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Abstract. We present a multimodal approach to open-vocabulary seg-
mentation in medical imaging by training five modality-specific models
using a unified architecture based on the SAT model. Each model is tai-
lored to a specific imaging modality—CT, MRI, Ultrasound, Microscopy,
and PET, while maintaining architectural consistency to ensure compa-
rability and generalizability. To address the challenge of limited data
availability, particularly in modalities like Ultrasound and Microscopy,
we implement distinct sampling strategies designed to maximize anatom-
ical and pathological diversity across training cases.
We aim to evaluate the effectiveness of open-vocabulary segmentation
across diverse medical imaging modalities using consistent text prompts
and unified label representations. For CT, MRI, and Ultrasound, per-
formance is reported using Dice Similarity Coefficient (DSC) and Nor-
malized Surface Dice (NSD), while for Microscopy and PET, we follow
challenge-specific guidelines and report F1 scores. On the official vali-
dation set, the models achieved: CT (DSC: 0.3280, NSD: 0.3043), MRI
(DSC: 0.2909, NSD: 0.3566), Ultrasound (DSC: 0.7656, NSD: 0.7485),
Microscopy (F1: 0.3966), and PET (F1: 0.2906). These preliminary re-
sults demonstrate the viability of modality-specific training within an
open-vocabulary framework and provide a foundation for further im-
provements.
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1 Introduction

Supervised medical image segmentation has traditionally relied on fixed-class
models trained with dense annotations. Large-scale efforts such as TotalSegmen-
tator [16] and DukeSeg [1] exemplify this approach by enabling high-accuracy
segmentation across 100+ predefined anatomical structures in Computed To-
mography (CT) scans. While these models are robust within their respective
label sets, they inherently lack the flexibility to handle unseen categories or
user-defined prompts. This limitation has driven increasing interest in open-
vocabulary segmentation, which enables segmentation tasks via free-text de-
scriptions [22]. Foundation models such as Segment Anything Model (SAM)[8]
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and SAM2[14] have demonstrated impressive segmentation capabilities through
user-interactive prompts in natural image domains. However, these interactive
foundation models inherently lack support for text-based guidance. Extending
open-vocabulary segmentation principles from natural images [9], [18], [17] to
medical images introduces unique complexities. Medical datasets frequently suf-
fer from limited annotated data, requiring innovative sampling strategies for ro-
bust model training. Moreover, the computational demands of open-vocabulary
models challenge their feasibility on large, high-resolution medical volumes.

Further complicating medical image segmentation is the intrinsic diversity of
medical imaging modalities. CT scans are volumetric with relatively coarse tex-
tures, whereas microscopic images reveal cellular-level details at substantially
higher resolutions, involving vastly different texture patterns. Such variabil-
ity, in dimensionality, resolution, and texture—makes it particularly challeng-
ing to develop a universally effective segmentation model. To overcome these
hurdles, recent interactive medical segmentation methods such as SegVol [2],
SAM-Med3D [15], VISTA3D [4], and nnInteractive [3] leverage user interactions
for refinement but do not support open-ended text prompts. Text-guided seg-
mentation approaches, by contrast, explicitly leverage natural language. BioMed-
Parse [20] initiated this strategy for 2D biomedical images, while CAT [5] and
SAT [21] have successfully extended text-guided open-vocabulary segmentation
to 3D medical modalities.

Given the substantial diversity in medical imaging modalities—such as Com-
puted Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Mi-
croscopy, and Positron Emission Tomography (PET)—developing a single uni-
versal segmentation model is highly challenging. Unlike natural images, these
modalities vary significantly in dimensionality, texture, and resolution. Crucially,
in clinical practice, clinicians inherently know the imaging modality being uti-
lized, and this modality-specific information can be strategically leveraged to en-
hance segmentation performance. Therefore, rather than training one universal
model, we propose training separate modality-specific models, explicitly tailored
to the unique characteristics of each imaging type. Building upon the recently
proposed SAT model [21], which has demonstrated strong performance in text-
guided 3D medical segmentation, we develop five distinct SAT-based models [21],
each fine-tuned with targeted sampling strategies optimized for their respective
modality.

In this challenge, we leverage the provided text prompt to automatically infer
the imaging modality. Once the modality is identified from the input prompt and
image, the corresponding modality-specific model is dynamically selected and
executed. This ensures optimized segmentation performance by automatically
routing the task to the best-suited modality-specific SAT model, streamlining
the segmentation process across diverse medical imaging scenarios.
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2 Method

In our approach, we develop five independent models, one for each imaging
modality (CT, MRI, PET, Ultrasound, and Microscopy), all based on the same
SAT architecture [21] but trained with modality-specific data and weights.

2.1 Network Architecture

Figure 1 illustrates our modality-specific adaptation of the SAT architecture.
Each model shares the same underlying structure but is independently trained
on data from a specific imaging modality, allowing the architecture to specialize
in the visual characteristics unique to that domain. During inference, a prompt
parser identifies the modality from the input text, enabling automatic selection
of the corresponding SAT model to perform segmentation. This design preserves
architectural consistency while enabling tailored performance across diverse med-
ical imaging modalities.

Fig. 1. (a) During training, we independently train five modality-specific models, one
each for CT, MRI, PET, Ultrasound, and Microscopy, using the same SAT architecture,
with separate weights for each modality.(b) During inference, a prompt parser module
analyzes the input text to infer the imaging modality. Based on the inferred modality,
the corresponding SAT model is selected and used to generate the segmentation mask.
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2.2 Prompt Encoder and Decoder

Encoder We are using the Text Encoder of SAT [21] that uses a BERT-based
transformer trained on biomedical texts, further enhanced via contrastive learn-
ing using anatomical definitions and visual examples. It outputs a knowledge-rich
embedding of the medical term.

Decoder A transformer query decoder refines the text embedding by attend-
ing to image features. The final segmentation mask is generated by computing
similarity between the refined text embedding and image features.

2.3 Loss Function

The SAT model uses a combination of Dice loss and Binary Cross-Entropy (BCE)
loss [10]. Dice loss handles class imbalance by focusing on overlap between
predicted and ground truth masks, while BCE ensures pixel-level accuracy.

2.4 Coreset selection strategy

For the Coreset Track, we were restricted to using only 10% of the full training
dataset. To construct a representative and diverse subset, we designed a sam-
pling strategy that ensures broad coverage across modalities and datasets while
favoring samples rich in segmentation labels.

Our sampling process adhered to several key constraints: (1) the final subset
must be approximately 8.2% of the total dataset size, (2) each dataset must
contribute at least five samples to maintain diversity across sources, and (3)
each imaging modality must be represented by at least fifty samples to preserve
modality balance.

We first filtered out corrupted or invalid data and computed label presence
for all usable files. Sampling was performed in two phases. In the first phase, we
enforced the per-dataset and per-modality minimums through weighted random
selection, where samples with more labeled structures were more likely to be
chosen. In the second phase, we filled the remaining quota with globally sampled
files, again guided by label richness. To ensure consistency and reproducibility,
a fixed random seed was used throughout. The resulting subset was saved in a
structured JSONL format and used to train our model.

2.5 Post-processing

During inference, we perform a simple post-processing step to identify the ap-
propriate model for segmentation. We analyze the input prompt to detect the
presence of modality-specific keywords such as "CT," "MRI," "Ultrasound," or
"Microscopy." If a known modality is detected, we load the corresponding model
weights and run inference using that modality-specific SAT model. In cases where
no explicit modality is found in the prompt, we default to using the CT model
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for segmentation, as a fallback strategy for this challenge. This ensures that the
model selection process is both automated and robust to incomplete prompt
information.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [12], including more 3D cases from public datasets1 and covering
commonly used 3D modalities, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound,
and Microscopy images. The hidden testing set is created by a community effort
where all the cases are unpublished. The annotations are either provided by the
data contributors or annotated by the challenge organizer with 3D Slicer [7] and
MedSAM2 [13]. In addition to using all training cases, the challenge contains a
coreset track, where participants can select 10% of the total training cases for
model development.

The text-guided segmentation task contains both semantic segmentation and
instance segmentation. For the semantic segmentation task, the evaluation met-
rics include Dice Similarity Coefficient (DSC) and Normalized Surface Distance
(NSD) to evaluate the segmentation region overlap and boundary distance, re-
spectively. For the instance segmentation task, we computed the F1 score at an
overlapping threshold of 0.5 and DSC scores for true positives. In addition, the
algorithm runtime will be limited to 60 seconds per class. Exceeding this limit
will lead to all DSC and NSD metrics being set to 0 for that test case.

3.2 Implementation details

Preprocessing Following the practice in MedSAM [11], all images were pro-
cessed to npz format with an intensity range of [0, 255]. Specifically, for CT
images, we initially normalized the Hounsfield units using typical window width
and level values: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80,
L:40), and bone (W:1800, L:400). Subsequently, the intensity values were rescaled
to the range of [0, 255]. For other images, we clipped the intensity values to the
range between the 0.5th and 99.5th percentiles before rescaling them to the range
of [0, 255]. If the original intensity range is already in [0, 255], no preprocessing
was applied.

Environment settings The development environments and requirements are
presented in Table 1.

1 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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Table 1. Development environments and requirements.

System Ubuntu 20
CPU 128 AMD EPYC 7000 series
RAM 1024 GB
GPU (number and type) Four NVIDIA RTX A6000 48G
CUDA version 12.2
Programming language Python 3.11.11
Deep learning framework torch 2.6.0

Data Augmentation We applied a diverse set of data augmentations, inspired
by the nnU-Net framework [6], to improve model generalization and robust-
ness. These included geometric (rotation, scaling, mirroring), intensity (contrast,
brightness, gamma, noise, blur), and resolution-based transformations. Augmen-
tations were applied probabilistically during training to simulate real-world vari-
ability in imaging conditions and anatomical presentations.

Table 2. Training protocols.

Pre-trained Model SAT Text Encoder
Batch size 1
Patch size 288×288×96
Total iterations 50000
Optimizer Adam
Initial learning rate (lr) 1e-4 and 1e-5
Lr decay schedule cosine annealing
Loss function BCE and Dice
Number of model parameters 220.9M2

Number of flops G3

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 summarizes our modality-specific adaptation of SAT alongside the base-
line SAT and CAT methods. Because we trained our models for far fewer it-
erations than the baselines, most preliminary results remain below the perfor-
mance of the fully trained SAT and CAT. However, for modalities with smaller
datasets, namely microscopic images, ultrasound, and PET, the limited training
still allowed the model to see every example, leading to strong segmentation
performance. In fact, our adaptation outperforms both SAT and CAT on PET
and microscopic image segmentation, as shown in the table.
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Table 3. Quantitative evaluation results of the validation set on the coreset track.
Our proposed method, denoted as SAT-{modality}, trains a separate model for each
imaging modality to better handle modality-specific characteristics.

Modality Method Sematic Segmentation Instance Segmentation
DSC NSD F1 DSC TP

CT
CAT 0.6035 0.2573
SAT 0.6432 0.1032
SAT-CT(Ours) 0.3280 0.3043

MRI
CAT 0.4255 0.1511
SAT 0.4526 0.0373
SAT-MRI(Ours) 0.2909 0.3566

Microscopy
CAT 0.0211
SAT 0.2475
SAT-Microscopy(Ours) 0.3966

PET
CAT 0.1106
SAT 0.2623
SAT-PET(Ours) 0.2906

Ultrasound
CAT 0.8180
SAT 0.7549
SAT-Ultrasound(Ours) 0.7656 0.7485

4.2 Qualitative results on validation set

The qualitative results show that our open-vocabulary model can achieve strong
performance on well-represented structures, e.g., lungs in CT, the prostate on T2-
weighted MRI, and cardiac chambers in ultrasound—yielding high Dice scores
as shown on Figure 2 even with limited training. At the same time, it entirely
failed to delineate branching airway structures in CT and to segment brain
tumors on MRI, both of which pose more complex anatomical and contextual
challenges that the model couldn’t learn in the limited training time. Likewise,
limb segmentation in ultrasound was unsuccessful, reflecting the lack of similar
examples in the training set. Altogether, these findings underscore the difficulty
of open-vocabulary segmentation in medical imaging, where diverse modalities
and intricate anatomy demand richer contextual knowledge than what models
typically acquire from natural-image datasets.

4.3 Results on final testing set

4.4 Limitation and future work

Due to our late participation in the challenge, we were unable to fully train the
model. As a result, our current model was trained for only 30,000 iterations,
approximately one-tenth of the training iterations used by the baseline mod-
els. This limited training particularly impacted performance on CT and MR
modalities, which have larger datasets, leading to suboptimal results on these
modalities in the current validation set.
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Fig. 2. Segmentation results for CT, MRI, and ultrasound modalities, showing both
the best- and worst-performing cases (by Dice score) in each modality. The first three
rows represent the best-performing cases, while the last three rows depict the worst-
performing cases. In each row, the first column displays the original image slice; the
second overlays the ground-truth segmentation; and the third overlays the model’s
prediction with the corresponding Dice similarity coefficient (DSC) annotated.
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To address this, we are now conducting extended training runs to improve
performance. Additionally, instead of using a single unified model for all imaging
modalities, we are training five separate models, one for each modality. This
decision stems from the significant heterogeneity across imaging types, which we
believe warrants modality-specific architectural choices. For example, we plan
to implement specialized loss functions tailored for segmenting small anatomical
structures or adopt diffusion-based methods for improved tumor or pathology
segmentation.

Inspired by the SAT approach, which effectively aligns image and text fea-
tures, we aim to retain the text encoder while enhancing the image encoder
to better capture visual representations. Since open-vocabulary segmentation is
computationally intensive, we are concurrently optimizing our training pipeline
to accelerate training within this paradigm. We believe these targeted improve-
ments will significantly enhance model performance in future iterations.

5 Conclusion

In this work, we trained five separate models, each dedicated to a specific imag-
ing modality, rather than relying on a single unified model. We believe this
modality-specific strategy is more effective given the significant differences in
data characteristics and anatomical structures across modalities.

Preliminary results indicate promising performance on modalities such as
microscopy and ultrasound, where the models were able to converge well within
the limited training period. However, for modalities like CT and MRI, which
typically require more extensive training due to larger datasets and greater vari-
ability, convergence was not achieved within the restricted timeframe.
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