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Abstract
Large Language models(LLMs) have devel-001
oped rapidly in recent years, and are remarked002
as a brand new milestone in the information003
age. However, powerful LLMs in vogue are004
predominantly mainstream language speakers,005
especially in English, and the desire for na-006
tive LLMs remains strong. Inspired by these007
demands, we examine the scaling of multi-008
lingual models, focusing on the interplay be-009
tween language-specific computational require-010
ments and universal scaling laws. Our findings011
demonstrate that continual pre-training of an012
other-language model on an English base effec-013
tively maintains English proficiency while im-014
proving other-language performance, challeng-015
ing traditional notions of cross-lingual trans-016
fer, which is commonly equated with fine-017
tuning. We propose a strategic approach for018
efficient multilingual training, emphasizing019
the balance between computational resource020
allocation and avoiding catastrophic forget-021
ting. Our work helps to understand language-022
independent model scaling behaviors and trans-023
form “outsiders” into “locals” with basic capac-024
ities mostly preserved.025

1 Introduction026

In recent years, Large Language Models(LLMs)027

based on the GPT (Radford et al., 2018, 2019;028

Brown et al., 2020; Achiam et al., 2023) archi-029

tecture, known as decoder-only architecture, have030

gained ground and gradually become essential in-031

frastructure in our daily lives in the information age.032

They hold great potential for realizing the grand033

vision of Artificial General Intelligence (AGI). Dur-034

ing the dramatic evolution of the modern Natural035

Language Process(NLP), a growing number of real-036

world tasks can be surrogated by artificial intel-037

ligence, which brings considerable convenience.038

Hence, in order to enhance productivity and fully039

utilize existing resources, the demand for LLMs040

is becoming increasingly intense. However, ac-041

cording to Ethnologue, despite over 7000 living042
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Figure 1: Scaling Behaviour Comparison between Pre-
training and Continual Pre-training on a New Language.
Models with 2B parameters are highlighted.

languages worldwide, most speech and language 043

technologies are concentrated on only a tiny sub- 044

set of them (ACL, 2021; Balachandran, 2023; Ojo 045

et al., 2023), particularly those based on predomi- 046

nantly mainstream language, such as English. 047

To achieve satisfaction with localized LLMs for 048

non-dominant languages, related studies have been 049

conducted from different perspectives and in di- 050

verse fields. There are two main approaches: before 051

and after pre-training. Cross-lingual Transfer fol- 052

lowing pre-training tends to conform to an Encoder- 053

Decoder architecture and translation tasks, as par- 054

allel corpus and shared embeddings are commonly 055

used. However these measures were viewed lack of 056

effectiveness during our experiments, and conven- 057

tional transfer learning via fine-tuning appears slug- 058

gish due to inadequacy of slight data for transfer 059

from various languages instead of analogous down- 060

stream tasks. Consequently, we extend it to con- 061

tinual pre-training. As for approaches before pre- 062

training, previous works fed carefully processed 063

mixing data from numerous target languages into 064
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Figure 2: Scaling Behaviour of Continual Pre-training when Mixing Original Distributions at Different Ratios. Loss
in different languages is obtained by evaluating the same 1.4B models on two validation sets of English and Chinese
during continual pre-training.

LLMs for universal multilingual language mod-065

els (Workshop et al., 2022), or provided data with066

elaborated repetitions to LLMs following certain067

Scaling laws for monolingual native-speaker mod-068

els trained from scratch (Muennighoff et al., 2023).069

While a universal multilingual language model070

seems to be an “almighty formula”, performance re-071

garding lesser-represented languages fails to meet072

practical expectations for natives, and it’s too early073

for “universalization” nowadays. The latter work074

is similar to our work in some ways. Neverthe-075

less, we take into account the limitations of previ-076

ous scaling law studies and current powerful En-077

glish LLMs together and hold the opinion that since078

the pre-trained models are far from optimal con-079

vergence, we can naturally attempt to transform080

high-performance models already in place to native081

speakers without from the outset. Thus, we concen-082

trate on figuring out the scaling law of continual083

pre-training in the field of cross-lingual transfer and084

ensure training settings comply with it. Building085

upon this, we demonstrate empirically that better-086

performing local models can be derived from ma-087

ture mainstream models possessing a more rapid088

convergence rate throughout training, in terms of089

basic capacities such as math and logic abilities.090

Additionally, our method proves beneficial in sce-091

narios with limited source data as a result of the092

power law trend, which means we can anticipate093

an expected loss curve to reasonably adjust compu-094

tational resource allocation and strategies accord- 095

ing to the total budget. To avoid the dilemma of 096

catastrophic forgetting, akin to multi-task learn- 097

ing, we also mix a small proportion of data from 098

the origin language into the continual pre-training 099

process and identify the optimal balance between 100

preserving proficiency in the original language and 101

expanding capabilities in other languages. 102

In summary, the main contributions of our work 103

are as follows: 104

• We demonstrate the scaling law that exists in 105

cross-lingual transfer continual pre-training. 106

• We figure out the form of the power law for- 107

mulation of the scaling law and the hyperpa- 108

rameters involved, as well as the explanation 109

relevant to the impacting factors. 110

• We provide effective strategies to support the 111

continual pre-training within the process of 112

cross-lingual transfer. 113

Above all, our work paves the way for ensuring 114

open source LLMs are more “open” to broader re- 115

gions and countries, considering not the most main- 116

stream but equally invaluable languages all over 117

the world. That’s the point why we are committed 118

to transferring under the cross-lingual scenery. 119
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Model E A B α β γ

Chinchilla (MassiveText) 1.69 406.4 410.7 0.34 0.28 -
Ours (from Scratch) 1.55 420.0 719.5 0.40 0.30 -
Ours (Continual Pre-training) 1.55 420.0 433.3 0.40 0.20 0.08

Table 1: Comparison of parameter fitting results among Chinchilla (Hoffmann et al., 2022), our model trained from
scratch, and our model with continual pre-training.

2 Method120

2.1 Scaling Law for Pre-training from Scratch121

We conducted continual pre-training in other lan-122

guages based on a basic English model, using a123

large-scale training of Chinese models as an exam-124

ple to investigate the scaling law of this continuous125

training process. By comparing with training from126

scratch under the same settings and data, we ex-127

plored the optimal computational allocation and128

returns for both approaches and discussed their dif-129

ferences.130

First, let’s review the Parametric Fit method used131

by Hoffmann et al. (2022), where they derived and132

fit a formula for the loss. They decompose the loss133

L(N,D) into:134

L(N,D) ≜ L(f̂N,D)

= L(f∗) +
(
L(f̂N )− L(f∗)

)
+
(
L(f̄N,D)− L(f̂N )

)
= E +

A

Nα
+

B

Dβ

(1)135

Here, N represents the parameters, D represents136

the training tokens. E,A,B, α, β are learned vari-137

ables.138

In the Equation 1, f∗ represents the optimal139

Bayesian classifier, f̂N denotes the optimal trans-140

former model under the constraint of parameters N ,141

f̄N,D represents the outcome obtained through gra-142

dient descent under the constraints of parameters N143

and training tokens D in the experiments. The loss144

includes three parts:the Bayes risk, which is the145

smallest possible loss for predicting the next token146

based on the full distribution P , also known as the147

"entropy of natural text", a term related to how well148

the function approximates based on the hypothesis149

space size, and a stochastic approximation term.150

Accordingly, the formula they proposed for the151

optimal allocation of computational resources C152

with respect to N (model size) and D (dataset size)153

is: 154

Nopt(C) = G

(
C

6

)a

Dopt(C) = G−1

(
C

6

)b (2) 155

156

where G =

(
αA

βB

) 1
α+β

, 157

and a =
β

α+ β
, b =

α

α+ β
158

2.2 Scaling Law for Continual Pre-training 159

Our goal is to modify the Equation 1 to fit the sce- 160

nario of continual pre-training. Based on the mean- 161

ing of the decomposition formula, we think while 162

keeping the dataset and training process consistent, 163

the first two terms, which respectively represent 164

the natural language entropy and the function esti- 165

mation capability under the hypothesis space size, 166

should essentially remain consistent with those of 167

pre-training from scratch. 168

Building on the premise of keeping the first two 169

terms fixed, our study of continual pre-training 170

involves separately controlling the variables D 171

(dataset size) and N (model size) to fit the fi- 172

nal stochastic approximation term. We discov- 173

ered that both variables exhibit a power-law re- 174

lationship. Therefore, inspired by the Equation 1 175

and also drawing inspiration from the concept of 176

effective data transferred = k(DF )
α(N)β as pro- 177

posed in the study by Hernandez et al. (2021), we 178

believe the final error term in this scenario can be 179

represented as B′

(D)β ′(N)γ
. 180

Consequently, the loss formula for continual pre- 181

training is: 182

L̂(N,D) ≡ E +
A

Nα
+

B′

(D)β ′(N)γ
(3) 183

Here, E,A, α are the same parameters inherited 184

from Equation 1, which applies to training from 185

scratch under the same dataset conditions.B, β′, γ 186

are newly learned variables. 187
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Model Coeff. a where Nopt ∝ Ca Coeff. b where Dopt ∝ Cb

Chinchilla (MassiveText) 0.46 0.54
Ours (from Scratch) 0.429 0.571
Ours (Continual Pre-training) 0.385 0.615

Table 2: Comparison of optimization coefficients among Chinchilla (Hoffmann et al., 2022), our model trained from
scratch, and our model with continual pre-training.

1018 1019 1020 1021 1022 1023 1024

Compute (FLOPs)

107

108

109

1010

1011

Pa
ra

m
et

er
s

Efficient Frontier for Pre-training
Efficient Frontier for Continual Pre-training
Validation Loss for Pre-training
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Similarly, based on the constraint C = 6ND188

(Kaplan et al., 2020), the minimum value of the189

modified formula can be found by minimizing the190

loss function, which also conforms to the power-191

law relationship with respect to C:192

Nopt(C) = G

(
C

6

)a

Dopt(C) = G−1

(
C

6

)b (4)193

194

where G =

(
αA

(β′ − γ)B′

) 1
α+β′−γ

,195

and a =
β′

α+ β′ − γ
, b =

α− γ

α+ β′ − γ
196

2.3 Parametric Fit197

Following Hoffmann et al. (2022), we also min-198

imize the Huber loss (Huber, 1992) between the199

predicted and observed log loss, with δ set to 10−3.200

First, we need to optimize the following problem201

using data from training from scratch: 202

min
a,b,e,α,β

∑
Run i

Huberδ (LSE(a− α logNi,

b− β logDi, e)− logLi)

(5) 203

Next, based on the value of a, α, e obtained from 204

the results, we substitute it and optimize the follow- 205

ing continual pre-training problem: 206

min
b′,β′,γ

∑
Run i

Huberδ (LSE(a− α logNi,

b′ − β′ logDi − γ logNi, e)− logLi

)
(6) 207

where LSE is the log-sum-exp oper- 208

ator. and we can set A,B,E,B′ = 209

exp(a), exp(b), exp(e), exp(b′). 210

During the fitting process, we utilized the Op- 211

tuna library for hyperparameter search iterations 212

and employed the L-BFGS (Nocedal, 1980) algo- 213

rithm for optimal local search, resulting in the iden- 214

tification of the best hyperparameters. The final 215

fitted parameter results are shown in Table 1. 216

Based on the parameter fitting results, we can 217

calculate the optimization allocation coefficients, 218

as shown in Table 2. The efficient frontier results 219

for both training from scratch and continual pre- 220

training are shown in Figure 3. 221

3 Experiments 222

3.1 Pre-training Setup 223

We utilize a decode-only transformer language 224

model based on the LLaMA2 architecture(Touvron 225

et al., 2023b) for our experiments, encompassing 226

a variety of model sizes. This range includes 40 227

distinct model types, with capacities varying from 228

4 million to 5 billion parameters. Adhering to the 229

principles outlined in (Hoffmann et al., 2022) and 230

aligning with the typical configurations of open- 231

source language models, we set the token count to 232

be 20 times the model size for base English models. 233

Our approach employs cosine learning rate sched- 234

ules that feature a decay factor of 10× the initial 235

learning rate. 236
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Figure 4: Benchmark Performance Comparison of Pre-trained and Continually Pre-trained Language Models.
Continually pre-trained models of different languages are continuations of the same checkpoint (colored in gray)

For the continued training of the model, we237

adopted the re-warmup technique according to238

(Gupta et al., 2023), which involves repeating239

the same warmup process during continual pre-240

training, and conducted experiments with 5 × and241

20 × the length of training by observing changes242

in the loss. This approach was adopted to achieve243

more precise optimization calculations. Following244

previous experiences and the LLaMA settings, we245

set our learning rate at 2 ∗ 10−4). We also adopted246

different batch sizes for models of varying sizes:247

for models smaller than 1 billion parameters, we248

used a batch size of 512; for those between 1 and249

2.5 billion parameters, we used 1024; and for mod-250

els larger than 2.5 billion parameters, we used a251

batch size of 2048.252

Our English training data primarily originates253

from the Redpajama dataset(Computer, 2023),254

while the Chinese training data was sourced pri-255

vately and has undergone filtering and deduplica-256

tion processes. For other languages, the data is257

mainly derived from the mC4 dataset(Raffel et al.,258

2019). We randomly partition this data into train-259

ing and validation sets. Our training principle is260

to ensure that when using larger datasets, they en-261

compass the smaller ones, thus maintaining a com-262

prehensive and inclusive approach to data coverage263

across different languages.264

3.1.1 Evaluation Benchmarks265

We evaluate the cross-lingual language model on266

some widely adopted multi-lingual benchmarks.267

Specifically, we use splits of French, Russian and268

Chinese from XNLI (Conneau et al., 2018), Wino-269

grade (Sakaguchi et al., 2019), Multi-lingual Hel-270

laswag (Dac Lai et al., 2023) and XStorycloze (Lin271

et al., 2021) to evaluate language understanding272

and commonsense reasoning ability of continual 273

pre-trained model for above three languages. To 274

analyze the impact of mixing English at the differ- 275

ent ratios for training, we additionally evaluate the 276

above models on XCopa (Ponti et al., 2020) and 277

PiQA (Bisk et al., 2019). 278

3.2 Results 279

We perform extensive parametric fitting over train- 280

ing across various parameters and training settings 281

to qualitatively model the scaling properties of 282

cross-lingual pre-training. To avoid biases caused 283

by language contamination in the validation set, 284

we also evaluated models on several widely used 285

benchmarks for language modeling. 286

3.2.1 Comparative Analysis on Scaling 287

Behaviours 288

We optimize models of different sizes on the Chi- 289

nese data splits from both scratch and existing En- 290

glish Checkpoints. For all different runs, we do 291

parametric fits for checkpoints with the lowest vali- 292

dation loss, adhering to the assumption of a power- 293

law relationship between the validation loss and 294

raw compute to train the model, total training data 295

or model parameters. 296

Scaling by Parameters and Data We compare 297

our estimated parameters with previous works in 298

Table 1. It can be seen that in continual pre-training, 299

we have B = 433 and r = 0.08, which indicates 300

the cross-lingual transfer effect scales with model 301

parameters. 302

Scaling by Compute The training curves for con- 303

tinual pre-training are shown in Figure 1, where 304

the fittes relationship between validation loss and 305

compute is visualized. It’s worth noting that not 306
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all checkpoints contribute to the predicted scaling307

relationship as the lowest loss value of some check-308

points is higher than models of other parameters309

at the same compute budget and therefore is not310

counted.311

It can be seen that pre-training language mod-312

els from existing checkpoints yield lower final loss313

consistently across different parameter numbers.314

Results of parametric fit indicate that the advan-315

tages of lower loss are generally uniform over each316

unit of compute devoted, which can be supported317

by the significantly lower scaling factor of the com-318

puting term (33.6907 to 31.9594) and nearly un-319

changed exponent (-0.0579 to -0.0575).320

3.2.2 Downstream Performance of321

Pre-trained checkpoints322

We further evaluate the impact of cross-lingual con-323

tinual pre-training on several widely used bench-324

marks. On 1.4B parameters, we continually trained325

language models of language French (Fr.), Russian326

(Ru.), and Chinese (Zh) from the same English327

checkpoint. We then evaluate these models to com-328

pare them to their equivalent model trained from329

scratch as well as the English checkpoints. The330

results are shown in Figure 5.331

We evaluate models of different languages on332

their corresponding language split of multi-lingual333

benchmarks to provide a fair comparison. The re-334

sults showed that models of all three different lan-335

guages gain improved language ability to various336

extents compared to the original pre-trained model.337

It can also be seen that continual pre-training uni-338

versally helps with benchmark performance under339

different languages and different scenarios.340

Interestingly, French models benefit most from 341

continual pre-training, which can be explained 342

from the perspective of language similarity. French 343

share lots of common words and grammar struc- 344

tures with English, hence the cross-lingual trans- 345

ferring is more obvious than Russian and Chinese, 346

which on the other hand share less similarities with 347

English. 348

3.2.3 Compute-optimal Scaling for 349

Cross-lingual Transfering 350

Estimated Parameters under FLOPS budget 351

According to the theoretical model established in 352

Section 2, we can solve the optimal trade-off be- 353

tween model parameters and data to be trained un- 354

der a compute-constraint scenario, which is a prac- 355

tical problem under modern large-scale training. 356

More specifically, according to Equation 2, when 357

only a certain amount of compute power (FLOPS) 358

is allowed, we fit optimal training data and model 359

parameters for continual pre-training to be: 360

N̂opt(C) = 0.324C0.429, D̂opt(C) = 0.514C0.571

(7)
361

Comparatively, for pre-training from scratch: 362

Nopt(C) = 4.79C0.385, Dopt(C) = 0.035C0.615

(8)
363

Visualization for the efficient frontier of model 364

parameter N regarding computes over the Iso-loss 365

contour is shown in Figure 3. We find that the 366

optimal parameters for continual pre-training are 367

slightly deviated from pre-training from scratch, 368

favoring fewer computes for the same model sizes. 369

This aligns with the nature of cross-lingual transfer 370

learning, where the model of continuation is "pre- 371

mature" due to prior knowledge acquired in the 372

base language. 373

Optimal English Mixing Ratio We also investi- 374

gate methods to prevent catastrophic forgetting of 375

original distributions during continual pre-training 376

in another language. At 1.4B parameters, we con- 377

tinually train several models with mixed training 378

corpus by mixing various ratios of training data 379

from the base pre-training into the continual pre- 380

training processes. 381

We visualize the training curves of English- 382

mixing models in Figure 2. Notably, for validation 383
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loss in English and Chinese, the compute is cal-384

culated as the computer devoted to tokens of the385

corresponding language.386

Figure 2 reveals that the mixed data of the origi-387

nal language and the continually trained language388

behave differently in terms of scaling behavior. As389

shown in the right of Figure 2, mixing different390

ratios of original data only affects the early stage391

of training. Models converge to the same valida-392

tion loss when the same amount of computing is393

involved, despite they are mixed with various ratios394

of original data, ranging from 1% up to 80%. This395

suggested that a higher level of mixing original396

data is welcomed as mixing does not hinder scaling397

property while preserving the model’s performance398

on original distribution.399

The left of Figure 2 compares the relationship400

between compute and validation loss on the origi-401

nal distribution throughout continual pre-training,402

which can be viewed as the "Scaling law of forget-403

ting". Interestingly, the scaling behavior depicts404

a power-law relationship resembling the one dur-405

ing pre-training from scratch. Validation losses of406

models at different English mixing ratios increase407

at the early stage of training and then decline, main-408

taining lower than the original pre-trained run. It409

suggests that a large amount of original knowledge410

is preserved throughout the continual training, even411

at a very low English mixing ratio (1%).412

To further analyze impacts brought by mixing413

original data in continual pre-training, we evaluate414

the model performance on English and Chinese415

benchmarks at different English data mix ratios in416

Figure 5. It shows that while pre-training purely417

on one language yields sub-optimal results on the418

other language, any non-skewed English ratio can419

effectively preserve performance on the original420

distributions. In practice, we find that around 30%421

of original data could be capable of keeping the422

validation loss lower than the start of continual423

pre-training.424

4 Related Work425

4.1 Scaling Law426

Scaling Law suggests the predictable influences427

that salient factors (e.g., dataset specifications,428

number of parameters, batch size, etc.) exert429

on model performance through scaling behavior430

across multiple orders of magnitude.431

Building upon prior research before the exten-432

sive usage of attention mechanisms (Hestness et al.,433

2017, 2019), the modern perspective on Scaling 434

Law has identified power-law scaling of test loss 435

in relation to training data size as well as model 436

size (Rosenfeld et al., 2019). The study of Scaling 437

Law gradually deepened, becoming more theoret- 438

ical and empirical, which included learning cur- 439

vey theory (Hutter, 2021), explanation of Scaling 440

Law (Bahri et al., 2021), and Elucidation from 441

the dimension of the data manifold (Sharma and 442

Kaplan, 2020). Until 2021, our understanding of 443

scaling laws has become clearer. In particular, Ka- 444

plan et al. (2020) directed attention toward larger- 445

scale models, providing the general form with vari- 446

ables taken into account to the maximum extent. 447

The apparent general applicability of the scaling 448

law theory has been successively verified through 449

numerous experimental results (Henighan et al., 450

2020). However, the generality previously identi- 451

fied may not align with practical applications. For 452

instance, Hoffmann et al. (2022) revealed the sub- 453

optimality of models adhering to the recommended 454

ratio of model size to the dataset. And the debate 455

sparked further consideration towards modifying 456

space, more experimentally validated hyperparam- 457

eter choices have emerged concurrently, such as 458

the possible influence intrinsic to model architec- 459

ture (Tay et al., 2022; Frantar et al., 2023), value 460

of repeated tokens (Hernandez et al., 2022; Muen- 461

nighoff et al., 2023)(contrast to utilize once in pre- 462

vious works) double descent & the delayed phe- 463

nomena during scaling behavior (Caballero et al., 464

2022), scaling law for forgetting situation when 465

exerting PEFT rather than learning (Kalajdzievski, 466

2024), Incorporation the inference cost into the for- 467

mula (Sardana and Frankle, 2023) and expolate to 468

other modals (Alabdulmohsin et al., 2023; Agha- 469

janyan et al., 2023) or specific domains (Rang et al., 470

2023; Zhang et al., 2023a; Wu et al., 2024) . 471

4.2 Transfer Learning 472

Transfer Learning is dedicated to enhancing gen- 473

eralization during the transition from one data dis- 474

tribution to another similar distribution, provided 475

with an appropriate volume of domain-specific 476

data. This facilitates downstream tasks in adapting 477

to such transitions and achieving optimal perfor- 478

mance, sidestepping the need to relearn knowledge 479

from the ground up (Pan and Yang, 2009; Zhuang 480

et al., 2020). 481

While conventional approaches involved fine- 482

tuning models on a relatively small scale, yielding 483
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satisfactory results (Brown et al., 2020), current re-484

search indicates that additional pre-training, specif-485

ically Continual Pre-training, involving adapting a486

Language Model (LM) to the target domain using487

a corresponding corpus, can significantly enhance488

end-task performance (Gururangan et al., 2020;489

Xu et al., 2019; Sun et al., 2020). This is cru-490

cial not only due to the necessity for generation491

pattern models to learn but also because the sub-492

stantial knowledge contained in the original corpus493

requires digestion (Ke et al., 2023, 2022). Addition-494

ally, continual pre-training mitigates catastrophic495

forgetting (Kirkpatrick et al., 2017; Cossu et al.,496

2022). Positioned as an intermediate stage between497

the base pre-trained model and the fine-tuning oper-498

ation (Zhang et al., 2023b), Continual Pre-training499

is analogous to equipping base models with in-500

cremental knowledge oriented towards the target501

domain. Regarding Scaling Law, Hernandez et al.502

(2021) empirically studied scaling laws for the ef-503

fective transfer of data when fine-tuning instead of504

pre-training. This study involved data following505

natural language distribution and Python code dis-506

tribution, concluding the validation of predicting507

cross-entropy loss during scaling behavior in terms508

of parameters, data, and compute.509

4.3 Multi-lingual Language Model510

During the era of the encoder-decoder architec-511

ture (Vaswani et al., 2017), substantial efforts were512

undertaken, primarily focusing on optimization in513

various aspects, including data blending (Patil et al.,514

2023; Srivastava and Singh, 2021; Choudhury515

et al., 2019), parallel corpus (Kimera et al., 2023;516

Dabre et al., 2021; Azunre et al., 2021; Rabinovich517

et al., 2018), and shared embeddings (Liu et al.,518

2020; Takase and Kobayashi, 2020; Jones et al.,519

2021; Wu and Monz, 2023). With the emergence520

of the GPT (Radford et al., 2018, 2019; Brown521

et al., 2020; Achiam et al., 2023) accompanied by522

In-Context Learning (ICL) (Brown et al., 2020;523

Dong et al., 2022), the utilization of fine-tuning524

and ICL played a crucial role (Tanwar et al.,525

2023) in terms of multilingual language models.526

The currently popular universal multilingual527

language models, particularly BLOOM (Workshop528

et al., 2022), exemplify a highly representative529

category. These models achieve many-to-one530

transfer by undergoing pre-training on hundreds531

of languages followed by fine-tuning on the532

target language, a methodology referred to as533

multilingual learning (Lai et al., 2023). However, 534

they underscore the persistent demand for native 535

speakers. In response to this, cross-lingual transfer 536

learning (Ostendorff and Rehm, 2023), which 537

emphasizes one-to-one transfer, has addressed this 538

limitation, facilitating a more effective transition 539

from potent English language models to models 540

in indigenous tongues. Notable LLMs, including 541

LLaMA (Touvron et al., 2023a,b), Falcon (Penedo 542

et al., 2023), and OPT (Zhang et al., 2022), have 543

demonstrated remarkable capabilities across 544

numerous tasks. Therefore, cross-lingual transfer 545

holds the promise of being a blueprint for the 546

momentum of rapid development in LLMs shared 547

across all languages. 548

549

Previous works discussing scaling laws tended to 550

focus on data utilization efficiency (Muennighoff 551

et al., 2023) or were limited to considerations of 552

cross-task transfer (Hernandez et al., 2021). How- 553

ever, the impact on the efficiency of cross-lingual 554

transfer lacks thorough investigation in that varia- 555

tions in both expression and knowledge between 556

natural language and code are noteworthy and dis- 557

parate languages only differ in expression, with 558

unchanged underlying knowledge. Simultaneously, 559

though Scaling Laws for forgetting captured at- 560

tention (Kalajdzievski, 2024), the LoRA (Hu et al., 561

2021) method used is lightweight compared to ours. 562

Thus, the focal point of our work is to elucidate 563

the Scaling Law in the field of cross-lingual trans- 564

fer utilizing continual pre-training for competitive 565

performance. 566

5 Conclusion 567

In this paper, we presents a comprehensive study 568

on the scaling law of cross-lingual transfer through 569

the lens of continual pre-training. We successfully 570

demonstrate that continual pre-training not only 571

preserves the model’s original language capabilities 572

but also significantly improves performance across 573

various languages. The study uncovers that the 574

strategic mixing of original training data and opti- 575

mizing computational resources based on language- 576

specific demands are crucial for enhancing cross- 577

lingual transfer. Our work lays the groundwork 578

for future explorations into effective multilingual 579

model training strategies, highlighting the need for 580

tailored approaches that consider the unique char- 581

acteristics of each language while leveraging the 582

benefits of large-scale language models. 583
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Limitations584

Language contamination In this study, we uti-585

lized publicly accessible datasets for pre-training.586

Although the Chinese dataset and mC4 dataset at-587

tempt to clean and create language-specific training588

splits, they cannot entirely prevent the contamina-589

tion of English at a more granular level. This is590

particularly challenging due to the inherent nature591

of many languages, such as French, which often592

incorporate English words. To estimate the compu-593

tational effort for different languages, we counted594

the number of samples processed in each language595

training split. This approach may be imprecise if596

the dataset contains a large amount of text in other597

languages. This issue highlights the need for future598

research to conduct a more in-depth analysis of the599

impact of language contamination in multilingual600

pre-training.601

Hyper-parameter sensitivity In the training of602

models across various scales, we selected hyper-603

parameters based on experience and trial and er-604

ror. Our preliminary results showed that deviating605

from optimal hyper-parameters can significantly606

harm model optimization and disrupt the scaling607

laws. To maintain consistency, we selected a con-608

stant learning rate, optimizer, learning rate sched-609

uler, and batch size that matched the scale of the610

model for different experiments. This approach611

is in line with the conclusions of previous stud-612

ies. Future research should explore the finding of613

optimal hyper-parameters from the perspective of614

language-specific scaling laws, which could lead615

to more effective pre-training configurations.616

Limited Scale Due to computational limitations,617

many experiments were not covered, especially in618

cases where the training data was excessive or the619

model size was too large. This limitation means620

that our findings may have limited reference value621

for larger scaling-up scenarios.622
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