantly
positioning classes within the feature space—a salient observation underscored in our findings. In

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Application of Label Smoothing++ with Input Augmentations techniques - Co: Cutout,
Mx: Mixup, Cx: CutMix, RA: RandAugment.

Dataset Animals-10N ImageNet-100

1-hot 85.00 81.72
LLS 86.69↑ 82.72↑

Co (Devries & Taylor (2017)) 86.80 82.86
Co + LLS 88.04↑ 82.96↑

Mx (Zhang et al. (2018)) 87.37 81.88
Mx + LLS 87.50↑ 82.48↑

Cx (Yun et al. (2019)) 88.00 83.50
Cx + LLS 88.58↑ 83.68↑

RA (Cubuk et al. (2020)) 86.62 82.88
RA + LLS 87.24↑ 83.50↑

Table 9: Comparison of the number of training parameters and training time on Tiny-ImageNet with
ResNet-18 and ResNet-101.

ResNet-18 ResNet-101

Parameters Time (mins) Parameters Time (mins)

1-hot 11,578,632 142 44,131,080 674
LS 11,578,632 142 44,131,080 674
LLS 11,618,632 (0.3%↑) 146 (1.4%↑) 44,171,080 (0.1%↑) 680 (0.89%↑)

contrast, both One-hot encoding and learnable label smoothing methods consistently uphold and
sustain inter-class relationships effectively. Significantly, learnable label smoothing emerges clearly
superior by showcasing the strengths of both methods.

F COMPATIBILITY WITH INPUT AUGMENTATIONS

In this section, we assess the compatibility of our approach with input augmentation techniques such
as Cutout, Mixup, Cutmix, and Randaugment. The results of this experiment are presented in Table
8 using CIFAR100, FashionMNIST, Tiny-ImageNet, and ImageNet-100 datasets with ResNet34,
ResNet18, ResNet18, and ResNet18, respectively. Our findings indicate that label regularization
seamlessly integrates with input regularization techniques. Employing input and label regularization
together yields optimal performance, as evidenced by the results in the table.

G COMPUTATION OVERHEAD OF LLS

We examine the computation overhead of learnable label smoothing. LLS adds K2 extra parameters
which scales quadrically with the number of classes. Hence, we use the Tiny-ImageNet dataset
as it has the highest number of classes (200) in our experiments. We show the total number of
trainable parameters and training time with ResNet-18 and ResNet-101 in table 9. As per the results,
Learnable Label Smoothing adds less than 0.3% parameters in both cases and increases training time
by about 1%.

H Q-MATRICES FROM ABLATION STUDY

In the main text, we conducted an ablation study to assess and compare their outcomes in terms of
performance. In this section, we present the learned Q-Matrices on CIFAR-10 for the same experi-
ments. The outcomes are illustrated in Figure 9. Notably, it’s apparent that the Q-Matrix achieves its

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) No Cross-Entropy (b) No Reverse cross-entropy (c) No entropy max on predictions

(d) No entropy max on targets (e) Cross-entropy (f) Symmetric cross-entropy

(g) Forward-KL (h) Reverse-KL (i) Forward + Reverse KL

Figure 9: Learned Q-Matrix on CIFAR-10 as per the ablation study experiments.

optimal state exclusively with backward KL and forward-backward loss functions. Conversely, em-
ploying the Forward KL approach results in slower convergence (as shown in Section B), ultimately
leading to suboptimal values.

I TRAINING SETUP

I.1 DATASET DETAILS

CIFAR10 and CIFAR100

• Augmentations: Utilized padding of size 4, Random Crops, and random horizontal flips
during training.

• Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of 5e-4.
• Training specifics: Networks were trained with a batch size of 128 for 300 epochs. The

learning rate initiated at 0.1 and warmed up linearly for the first 10 epochs. Then, it decayed
by a factor of 0.1 at the 150th and 225th epochs.

FashionMNIST

• Augmentation: Applied padding of size 2 with random crops as the sole augmentation.
• Network Configuration: Set the input channels to 1 for grayscale images.
• Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of 1e-4.
• Training specifics: Networks were trained with a batch size of 128 for 200 epochs. The

learning rate began at 0.1, underwent a linear warm-up for the initial 5 epochs, and decayed
by a factor of 0.1 at the 100th and 150th epochs.

SVHN

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• No augmentation was used for this dataset.
• Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of 1e-4.
• Training specifics: Networks were trained with a batch size of 128 for 200 epochs. The

learning rate started at 0.1, had a linear warm-up for the first 5 epochs, and decayed by a
factor of 0.1 at the 100th and 150th epochs.

TinyImageNet

• Image size: Images in TinyImageNet data were of size 64× 64.
• Augmentations: Implemented padding of size 4, Random Crops, and random Horizontal

flips.
• Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of 1e-4.
• Training specifics: Networks were trained with a batch size of 64 for 100 epochs. The

learning rate began at 0.1, underwent a linear warm-up for the first 5 epochs, and decayed
by a factor of 0.1 at the 40th and 60th epochs.

Animals10N

• Image size: Images in Animals10N data were of size 64× 64.
• Augmentations: Implemented padding of size 4, Random Crops, and random Horizontal

flips.
• Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of 1e-4.
• Training specifics: Networks were trained with a batch size of 64 for 100 epochs. The

learning rate began at 0.1, underwent a linear warm-up for the first 5 epochs, and decayed
by a factor of 0.1 at the 40th and 60th epochs.

ImageNet-100

• Image size: Training images were of the original ImageNet dataset size 224× 224.
• Augmentations: Employed (1) Standard augmentation of random resized crops of 224

along with random Horizontal flips. (2) Standard augmentation with RandAugmentation.
• Optimizer: Utilized SGD optimizer with 0.9 momentum and weight decay of 1e-4.
• Training specifics: Networks were trained with a batch size of 64 for 90 epochs. The

learning rate began at 0.1, underwent a linear warm-up for the first 5 epochs, and decayed
by a factor of 0.1 at the 30th, 60th, and 80th epochs.

CUB200 and Flowers102

• Approach: Utilized pretrained networks for these datasets, adapting the last classification
layer based on the dataset’s class count.

• Augmentation: Images were scaled to 256 and then randomly cropped to 224 for augmen-
tation, along with random horizontal flips.

• Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of 1e-4.
• Training specifics: Networks were trained with a batch size of 64 for 100 epochs. The

learning rate initiated at 0.01, underwent a linear warm-up for the first 5 epochs, and de-
cayed by a factor of 0.1 at the 45th and 80th epochs.

21

	Introduction
	Related Work
	Method
	Preliminaries
	Learnable Label Smoothing (LLS)
	Training Using LLS
	The Q-Matrix

	Experiments
	Datasets and Setup
	Results
	Q-Matrix

	Analysis
	Ablation Study
	Clusters Visualization
	Substitute Teacher for Knowledge Distillation

	Limitations
	Conclusions
	PyTorch Pseudo Code
	Necessity of Reverse KL using Gradient Derivation of LLS
	Varying hyperparameter
	Effectiveness on Subsets of Data
	More Cluster Visualizations
	Compatibility with Input Augmentations
	Computation overhead of LLS
	Q-Matrices from Ablation Study
	Training Setup
	Dataset details

