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Abstract
Estimating Individual Treatment Effects (ITE)
from observational data is challenging due to co-
variate shift and counterfactual absence. While
existing methods attempt to balance distributions
globally, they often lack fine-grained sample-level
alignment, especially in scenarios with significant
individual heterogeneity. To address these issues,
we reconsider counterfactual as a proxy to em-
ulate balanced randomization. Furthermore, we
derive a theoretical bound that links the expected
ITE estimation error to both factual prediction
errors and representation distances between fac-
tuals and counterfactuals. Building on this the-
oretical foundation, we propose FCCL, a novel
method designed to effectively capture the nu-
ances of potential outcomes under different treat-
ments by (i) generating diffeomorphic counter-
factuals that adhere to the data manifold while
maintaining high semantic similarity to their fac-
tual counterparts, and (ii) mitigating distribution
shift via sample-level alignment grounded in our
derived generalization-error bound, which consid-
ers factual-counterfactual similarity and category
consistency. Extensive evaluations on benchmark
datasets demonstrate that FCCL outperforms 13
state-of-the-art methods, particularly in captur-
ing individual-level heterogeneity and handling
sparse boundary samples.

1. Introduction
Estimating the Individual Treatment Effects (ITE) from ob-
servational data is critical for personalized decision-making
in diverse domains such as digital marketing (Li et al., 2024;
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Figure 1. (a) Existing balance methods align the overall distribu-
tional statistics (e.g., mean) of confounders (e.g., age) between
treated and control groups. (b) Maximum Mean Discrepancy
(MMD) minimizes group-level discrepancies by aligning mean
representations but fails to capture individual-level heterogeneity,
particularly for boundary samples. (c) Current methods effectively
estimate ITE for normal responders but result in higher errors for
hyper and low responders, highlighting the need for finer-grained
alignment. (d) x′

1 is generated via gradient ascent until the treat-
ment label flips from T = 1 to T = 0, while x′

2 represents the
diffeomorphic counterfactual generated in the latent space of the
normalizing flow, ensuring adherence to the data manifold.

Chu et al., 2022), social sciences (Martı́nez-Sánchez et al.,
2024), and healthcare (Liu et al., 2021; Bica & Van der
Schaar, 2022). Accurate ITE estimation guides crucial de-
cisions by quantifying the causal impact of interventions.
Unlike randomized controlled trials (RCTs), observational
studies often suffer from a non-random treatment assign-
ment mechanism, leading to covariate shift (Cheng et al.,
2024; Yao et al., 2021; Kong et al., 2023). Accurate estima-
tion of treatment effects requires mitigating this covariate
shift and predicting counterfactual outcomes—estimations
of what would have happened to an individual under a dif-
ferent treatment. Nevertheless, generating realistic coun-
terfactuals and achieving a balanced representation remain
significant challenges.
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Covariate balance methods aim to mitigate distribution
shift by aligning the distributions of the treated and control
groups (Figure 1a). This helps balance out the influence of
confounders (factors that can affect both the treatment and
the outcome). Methods like Maximum Mean Discrepancy
(MMD) (Jiang & Sun, 2022) minimize the distribution dis-
crepancies by aligning the mean embeddings of the treated
and control groups. While generally effective, these meth-
ods neglect individual-level heterogeneity (Wu et al., 2023),
particularly for boundary samples (Figure 1b). This over-
sight undermines ITE estimation accuracy and confidence,
especially in scenarios with sparse or extreme samples that
deviate significantly from population averages.

For example, in precision medicine, representation learn-
ing methods may balance confounder distributions like age
(which influences both medication allocation and health out-
comes), but fail to capture critical variations in individual
drug sensitivity. Patients typically fall into three response
categories: normal responders, hyper-responders, and low
responders (Figure 1c). While current methods may per-
form adequately for the majority (normal responders), they
frequently produce significant errors for hyper-responders,
who risk adverse effects, and low responders, who may re-
quire an increased interventions dosage (Feuerriegel et al.,
2024). This lack of fine-grained alignment can compromise
treatment decisions for these vulnerable groups.

To address sample-level heterogeneity, recent approaches
emphasize aligning pairs of samples, particularly those in
intermediate or boundary regions identified through propen-
sity scores (Yao et al., 2018; Li & Yao, 2022; Zhao et al.,
2024). While promising, these methods achieve partial
alignment and still face challenges in effectively mitigating
distribution shifts. Generating instance-specific counterfac-
tuals offers a potential solution, as these proxies emulate
randomized treatment assignment by constructing personal-
ized comparisons. However, this strategy is highly sensitive
to noise (Cai et al., 2024), often producing adversarial ex-
amples rather than meaningful counterfactuals (Figure 1d).

To overcome these limitations, we propose FCCL (Flow-
based Counterfactual Contrastive Learning), a novel frame-
work that integrates two key techniques: (1) Flow-based
Counterfactual Generation, which utilizes normalizing flows
to generate realistic counterfactuals that adhere to the data
manifold while minimally altering sample semantics. This
ensures that counterfactuals maintain fidelity to real-world
plausibility while reversing treatment classification. (2)
Sample-level Alignment for Balancing Distribution, which
employs contrastive loss to optimize the representation dis-
tances between factual and counterfactual samples based on
category consistency and similarity.

This dual strategy in FCCL enables robust sample-level
alignment, effectively capturing the nuances of potential

outcomes under different treatments and enhancing ITE
estimation, particularly for boundary and heterogeneous
samples (see Figure 3). Furthermore, we provide a novel
generalization-error bound that links ITE estimation error to
factual prediction error and the representation distance be-
tween factual and counterfactual samples, validating FCCL’s
efficacy.

Our main contributions are summarized as follows:

• We introduce a theoretically grounded diffeomorphic
counterfactual as a proxy, which ensures counterfactu-
als are realistic and semantically meaningful by adher-
ing to the data manifold.

• We derive a theoretical ITE generalization-error bound
based on factual error and representation distances,
and propose FCCL, a novel contrastive learning frame-
work for ITE estimation that aligns individual sample
representations across treatments.

• We conduct a comprehensive evaluation of FCCL,
demonstrating its superior performance over CFR-
based and adversarial training-based methods, with up
to 25% and 33% reduction in estimation error on IHDP,
achieving more accurate and stable ITE estimation.

2. Related Work
Traditional treatment effect estimation methods either rely
on propensity score or directly optimize sample weight, in-
cluding propensity score matching, debiased machine learn-
ing, and entropy balancing (Li et al., 2016; Jung et al., 2021;
Athey et al., 2018). However, these methods require correct
model specification; otherwise, they may lead to unreliable
estimates. Recently, numerous representation learning stud-
ies focus on learning balanced representations of covariates
(Johansson et al., 2022), which can be broadly categorized
into covariate balance and adversarial balance approaches.

2.1. Covariate Balance

Covariate balance methods aim to learn a representation
space Φ(·) that mitigates treatment selection bias. MMD
and the Wasserstein metric were first introduced in TARNet
(Johansson et al., 2016) and CFRNet (Shalit et al., 2017) to
minimize the distribution differences between treatment and
control groups within the representation space, effectively
framing causal inference as a transfer learning problem. No-
tably, CFRNet provides a generalization-error bound, show-
ing that the expected ITE estimation error can be reduced by
the difference between the treated and control distributions.
These models inspired numerous representation balancing
methods, including (Kazemi & Ester, 2024; Zhang et al.,
2020). For example, the Perfect Match method (Schwab
et al., 2018) extended the TARNet to scenarios with multiple
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treatments and addressed varying sample sizes by augment-
ing samples with propensity-matched nearest neighbors.
Huang et al. (2024) derived a new ITE error bound based on
H-divergence and proposed DIGNet to mitigate the trade-
off problem between the outcome prediction and covariate
balance. Besides, DESCAN (Zhong et al., 2022) improved
representation learning by jointly learning treatment and
response functions over the entire sample space, effectively
addressing both selection bias and sample imbalance.

While these methods focus on achieving global distribu-
tional balance, they often neglect individual-level informa-
tion crucial for estimating potential outcomes. SITE (Yao
et al., 2018), for instance, attempted to capture sample-level
variation by selecting specific sample pairs for alignment.
However, these approaches only achieve partial balance and
fail to effectively mitigate the distribution shift. This limited
alignment prevents robust sample-wise debiasing, which is
essential for accurate ITE estimation.

2.2. Adversarial Balance

When datasets contain finite samples and complex rela-
tionships between covariates, neural network-based feature
representations may not be accurate. Adversarial training
makes factual and counterfactual distributions indistinguish-
able, naturally mitigating distribution bias. GANITE (Yoon
et al., 2018) utilized adversarial training to prevent the dis-
criminator from distinguishing between true factual out-
comes and generated counterfactual outcomes. SCIGAN
(Bica et al., 2020) extended GAN architectures with a hierar-
chical discriminator for factual-counterfactual identification
and a multi-task generator, enabling outcome estimation for
continuous and multi-level discrete interventions via hetero-
geneous response curve learning. ABCEI (Du et al., 2021)
balanced covariate distributions in the latent space using
adversarial training, and addressed information loss with a
mutual information estimator. Unlike ABCEI, CBRE (Zhou
et al., 2022) introduced an information loop to preserve pre-
dictive information that might otherwise be lost during the
raw-to-latent space transformation in adversarial training.
NCMs (Xia et al., 2022) demonstrated that structural con-
straints for counterfactual reasoning could be captured and
proposed algorithms for joint identification and estimation
of counterfactual distributions.

Although adversarial training methods can learn counterfac-
tual distribution, they face significant challenges in generat-
ing realistic counterfactuals. Naively adding noise to inputs
often produces adversarial examples rather than semanti-
cally meaningful counterfactuals. In contrast, our approach
generates counterfactuals that preserve semantic integrity,
respecting the intrinsic structure of the data manifold. This
ensures that the generated counterfactuals are both mean-
ingful and reliable for causal inference tasks.

3. Preliminary
3.1. Notations and Assumptions

Following the Neyman-Rubin potential outcome framework
(Rubin, 2005; Shalit et al., 2017), the covariate space X is a
bounded subset X ⊂ Rd, and the potential outcome space is
Y ⊂ R. The binary treatment indicator t ∈ {0, 1} indicates
whether the unit receives treatment t = 1 (e.g., medication)
or serves as control t = 0 (e.g. placebo). We define yt as the
potential outcome (e.g. blood sugar level) for the unit under
treatment t ∈ {0, 1}, the potential outcomes y0, y1 ∈ Y .
Given a unit x ∈ X with treatment assignment t, we only
observe the factual outcome yt, while the counterfactual
outcome y1−t remains unobserved. The observed outcome
can be expressed as: y = (1− t) y0 + ty1. Our goal is to
estimate the ITE and evaluate its accuracy using the met-
ric Precision in the expected Estimation of Heterogeneous
Effect (PEHE).

Definition 3.1. The individual treatment effect:

τ (x) := E
[
y1 − y0|x

]
.

Definition 3.2. Let f : X × {0, 1} → Y by an hypothesis.
The estimated individual treatment effect:

τ̂f (x) = f(x, 1)− f(x, 0).

Definition 3.3. The expected Precision in Estimation of
Heterogeneous Effect loss of f :

ϵPEHE(f) =

∫
X
(τ̂f (x)− τ(x))

2
p(x)dx. (1)

We made the following assumptions to ensure that treatment
effects are identifiable:

Assumption 3.4. Consistency, Ignorability, and Overlap.
Consistency: For a unit with treatment assignment t, the ob-
served outcome equals potential outcome yt. Ignorability:
The potential outcomes are independent of the treatment
conditioning on covariates, such that (y1, y0) ⊥⊥ t|x. Over-
lap: For any x, the probability of receiving treatment is
positive. That is, 0 < P (t = 1|x) < 1, for ∀x ∈ X .

3.2. Preliminary Propositions

Assumption 3.5. Manifold hypothesis (Dombrowski et al.,
2023). The data is assumed to concentrate within a small
region δ around a submanifoldM of X :

S =M×Iδ1 × · · · × IδNX−NM
, (2)

where Iδi =
(
− δi

2 ,
δi
2

)
, for i ∈ {1, . . . ,NX −NM}, is

an open interval of length δi. We assume that δi is small,
meaning the data lies approximately on the submanifold
M⊂ X , which has a much lower dimensionality NM than
the dimensionality NX of X .
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Figure 2. The architecture of the proposed FCCL framework. The diffeomorphic counterfactual generation module generates realistic
counterfactuals via gradient ascent in the latent space of a normalizing flow, adhering to the data manifold. The contrastive learning
module refines sample representations under different treatments, enabling precise instance-level distribution alignment. Finally, two
separate neural networks, h1(ϕE(x)) and h0(ϕE(x)), are used to estimate potential outcomes under different treatments.

Definition 3.6. Diffeomorphic counterfactual. The diffeo-
morphic counterfactual is defined as minimal modifications
on the data manifold of the input reversing the classification
decision k (x), represented as:

x̃ = arg min
x̃∈M

dist(x̃, x) s.t. k(x̃) ̸= k(x), (3)

whereM is the data manifold, dist(x̃, x) denotes the dis-
tance between x̃ and x. The classifier k : X → {0, 1} as-
signs an input x ∈ X to a class t ∈ {0, 1}, and k(x̃) ̸= k(x)
indicates a change in the classifier’s prediction outcome.

Definition 3.7. Let L : Y × Y → R+ be the absolute
loss or squared loss, lh,Φ(x, t) denote the expected loss
for the unit-treatment pair (x, t), with representation func-
tion Φ : X → R and hypothesis h : R × {0, 1} → Y ,
which can be mathematically represented as: lh,Φ(x, t) =∫
Y L(yt, h(Φ(x), t))p(yt|x)dyt. The expected factual and

counterfactual losses of h and Φ are:

ϵF (h,Φ) =

∫
X×{0,1}

lh,Φ(x, t)p(x, t)dxdt,

ϵCF (h,Φ) =

∫
X×{0,1}

lh,Φ(x, t)p(x, 1− t)dxdt.

Definition 3.8. The expected factual treated and control
losses are:

ϵt=1
F (h,Φ) =

∫
X
lh,Φ(x, 1)p

t=1(x)dx,

ϵt=0
F (h,Φ) =

∫
X
lh,Φ(x, 0)p

t=0(x)dx.

4. Methodology
We propose a novel framework, FCCL (Flow-based
Counterfactual Contrastive Learning), for individual treat-
ment effect estimation. FCCL is grounded in theoretical
insights that justify its key components: (1) flow-based coun-
terfactual generation, (2) contrastive learning for sample-
level alignment, and (3) a predictive model for potential
outcomes. Figure 2 provides an overview, integrating the
theoretical foundation with methodological details of FCCL.

Motivation. Randomized controlled trials (RCTs) are rec-
ognized as the gold standard for causal inference due to their
ability to achieve random treatment assignment independent
of covariates (Ma & Zhang, 2023). Our method aims to
emulate the balanced randomization inherent in RCTs by
employing counterfactual contrastive learning. To the best
of our knowledge, this is the first work to leverage the re-
lationship between factual and counterfactual samples to
produce consistent representations that effectively capture
the characteristics of potential outcomes under different
treatments, thereby addressing distribution shifts between
treated and control groups through fine-grained, sample-
level alignment.

4.1. Theoretical Foundations

To motivate our methodology, we first establish theoretical
bounds on counterfactual loss and ITE estimation error.
These bounds guide the design of FCCL and justify its
components. Detailed proofs are provided in Appendix A.

Lemma 4.1. Let Φ : X → R be an invertible represen-
tation function with inverse Ψ and h : R × {0, 1} → Y
a hypothesis function. Define u := p(t = 1) as the treat-
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ment proportion. For any treatment indicator t ∈ {0, 1},
let disc(Φt(x),Φt(x̃)) represent the distance between coun-
terfactual and factual samples in the representation space.
Then, the counterfactual loss ϵCF (h,Φ) is bounded by:

ϵCF (h,Φ) ≤ (1− u) · ϵt=1
F (h,Φ) + u · ϵt=0

F (h,Φ)+

disc(Φt(x),Φt(x̃)) + disc(Φt(x̃),Φ1−t(x)),
(4)

where ϵCF and ϵF are defined in Definition 3.7 and Defini-
tion 3.8.

This result highlights the importance of minimizing rep-
resentation distances between factual and counterfactual
samples to reduce counterfactual loss.
Theorem 4.2. Let ϵPEHE(h,Φ) be the estimation error
with representation function Φ : X → R with Ψ being its
inverse and hypothesis h : R× {0, 1} → Y . For any treat-
ment indicator t ∈ {0, 1}, let disc(Φt(x),Φt(x̃)) be the
representation distance between counterfactual and factual
samples. The error is bounded by:

ϵPEHE(h,Φ) ≤
2(ϵt=1

F (h,Φ) + ϵt=0
F (h,Φ)− 2σ2

Y )+

2(disc(Φt(x),Φt(x̃)) + disc(Φt(x̃),Φ1−t(x))).

(5)

This bound links ITE estimation error to the generalization
error of factual predictions and representation distances,
motivating our focus on minimizing these distances.

This theorem proves that the estimation error ϵPEHE(h,Φ)
is upper bounded by two terms: the standard generalization
error of factual predictions ϵF and the distance constraints
in the representation space. These distance constraints rep-
resent two types of alignment: (i) between counterfactual
samples and their factual counterparts (similarity), and (ii)
between counterfactual samples and those from the oppo-
site group of factual samples (category consistency). These
alignment errors can be minimized using contrastive loss to
achieve sample-wise correspondence in the representation
space, improving the accuracy of ITE estimation.

4.2. Flow-based Counterfactual Generation

Existing counterfactual generation approaches typically em-
ploy gradient ascent optimization in the input space X .
Specifically, for a given step size η and target class t, the
iterative gradient update rule is defined as:

x(i+1) = x(i) + η
∂kt
∂x

(
x(i)

)
, (6)

where the process continues until the classifier k(x(i+1))t
confidence exceeds a threshold Λ.

However, counterfactuals generated in this manner often
result in unstructured perturbations that fail to capture mean-
ingful semantic transformations, frequently deviating from

the underlying data manifoldM that represents the intrinsic
structure and variations of the data.

To address this limitation, we generate diffeomorphic coun-
terfactual, ensuring that counterfactual x̃ resides on the same
manifoldM as the original instance x, i.e., x, x̃ ∈M. This
is formulated as an optimization problem:

minDM (x, x̃) s.t. k(x̃) ̸= k(x), (7)

where DM denotes the geodesic distance on the manifold
M and k(·) is a classifier function. By constraining x̃ to
remain onM, this formulation avoids unstructured pertur-
bations while flipping the classification outcome.

Normalizing flows provide a principled mechanism to con-
struct such diffeomorphic counterfactuals. In particular, a
normalizing flow maps a base distribution p(z) in the latent
space Z to a complex target distribution p(x) via a diffeo-
morphism g: x = g(z). The normalizing flow is trained
by minimizing the Kullback-Leibler (KL) divergence be-
tween the true data distribution and the model distribution:
L(θ) = DKL [p(x)∥p(x;θ)].

Using the learned flow g, counterfactuals are generated
by optimizing the composite function k ◦ g : Z → Y
in the latent space Z to find a latent representation z̃ that
produces the desired classification outcome (Dombrowski
et al., 2023). The iterative update rule in the latent space is
given by:

z(i+1) = z(i) + λ
∂(k ◦ g)t

∂z

(
z(i)

)
, (8)

with step size λ. This approach leverages the manifold
structure encoded by g, ensuring that counterfactuals x̃ =
g(z̃) adhere to the data manifold M. Consequently, the
generated counterfactuals remain semantically meaningful,
exhibit minimal deviation from the original samples, and
achieve a classification flip.

Thus, diffeomorphic counterfactuals provide a theoretically
sound foundation for generating meaningful sample pairs
(x, x̃), which are subsequently utilized in the representa-
tion module to achieve robust alignment and accurate ITE
estimation.

4.3. Contrastive Learning for Sample-level Alignment

Counterfactual Contrastive Learning. For each mini-
batch of training samples, we generate a diffeomor-
phic counterfactual x̃i for each instance xi. These fac-
tual–counterfactual pairs (xi, x̃i) are treated as positive
pairs, while instances from different samples form the can-
didate set for negative pairs. To maintain computational
efficiency, a fixed number of negative samples are randomly
selected from this set. This sampling strategy ensures suf-
ficient contrastive information while minimizing computa-
tional overhead.
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Each instance xi and its corresponding counterfactual x̃i

are processed through an encoder network, and the resulting
representations ϕE and ϕ̃E are processed by the projection
head network to yield ci and c̃i, which facilitates the applica-
tion of contrastive loss while enabling the encoder to retain
more information in its learned features (Ho & Nvasconce-
los, 2020). The contrastive loss is applied to learn invariant
representations of factual–counterfactual pairs ensuring that
ci and c̃i are closely aligned, effectively capturing the nu-
ances of potential outcomes under different treatments. The
contrastive loss function is defined as:

Lc = −log
exp (sim (ci, c̃i) /τtemp)

Ni∑
j=1

Ij ̸=iexp (sim (ci, cj) /τtemp)

, (9)

where sim(ci, c̃i) =
cTi c̃i

∥ci∥2∥c̃i∥2
represents the cosine simi-

larity,Ni is the set of batch-size randomly selected negative
samples, and τtemp is the temperature coefficient.

The contrastive loss aligns directly with the theoretical
bounds established in Lemma 4.1, which reflects the repre-
sentation distances between counterfactuals and their factual
counterparts, as well as between counterfactuals and factual
samples from the opposite group. By minimizing these rep-
resentation distances, the counterfactual loss ϵCF (h,Φ) re-
mains bounded, as detailed in Equation (4). The contrastive
learning module achieves robust alignment, effectively re-
ducing the error terms identified in Theorem 4.2:

disc(Φt(x),Φt(x̃)) and disc(Φt(x̃),Φ1−t(x)).

These alignment errors, which quantify the distances be-
tween factual–counterfactual pairs and between counterfac-
tual samples and opposing group samples, directly impact
the ITE estimation error. By minimizing Lc, the learned
representations align with the theoretical bounds, improving
the reliability of ITE estimation.

Prediction Head. The learned balanced representations
ϕE(xi) are fed into two neural networks to predict poten-
tial outcomes for treatment (t = 1) and control (t = 0)
(Assaad et al., 2021; Huang et al., 2023). The predicted
outcomes are defined as Tout = h(ϕE(xi), ti = 1) and
Cout = h(ϕE(xi), ti = 0), respectively. The predictive loss
is given by:

Lp =
1

n

n∑
i=1

wi · L (h (ϕE (xi) , ti) , yi) , (10)

where wi = ti
2u + 1−ti

2(1−u) , and u = 1
n

∑n
i=1 ti. The to-

tal loss Lt combines predictive loss, contrastive loss, and
regularization:

Lt = Lp + αLc + β∥W∥2, (11)

where α and β are adjustable hyper-parameters that control
the contributions of contrastive loss and regularization loss
∥·∥2 on model weights W to prevent overfitting.

We train our model by minimizing Equation (11) and pro-
vide the detailed counterfactual contrastive learning strategy
in Algorithm 1 in the Appendix. This formulation ensures
that the learned representations align factual and counterfac-
tual samples while accurately predicting potential outcomes,
ultimately reducing ITE estimation error.

4.4. Why FCCL Works

FCCL bridges theoretical guarantees and practical innova-
tion to address key challenges in ITE estimation, particularly
for sparse and boundary samples. By generating diffeomor-
phic counterfactuals that adhere to the data manifold, FCCL
ensures that counterfactuals are both realistic and mean-
ingful. This design reduces noise sensitivity and preserves
semantic consistency, which is critical for obtaining reliable
sample pairs. Furthermore, contrastive learning enforces dis-
tance constraints based on factual-counterfactual similarity
and category consistency (as formalized in Lemma 4.1), mit-
igating distribution shifts through fine-grained sample-level
alignment, and approximating the randomization achieved
in RCTs. Together, these mechanisms reduce ITE estima-
tion error, which is consistent with Theorem 4.2, and out-
perform traditional methods in scenarios with significant
heterogeneity or limited data.

5. Experiments
To evaluate the effectiveness of FCCL, particularly its ro-
bustness under varying degrees of covariate dispersion, we
employ six benchmark datasets: four synthetic, one semi-
synthetic, and one real-world datasets. Comprehensive ex-
periments across various datasets validate our claims, in-
cluding performance evaluation, latent space analysis and
boundary sample examination.

5.1. Datasets

Synthetic: We generate covariates from a multivariate
normal distribution N

(
0, γ · σ2 ·

[
ρ1p1

⊤
p + (1− ρ)Ip

])
,

where the scaling parameter γ ∈ {0.4, 0.7, 1.0, 1.2} con-
trols the degree of covariate dispersion, as shown in Figure 7.
Each dataset consists of 800 units split into training (63%),
validation (27%), and test (10%) sets. We generate 30 in-
dependent datasets for analysis. Detailed data generation
steps are outlined in Appendix D.3.

Semi-synthetic (IHDP): The Infant Health and Develop-
ment Program (IHDP) dataset, modified by Hill (Hill, 2011),
evaluates the effect of specialist home visits on children’s
cognitive scores. It includes 25 covariates describing infants
and their mothers. Selection bias is simulated by systemati-
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Table 1. Within-sample and out-of-sample mean and standard er-
rors for the metrics (Lower is better) on IHDP dataset.

Method
√

ϵwithin
PEHE ϵwithin

ATE

√
ϵout−of
PEHE ϵout−of

ATE

OLS-1 5.83(0.39) 0.73(0.04) 5.91(0.27) 0.95(0.06)
OLS-2 2.42(0.16) 0.14(0.02) 2.55(0.16) 0.31(0.02)
BART 2.13(0.22) 0.24(0.05) 2.32(0.12) 0.35(0.03)
KNN 2.13(0.08) 0.15(0.05) 4.16(0.23) 0.80(0.05)
DML 2.45(0.12) 0.20(0.05) 2.60(0.14) 0.33(0.05)

CFR-Wass 0.71(0.04) 0.27(0.03) 0.83(0.08) 0.28(0.03)
CFR-MMD 0.77(0.05) 0.25(0.04) 0.92(0.09) 0.28(0.04)

SITE 0.84(0.05) 0.30(0.04) 0.98(0.07) 0.32(0.05)
CITE 0.59(0.06) 0.11(0.02) 0.67(0.14) 0.14(0.02)

GANITE 1.92(0.29) 0.43(0.41) 2.43(0.46) 0.49(0.38)
ABCEI 0.79(0.06) 0.12(0.02) 1.00(0.13) 0.15(0.03)
CBRE 0.59(0.06) 0.11(0.02) 0.66(0.07) 0.13(0.02)

DIGNet 0.60(0.04) 0.15(0.02) 0.67(0.07) 0.16(0.02)

FCCL 0.53(0.04) 0.09(0.01) 0.64(0.07) 0.12(0.02)

cally excluding a subset of treated samples, resulting in 747
instances (139 treated and 608 control). We use the same
100 datasets, following the standard practice in the field.

Real-world (Jobs): This dataset examines the causal ef-
fect of job training (treatment) on income and employment
status. It is reformulated as a binary classification task
to predict unemployment (Dehejia & Wahba, 2002). This
dataset contains 297 treated samples and 2,915 control sam-
ples. For consistency with prior work, we average over 10
experiments. The train, validation, and test splits are set to
56%, 24%, and 20%, respectively.

5.2. Metrics

For datasets with known true treatment effects, we evaluate
using the rooted Precision in Estimation of Heterogeneous
Effect

√
ϵPEHE and the absolute error of Average Treatment

Effect ϵATE . For the Jobs, where ground-truth counterfactu-
als are unavailable, we adopt the policy risk Rpol(πτ̂ ) and
the bias of Average Treatment Effect on the Treated predic-
tion ϵATT . Detailed formulas are provided in Appendix C.

5.3. Baseline Approaches

We compare our FCCL against thirteen baselines, catego-
rized as traditional and deep learning methods.

Traditional Methods: Ordinary least square (OLS-1),
which uses treatment as a covariate to predict outcomes;
(OLS-2), which predicts outcomes separately for each
group; Bayesian additive regression trees (BART) lever-
aging a sum-of-trees structure; K-nearest neighbor (KNN)
matches samples using k-nearest neighbors; Debiased ma-
chine learning (DML), handling confounding bias through
orthogonal residual regression. Deep learning Methods:
CFR-Wass (Shalit et al., 2017) and CFR-MMD (Shalit

Table 2. Out-of-sample mean and standard errors for the rooted

PEHE (
√

ϵout−of
PEHE ) on Synthetic datasets.

Method γ = 0.4 γ = 0.7 γ = 1.0 γ = 1.2

OLS-1 8.41(0.84) 10.85(1.34) 13.00(1.68) 14.32(1.55)
OLS-2 5.94(0.60) 7.64(0.96) 9.13(1.18) 10.07(1.11)
BART 3.40(0.50) 4.17(0.60) 4.86(0.61) 6.14(0.58)
KNN 5.50(0.62) 7.26(0.75) 9.08(1.27) 10.27(1.07)
DML 3.96(0.54) 5.30(0.62) 6.08(0.80) 8.46(0.77)

CFR-Wass 2.48(0.06) 3.60(0.09) 4.72(0.14) 5.37(0.14)
CFR-MMD 2.54(0.06) 3.62(0.09) 4.74(0.14) 5.41(0.14)

SITE 2.69(0.13) 4.25(0.23) 6.01(0.38) 6.21(0.17)
CITE 2.71(0.07) 3.70(0.10) 4.74(0.14) 5.41(0.14)

GANITE 4.69(0.06) 6.16(0.07) 7.33(0.07) 8.11(0.08)
ABCEI 2.75(0.06) 3.57(0.09) 4.73(0.13) 5.19(0.12)
CBRE 2.93(0.05) 3.85(0.08) 5.02(0.12) 5.73(0.13)

DIGNet 3.18(0.11) 3.97(0.13) 5.10(0.17) 5.81(0.15)

FCCL 2.58(0.06) 3.50(0.09) 4.49(0.13) 5.12(0.12)

et al., 2017) are two methods using the Wasserstein and
MMD metric for counterfactual regression, respectively;
SITE (Yao et al., 2018), which preserves local similarity
in sample representations; CITE (Li & Yao, 2022) learns
representation based on propensity score; GANITE (Yoon
et al., 2018) implicitly learns counterfactual distribution us-
ing GANs; ABCEI (Du et al., 2021) balances distributions
using adversarial learning; CBRE (Zhou et al., 2022) con-
structs an information loop during adversarial training to
minimize information loss; DIGNet (Huang et al., 2024)
utilizes individual propensity confusion and group distance
minimization to learn the balanced representation.

5.4. Experimental Results

We evaluate FCCL’s performance on multiple metrics across
various datasets, focusing on robustness under varying co-
variate dispersion. Additionally, we conduct latent space
analysis and examine boundary sample behavior to provide
deeper insights into FCCL’s effectiveness. Further results,
including sensitivity analysis, are presented in Appendix D.

Performance Evaluation: We compare our FCCL against
the baseline methods on IHDP, Jobs and Synthetic datasets,
with results presented in Table 1 and Table 2, and additional
results are provided in the Appendix. Key findings include:
(1) FCCL outperforms all baseline methods across various
datasets. Notably, on the IHDP dataset, FCCL achieves the
lowest

√
ϵPEHE and ϵATE values, reducing ϵout-of

ATE by 57.1%
compared to CFR. (2) Methods leveraging contrastive learn-
ing (e.g., CITE, FCCL) consistently outperform CFR-based
methods, highlighting their strength in aligning representa-
tions under diverse treatments. (3) FCCL shows resilience
to covariate dispersion, as it maintains robust performance
as the covariate dispersion (γ) increases from 0.4 to 1.2,

with
√
ϵout−of
PEHE increasing from 2.58 to 5.12. This increase

is 12.1% lower compared to CFR-Wass.
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Figure 3. Latent Distributions of two representative methods, CFR
and ABCEI, alongside our FCCL on IHDP dataset. The dots in
black and yellow represent the boundary samples from the treat-
ment and control groups, respectively. The metric dis quantifies
the average distance between boundary samples and correspond-
ing class centers, reflecting sample heterogeneity. The metric KL
divergence is used to quantify the difference between treatment
and control distributions.

Latent Space Representation and Boundary Sample
Analysis: Figure 3 visualizes the latent space represen-
tation for CFR (covariate balance-based), ABCEI (adversar-
ial training-based), and our proposed FCCL method (con-
trastive learning-based). FCCL generates well-balanced and
compact representations and achieves lower KL divergence
than CFR and ABCEI, significantly reducing distribution
discrepancies between treatment and control groups through
robust sample-level alignment. Additionally, boundary and
heterogeneous samples limit the model’s generalizability,
especially in scenarios with substantial individual hetero-
geneity. A smaller ”dis” value indicates that dispersion
of samples in the latent representation space is reduced,
which shows that there are fewer boundary samples, en-
abling better model fitting and exhibiting lower ITE estima-
tion bias. Motivated by this, FCCL focuses on boundary
samples—defined as the 30 farthest samples from their class
centers—and achieves: (1) reduced dispersion: as FCCL
aligns boundary samples closer to their class centers, outper-
forming CFR (dis = 15.74) and ABCEI (dis = 13.79); and
(2) improved ITE estimation: analyzing ITE estimation bias
(Tables 4 and 5 in Appendix D) shows that FCCL achieves
lower estimation bias, for boundary samples compared to
baselines.

Table 3. ITE estimation errors with different counterfactual gener-
ation strategies on IHDP dataset.

Method
√

ϵwithin
PEHE ϵwithin

ATE

√
ϵout−of
PEHE ϵout−of

ATE

grad asc in X 0.60(0.06) 0.11(0.02) 0.87(0.19) 0.15(0.04)
GAN 0.57(0.05) 0.10(0.01) 0.84(0.17) 0.14(0.03)

diffusion 0.54(0.05) 0.09(0.01) 0.72(0.10) 0.12(0.03)
FCCL 0.53(0.04) 0.09(0.01) 0.64(0.07) 0.12(0.02)
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(a) The impact of contrastive loss (b) Key distance metrics

Figure 4. (a) The impact of contrastive loss (CL) on distribution
balance, comparing distances between class centroids (center-to-
center) and between samples and the center of the opposite class
(sample-to-center) with and without CL. (b) Key distance met-
rics in the representation space: factual-counterfactual (dis-pos),
counterfactual-opposite factual (dis-inn), and factual-factual (dis-
sam), shown with mean values for each metric. Contrastive learn-
ing reduces distances, enhancing representation alignment and
mitigating distribution discrepancies.

5.5. Components Analysis

This section explores the contribution of two key compo-
nents of FCCL—counterfactual generation and contrastive
learning—toward improving ITE estimation performance.

Effectiveness of Counterfactual Generation: To validate
the efficacy of the flow-based counterfactual generation, we
compare it with alternative strategies, including gradient
ascent in the X -space, GAN-based generation (Goodfellow
et al., 2020), and diffusion-based generation (Kotelnikov
et al., 2023). As shown in Table 3, FCCL significantly out-
performs these methods, achieving a 26.4% reduction in√

ϵout−of
PEHE compared to the gradient ascent in the X -space.

While the diffusion model achieves performance compara-

ble to FCCL, it yields slightly inferior result on
√

ϵout−of
PEHE .

This may be due to the noise-driven generation mechanism
of diffusion models, which causes counterfactual to devi-
ate from the sample semantic space, especially in the out-
sample cases. Unlike other approaches, which introduce
noise and fail to preserve the inherent structure of the data,
FCCL generates diffeomorphic counterfactuals that remain
consistent with the data manifold that represents the intrinsic
structure of the data. This structural consistency enhances
causal effect estimation, making FCCL more reliable for
individual-level treatment effect predictions.
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Impact of Contrastive Learning: Contrastive learning
plays a critical role in FCCL’s robust performance by align-
ing representations of treated and control groups. As il-
lustrated in Figure 4, contrastive loss reduces the class-
center distances (center-to-center) and optimizes the dis-
tances between: (1) counterfactual and corresponding fac-
tual samples: where the mean positive distance (dis-pos) is
0.7089; (2) counterfactual and opposite-class factual sam-
ples, where the mean inner-class distance (dis-inn) is 1.2180.
This alignment effectively balances the treated and control
distributions, achieving sample-level correspondence and
mitigating distribution discrepancies. By ensuring category
consistency and factual-counterfactual similarity, FCCL
achieves superior representation balance, as theoretically
justified in Section 4.4.

6. Conclusion
In this paper, we proposed FCCL, a robust method for ITE
estimation, grounded in our derived ITE estimation error
bound. FCCL innovatively integrated diffeomorphic coun-
terfactual generation and contrastive learning to address dis-
tribution shifts between treated and control groups through
fine-grained, sample-level alignment. Comprehensive ex-
periments across various datasets, including performance
evaluation, latent space analysis and boundary sample ex-
amination, have demonstrated that FCCL achieves more
accurate and robust ITE estimation, particularly in scenarios
with significant individual heterogeneity. For future direc-
tions, we aim to extend our framework to accommodate
time-dependent outcome variables.

Impact Statement
FCCL represents a significant advancement in causal ef-
fect estimation by providing a robust and accurate method
capable of handling complex scenarios with substantial indi-
vidual heterogeneity. Its ability to achieve precise alignment
at the sample level makes it particularly suited for applica-
tions in personalized decision-making. Potential domains
of impact include digital marketing for tailoring customer
strategies, social sciences for policy evaluation, and health-
care for personalized treatment planning.

Acknowledgements
This work is supported by the National Natural Science
Foundation of China (U24A20323, 62376145), the Science
and Technology Innovation Talent Team of Shanxi Province
(202204051002016), and the Key Technologies Program
of Taihang Laboratory in Shanxi Province (THYF-JSZX-
24010700).

References
Alaa, A. M. and Van Der Schaar, M. Bayesian inference of

individualized treatment effects using multi-task gaussian
processes. In Proceedings of the Advances in Neural
Information Processing Systems, pp. 3427–3435, 2017.

Assaad, S., Zeng, S., Tao, C., Datta, S., Mehta, N., Henao,
R., Li, F., and Carin, L. Counterfactual representation
learning with balancing weights. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics, pp. 1972–1980, 2021.

Athey, S., Imbens, G. W., and Wager, S. Approximate resid-
ual balancing: debiased inference of average treatment
effects in high dimensions. Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 80(4):
597–623, 2018.

Bica, I. and Van der Schaar, M. Transfer learning on hetero-
geneous feature spaces for treatment effects estimation.
In Proceedings of the Advances in Neural Information
Processing Systems, pp. 37184–37198, 2022.

Bica, I., Jordon, J., and Van der Schaar, M. Estimating the ef-
fects of continuous-valued interventions using generative
adversarial networks. In Proceedings of the Advances
in Neural Information Processing Systems, pp. 16434–
16445, 2020.

Cai, R., Zhu, Y., Qiao, J., Liang, Z., Liu, F., and Hao, Z.
Where and how to attack? a causality-inspired recipe
for generating counterfactual adversarial examples. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 11132–11140, 2024.

Cheng, D., Li, J., Liu, L., Zhang, J., Liu, J., and Le, T. D.
Local search for efficient causal effect estimation. IEEE
Transactions on Knowledge and Data Engineering, 35
(9):8823–8837, 2022.

Cheng, G., Hardt, M., and Mendler-Dünner, C. Causal in-
ference out of control: Estimating performativity without
treatment randomization. In Proceedings of the Interna-
tional Conference on Machine Learning, pp. 8077–8103,
2024.

Chu, Z., Ding, H., Zeng, G., Huang, Y., Yan, T., Kang, Y.,
and Li, S. Hierarchical capsule prediction network for
marketing campaigns effect. In Proceedings of the ACM
International Conference on Information & Knowledge
Management, pp. 3043–3051, 2022.

Dehejia, R. H. and Wahba, S. Propensity score-matching
methods for nonexperimental causal studies. Review of
Economics and Statistics, 84(1):151–161, 2002.

9



Counterfactual Contrastive Learning with Normalizing Flows for Robust Treatment Effect Estimation

Dombrowski, A.-K., Gerken, J. E., Müller, K.-R., and
Kessel, P. Diffeomorphic counterfactuals with gener-
ative models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(5):3257–3274, 2023.

Du, X., Sun, L., Duivesteijn, W., Nikolaev, A., and Pech-
enizkiy, M. Adversarial balancing-based representation
learning for causal effect inference with observational
data. Data Mining and Knowledge Discovery, 35(4):
1713–1738, 2021.

Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal,
J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane,
I. S., and Van der Schaar, M. Causal machine learning
for predicting treatment outcomes. Nature Medicine, 30
(4):958–968, 2024.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Hill, J. L. Bayesian nonparametric modeling for causal infer-
ence. Journal of Computational and Graphical Statistics,
20(1):217–240, 2011.

Ho, C.-H. and Nvasconcelos, N. Contrastive learning with
adversarial examples. In Proceedings of the Advances
in Neural Information Processing Systems, pp. 17081–
17093, 2020.

Huang, Y., Leung, C. H., Ma, S., Yuan, Z., Wu, Q., Wang, S.,
Wang, D., and Huang, Z. Towards balanced representa-
tion learning for credit policy evaluation. In Proceedings
of the International Conference on Artificial Intelligence
and Statistics, pp. 3677–3692, 2023.

Huang, Y., Siyi, W., Leung, C. H., Qi, W., Dongdong, W.,
and Huang, Z. Dignet: Learning decomposed patterns in
representation balancing for treatment effect estimation.
Transactions on Machine Learning Research, 2024.

Jiang, S. and Sun, Y. Estimating causal effects on networked
observational data via representation learning. In Proceed-
ings of the ACM International Conference on Information
& Knowledge Management, pp. 852–861, 2022.

Johansson, F., Shalit, U., and Sontag, D. Learning represen-
tations for counterfactual inference. In Proceedings of
the International Conference on Machine Learning, pp.
3020–3029, 2016.

Johansson, F. D., Shalit, U., Kallus, N., and Sontag, D.
Generalization bounds and representation learning for es-
timation of potential outcomes and causal effects. Journal
of Machine Learning Research, 23(166):1–50, 2022.

Jung, Y., Tian, J., and Bareinboim, E. Estimating identifi-
able causal effects through double machine learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 12113–12122, 2021.

Kazemi, A. and Ester, M. Adversarially balanced repre-
sentation for continuous treatment effect estimation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 13085–13093, 2024.

Kong, I., Park, Y., Jung, J., Lee, K., and Kim, Y. Covariate
balancing using the integral probability metric for causal
inference. In Proceedings of the International Conference
on Machine Learning, pp. 17430–17461, 2023.

Kotelnikov, A., Baranchuk, D., Rubachev, I., and Babenko,
A. Tabddpm: Modelling tabular data with diffusion mod-
els. In Proceedings of the International Conference on
Machine Learning, pp. 17564–17579, 2023.

Li, S., Vlassis, N., Kawale, J., and Fu, Y. Matching via di-
mensionality reduction for estimation of treatment effects
in digital marketing campaigns. In Proceedings of the
International Joint Conference on Artificial Intelligence,
pp. 3768–3774, 2016.

Li, X. and Yao, L. Contrastive individual treatment effects
estimation. In Proceedings of the International Confer-
ence on Data Mining, pp. 1053–1058, 2022.

Li, Y., Leung, C. H., Sun, X., Wang, C., Huang, Y., Yan, X.,
Wu, Q., Wang, D., and Huang, Z. The causal impact of
credit lines on spending distributions. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 180–
187, 2024.

Liu, R., Wei, L., and Zhang, P. A deep learning framework
for drug repurposing via emulating clinical trials on real-
world patient data. Nature Machine Intelligence, 3(1):
68–75, 2021.

Ma, C. and Zhang, C. High precision causal model evalua-
tion with conditional randomization. In Proceedings of
the Advances in Neural Information Processing Systems,
pp. 52615–52627, 2023.

Martı́nez-Sánchez, Á., Arranz, G., and Lozano-Durán, A.
Decomposing causality into its synergistic, unique, and
redundant components. Nature Communications, 15(1):
9296, 2024.

Reddy, A. G. and Balasubramanian, V. N. Nester: An adap-
tive neurosymbolic method for causal effect estimation.
In Proceedings of the AAAI Conference on Artificial In-
telligence, pp. 14793–14801, 2024.

Rubin, D. B. Causal inference using potential outcomes:
Design, modeling, decisions. Journal of the American
Statistical Association, 100(469):322–331, 2005.

10



Counterfactual Contrastive Learning with Normalizing Flows for Robust Treatment Effect Estimation

Schwab, P., Linhardt, L., and Karlen, W. Perfect match: A
simple method for learning representations for counter-
factual inference with neural networks. arXiv preprint
arXiv:1810.00656, 2018.

Shalit, U., Johansson, F. D., and Sontag, D. Estimating
individual treatment effect: generalization bounds and al-
gorithms. In Proceedings of the International Conference
on Machine Learning, pp. 3076–3085, 2017.

Wu, A., Yuan, J., Kuang, K., Li, B., Wu, R., Zhu, Q.,
Zhuang, Y., and Wu, F. Learning decomposed representa-
tions for treatment effect estimation. IEEE Transactions
on Knowledge and Data Engineering, 35(5):4989–5001,
2022.

Wu, A., Kuang, K., Xiong, R., Li, B., and Wu, F. Stable
estimation of heterogeneous treatment effects. In Pro-
ceedings of the International Conference on Machine
Learning, pp. 37496–37510, 2023.

Xia, K., Pan, Y., and Bareinboim, E. Neural causal models
for counterfactual identification and estimation. arXiv
preprint arXiv:2210.00035, 2022.

Yao, L., Li, S., Li, Y., Huai, M., Gao, J., and Zhang, A. Rep-
resentation learning for treatment effect estimation from
observational data. In Proceedings of the Advances in
Neural Information Processing Systems, pp. 2638–2648,
2018.

Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., and Zhang, A.
A survey on causal inference. ACM Transactions on
Knowledge Discovery from Data, 15(5):1–46, 2021.

Yoon, J., Jordon, J., and Van Der Schaar, M. Ganite: Estima-
tion of individualized treatment effects using generative
adversarial nets. In Proceedings of the International Con-
ference on Learning Representations, 2018.

Zhang, Y., Bellot, A., and Schaar, M. Learning overlap-
ping representations for the estimation of individualized
treatment effects. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, pp.
1005–1014, 2020.

Zhao, Y., Yang, F., Yang, X., Teng, J., Zhang, X., and Li,
Q. Self-supervised representation matching model for
treatment effect estimation. In Proceedings of the Inter-
national Conference on Medical Artificial Intelligence,
pp. 607–616, 2024.

Zhong, K., Xiao, F., Ren, Y., Liang, Y., Yao, W., Yang, X.,
and Cen, L. Descn: Deep entire space cross networks for
individual treatment effect estimation. In Proceedings of
the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 4612–4620, 2022.

Zhou, G., Yao, L., Xu, X., Wang, C., and Zhu, L. Cycle-
balanced representation learning for counterfactual infer-
ence. In Proceedings of the 2022 SIAM International
Conference on Data Mining, pp. 442–450, 2022.

Zhu, F., Lu, J., Lin, A., Xuan, J., and Zhang, G. Direct
learning with multi-task neural networks for treatment
effect estimation. IEEE Transactions on Knowledge and
Data Engineering, 35(3):2457–2470, 2021.

11



Counterfactual Contrastive Learning with Normalizing Flows for Robust Treatment Effect Estimation

A. Proof.
Definition A.1. Diffeomorphic counterfactual. The diffeomorphic counterfactual is defined as minimal modifications on
the data manifold of the input reversing the classification decision k (x), represented as:

x̃ = arg min
x̃∈M

dist(x̃, x) s.t. k(x̃) ̸= k(x),

whereM is the data manifold, dist(x̃, x) denotes the distance between x̃ and x. The classifier k : X → {0, 1} assigns an
input x ∈ X to a class t ∈ {0, 1}, and k(x̃) ̸= k(x) indicates a change in the classifier’s prediction outcome.

Definition A.2. Let pt=1(x) := p(x|t = 1), pt=0(x) := p(x|t = 0) denote the factual treatment and control distributions,
respectively, and pt=1(x̃) := p(x̃|t = 1), pt=0(x̃) := p(x̃|t = 0) denote respectively the counterfactual treatment and
control distributions.

Definition A.3. For a representation function Φ : X → R, and for a distribution p defined over X , let pΦ be the distribution
induced by Φ overR. Define pt=1

Φ (r) := pΦ(r|t = 1) and pt=0
Φ (r) := pΦ(r|t = 0) to be the factual treatment and control

distributions induced overR, pt=1
Φ (r̃) := pΦ(r̃|t = 1) and pt=0

Φ (r̃) := pΦ(r̃|t = 0), to be the counterfactual treatment and
control distributions induced overR.

Lemma A.4.

ϵF (h,Φ) = u · ϵt=1
F (h,Φ) + (1− u) · ϵt=0

F (h,Φ),

ϵCF (h,Φ) = (1− u) · ϵt=1
CF (h,Φ) + u · ϵt=0

CF (h,Φ).

Define u := p(t = 1) as the treatment proportion. The proof follows directly by noting that p(x, t) = u · pt=1(x) + (1−
u) · pt=0(x) (Shalit et al., 2017).

Definition A.5. Let L : Y × Y → R+ be the absolute loss or squared loss, lh,Φ(x, t) denote the expected loss for the
unit-treatment pair (x, t), with representation function Φ : X → R and hypothesis h : R × {0, 1} → Y , which can
be mathematically represented as: lh,Φ(x, t) =

∫
Y L(yt, h(Φ(x), t))p(yt|x)dyt. The expected factual and counterfactual

losses of h and Φ are:

ϵF (h,Φ) =

∫
X×{0,1}

lh,Φ(x, t)p(x, t)dxdt,

ϵCF (h,Φ) =

∫
X×{0,1}

lh,Φ(x, t)p(x, 1− t)dxdt.

Definition A.6. The expected factual treated and control losses are:

ϵt=1
F (h,Φ) =

∫
X
lh,Φ(x, 1)p

t=1(x)dx,

ϵt=0
F (h,Φ) =

∫
X
lh,Φ(x, 0)p

t=0(x)dx.

Definition A.7. The expected counterfactual treated and control losses are:

ϵt=1
CF (h,Φ) =

∫
X
lh,Φ(x, 1)p

t=0(x)dx,

ϵt=0
CF (h,Φ) =

∫
X
lh,Φ(x, 0)p

t=1(x)dx.

Lemma A.8. (Lemma 4.1. main text). Let Φ : X → R be an invertible representation function with inverse Ψ and
h : R× {0, 1} → Y a hypothesis function. Define u := p(t = 1) as the treatment proportion. For any treatment indicator
t ∈ {0, 1}, let disc(Φt(x),Φt(x̃)) represent the distance between counterfactual and factual samples in the representation
space. Then, the counterfactual loss ϵCF (h,Φ) is bounded by:

ϵCF (h,Φ) ≤ (1− u) · ϵt=1
F (h,Φ) + u · ϵt=0

F (h,Φ)+

disc(Φt(x),Φt(x̃)) + disc(Φt(x̃),Φ1−t(x)).

12
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Proof.

ϵCF (h,Φ)−
[
(1− u) · ϵt=1

F (h,Φ) + u · ϵt=0
F (h,Φ)

]
= (12)[

(1− u) · ϵt=1
CF (h,Φ) + u · ϵt=0

CF (h,Φ)
]
−[

(1− u) · ϵt=1
F (h,Φ) + u · ϵt=0

F (h,Φ)
]
=

(1− u) · [ϵt=1
CF (h,Φ)− ϵt=1

F (h,Φ)]+

u · [ϵt=0
CF (h,Φ)− ϵt=0

F (h,Φ)] = (13)

(1− u)

∫
X
lh,Φ(x, 1)(p

t=0(x)− pt=1(x))dx+

u

∫
X
lh,Φ(x, 0)(p

t=1(x)− pt=0(x))dx =

(1−u)
∫
X
lh,Φ(x, 1)(p

t=0(x)+pt=0(x̃)−pt=0(x̃)−pt=1(x))dx+

u

∫
X
lh,Φ(x, 0)(p

t=1(x) + pt=1(x̃)− pt=1(x̃)− pt=0(x))dx =

(1− u)

∫
X
lh,Φ(x, 1)(p

t=0(x)− pt=0(x̃))dx+

(1− u)

∫
X
lh,Φ(x, 1)(p

t=0(x̃)− pt=1(x))dx+

u

∫
X
lh,Φ(x, 0)(p

t=1(x)− pt=1(x̃))dx+

u

∫
X
lh,Φ(x, 0)(p

t=1(x̃)− pt=0(x))dx = (14)

(1− u)

[∑
i

lh,Φ(xi, 1)(p
t=0(xi)− pt=0(x̃i))

]
+

(1− u)

[∑
i

lh,Φ(xi, 1)(p
t=0(x̃i))− pt=1(xi))

]
+

u

[∑
i

lh,Φ(xi, 0)(p
t=1(xi)− pt=1(x̃i))

]
+

u

[∑
i

lh,Φ(xi, 0)(p
t=1(x̃i))− pt=0(xi))

]
≤ (15)

(1− u)
∑
i

ai
∣∣(pt=0(xi)− pt=0(x̃i))

∣∣+
(1− u)

∑
i

ai
∣∣(pt=0(x̃i))− pt=1(xi))

∣∣+
u
∑
i

bi
∣∣(pt=1(xi)− pt=1(x̃i))

∣∣+
u
∑
i

bi
∣∣(pt=1(x̃i))− pt=0(xi))

∣∣ =
(1− u)

∑
i

ai
∣∣(pt=0

Φ (ri)− pt=0
Φ (r̃i))

∣∣+
(1− u)

∑
i

ai
∣∣(pt=0

Φ (r̃i))− pt=1
Φ (ri))

∣∣+
u
∑
i

bi
∣∣(pt=1

Φ (ri)− pt=1
Φ (r̃i))

∣∣+
13
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u
∑
i

bi
∣∣(pt=1

Φ (r̃i))− pt=0
Φ (ri))

∣∣ ≈
(1− u)

∑
i

ai
∣∣(Φt=0(xi)− Φt=0(x̃i))

∣∣+
(1− u)

∑
i

ai
∣∣(Φt=0(x̃i))− Φt=1(xi))

∣∣+
u
∑
i

bi
∣∣(Φt=1(xi)− Φt=1(x̃i))

∣∣+
u
∑
i

bi
∣∣(Φt=1(x̃i))− Φt=0(xi))

∣∣ = (16)

(1− u)
∑
i

ai

√
2− 2Φt=0(xi)

T
Φt=0(x̃i)+

(1− u)
∑
i

ai

√
2− 2Φt=0(x̃i)

T
Φt=1(xi)+

u
∑
i

bi

√
2− 2Φt=1(xi)

T
Φt=1(x̃i)+

u
∑
i

bi

√
2− 2Φt=1(x̃i)

T
Φt=0(xi) =

disc(Φt(x),Φt(x̃)) + disc(Φt(x̃),Φ1−t(x)).

Equation (12) is by Lemma A.8. Equation (13) is by Definition A.6 and Definition A.7, the expected factual treated and
control losses and the expected counterfactual treated and control losses. Equation (14) is based on the definition of integral
formulation. The inequality (15) is by the absolute value inequality, which states that a− b ≤ |a− b|. Equation (16) is by
the law of Cosines and based on the assumption that Φ(x) is a unit vector.

The counterfactual loss ϵCF (h,Φ) is bounded by a combination of factual prediction errors and the distances
between factual–counterfactual pairs disc(Φt(x),Φt(x̃)) and between counterfactuals and opposing group factuals
disc(Φt(x̃),Φ1−t(x)). This Lemma highlights the importance of minimizing these representation distances to reduce
counterfactual loss.

Definition A.9. The individual treatment effect:

τ (x) := E
[
y1 − y0|x

]
.

Definition A.10. Let f : X × {0, 1} → Y by an hypothesis. The estimated individual treatment effect:

τ̂f (x) = f(x, 1)− f(x, 0).

Definition A.11. The expected Precision in Estimation of Heterogeneous Effect loss of f :

ϵPEHE(f) =

∫
X
(τ̂f (x)− τ(x))

2
p(x)dx.

Following CFR (Shalit et al., 2017), we define mt(x) := E[yt|x], the expected variance of yt with respect to a distribution
p(x, t) is: σ2

yt(p(x, t)) =
∫
X×Y(y

t −mt(x))
2p(yt|x)p(x, t)dytdx, and σ2

Y = min
{
σ2
yt(p(x, t)), σ2

yt(p(x, 1− t))
}

. For

any function f : X ×{0, 1} → Y , and distribution p(x, t) over X ×{0, 1}, recall that
∫
X (f(x, t)−mt(x))

2
p(x, t)dxdt =

ϵF (f) − σ2
yt(p(x, t)),

∫
X (f(x, t)−mt(x))

2
p(x, 1 − t)dxdt = ϵCF (f) − σ2

yt(p(x, 1 − t)). Next, we provide an upper
bound for the expected Precision in Estimation of Heterogeneous Effect.

Theorem A.12. (Theorem 4.2. main text). Let ϵPEHE(h,Φ) be the estimation error with representation function Φ : X → R
with Ψ being its inverse and hypothesis h : R×{0, 1} → Y . For any treatment indicator t ∈ {0, 1}, let disc(Φt(x),Φt(x̃))
be the representation distance between counterfactual and factual samples. The error is bounded by:

14
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ϵPEHE(h,Φ) ≤
2(ϵt=1

F (h,Φ) + ϵt=0
F (h,Φ)− 2σ2

Y )+

2(disc(Φt(x),Φt(x̃)) + disc(Φt(x̃),Φ1−t(x))).

Proof. Recall that we denote ϵPEHE(f) = ϵPEHE(h,Φ) for f(x, t) = h(Φ(x), t) .

ϵPEHE(f) =

=

∫
X
((f(x, 1)− f(x, 0))− (m1(x)−m0(x)))

2
p(x)dx =

=

∫
X
((f(x, 1)−m1(x)) + (m0(x)− f(x, 0)))

2
p(x)dx ≤ (17)

2

∫
X

(
(f(x, 1)−m1(x))

2
+ (m0(x)− f(x, 0))

2
)
p(x)dx = (18)

2

∫
X
(f(x, 1)−m1(x))

2
p(x, t = 1)dx+

2

∫
X
(m0(x)− f(x, 0))

2
p(x, t = 0)dx+

2

∫
X
(f(x, 1)−m1(x))

2
p(x, t = 0)dx+

2

∫
X
(m0(x)− f(x, 0))

2
p(x, t = 1)dx =

2

∫
X
(f(x, t)−mt(x))

2
p(x, t)dxdt+

2

∫
X
(f(x, t)−mt(x))

2
p(x, 1− t)dxdt ≤

2
(
ϵF − σ2

Y

)
+ 2

(
ϵCF − σ2

Y

)
.

where Equation (17) is because (x+ y)
2 ≤ 2(x2 + y2), Equation (18) is because p(x) = p(x, t = 0) + p(x, t = 1).

Then, we can prove Theorem A.12 based on Lemma A.4 and Lemma A.8:

ϵPEHE(h,Φ) ≤
2(ϵF (h,Φ) + ϵCF (h,Φ)− 2σ2

Y ) ≤
2(ϵt=1

F (h,Φ) + ϵt=0
F (h,Φ)− 2σ2

Y )+

2(disc(Φt(x),Φt(x̃)) + disc(Φt(x̃),Φ1−t(x))).

The estimation error ϵPEHE(h,Φ) is upper bounded by two terms: the standard generalization error of factual prediction
ϵF and the distance constraints in the representation space. These distance constraints represent two types of alignment:
between counterfactual and factual samples Φt(x)TΦt(x̃), and between counterfactual and opposite group factual samples
Φt(x̃)TΦ1−t(x). By using contrastive loss to minimize these distances, sample-wise alignment is achieved, which helps
reduce the expected ITE estimation error by learning consist representations that effectively capture the characteristics of
potential outcomes under different treatments.

15
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B. Additional Technical Details
Based on reliable sample pairs (x, x̃), we leverage contrastive learning to effectively learn consistent representations
for individuals across different treatments, further obtaining balanced representations through fine-grained, sample-level
alignment. Additionally, we use two separate neural networks to estimate potential outcomes under varying treatments. The
detailed counterfactual contrastive learning strategy is provided in Algorithm 1.

Algorithm 1 Counterfactual Contrastive Learning
1: Input: Original dataset D = (x, t, y), batch size N , normalizing flow g, classifier k, step size λ, threshold Λ,

temperature τtemp, Encoder network Enc, Projection head Pro, prediction head h, hyper-parameters α, β ≥ 0.
2: Output: Predicted factual ŷf , counterfactual ŷcf .
3: Split D into training set Dtrain and validation set Dvalid.
4: # Stage 1: Generate counterfactuals for each sample
5: for each mini-batch in Dtrain do
6: z ← g−1(x)
7: for i = 1 to N do
8: ∇z ←

∂(k◦g)t
∂z

9: z̃ ← optimizer.step(λ,∇z)
10: if k(g(z̃))t > Λ then
11: return g(z̃)
12: end if
13: end for
14: Obtain counterfactuals {x̃i}Ni=1 from D̃.
15: end for
16: # Stage 2: Train encoder using contrastive loss with generated counterfactuals
17: repeat
18: Compute embeddings ci =Pro(Enc(xi)), c̃i =Pro(Enc(x̃i))
19: Calculate contrastive loss Lc using Equation (9).
20: Calculate predictive loss Lp using Equation (10), obtain predicted factual ŷf and counterfactual ŷcf .
21: Compute total loss Lt = Lp + αLc + β∥W∥2.
22: Update Encoder network and Projection head.
23: Terminate if converged on validation set Dvalid.
24: until convergence

C. Metrics
For datasets with known true treatment effects, we adopt two commonly evaluation metrics(Alaa & Van Der Schaar, 2017;
Cheng et al., 2022; Wu et al., 2022), namely the rooted Precision in Estimation of Heterogeneous Effect (

√
ϵPEHE) and the

absolute error of Average Treatment Effect (ϵATE) defined as:

√
ϵPEHE =

√√√√ 1

n

n∑
i=1

(τ(xi)− τ̂(xi))
2
, (19)

ϵATE =
∣∣∣ ˆATE −ATE

∣∣∣ = 1

n

∣∣∣∣∣
n∑

i=1

(τi − τ̂i)

∣∣∣∣∣ , (20)

where τi refer to the ground truth treatment effect of a subject, τ̂i is the estimated treatment effect.

On Jobs dataset where the ground truth counterfactual outcomes are unavailable(Zhu et al., 2021; Reddy & Balasubramanian,
2024), we employ the policy risk Rpol(πτ̂ ) and the bias of Average Treatment Effect on the Treated prediction ϵATT as
evaluation metrics:
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Rpol(πτ̂ ) = 1−
{
p(πτ̂ (x) = 1) · E[y1|πτ̂ (x) = 1]

+p(πτ̂ (x) = 0) · E[y0|πτ̂ (x) = 0]
}
,

(21)

ϵATT =

∣∣∣∣∣∣| 1

|T1|

|T1|∑
i=1

y1i −
1

|T0|

|T0|∑
i=1

y0i | − |
1

|T1|

|T1|∑
i=1

(
ŷ1i − ŷ0i

)
|

∣∣∣∣∣∣ , (22)

where πτ̂ : X → {0, 1} is a policy induced from an ITE estimator τ̂ (·) with πτ̂ (x) = 1 if τ̂(x) > 0 and τ̂(x) = 0
otherwise. This measures the average regret when treating with the induced policy πτ̂ and thus can serve as a proxy of the
ITE estimation error. |T1| and |T0| are the number of the units in the treatment and the control groups, respectively.

D. Additional Experiments.
D.1. Additional Experiments on IHDP dataset.

Existing covariate balance methods mitigate treatment selection bias across treatment and control groups by enforcing
distributional balance, but fail to account for boundary samples, which are scarce and situated far from the main data
distribution. These sparse boundary samples limit model’s generalizability, which is particularly pronounced in scenarios
with substantial individual heterogeneity. Focusing on and analyzing these samples can significantly enhance model
robustness and effectively reduce estimation errors.

We first provide a formal definition of boundary samples. Let the feature matrix be X ∈ Rn×d, where n is the number of
samples and d is a d-dimensional feature vector (e.g., age, sex). Let t ∈ {0, 1} denote the treatment assignment for each unit
i, where ti = 1 indicates the treated sample, and ti = 0 indicates the sample belongs to the control group.

The treated group center u1 and the control group center u0 are calculated as the mean values within each group:

u0 =
1

|T0|
∑
i∈T0

xi, T0 = {i|ti = 0} ,

u1 =
1

|T1|
∑
i∈T1

xi, T1 = {i|ti = 1} .

For each sample xi ∈ Rd, we calculate the distances between xi and the treated group center, and the control group center
respectively: d1(xi) = ∥xi − u1∥ and d0(xi) = ∥xi − u0∥. Taking the treated group as an example, we first sort all samples
in T1 by their distance to the control group center d0(x) in descending order and select samples with large distances to
exclude those in the overlapping region between treated and control groups. Among these candidates, we then select the top
k1 samples with the largest distance to their own group center d1(x) as treated group boundary samples. The value of k1 is
determined by the treated ratio n1 = |T1|

|T0|+|T1| , such that k1 = n1 · k, where k is the total number of boundary samples.

As previously mentioned, existing deep learning-based causal inference methods can generally be grouped into two
categories. The first category, exemplified by CFR, focuses on balancing the distributions of covariates between treated and
control groups in the representation space to mitigate selection bias. The second category, represented by ABCEI, uses
adversarial training to implicitly model the counterfactual distribution. To evaluate the robustness of different methods in
estimating ITE, we identify 30 boundary samples corresponding to each of these two representative methods (CFR and
ABCEI) and calculate the individual treatment effect estimation bias (ϵITE = |ITEpred − ITEtrue|) for each boundary
sample. Meanwhile, we also calculate the ITE estimation bias for these same samples using our FCCL. The results are
shown in Table 4 and Table 5.

We observe that our FCCL achieves significantly better performance than CFR and ABCEI. For example, compared to CFR,
22 out of 30 boundary samples achieve lower estimation errors, with an average error reduction of 81.83%. Similarly, our
FCCL also demonstrates impressive improvements over ABCEI, with 23 out of 30 samples achieving significantly smaller
ITE estimation errors. These results show that FCCL enables robust sample-level alignment, achieving more accurate and
stable ITE estimation.
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Table 4. The individual treatment effect estimation error of boundary samples for CFR-MMD and FCCL on IHDP dataset.

Sample ITEtrue
CFR-MMD FCCL Sample ITEtrue

CFR-MMD FCCL
ITEpred |ϵITE | ITEpred |ϵITE | ITEpred |ϵITE | ITEpred |ϵITE |

1 3.5205 -0.7059 4.2264 3.7350 0.2144 16 3.8053 0.8315 2.9738 -4.0517 7.8569
2 2.8730 5.9707 3.0977 2.8136 0.0594 17 2.7568 -1.8170 4.5739 -3.1549 5.9117
3 4.3918 4.3581 0.0337 4.3113 0.0805 18 0.9267 0.2564 0.6703 1.5344 0.6077
4 0.9640 -5.1606 6.1246 1.6058 0.6418 19 3.9234 0.9879 2.9355 4.0710 0.1477
5 -0.7087 -2.8101 2.1014 -0.4824 0.2263 20 2.8283 -1.0772 3.9056 3.0010 0.1726
6 3.1767 2.8624 0.3143 3.6967 0.5200 21 4.4578 1.3300 3.1278 4.5571 0.0993
7 2.1111 -0.6245 2.7356 -2.1950 4.3061 22 3.4389 2.1831 1.2558 3.5603 0.1215
8 4.5069 1.4256 3.0813 4.6920 0.1850 23 4.4578 -0.0649 4.5226 4.8985 0.4407
9 4.3352 1.7478 2.5874 4.5570 0.2218 24 4.3395 0.9931 3.3464 4.2455 0.0940

10 4.6119 2.6889 1.9231 4.8943 0.2824 25 4.5317 2.3423 2.1894 4.7399 0.2082
11 4.5069 -3.3979 7.9049 -4.7954 9.3024 26 0.3966 -4.1701 4.5667 0.3130 0.0836
12 3.0626 -0.6165 3.6791 3.5241 0.4615 27 4.5836 -1.3938 5.9774 5.0885 0.5049
13 4.6119 1.5407 3.0712 4.9734 0.3615 28 1.9660 -0.9089 2.8749 -1.4851 3.4511
14 3.6437 -3.7587 7.4024 -3.7375 7.3812 29 4.5283 4.1638 0.3646 4.2638 0.2645
15 4.4007 -2.5881 6.9888 -4.4562 8.8569 30 4.1820 1.9005 2.2815 4.1756 0.0064

Table 5. The individual treatment effect estimation error of boundary samples for ABCEI and FCCL on IHDP dataset.

Sample ITEtrue
ABCEI FCCL Sample ITEtrue

ABCEI FCCL
ITEpred |ϵITE | ITEpred |ϵITE | ITEpred |ϵITE | ITEpred |ϵITE |

1 4.6441 3.9641 0.6800 4.6739 0.0298 16 4.6354 7.2090 2.5736 4.7878 0.1524
2 4.6577 4.6809 0.0232 4.7763 0.1186 17 1.7826 1.2860 0.4967 3.1989 1.4163
3 4.6627 5.2865 0.6238 4.9184 0.2558 18 1.7884 1.2142 0.5742 2.3505 0.5620
4 -1.8670 -3.3532 1.4862 -2.5838 0.7168 19 3.4047 3.0164 0.3883 3.1130 0.2918
5 0.5711 0.5848 0.0137 -0.8183 1.3895 20 4.6441 3.0385 1.6056 4.6846 0.0405
6 4.5688 5.4534 0.8846 4.7526 0.1838 21 4.6354 -0.8909 5.5263 -4.8816 9.5170
7 2.1111 -1.7264 3.8375 -2.3312 4.4423 22 4.6687 3.5674 1.1013 4.8389 0.1701
8 4.6701 3.0477 1.6225 4.8280 0.1579 23 4.6687 1.9664 2.7024 4.8932 0.2244
9 4.5480 3.3778 1.1702 4.6724 0.1244 24 4.6701 -4.1481 8.8182 -5.2006 9.8707

10 4.4591 -1.0039 5.4630 4.7291 0.2701 25 1.1268 -2.0455 3.1723 0.7695 0.3573
11 4.3369 3.8228 0.5141 4.5132 0.1763 26 3.9765 4.4113 0.4348 4.2919 0.3153
12 4.6577 5.4907 0.8329 4.7580 0.1003 27 4.6672 3.1701 1.4971 4.7203 0.0531
13 4.6701 2.9026 1.7676 4.9135 0.2434 28 4.6517 -5.0671 9.7188 -4.9836 9.6353
14 4.6627 1.9303 2.7324 4.9797 0.3170 29 4.4322 1.9372 2.4950 4.5838 0.1516
15 4.5855 2.2245 2.3610 4.8239 0.2384 30 4.6687 -3.1260 7.7947 -4.9109 9.5797
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We perform sensitivity analysis focusing on three key parameters: the weight of contrastive loss α, the weight of model
complexity term β, and the temperature coefficient τtemp in the contrastive loss. In particular, we set α ∈ {0.1, 0.3, 0.5, 0.8},
β ∈ {1e-3, 1e-4, 1e-5, 1e-6}, and τtemp ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results in Figure 5 show that the contrastive loss,
as one of the core optimization objectives in our proposed FCCL, impacts the individual treatment effect estimation
performance. We find that FCCL is generally robust to different settings of these parameters. However, fine-tuning these
hyperparameters can still enhance ITE estimation performance.
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Figure 5. ITE estimation performance of our FCCL under different parameters on IHDP dataset.

D.2. Additional Experiments on Jobs dataset.

On the Jobs dataset, although the performance of representation learning is less satisfactory compared to adversarial training
to some extent, FCCL achieves comparable results to the baselines, particularly in the error metric ϵATT . The main reason
we identified is the limited data size on the Jobs dataset, which is further evidenced by the observation that traditional
methods often outperform deep learning on this dataset.

We also provide sensitivity analysis on Jobs dataset focusing on the weight of contrastive learning α, the weight of
model complexity term β, and the temperature coefficient τtemp. In particular, we vary the weight of the contrastive loss
α ∈ {0.2, 0.5, 0.8, 1.0, 1.2} while fixing β = 1e-4 and τtemp = 0.2. Similarly, we explore the effect of the regularization
weight β ∈ {1e-3, 1e-4, 1e-5, 1e-6} with α = 1.0 and τtemp = 0.2. For the temperature coefficient, we evaluate
τtemp ∈ {0.1, 0.3, 0.5, 0.7, 0.9} while keeping α = 1.0 and β = 1e-5. From the results in Figure 6, we find our
model is generally robust to different α settings and the best performance is achieved with α = 1.0.

Table 6. Within-sample and out-of-sample policy risk and error on the average treatment effect on the treated (ATT) for the various models
on Jobs dataset.

Method Rwithin
pol ϵwithin

ATT Rout−of
pol ϵout−of

ATT

OLS-1 0.22(0.02) 0.01(0.00) 0.23(0.02) 0.08(0.04)
OLS-2 0.21(0.01) 0.01(0.01) 0.24(0.03) 0.08(0.03)
BART 0.23(0.00) 0.02(0.02) 0.25(0.02) 0.08(0.04)
KNN 0.23(0.01) 0.02(0.00) 0.26(0.02) 0.13(0.05)
DML 0.23(0.01) 0.02(0.02) 0.24(0.02) 0.10(0.03)

CFR-Wass 0.23(0.01) 0.06(0.02) 0.26(0.02) 0.10(0.04)
CFR-MMD 0.22(0.00) 0.07(0.03) 0.27(0.01) 0.12(0.05)

SITE 0.23(0.01) 0.05(0.02) 0.25(0.02) 0.10(0.04)
CITE 0.23(0.00) 0.10(0.03) 0.26(0.02) 0.13(0.05)

GANITE 0.14(0.02) 0.27(0.74) 0.15(0.01) 0.31(0.56)
ABCEI 0.17(0.02) 0.05(0.02) 0.22(0.02) 0.15(0.08)
CBRE 0.30(0.00) 0.08(0.03) 0.31(0.00) 0.11(0.03)

DIGNet 0.23(0.01) 0.07(0.04) 0.26(0.01) 0.13(0.04)

FCCL 0.23(0.01) 0.05(0.01) 0.25(0.02) 0.07(0.03)
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Figure 6. ITE estimation performance of our FCCL under different parameters on Jobs dataset.

D.3. Additional Experiments on Synthetic dataset.

We generate covariates from the multivariate normal distributionN
(
0, γ · σ2 ·

[
ρ1p1

⊤
p + (1− ρ)Ip

])
, where the covariance

matrix combines an all-ones matrix 1p1
⊤
p and an identity matrix Ip. The scaling parameter γ ∈ {0.4, 0.7, 1.0, 1.2} controls

the degree of covariate dispersion, as shown in Figure 7. We sample 800 units with parameters p = 10, ρ = 0.2, σ2 = 3,
β0 = [0.2, ..., 0.2], and β1 = [1.2, ..., 1.2]. For each γ, we generate 30 independent datasets, dividing them into training,
validation, and test sets with ratios of 63%, 27%, and 10%, respectively. The data generation process is outlined as follows:

Xi ∼ N
(
0, γ · σ2 ·

[
ρ1p1

⊤
p + (1− ρ)Ip

])
,

Ti | Xi ∼ Bernoulli
(
1/(1 + exp

(
−1⊤

p Xi

))
),

Y 0
i = β0Xi + ξi, Y 1

i = β1Xi + ξi, ξi ∼ N (0, 1).

Figure 7 presents T-SNE visualizations of the covariates under different values of γ. At γ = 0.4, the treated and control
groups exhibit relatively concentrated distributions. As γ increases to 1.0 and 1.2, the covariate distributions become
significantly more dispersed, leading to a greater number of boundary and extreme samples. This trend highlights how larger
γ values represent greater heterogeneity, providing various scenarios for the individual treatment effect estimation.
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Figure 7. T-SNE visualizations of the covariates as γ varies.

We report additional experimental results as a supplement to the main text. Table 7 presents the results, where FCCL
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Table 7. Additional experimental results on Synthetic datasets.

Method γ = 0.4 γ = 0.7 γ = 1.0 γ = 1.2√
ϵwithin
PEHE

√
ϵout−of
PEHE

√
ϵwithin
PEHE

√
ϵout−of
PEHE

√
ϵwithin
PEHE

√
ϵout−of
PEHE

√
ϵwithin
PEHE

√
ϵout−of
PEHE

OLS-1 8.39(0.38) 8.41(0.84) 10.86(0.43) 10.85(1.34) 12.89(0.59) 13.00(1.68) 14.21(0.59) 14.32(1.55)
OLS-2 5.92(0.27) 5.94(0.60) 7.64(0.30) 7.64(0.96) 9.05(0.40) 9.13(1.18) 9.97(0.41) 10.07(1.11)
BART 4.04(0.22) 3.40(0.50) 4.70(0.20) 4.17(0.60) 5.36(0.31) 4.86(0.61) 5.81(0.26) 6.14(0.58)
KNN 4.55(0.33) 5.50(0.62) 6.48(0.37) 7.26(0.75) 7.91(0.38) 9.08(1.27) 8.76(0.46) 10.27(1.07)
DML 4.10(0.26) 3.96(0.54) 4.96(0.26) 5.30(0.62) 5.72(0.52) 6.08(0.80) 7.76(0.62) 8.46(0.77)

CFR-Wass 2.48(0.05) 2.48(0.06) 3.73(0.05) 3.60(0.09) 4.68(0.07) 4.72(0.14) 5.34(0.07) 5.37(0.14)
CFR-MMD 2.54(0.05) 2.54(0.06) 3.75(0.05) 3.62(0.09) 4.70(0.07) 4.74(0.14) 5.37(0.08) 5.41(0.14)

SITE 2.68(0.11) 2.69(0.13) 4.17(0.16) 4.25(0.23) 5.98(0.34) 6.01(0.38) 6.19(0.15) 6.21(0.17)
CITE 2.69(0.04) 2.71(0.07) 3.81(0.06) 3.70(0.10) 4.68(0.06) 4.74(0.14) 5.39(0.07) 5.41(0.14)

GANITE 4.66(0.03) 4.69(0.06) 6.20(0.03) 6.16(0.07) 7.32(0.03) 7.33(0.07) 8.08(0.03) 8.11(0.08)
ABCEI 2.73(0.03) 2.75(0.06) 3.74(0.04) 3.57(0.09) 4.61(0.05) 4.73(0.13) 5.19(0.06) 5.19(0.12)
CBRE 2.91(0.03) 2.93(0.05) 4.01(0.04) 3.85(0.08) 4.95(0.05) 5.02(0.12) 5.77(0.06) 5.73(0.13)

DIGNet 3.17(0.09) 3.18(0.11) 4.09(0.10) 3.97(0.13) 5.05(0.10) 5.10(0.17) 5.78(0.09) 5.81(0.15)

FCCL 2.56(0.04) 2.58(0.06) 3.65(0.05) 3.50(0.09) 4.40(0.06) 4.49(0.13) 5.10(0.06) 5.12(0.12)

achieves smaller
√
ϵPEHE than baselines, especially when covariate distributions become increasingly dispersed (e.g.,

γ = 1.2). This demonstrates our method’s superior capability in capturing individual-level heterogeneity, especially under
high covariate dispersion with sparse boundary samples.
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