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Abstract

An interactive robot framework accomplishes long-horizon task planning and can easily
generalize to new goals and distinct tasks, even during execution. However, most traditional
methods require predefined module design, making it hard to generalize to different goals.
Recent large language model based approaches can allow for more open-ended planning but
often require heavy prompt engineering or domain specific pretrained models. To tackle this,
we propose a simple framework that achieves interactive task planning with language models
by incorporating both high-level planning and low-level skill execution through function
calling, leveraging pretrained vision models to ground the scene in language. We verify the
robustness of our system on the real world task of making milk tea drinks. Our system is able
to generate novel high-level instructions for unseen objectives and successfully accomplishes
user tasks. Furthermore, when the user sends a new request, our system is able to replan
accordingly with precision based on the new request, task guidelines and previously executed
steps. Our approach is easy to adapt to different tasks by simply substituting the task
guidelines, without the need for additional complex prompt engineering. Please check more
details on our Project Page|and

1 INTRODUCTION

The rise of Large Language Models (LLMs) and proliferation of chatbots highlight the importance of
human interaction in Al systems. Beyond merely executing user commands, an autonomous agent should
fluidly receive and incorporate feedback at any step during the execution process. Consider the seemingly
straightforward human task of preparing a flavorful milk tea drink, which we study in this work. Such a task,
while simple to humans, requires a robot agent to decompose it into numerous intermediate steps. Not only
does the robot need to generate and execute the steps precisely, but the robot should also remain receptive to
real-time modifications or feedback to the initial request. For example, the user might request some boba to
be added to their drink. A robot should be able to seamlessly incorporate such interaction during operation.

In light of these challenges, we propose a simple framework for Interactive Task Planning with language
models, denoted as ITP. Our framework leverages LLMs to plan, execute, and adapt to user inputs throughout
the task lifecycle. illustrates an exemplary interaction with our system. Our primary objective is to
offer a blueprint for deploying real-world robotic systems that harness pretrain language models to coordinate
the execution of lower-level skills of a robot in a simple manner.


https://openreview.net/forum?id=GAhGMttRIo
https://wuphilipp.github.io/itp_site
https://youtu.be/TrKLuyv26_g
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Figure 1: An overview of ITP. ITP generates high-level plans and executes the low-level robot skills through
LLMs. Our system generates a high-level plan based on user requests and task guidelines. When the system
is interrupted with a new request, the system will replan, taking into consideration prior completed steps and
task guidelines. Each step of the plan is executed by leveraging an LLM executor, equipped with additional
visual grounded outputs, to call lower-level skills. In the example shown, the user first requests ‘May I have a
cup of milk with taro?’, a request for which the high-level plan is not provided in the task guidelines. After
the robot has finished the first step, the user wants to revise the order to a boba milk. Our system is able to
replan and make a new set of high-level steps based on the new request, a history of completed steps, and
task guidelines, which can then be completed by the lower level execution module.

In this work, we utilize GPT-4 as the language model backbone. ITP consists of two primary
modules. First, a high level planner, which takes as input a prompt and a user request to specify the task and
outputs a step by step plan. Second, a low level executor, which tries to achieve a given step by converting
robots skills into a functional API, which enables GPT-4’s function calling capabilities to directly interact
with the robot, abstracting code level details from the system. I'TP does not require the training of additional
value functions such as SayCan (Zeng et al., 2022; |[Huang et al. 2023), and does not require code level
prompts such as Code as Policies(Singh et al., [2023) or ProgPrompt (Liang et al., 2022). Furthermore, ITP
dynamically generates novel plans and re-adjusts its plan based on user input. We hope our framework will
be useful for accomplishing a wide range of interactive robot tasks and will release our codebase to foster
advancements in this field. We outline the key features of ITP below:

1. ITP is a training-free robotic system for interactive task planning with language models with a
focus on simplicity. We showcase ITP in the context of a real-world boba drink-making robot that
integrates planning, vision and skill execution.

2. ITP leverages a simple prompt format, which we show is effective across simulated and real settings.
Additionally, our ITP system converts the lower-level skills into a functional language-based API that
can be leveraged by any function calling LLM (ie. GPT-4). This enables a user to prompt the system
through natural language rather than code, removing the need for code-level prompt engineering.
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3. Our system exhibits robustness in adapting to user requests during execution, allowing it to consider
the updated goals, previously completed steps, and task guidelines in order to replan new steps.

2 RELATED WORK

2.1 Task planning

Task planning, the problem of developing a plan to achieve a desired goal, is an integral component of our
work. Traditionally, task planning in the robotics commonly leverages symbolic planners which reduces the
planning problem into a search problem (Ghallab et al., |2004; Bonet & Geffner), 2001)). Practitioners often
define the problem in a declarative language (Jiang et al., 2019} |Ghallab et al., (1998} Lifschitz, 2008 [Fikes &
, which can be restrictive as it requires meticulous definitions of the problem parameters, such
as actions, their preconditions and their effects. Task and motion planning (TAMP), takes task planning a
step further and also jointly considers the lower level execution during higher level planning
[2020a; Mansouri et al.| 2021). TAMP methods also consider symbolic representations and leverage search
algorithms to extract the final sequence of lower-level primitives and has seen success in robotic manipulation
(Siméon et all [2004; |Garrett et al., 2017 |2020b)). As the search space can often be prohibitively large, some
methods leverage hierarchy and/or sampling (Bacchus & Yang|, 1991} Plaku & Hager) |2010; [Kaelbling &/
[Lozano-Pérez, 2011} |Kaelbling & Lozano-Pérez, |2013)). Our approach replaces traditional planning pipelines
with LLMs, offering common-sense reasoning, enhanced interaction capabilities, and the ability to define the
problem’s scope using natural language.

2.2 Language Models as Planners in Robotics

Due to the popularity of LLMs, there has been a rising interest in leveraging LLMs as a policy in robot
systems. One work in this direction leverages LLMs as zero-shot planners in simulated embodied settings
(Huang et al., 2022) by converting the scene and task definitions into language, then letting the LLM directly
predict actions. Works such as Socratic models, SayCan, and Grounded decoding (Zeng et al., |2022; |Ahn|
let al.l [2022; [Huang et all 2023)) follow in this line of work, coordinating many large pre-trained models with
a robot to solve various tasks. In contrast to approaches like SayCan (Zeng et all [2022), which necessitate a
pretrained value function to ground actions, we rely on prompting the language model with task guidelines
and robot skills. This implicitly encodes preconditions and effects, reminiscent of traditional declarative task
planning approaches but can be done so with natural language, which is more expressive and easier for the
average user to tune. G-PlanET explores using language models for robot task planning by
generating high-level subgoals in simulated environments. Tidy bot shows that LLMs can
help a robot follow a user’s preferences based on a few examples. We also prompt the model with a small set

of examples but explore generalization to new goals. Reflect (Liu et al., |2023b)) uses large models to make an
agent recount their experiences and correct failures. LLMs have also been used to allow robots to seek help

when uncertain (Ren et al. [2023).

A related approach, used in Code as Policies (Liang et all [2022) and ProgPrompt (Singh et all, [2023),
leverages the code writing capabilities of LLMs to generate code that a robot agent can execute directly. This
often requires heavy prompt engineering of example code to show the model how to properly use the provided
functions to accomplish a directive. Language-guided Robot Skill Learning , like us, takes a
hierarchical approach to LLM planning, but assumes access to the simulator which provides ground truth
state information. Voyager (Wang et al.l [2023) uses LLMs to build a lifelong learning agent for Minecraft by
having the agent explore and solve new tasks through writing code that interacts with the API.

Our work falls into this general category of leveraging LLMs to plan, and then execute actions in the
environment. In contrast to prior work, we allow the LLM to generate a high-level plan based on contextual
information. These low-level plans are then executed directly by an LLM with access to the functional API
of the robot using a pre-trained VLM to ground the visual scene into primitives. Our work focuses on how to
instantiate such a system in the real world.
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Options:

Pure milk, Strawberry milk, Boba milk

Instructions:

Pure milk

Material: milk

Steps:

0) get an empty cup and bring it to the working area
1) pour the milk into the working cup

2) put the working cup in the finished location
Strawberry milk

Material: strawberry jam, milk

Steps:

0) get an empty cup and bring it to the working area
1) add strawberry jam to the working cup

2) pour the milk into the working cup

3) put the working cup in the finished location

Boba milk

Material: ©boba, milk

Steps:

0) get an empty cup and bring it to the working area
1) add boba to the working cup

2) pour the milk into the working cup

3) put the working cup in the finished location
Available material we have now:

boba, strawberry jam, mango jam, matcha powder, taro, milk,blueberry

Task Guidelines 1: The task guidelines we use for our drink making experiments. Task guidelines only need
contain simple; human interpretable few shot examples and a description of relevant assets in the scene.

3 METHOD

ITP offers a blend of high-level planning and low-level execution, powered by LLMs. In contrast to prior
work (Liang et al. 2022} [Singh et al.| [2023]), our approach enables the LLM to create a high-level plan
informed by contextual information in the form of a list of steps. Each step of this plan is subsequently
realized by another LLM with access to the functional API of the robot. A pre-trained VLM grounds the
visual scene into language. Our work focuses on how to instantiate such a system in the real world. Our
framework, shown in with a more detailed breakdown in consists of a hierarchy of two
levels, the high level and low level.

3.1 High-level Planning

LLMs for Planning. We utilize GPT-4 as our language model, one of the most capable
LLMs available at the time of this writing. The high-level planner takes as input a given prompt, task
guidelines, and a user request, and outputs a step-by-step plan to execute the request. It also retains past
user interactions for any necessary replanning.

Simple Prompting Strategy. Task guidelines, described using natural language, outline the scope of
the robot’s tasks and are provided to the high-level planner. The prompt contains the user’s request and
task guidelines which contain few-shot prompt examples of plans in the given domain of interest, and a
description of the available materials to the robot. In our milk tea system, the task guidelines consist of
a select set of menu items, their corresponding preparation steps, and a list of relevant ingredients. This
includes the procedures for a few drinks like ‘pure milk’ and ‘boba milk’. See[Task Guidelines 1| for the exact
task guidelines we used in our experiments. Our system utilizes these guidelines to determine the feasibility
of making a new drink based on available materials. Leveraging LLMs’ few-shot learning capabilities (Brown
, ITP can generalize from the baseline guidelines to make detailed steps for other drinks such as
‘boba strawberry milk’ or ‘taro milk’.

3.2 Low-level Execution

The low-level executor takes each generated step and does its best to complete it successfully, conditioned
on additional information about the scene and available robot skills. We use pretrained vision modules to
convert the scene into a language compatible format. Additionally, we translate robot skills into a functional
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API, automatically translating the python docstring of the robot skills into callable functions by the language
model.

Visual Scene Grounding. The role of the vision module in our system is to process the camera inputs into
concise language descriptions of the scene, which can further be processed for planning and task execution
downstream. In our drink-making system, the visual grounding system accepts a list of menu items and
generates corresponding bounding boxes. Using a simple projective mapping, we then approximate the x and
y locations of each item in the robot frame. We employ the pretrained VLM: Grounded-DINO
2023a)), a variant of the original DINO model (Caron et al.,[2021) fine-tuned for extracting 2D bounding boxes
given language descriptions. The final text description is represented as a dictionary of object description
to (z, y) location. The vision system gives a holistic ‘understanding’ of the scene, despite the location
assignments being imprecise.

Robot Skill Grounding. The language model interfaces with a predefined skill set in Python that controls
the robot. These skills are translated into a functional API by parsing of function definitions and related
doc strings. This can be directly used with GPT’s function-calling layer . In contrast to
methods like ProgPrompt or Code as Policies, our system does not require examples or function internals
when prompting the LLM. Instead, more detailed prompting of the language model can be specified via
natural language in the documentation of the functions.

o We adopt Grounded-DINO for capturing
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5 / -
1 = b T k \ s B s
. | \ Il
| || B! B -
| il < . | g
) | ( ~ \
{ Wﬂ\\ ' \ 1 ¢ \gut ) ji
‘ W \ B\ \\%\ /.
g™ S bk. ' ":-f =19 N
P - o = o o = L
| T b - 4= b 8 o 3
== % = & 3 ,
Initialization Stage High-level step1: grasp the empty cup  High-level step1: grasp the empty cup  High-level step2: add boba into the cup
User request: Can | have a taro milk? Low-level action: (then, we replan for the new request) Low-level action:
i © grasp_empty_cup_from_stack() Low-level action: place_cup() scoop_boba_to_location()

i

o

£

\ 7 | ‘ \ \ \ 5 \.‘\
S e i e | 7}\&7 ®_ b O
- - ™ D i 1;.
g §) . o % Tod T -

High-level step2:

add boba into the cup
Low-level action:
scoop_boba_to_location()
(during execution)

High-level step 3: add taro into the cup  High-level step 3: add milk into the cup High-level step 4: place the cup in the
Low-level action: grasp_cup(), pour(), Low-level action: grasp_cup(), pour(),  final workspace of the table
place_cup() place_cup() Low-level action: grasp_cup(),

. place_cup()

In grasp_cup(), we use Grounded-DINO to locate the objects to grasp accurately

Figure 2: An example of ITP to make a cup of taro milk with boba. Our system first makes a high-level plan
based on the users request using GPT-4: step 1) grasp the empty cup, step 2) add taro into the cup, step 3)
add milk into the cup, step 4) place the cup in the final workspace. For each step in the high-level plan, we
feed step into another instance of GPT-4 and obtain the corresponding low-level actions which is directly
executed on the robot. As for the perception component, ITP uses Grounded-DINO to capture the general
location of each object and locate the object accurately when taking the actions. However, after grasping the
empty cup, the user sends a new request ‘May I change to a taro boba milk?’. Considering the history of
completed steps, the system replans and generates the following high-level steps and low-level executions.
The following plan has been changed to: step 2) add boba into the cup, step 3) add taro into the cup, step 4)
add milk into the cup, step 5) place the cup in the final workspace.
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- Y The current scene looks like this: Scene Description
-{task_guidelines} High-level Plan {scene_description) <f————i— scene = {

L Can you use he robot uncions 1o “cup with mik: 0,667, -0.266),

Set A= all the materials we have now. Step 1: get an empty cup and put it on the table | | complete: {step}? "bowl with boba": (0.535, -0.47),

Set B = all the materials we need. Step 2: add taro into the empty cup After completion, respond with a summary :'cup with taro” (0. 23”, -0.46),

Print Set A in the first line. Step 3: pour the milk into the cup of the execution. Make sure to put things ‘cup with strawberry": (0.37, -0.865),

Print Set B in the second line. Step 4: put the cup in the finished location back after using them. “cup stack”: (0.4, 0.0),

Print Set C in the third line where Set C are the items in Set B that “finished location": (0.15, 0.5),
are not in SetA

If Set C is not empty, provide unique element and respond with "Set

Cis not empty"; else, respond with a numbered list of steps, where Low-level Actions
each step is in a new line (the steps should closely match one of the
guidelines). GPT- GPT-4 grasp_empty_cup_from_stack()

Replan
Completed Steps

“trash_location" (0.6, -0.4).}

So far the robot has completed these steps: def grasp_empty_cup_from_stack(self, x: float, y: float) -> Tuple[bool, str]:
Step 1: get an empty cup Hpe{completed_steps). “"Grab an empty cup at the given x, y coordinates from the stack.
and put it on the table The user has requested some feedback now: Should only be used on a cup stack.
- Args:
/‘ﬁnew,request) High-level Plan (after replanning) X (float): The x coordinate of the object
- . v (float): The y coordinate of the object.
:”‘fga‘ :‘:::ge foataro Ifthe user wants to add something, directly add one step and keep g:zg g ;ggxﬁzﬂ:ﬁ:ﬁ:}f ;’:Z‘l‘f;u” Returns:Tuple[bool, sir]: Whether the grasp was successful and a message.""
the original steps unchanget X #approach the cup
For other requests, can you first print a summary of the current Step 4: put the cup in the finished location X_app, y_app = get_x_y_offset(x, y, offset=OFFSET)
users request after their feedback? Then like before self._robot.command_ee_pos(x_app, y_app, Z_STACK)
SetA= all the materials we have now. # grab the cup
Set B = all the materials we need. y:

Print Set A in the first line.

description = "cup®
Print Set B in the second line.

self._feedback_policy.grasp(

Print Set C in the third line where Set C are the items in Set B that self_robot, “cup’, x, y, Z_STACK, rotz=True)

are not in Set A except aser

If Set C is not empty, provide unique element and respond with "Set Execute next steps print(e)

Cis not empty”; return False, Grasp failed: (e}’

else, respond with a new numbered list of steps, where each step is # backup

in a new line (the steps should closely match one of the guidelines). self,_robot.command_ee_pos(Z_STACK + DELTA_2) # lft

steps already completed should be excluded from the new list. If self._robot.command_ee_pos(x_app, y_app, Z_STACK + DELTA_Z)
you need to start from scratch, then put the existing cup in the trash return True, "Grasp successful’

location and get a new empty cup.

Figure 3: Detailed diagram of ITP with specific examples of user requests and task guidelines and replanning.
During “Plan”: we feed user requests and task guidelines to complete the prompt and input it into GPT-4 to
obtain a high-level plan. We input the history of completed steps and next step to prompt into the lower level
executor to call the corresponding low-level actions. Once the lower level executor completes a step, we will
maintain the history by storing it into Completed Steps. GPT-4 directly makes function calls to a predefined
robot skill library (which could be learned or handcrafted). During “Replan”: we feed the completed steps and
new request to create a new prompt, we append this new prompt to the previous conversation context and
input the whole message into GPT-4 to obtain a new high-level plan. We refer this procedure as replanning,
which previous language-based task planning methods have not considered. The low level executor then
completes the next steps based on the new high-level plan.

3.3 Replanning

Beyond the aforementioned components, ITP considers new requests from the user as human-in-the-loop
feedback. We allow a human to interpret the robot execution at any stage with a new prompt. This then
triggers our replanning pipeline. The system will consider completed steps, task guidelines, the new request,
and the chat history to generate a new plan. The details of replanning are see in We also showcase
ITP’s adeptness in planning and adaptive replanning of the same example in

4 EXPERIMENTS

4.1 Robot Experiments

In our experiments, we focus on a drink-making system. Within the given scene, the robot is supplied with a
set of ingredients that it must combine to produce a specific drink. Our setup also has includes an overhead
camera that captures image of the scene. We leverage Grounded-DINO to process the overhead camera
images for open vocabulary object detection and scene understanding.

For the robot, we provide a predefined set of skills, which include actions like “grasp_ cup", “pour", and
“scoop__boba_ to_location". The “grasp_ cup" skill is implemented with a feedback policy that centers the
gripper on the cup, given the approximate location from the scene description, enabling the robot to grasp it
reliably. The “pour" skill is designed to accept a location and a descriptive cue of the ingredient being poured.
This level of specification enables milk to be poured more than specific flavors. For example, when making a
matcha latte, the pour function is provided “matcha” or “milk” as input. When the input is “matcha”, the
controllable tilt angle will be small, while when the input is “milk”, the controllable tilt angle will be much
larger. This ensures that the robot can pour more milk and a bit of matcha liquid.
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User Request Difficulty Level Code as Policies ITP

High-level Planning Success High-level Planning Success

I would like to order a cup of milk. Existed 3/3 v 3/3 v

I want to order a boba milk. Existed 2/4 X 4/4 v

Can I have a cup of strawberry milk? Existed 4/4 v 4/4 v

I want a matcha latte. Zero-shot easy 4/4 v 4/4 v

May I have a cup of milk with taro? Zero-shot easy 3/3 v 3/3 v

I want taro milk with boba. Zero-shot moderate 3/5 X 5/5 v

Can I get a strawberry boba milk? Zero-shot moderate 3/5 X 5/5 v

I want to order a strawberry matcha milk. Zero-shot moderate 5/5 v 5/5 v

I'd order a strawberry matcha milk with boba. Zero-shot hard 3/6 X 6/6 v

I would like a cup of passion fruit milk. Unavailable material - X - v
Total - 80% 5/10 100% 10/10

Table 1: Quantitative results with real robots for high-level planning rate and success rate with various user
requests. For high-level planning, we extract planning accuracy by dividing the number of successful steps by
the total number of steps, shown as ‘Successful Steps / Total Steps’. We determine success by whether the
robot successfully accomplishes the task. To calculate the overall high-level planning score, we average the
performance across all user requests.

4.2 Comparison on Task Planning

We consider Code as Policies as a baseline. Code as Policies provides a formulation for language model-
generated programs executed on real systems by prompting a text completion model with code examples. For
a fair comparison, not only do we provide Code as Policies with the same information as given in ITP in the
form of comments, but we also provide an additional 40 lines of code prompts providing example usage, as is
done in Code as Policies. For both ITP and Code as Policies, we provide user requests and task guidelines as
inputs. The task guidelines include 3 instances, along with their associated high-level planning steps, current
available material, and other task-specific conditions. Our task guidelines are shown in [Task Guidelines T}

We evaluate the methods on two criteria: the number of high-level steps correctly generated and whether
the real robot successfully finished the task. We send user requests of varying complexity levels, including
‘existed’, ‘zero-shot easy,’ ‘zero-shot moderate’, ‘zero-shot hard’ and ‘unavailable material’. ‘Zero-shot’ means
the instruction for making the corresponding drink is not provided in the task guidelines. ‘Unavailable’
indicates that we do not have the material for the requested beverage. We show the results in Table [[] We
could notice that ITP is robust in high-level plan generation and can easily be generalized to novel instructions
of unseen drinks or unavailable drinks. For example, the user sends the request ‘I would like a cup of passion
fruit milk.” However, passion fruit jam is not available, so the system will provide the response ‘Passion fruit
jam is not available’ and stop the program. In comparison, Code as Policies failed to achieve this objective.
To understand the failure case of Code as Policies, we provide some observations: 1) when making a cup
of milk with boba, the system attempted to scoop boba from the working cup, improperly adhering to the
correct usage of the lower-level skill. 2) When the prompt is more complex (9th row), the system adds milk
first and then adds the boba, resulting in an incorrect execution order. 3) When the material is not available,
it cannot justify that passion fruit doesn’t exist. Additionally, since ITP is built based on task guidelines
alone, it demands significantly less prompt engineering than Code as Policies, which makes our system very
easy to use for various task planning purposes.

4.3 Replan with Human-in-the-loop Feedback

Our system is robust to diverse new requests during execution. To verify this point, we assess the task
replanning performance on real robots in response to a user’s new request, referred to as human-in-the-loop
feedback. We display the results in Table 2] We notice that ITP demonstrates its capacity to effectively
handle a range of new requests, even after progressing through various steps of the task. The last example is
of particular note, where ITP adds one step more (‘Stir the mixture until the matcha powder is well mixed’)
before putting the working cup in the finished location. Here the language model assumes the need to stir
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User Request New Request Step When New Request is Made
1st 2nd 3rd
Can I have a cup of strawberry milk? I want to add boba into the drink. 4/4 3/3 5/5
I want a matcha latte. Sorry, I want boba bilk without matcha instead. 3/3 5/5 5/5
May I have a cup of milk with taro? Can I replace the taro with strawberry? 3/3 5/5 5/5
Can I get a strawberry boba milk . Sorry, can I reorder a strawberry milk? 3/3 5/5 5/5
A strawberry matcha milk with boba. Can I just get matcha boba milk and no strawberry? 4/4 % Lﬁi

Table 2: Replanning performance with real robots given human-in-the-loop feedback. After the user sends
a request, we interrupt the procedure before different steps (1st, 2nd, and 3rd). Note that our replanning
system is robust in handling these new requests. Interestingly, for the last example, after the 2nd and 3rd
step, ITP adds one step more (‘Stir the mixture until the matcha powder is well mixed’) before putting the
working cup in the finished location, leading to 5 and 7 steps instead of 4 and 6 steps respectively. We assume
this is because GPT-4 assumes matcha powder is hard to mix, while we select water-soluble matcha powder.
Including the instruction ‘matcha powder is water-soluble’ in the task guidelines could address this issue.

Task Description |A] ProgPrompt ITP

watch tv 3 0424+0.13 0.83+£0.06
turn off light 3 1.00£0.00 0.75=+0.00
eat chips on the sofa 5 5 0.40+0.00 0.96+0.05
brush teeth 8 0.74+0.09 0.86+0.12
throw away apple 8 1.00+£0.00 1.0040.00
make toast 8§ 1.00+£0.00 0.59+0.16
put salmon in the fridge 8 1.00+0.00 1.00+0.00
bring coffeepot and cupcake 8  1.004+0.00 1.00+£ 0.00

to the coffee table

microwave salmon 11 0.76+£0.13 0.89 £0.09
wash the plate 18 0.97+£0.04 0.954+0.01
Avg: 0 < |A| <5 0.61+0.29 0.84+0.10
Avg: 6 < |A| <10 0.95+0.11 0.90+0.17
Avg: 10 < |A| <18 0.87£0.14 0.92+0.07

Table 3: Comparison of executability (Exec) on Simulation (Virtual Home) with ProgPrompt. Exec is the
fraction of actions in the plan that are executable in the environment, even if they are not relevant for the
task. ITP is not only a user-friendly approach that allows users to provide high-level guidelines, but it can
also achieve superior results on varied tasks in the simulation.

the matcha due to the ambiguity of the correct procedure. Such superfluous steps can be reduced by adding
restrictions in the task guidelines, which can easily be done by a general user of the system. This contrasts
with methods like Code as Policies which require tuning prompts at the code level.

4.4 Comparison on Simulation Tasks

In this section, we aim to verify ITP’s performance for simulation tasks. We compare our high-level
planning module to that of ProgPrompt (Singh et all 2023) by leveraging the simulated Virtual Home (VH)
Environment (Puig et al 2018]). We would like to emphasize that ITP provides a user-friendly approach for
users to input their high-level guidelines, which requires little background knowledge, while other approaches
such as ProgPrompt employ a code-like prompting strategy. To make a fair comparison, we obtain high-level
planning from both ITP and ProgPrompt, and use ProgPrompt’s low-level execution, strictly following the
same evaluation protocol: each result is averaged over 5 runs in a single VH Environment across 10 different
tasks. We display the results in Table |3l We notice that ITP is not only a user-friendly approach that allows
users to provide high-level guidelines in more straightforward natural language but is able to match or exceed
ProgPrompt on executable functions on the Virtual Home benchmark.
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4.5 Adaptation to Other Tasks

ITP is simple to adapt to new tasks. The system is principally reliant on task guidelines during high-level
planning and predefined functions during low-level execution. This structure negates the need for intricate
code implementation examples, making the system’s generalization to other tasks remarkably straightforward.
Refer to for the necessary components that need to be adapted. For adapting to a new task, only
the Task Guidelines and documentation for the provided Low-level Skills need to be modified. Optionally,
the Prompts for the high and low-level planner can also be tuned.

Task Guidelines 2: Task Guidelines for the Dishwashing Task. Again, we follow the simple format from before.
Possible task options are provided as well as their high level steps. Additional options and tasks specific
details are also provided to help guide the LLM during planning.

Options: 11) after the dishwasher cycle is complete and the
Wash one plate with rose flavor, dishwasher has stopped, wait a few minutes for the
Wash all the plates and there are two plates, dishes to cool down

Wash one plate and one fork 12) make sure the plate is clean and dry, otherwise
Instructions: go into step 8)

Wash one plate with rose flavor 13) return all clean utensils to the finished
Material: rose detergent location

Steps: Wash one plate and one fork

0) grasp the dirty plate Material: original detergent

1) remove large particle from the plate 0) grasp the dirty plate

2) open the dishwasher 1) remove large particle from the plate

3) pull out the rack 2) open the dishwasher

4) put one plate on the third rack 3) pull out the rack

5) add rose detergent into the detergent dispenser 4) put the plate on the third rack

6) close the dishwaster 6) grasp the fork

7) select the cycle and start dishwasher 6) remove large particle from the fork

8) after the dishwasher cycle is complete and the 7) put the fork on the first rack

dishwasher has stopped, wait a few minutes for the dis8) add original detergent into the detergent

to cool down dispenser

9) make sure the plate is clean and dry, otherwise 9) close the dishwaster

go into step 8) 10) select the cycle and start dishwasher

10) return the clean plate to the finished location 11) after the dishwasher cycle is complete and the
Wash all the plates and there are two plates dishwasher has stopped, wait a few minutes for the
Material: original detergent dishes to cool down

0) grasp the first dirty plate 12) make sure the plate and fork are clean and dry,
1) remove large particle from the plate otherwise go into step 8)

2) open the dishwasher 13) return all clean utensils to the finished

3) pull out the rack location

4) put the plate on the third rack Available location we have now:

5) grasp the second dirty plate * first rack for forks and small kitchen utensils

6) remove large particle from the plate * second rack for bowl/cup

7) put the plate on the third rack * third rack for plate/big kitchen utensils

8) add original detergent into the detergent Available material we have now:

dispenser rose detergent, original detergent

9) close the dishwaster
10) select the cycle and start dishwasher

We provide an additional example of adapting to an additional task with ITP. We adapt our system to study
the high-level task planning capabilities of the task dishwashing. We simply replace the task guidelines for
‘making a drink’ with ‘dishwashing’ We show the dishwashing task guidelines below in [Task Guidelines 4.5]

We evaluate the high-level planning capability on how many steps are generated correctly. We show our
results in Table [d] We find out that ITP performs very well on the novel dishwashing task. It has the
capability not only to produce precise and novel instructions for new objectives but also to exhibit resilience
when faced with entirely different tasks.

4.6 Analysis and Discussion

Analysis. Although ITP demonstrates great generalization ability, it relies solely on LLMs for replanning.
As a result, errors from the recognition system or robot execution could lead to task failure. For instance, if
the recognition system mistakenly identifies milk as ‘taro jam’, the robot might prepare the wrong drink by
using the incorrect ingredient. Similarly, if a line becomes entangled around the robot arm and knocks over a
cup containing liquid, the task could fail.
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User Request Task Type High-level Planning

Wash one dirty plate with rose flavor. Existed 11/11

Please wash 1 dirty bowl with rose flavor. Zero-shot easy 11/11

Please clean the 2 dirty cups. Zero-shot easy 14/14

Wash all forks, there are 3. Zero-shot easy 17/17

Can you wash 2 plates? (New request: Can you wash another?) Zero-shot easy 17/17

Please wash 2 forks and one bowl. Zero-shot moderate 17/17

May you wash 2 cups and 2 plates? Zero-shot moderate 20/20

Please wash 2 fork, 2 plate and 2 bowl. Zero-shot hard 27/27

Wash 2 plates, 1 bowl, 1 fork and 1 knife with rose flavor. Zero-shot hard 23/23
Wash one dirty plate with lemon flavor Unavailable material -

Total - 100%

Table 4: Generalization to dishwashing task. We only need to change the text guidelines to make an accurate
high-level plan. Since using the dishwasher to clean the dishes doesn’t contain misleading material or content,
the high-level planning rate is 100%. Please note that different utensils should be placed in different locations
in the dishwasher, while ITP remains resilient in generating precise plans for each step, ensuring the correct
order and appropriate location for different utensils. We envision the versatility of ITP’s capabilities being
applicable to a wide range of tasks.

To address these challenges, we can design a replanning system using vision-language models (VLMs). VLMs
can detect potential dangers in the system and generate actions to mitigate these issues. Furthermore, due to
the latency of several seconds when using GPT-4, tasks in our experiments sometimes take longer to complete.
However, this issue can be alleviated by adopting open-source models, such as Llama (Dubey et al., |2024]), as
advancements in these techniques are progressing rapidly.

Discussion. Although many works (Singh et al. 2023; [Liang et al., [2022; [Skreta et al.| [2023} Rana et al.
2023)) have explored LLMs for understanding feedback and planning, none of these works both consider
user-friendly task guidelines and replan based on a user’s new request. Progprompt (Singh et all, 2023)) and
Code as Policies focus more on making one plan and executing the task step by step, while also requiring
complicated reference code. CLAIRIFY (Skreta et all [2023]) provides effective guidance to the language
model by generating structured task plans and incorporating any errors as feedback, and SayPlan (Rana et al.,
2023)) introduces an iterative replanning pipeline that refines the initial plan using feedback from a scene
graph simulator. However, these two approaches pay attention more on a task instead of users’ experience.
Our ITP aims to provide a unified vision and language framework that can provide the best user experience,
so the user with minimal specialized knowledge can still easily ask their robots to execute a task.

5 Conclusion

Conclusion. In this paper, we propose a simple yet effective system, I'TP, which melds the capabilities of
Large Language Models in an interactive robot system that constructs plans, and performs tasks centered
around the users needs. Encouragingly, it precisely interprets user requests, generates pertinent step-by-step
plans, and achieves the desired outcome — a testament to the potential of such systems for real-world
applications. We embody our system in a robot designed to make various drinks according to user preferences
and adeptly demonstrate its ability to respond to feedback during execution. Our system is capable in the
context of interactive task planning and replanning for robotics.

Limitations and Future Work. While ITP provides a working proof of concept of an interactive robot
system, there is room for enhancing its capabilities with more powerful robot skills to tackle more intricate
tasks. Similarly, the integration of more precise visual information that leverages 3D information would
significantly elevate the robot’s proficiency in understanding, planning, and interacting with its surroundings.
We aim for our open-source system to inspire more research into using both established and emerging models
to enhance real-world robotics.
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