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Abstract

Large Language models(LLMs) have devel-
oped rapidly in recent years, and are remarked
as a brand new milestone in the information
age. However, powerful LLMs in vogue are
predominantly mainstream language speakers,
especially in English, and the desire for na-
tive LLMs remains strong. Inspired by these
demands, we examine the scaling of multi-
lingual models, focusing on the interplay be-
tween language-specific computational require-
ments and universal scaling laws. Our findings
demonstrate that continual pre-training of an
other-language model on an English base effec-
tively maintains English proficiency while im-
proving other-language performance, challeng-
ing traditional notions of cross-lingual trans-
fer, which is commonly equated with fine-
tuning. We propose a strategic approach for
efficient multilingual training, emphasizing
the balance between computational resource
allocation and avoiding catastrophic forget-
ting. Our work helps to understand language-
independent model scaling behaviors and trans-
form “outsiders” into “locals” with basic capac-
ities mostly preserved.

1 Introduction

In recent years, Large Language Models(LLMs)
based on the GPT (Radford et al., 2018, 2019;
Brown et al., 2020; Achiam et al., 2023) archi-
tecture, known as decoder-only architecture, have
gained ground and gradually become essential in-
frastructure in our daily lives in the information age.
They hold great potential for realizing the grand
vision of Artificial General Intelligence (AGI). Dur-
ing the dramatic evolution of the modern Natural
Language Process(NLP), a growing number of real-
world tasks can be surrogated by artificial intel-
ligence, which brings considerable convenience.
Hence, in order to enhance productivity and fully
utilize existing resources, the demand for LLMs
is becoming increasingly intense. However, ac-
cording to Ethnologue, despite over 7000 living
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Figure 1: Scaling Behaviour Comparison between Pre-
training and Continual Pre-training on a New Language.
Models with 2B parameters are highlighted.

languages worldwide, most speech and language
technologies are concentrated on only a tiny sub-
set of them (ACL, 2021; Balachandran, 2023; Ojo
et al., 2023), particularly those based on predomi-
nantly mainstream language, such as English.

To achieve satisfaction with localized LLMs for
non-dominant languages, related studies have been
conducted from different perspectives and in di-
verse fields. There are two main approaches: before
and after pre-training. Cross-lingual Transfer fol-
lowing pre-training tends to conform to an Encoder-
Decoder architecture and translation tasks, as par-
allel corpus and shared embeddings are commonly
used. However these measures were viewed lack of
effectiveness during our experiments, and conven-
tional transfer learning via fine-tuning appears slug-
gish due to inadequacy of slight data for transfer
from various languages instead of analogous down-
stream tasks. Consequently, we extend it to con-
tinual pre-training. As for approaches before pre-
training, previous works fed carefully processed
mixing data from numerous target languages into
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Figure 2: Scaling Behaviour of Continual Pre-training when Mixing Original Distributions at Different Ratios. Loss
in different languages is obtained by evaluating the same 1.4B models on two validation sets of English and Chinese

during continual pre-training.

LLMs for universal multilingual language mod-
els (Workshop et al., 2022), or provided data with
elaborated repetitions to LLMs following certain
Scaling laws for monolingual native-speaker mod-
els trained from scratch (Muennighoff et al., 2023).
While a universal multilingual language model
seems to be an “almighty formula”, performance re-
garding lesser-represented languages fails to meet
practical expectations for natives, and it’s too early
for “universalization” nowadays. The latter work
is similar to our work in some ways. Neverthe-
less, we take into account the limitations of previ-
ous scaling law studies and current powerful En-
glish LLMs together and hold the opinion that since
the pre-trained models are far from optimal con-
vergence, we can naturally attempt to transform
high-performance models already in place to native
speakers without from the outset. Thus, we concen-
trate on figuring out the scaling law of continual
pre-training in the field of cross-lingual transfer and
ensure training settings comply with it. Building
upon this, we demonstrate empirically that better-
performing local models can be derived from ma-
ture mainstream models possessing a more rapid
convergence rate throughout training, in terms of
basic capacities such as math and logic abilities.
Additionally, our method proves beneficial in sce-
narios with limited source data as a result of the
power law trend, which means we can anticipate
an expected loss curve to reasonably adjust compu-

tational resource allocation and strategies accord-
ing to the total budget. To avoid the dilemma of
catastrophic forgetting, akin to multi-task learn-
ing, we also mix a small proportion of data from
the origin language into the continual pre-training
process and identify the optimal balance between
preserving proficiency in the original language and
expanding capabilities in other languages.

In summary, the main contributions of our work
are as follows:

* We demonstrate the scaling law that exists in
cross-lingual transfer continual pre-training.

* We figure out the form of the power law for-
mulation of the scaling law and the hyperpa-
rameters involved, as well as the explanation
relevant to the impacting factors.

* We provide effective strategies to support the
continual pre-training within the process of
cross-lingual transfer.

Above all, our work paves the way for ensuring
open source LLMs are more “open” to broader re-
gions and countries, considering not the most main-
stream but equally invaluable languages all over
the world. That’s the point why we are committed
to transferring under the cross-lingual scenery.
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1.69 4064 410.7 0.34 0.28 -
1.55 4200 7195 040 0.30 -
1.55 420.0 4333 040 0.20 0.08

Table 1: Comparison of parameter fitting results among Chinchilla (Hoffmann et al., 2022), our model trained from

scratch, and our model with continual pre-training.

2 Method

2.1 Scaling Law for Pre-training from Scratch

We conducted continual pre-training in other lan-
guages based on a basic English model, using a
large-scale training of Chinese models as an exam-
ple to investigate the scaling law of this continuous
training process. By comparing with training from
scratch under the same settings and data, we ex-
plored the optimal computational allocation and
returns for both approaches and discussed their dif-
ferences.

First, let’s review the Parametric Fit method used
by Hoffmann et al. (2022), where they derived and
fit a formula for the loss. They decompose the loss
L(N, D) into:

L(N, D) 2 L(fx.p)
= L(f) + (L(fn) = L))

+ (L(fN,D) - L(fN))

A B
:E-Fﬁ'i‘m

)

Here, N represents the parameters, D represents
the training tokens. E, A, B, a, 3 are learned vari-
ables.

In the Equation 1, f* represents the optimal
Bayesian classifier, fN denotes the optimal trans-
former model under the constraint of parameters IV,
f; N, D represents the outcome obtained through gra-
dient descent under the constraints of parameters N
and training tokens D in the experiments. The loss
includes three parts:the Bayes risk, which is the
smallest possible loss for predicting the next token
based on the full distribution P, also known as the
"entropy of natural text", a term related to how well
the function approximates based on the hypothesis
space size, and a stochastic approximation term.

Accordingly, the formula they proposed for the
optimal allocation of computational resources C
with respect to N (model size) and D (dataset size)

is:

2

2.2 Scaling Law for Continual Pre-training

Our goal is to modify the Equation 1 to fit the sce-
nario of continual pre-training. Based on the mean-
ing of the decomposition formula, we think while
keeping the dataset and training process consistent,
the first two terms, which respectively represent
the natural language entropy and the function esti-
mation capability under the hypothesis space size,
should essentially remain consistent with those of
pre-training from scratch.

Building on the premise of keeping the first two
terms fixed, our study of continual pre-training
involves separately controlling the variables D
(dataset size) and N (model size) to fit the fi-
nal stochastic approximation term. We discov-
ered that both variables exhibit a power-law re-
lationship. Therefore, inspired by the Equation 1
and also drawing inspiration from the concept of
effective data transferred = k(Dp)*(N)? as pro-
posed in the study by Hernandez et al. (2021), we
believe the final error term in this scenario can be
represented as %.

Consequently, the loss formula for continual pre-
training is:

A A B’

L(N,D)=FE+ No + (D)F'(NY
Here, E, A, « are the same parameters inherited
from Equation 1, which applies to training from
scratch under the same dataset conditions. B, 3, v
are newly learned variables.

3)
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Chinchilla (MassiveText)
Ours (from Scratch)
Ours (Continual Pre-training)

0.46
0.429
0.385

0.54
0.571
0.615

Table 2: Comparison of optimization coefficients among Chinchilla (Hoffmann et al., 2022), our model trained from

scratch, and our model with continual pre-training.
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Figure 3: Predicted Compute-optimal Efficient frontier
on Iso-loss Contour.

Similarly, based on the constraint C = 6/ ND
(Kaplan et al., 2020), the minimum value of the
modified formula can be found by minimizing the
loss function, which also conforms to the power-
law relationship with respect to C":

C a
Nopt(c) = G <6>
€]
b
Dop(C) = G~ <§>
1
aA atp =y
where G = ———= )
<(5/ - 7)3’)
B I3 o a—7
and a = atf — b= atf —~

2.3 Parametric Fit

Following Hoffmann et al. (2022), we also min-
imize the Huber loss (Huber, 1992) between the
predicted and observed log loss, with & set to 1073,

First, we need to optimize the following problem

using data from training from scratch:

o nin Z'Huber(s (LSE(a — alog NV;,
Run ¢ (5)
b— plog D;,e) —log L;)
Next, based on the value of a, «, e obtained from

the results, we substitute it and optimize the follow-
ing continual pre-training problem:

Run %
b — B'log D; — vlog N;, e) — log Li)
(0)
where LSE is the log-sum-exp oper-
ator. and we can set A B E,B =

exp(a),exp(b),exp(e), exp(l).

During the fitting process, we utilized the Op-
tuna library for hyperparameter search iterations
and employed the L-BFGS (Nocedal, 1980) algo-
rithm for optimal local search, resulting in the iden-
tification of the best hyperparameters. The final
fitted parameter results are shown in Table 1.

Based on the parameter fitting results, we can
calculate the optimization allocation coefficients,
as shown in Table 2. The efficient frontier results
for both training from scratch and continual pre-
training are shown in Figure 3.

3 Experiments

3.1 Pre-training Setup

We utilize a decode-only transformer language
model based on the LLaMA?2 architecture(Touvron
et al., 2023b) for our experiments, encompassing
a variety of model sizes. This range includes 40
distinct model types, with capacities varying from
4 million to 5 billion parameters. Adhering to the
principles outlined in (Hoffmann et al., 2022) and
aligning with the typical configurations of open-
source language models, we set the token count to
be 20 times the model size for base English models.
Our approach employs cosine learning rate sched-
ules that feature a decay factor of 10x the initial
learning rate.
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Figure 4: Benchmark Performance Comparison of Pre-trained and Continually Pre-trained Language Models.
Continually pre-trained models of different languages are continuations of the same checkpoint (colored in gray)

For the continued training of the model, we
adopted the re-warmup technique according to
(Gupta et al., 2023), which involves repeating
the same warmup process during continual pre-
training, and conducted experiments with 5 x and
20 x the length of training by observing changes
in the loss. This approach was adopted to achieve
more precise optimization calculations. Following
previous experiences and the LLaMA settings, we
set our learning rate at 2 * 10~%). We also adopted
different batch sizes for models of varying sizes:
for models smaller than 1 billion parameters, we
used a batch size of 512; for those between 1 and
2.5 billion parameters, we used 1024; and for mod-
els larger than 2.5 billion parameters, we used a
batch size of 2048.

Our English training data primarily originates
from the Redpajama dataset(Computer, 2023),
while the Chinese training data was sourced pri-
vately and has undergone filtering and deduplica-
tion processes. For other languages, the data is
mainly derived from the mC4 dataset(Raffel et al.,
2019). We randomly partition this data into train-
ing and validation sets. Our training principle is
to ensure that when using larger datasets, they en-
compass the smaller ones, thus maintaining a com-
prehensive and inclusive approach to data coverage
across different languages.

3.1.1 Evaluation Benchmarks

We evaluate the cross-lingual language model on
some widely adopted multi-lingual benchmarks.
Specifically, we use splits of French, Russian and
Chinese from XNLI (Conneau et al., 2018), Wino-
grade (Sakaguchi et al., 2019), Multi-lingual Hel-
laswag (Dac Lai et al., 2023) and XStorycloze (Lin
et al., 2021) to evaluate language understanding

and commonsense reasoning ability of continual
pre-trained model for above three languages. To
analyze the impact of mixing English at the differ-
ent ratios for training, we additionally evaluate the
above models on XCopa (Ponti et al., 2020) and
PiQA (Bisk et al., 2019).

3.2 Results

We perform extensive parametric fitting over train-
ing across various parameters and training settings
to qualitatively model the scaling properties of
cross-lingual pre-training. To avoid biases caused
by language contamination in the validation set,
we also evaluated models on several widely used
benchmarks for language modeling.

3.2.1 Comparative Analysis on Scaling
Behaviours

We optimize models of different sizes on the Chi-
nese data splits from both scratch and existing En-
glish Checkpoints. For all different runs, we do
parametric fits for checkpoints with the lowest vali-
dation loss, adhering to the assumption of a power-
law relationship between the validation loss and
raw compute to train the model, total training data
or model parameters.

Scaling by Parameters and Data We compare
our estimated parameters with previous works in
Table 1. It can be seen that in continual pre-training,
we have B = 433 and r = 0.08, which indicates
the cross-lingual transfer effect scales with model
parameters.

Scaling by Compute The training curves for con-
tinual pre-training are shown in Figure 1, where
the fittes relationship between validation loss and
compute is visualized. It’s worth noting that not
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Figure 5: Model performance on English and Chinese
benchmarks at different English data mix ratios with
1.4B parameters trained. Relative Performance refers
to accuracy relative to the highest accuracy achieved
across different training settings with 1.4B parameters.

all checkpoints contribute to the predicted scaling
relationship as the lowest loss value of some check-
points is higher than models of other parameters
at the same compute budget and therefore is not
counted.

It can be seen that pre-training language mod-
els from existing checkpoints yield lower final loss
consistently across different parameter numbers.
Results of parametric fit indicate that the advan-
tages of lower loss are generally uniform over each
unit of compute devoted, which can be supported
by the significantly lower scaling factor of the com-
puting term (33.6907 to 31.9594) and nearly un-
changed exponent (-0.0579 to -0.0575).

3.2.2 Downstream Performance of
Pre-trained checkpoints

We further evaluate the impact of cross-lingual con-
tinual pre-training on several widely used bench-
marks. On 1.4B parameters, we continually trained
language models of language French (Fr.), Russian
(Ru.), and Chinese (Zh) from the same English
checkpoint. We then evaluate these models to com-
pare them to their equivalent model trained from
scratch as well as the English checkpoints. The
results are shown in Figure 5.

We evaluate models of different languages on
their corresponding language split of multi-lingual
benchmarks to provide a fair comparison. The re-
sults showed that models of all three different lan-
guages gain improved language ability to various
extents compared to the original pre-trained model.
It can also be seen that continual pre-training uni-
versally helps with benchmark performance under
different languages and different scenarios.

Interestingly, French models benefit most from
continual pre-training, which can be explained
from the perspective of language similarity. French
share lots of common words and grammar struc-
tures with English, hence the cross-lingual trans-
ferring is more obvious than Russian and Chinese,
which on the other hand share less similarities with
English.

3.2.3 Compute-optimal Scaling for
Cross-lingual Transfering

Estimated Parameters under FLOPS budget
According to the theoretical model established in
Section 2, we can solve the optimal trade-off be-
tween model parameters and data to be trained un-
der a compute-constraint scenario, which is a prac-
tical problem under modern large-scale training.
More specifically, according to Equation 2, when
only a certain amount of compute power (FLOPS)
is allowed, we fit optimal training data and model
parameters for continual pre-training to be:

Nopt(C) = 0.324C0429 D (C) = 0.514C057
@)

Comparatively, for pre-training from scratch:

Nopt(C) = 4.79C°3% D, (C) = 0.035C%-61
3)

Visualization for the efficient frontier of model
parameter /N regarding computes over the Iso-loss
contour is shown in Figure 3. We find that the
optimal parameters for continual pre-training are
slightly deviated from pre-training from scratch,
favoring fewer computes for the same model sizes.
This aligns with the nature of cross-lingual transfer
learning, where the model of continuation is "pre-
mature" due to prior knowledge acquired in the
base language.

Optimal English Mixing Ratio We also investi-
gate methods to prevent catastrophic forgetting of
original distributions during continual pre-training
in another language. At 1.4B parameters, we con-
tinually train several models with mixed training
corpus by mixing various ratios of training data
from the base pre-training into the continual pre-
training processes.

We visualize the training curves of English-
mixing models in Figure 2. Notably, for validation



loss in English and Chinese, the compute is cal-
culated as the computer devoted to tokens of the
corresponding language.

Figure 2 reveals that the mixed data of the origi-
nal language and the continually trained language
behave differently in terms of scaling behavior. As
shown in the right of Figure 2, mixing different
ratios of original data only affects the early stage
of training. Models converge to the same valida-
tion loss when the same amount of computing is
involved, despite they are mixed with various ratios
of original data, ranging from 1% up to 80%. This
suggested that a higher level of mixing original
data is welcomed as mixing does not hinder scaling
property while preserving the model’s performance
on original distribution.

The left of Figure 2 compares the relationship
between compute and validation loss on the origi-
nal distribution throughout continual pre-training,
which can be viewed as the "Scaling law of forget-
ting". Interestingly, the scaling behavior depicts
a power-law relationship resembling the one dur-
ing pre-training from scratch. Validation losses of
models at different English mixing ratios increase
at the early stage of training and then decline, main-
taining lower than the original pre-trained run. It
suggests that a large amount of original knowledge
is preserved throughout the continual training, even
at a very low English mixing ratio (1%).

To further analyze impacts brought by mixing
original data in continual pre-training, we evaluate
the model performance on English and Chinese
benchmarks at different English data mix ratios in
Figure 5. It shows that while pre-training purely
on one language yields sub-optimal results on the
other language, any non-skewed English ratio can
effectively preserve performance on the original
distributions. In practice, we find that around 30%
of original data could be capable of keeping the
validation loss lower than the start of continual
pre-training.

4 Related Work

4.1 Scaling Law

Scaling Law suggests the predictable influences
that salient factors (e.g., dataset specifications,
number of parameters, batch size, etc.) exert
on model performance through scaling behavior
across multiple orders of magnitude.

Building upon prior research before the exten-
sive usage of attention mechanisms (Hestness et al.,

2017, 2019), the modern perspective on Scaling
Law has identified power-law scaling of test loss
in relation to training data size as well as model
size (Rosenfeld et al., 2019). The study of Scaling
Law gradually deepened, becoming more theoret-
ical and empirical, which included learning cur-
vey theory (Hutter, 2021), explanation of Scaling
Law (Bahri et al., 2021), and Elucidation from
the dimension of the data manifold (Sharma and
Kaplan, 2020). Until 2021, our understanding of
scaling laws has become clearer. In particular, Ka-
plan et al. (2020) directed attention toward larger-
scale models, providing the general form with vari-
ables taken into account to the maximum extent.
The apparent general applicability of the scaling
law theory has been successively verified through
numerous experimental results (Henighan et al.,
2020). However, the generality previously identi-
fied may not align with practical applications. For
instance, Hoffmann et al. (2022) revealed the sub-
optimality of models adhering to the recommended
ratio of model size to the dataset. And the debate
sparked further consideration towards modifying
space, more experimentally validated hyperparam-
eter choices have emerged concurrently, such as
the possible influence intrinsic to model architec-
ture (Tay et al., 2022; Frantar et al., 2023), value
of repeated tokens (Hernandez et al., 2022; Muen-
nighoff et al., 2023)(contrast to utilize once in pre-
vious works) double descent & the delayed phe-
nomena during scaling behavior (Caballero et al.,
2022), scaling law for forgetting situation when
exerting PEFT rather than learning (Kalajdzievski,
2024), Incorporation the inference cost into the for-
mula (Sardana and Frankle, 2023) and expolate to
other modals (Alabdulmohsin et al., 2023; Agha-
janyan et al., 2023) or specific domains (Rang et al.,
2023; Zhang et al., 2023a; Wu et al., 2024) .

4.2 Transfer Learning

Transfer Learning is dedicated to enhancing gen-
eralization during the transition from one data dis-
tribution to another similar distribution, provided
with an appropriate volume of domain-specific
data. This facilitates downstream tasks in adapting
to such transitions and achieving optimal perfor-
mance, sidestepping the need to relearn knowledge
from the ground up (Pan and Yang, 2009; Zhuang
et al., 2020).

While conventional approaches involved fine-
tuning models on a relatively small scale, yielding



satisfactory results (Brown et al., 2020), current re-
search indicates that additional pre-training, specif-
ically Continual Pre-training, involving adapting a
Language Model (LM) to the target domain using
a corresponding corpus, can significantly enhance
end-task performance (Gururangan et al., 2020;
Xu et al., 2019; Sun et al., 2020). This is cru-
cial not only due to the necessity for generation
pattern models to learn but also because the sub-
stantial knowledge contained in the original corpus
requires digestion (Ke et al., 2023, 2022). Addition-
ally, continual pre-training mitigates catastrophic
forgetting (Kirkpatrick et al., 2017; Cossu et al.,
2022). Positioned as an intermediate stage between
the base pre-trained model and the fine-tuning oper-
ation (Zhang et al., 2023b), Continual Pre-training
is analogous to equipping base models with in-
cremental knowledge oriented towards the target
domain. Regarding Scaling Law, Hernandez et al.
(2021) empirically studied scaling laws for the ef-
fective transfer of data when fine-tuning instead of
pre-training. This study involved data following
natural language distribution and Python code dis-
tribution, concluding the validation of predicting
cross-entropy loss during scaling behavior in terms
of parameters, data, and compute.

4.3 Multi-lingual Language Model

During the era of the encoder-decoder architec-
ture (Vaswani et al., 2017), substantial efforts were
undertaken, primarily focusing on optimization in
various aspects, including data blending (Patil et al.,
2023; Srivastava and Singh, 2021; Choudhury
et al., 2019), parallel corpus (Kimera et al., 2023;
Dabre et al., 2021; Azunre et al., 2021; Rabinovich
et al., 2018), and shared embeddings (Liu et al.,
2020; Takase and Kobayashi, 2020; Jones et al.,
2021; Wu and Monz, 2023). With the emergence
of the GPT (Radford et al., 2018, 2019; Brown
et al., 2020; Achiam et al., 2023) accompanied by
In-Context Learning (ICL) (Brown et al., 2020;
Dong et al., 2022), the utilization of fine-tuning
and ICL played a crucial role (Tanwar et al.,
2023) in terms of multilingual language models.
The currently popular universal multilingual
language models, particularly BLOOM (Workshop
et al., 2022), exemplify a highly representative
category. These models achieve many-to-one
transfer by undergoing pre-training on hundreds
of languages followed by fine-tuning on the
target language, a methodology referred to as

multilingual learning (Lai et al., 2023). However,
they underscore the persistent demand for native
speakers. In response to this, cross-lingual transfer
learning (Ostendorff and Rehm, 2023), which
emphasizes one-to-one transfer, has addressed this
limitation, facilitating a more effective transition
from potent English language models to models
in indigenous tongues. Notable LLMs, including
LLaMA (Touvron et al., 2023a,b), Falcon (Penedo
et al., 2023), and OPT (Zhang et al., 2022), have
demonstrated remarkable capabilities across
numerous tasks. Therefore, cross-lingual transfer
holds the promise of being a blueprint for the
momentum of rapid development in LLMs shared
across all languages.

Previous works discussing scaling laws tended to
focus on data utilization efficiency (Muennighoff
et al., 2023) or were limited to considerations of
cross-task transfer (Hernandez et al., 2021). How-
ever, the impact on the efficiency of cross-lingual
transfer lacks thorough investigation in that varia-
tions in both expression and knowledge between
natural language and code are noteworthy and dis-
parate languages only differ in expression, with
unchanged underlying knowledge. Simultaneously,
though Scaling Laws for forgetting captured at-
tention (Kalajdzievski, 2024), the LoRA (Hu et al.,
2021) method used is lightweight compared to ours.
Thus, the focal point of our work is to elucidate
the Scaling Law in the field of cross-lingual trans-
fer utilizing continual pre-training for competitive
performance.

5 Conclusion

In this paper, we presents a comprehensive study
on the scaling law of cross-lingual transfer through
the lens of continual pre-training. We successfully
demonstrate that continual pre-training not only
preserves the model’s original language capabilities
but also significantly improves performance across
various languages. The study uncovers that the
strategic mixing of original training data and opti-
mizing computational resources based on language-
specific demands are crucial for enhancing cross-
lingual transfer. Our work lays the groundwork
for future explorations into effective multilingual
model training strategies, highlighting the need for
tailored approaches that consider the unique char-
acteristics of each language while leveraging the
benefits of large-scale language models.



Limitations

Language contamination In this study, we uti-
lized publicly accessible datasets for pre-training.
Although the Chinese dataset and mC4 dataset at-
tempt to clean and create language-specific training
splits, they cannot entirely prevent the contamina-
tion of English at a more granular level. This is
particularly challenging due to the inherent nature
of many languages, such as French, which often
incorporate English words. To estimate the compu-
tational effort for different languages, we counted
the number of samples processed in each language
training split. This approach may be imprecise if
the dataset contains a large amount of text in other
languages. This issue highlights the need for future
research to conduct a more in-depth analysis of the
impact of language contamination in multilingual
pre-training.

Hyper-parameter sensitivity In the training of
models across various scales, we selected hyper-
parameters based on experience and trial and er-
ror. Our preliminary results showed that deviating
from optimal hyper-parameters can significantly
harm model optimization and disrupt the scaling
laws. To maintain consistency, we selected a con-
stant learning rate, optimizer, learning rate sched-
uler, and batch size that matched the scale of the
model for different experiments. This approach
is in line with the conclusions of previous stud-
ies. Future research should explore the finding of
optimal hyper-parameters from the perspective of
language-specific scaling laws, which could lead
to more effective pre-training configurations.

Limited Scale Due to computational limitations,
many experiments were not covered, especially in
cases where the training data was excessive or the
model size was too large. This limitation means
that our findings may have limited reference value
for larger scaling-up scenarios.
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