
Under review as a conference paper at ICLR 2024

LUMOS: LANGUAGE AGENTS WITH UNIFIED FOR-
MATS, MODULAR DESIGN, AND OPEN-SOURCE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present LUMOS, Language agents with Unified formats,
Modular design, and Open Source LLMs. LUMOS features a modular architecture
consisting of planning, grounding, and execution modules built based on open-
source LLMs such as LLAMA-2. The planning module decomposes a task into
a sequence of high-level subgoals; the grounding module then grounds the gen-
erated subgoals to a series of low-level actions that can then be executed by the
execution module. To obtain high-quality annotations for training these modules,
we leverage LLMs to convert ground-truth intermediate reasoning steps in exist-
ing benchmarks into a unified format that can be used in the LUMOS framework.
LUMOS achieves competitive or superior performance compared to the state of the
art on a variety of complex interactive tasks. We observe: (1) LUMOS is competi-
tive with the LLM agents that are 2− 4× larger on maths tasks, and outperforms
GPT-4/3.5-based agents on complex QA and web agent tasks; (2) LUMOS showd
superior performance against open-source agent baseline formulations including
chain-of-thoughts fine-tuning and unmodularized training; (3) LUMOS surpasses
larger LLM-based agents on an unseen interactive task, WebShop, and achieves
5-10 reward improvement over domain-specific agents.

1 INTRODUCTION

Language agents (Yao et al., 2022b; Patil et al., 2023; Xu et al., 2023a; Lu et al., 2023; Liu et al.,
2023b) harness knowledge learned from language to solve complex problems by generating se-
quences of coherent actions. As a result, they have become a critical component of systems that
solve complex interactive tasks, such as maths (Cobbe et al., 2021; Patel et al., 2021), complex
question-answering (Yang et al., 2018; Geva et al., 2021), and web agent tasks that ask agents to
operate on websites to accomplish user requests (Deng et al., 2023; Zhou et al., 2023). Solving such
tasks typically requires long-horizon planning, as well as interaction with tools and environments.

Prior works (Yao et al., 2022b; Shinn et al., 2023; Paranjape et al., 2023; Xu et al., 2023a) mainly rely
on prompting closed API-based Large Language Models (LLMs)1 such as OpenAI GPT-4/3.5 (Ope-
nAI, 2023; 2022) to instruct them how to decompose tasks and actively respond to dynamic envi-
ronments. Recently, there have also emerged open-source LLM-based agents such as WizardLM-
30B (Xu et al., 2023b) and ReWOO-Planner-7B (Xu et al., 2023a). However, Liu et al. (2023a); Xu
et al. (2023a) show that their performance largely lags behind their closed counterparts. This sug-
gests that a sufficiently large LLM (e.g., approximately 175B-scale GPT-3/3.5/4) is a prerequisite of
developing an effective language agent.

Can language agents with orders of magnitude smaller size 7B be as effective? To this end, we
propose LUMOS, Language agents with Unified formats, Modular design, and Open Source LLMs.
The architecture of LUMOS is designed with modularity in mind, featuring planning, grounding,
and execution modules that are constructed using smaller open-source LLMs such as LLAMA-2-
7B (Touvron et al., 2023). The planning module dissects a complex task into a sequence of high-level
subgoals, and the grounding module subsequently translates these generated subgoals into a series of
low-level actions, which can be executed by the execution module. We propose two LUMOS formu-
lations, LUMOS-Onetime (LUMOS-O) and LUMOS-Iterative (LUMOS-I), to establish the interaction

1We refer to models whose weights have not been publicly released as of September 28, 2023 as “closed”.

1

Under review as a conference paper at ICLR 2024

Open-LLM-based
Planning module

Open-LLM-based
Grounding module Execution module

All Actions All Exe. Results All Subgoals

LUMOS-O formulation

Subgoal Actions -th

Open-LLM-based
Planning module

Open-LLM-based
Grounding module

Subgoal t: Query
the living period
of Lowell Sherman

LUMOS-I formulation

Action t-1: R1 = KnowledgeQuery(Lowell Sherman);
Action t-2: R2 = ParagraphRetrieval(R1, Query:
What is the living period of Lowell Sherman?
Action t-3: R3 = QA([R2], Query: What is the
living period of Lowell Sherman?)

Execution module

Execution Result -th

 Generate -th subgoal

(a) Overview of our proposed LUMOS formulations – LUMOS-
Onetime (LUMOS-O) and LUMOS-Iterative (LUMOS-I) (see de-
tails in §2).

Subgoal 1: Query the living period of
Lowell Sherman.
- Action 1-1: R1 =

KnowledgeQuery(Lowell Sherman)
- …
Subgoal 2: Query the living period of
Jonathan Kaplan.
- Action 2-1: R4 =

KnowledgeQuery(Jonathan Kaplan)
- …
Subgoal 3: Compare their living periods.
- Action 3-1: R7 = Calculator(R3 > R6)

Ground-Truth
Intermediate

Reasoning Steps

Training Pipeline

Open-LLM-based
Planning module

Open-LLM-based
Grounding module

LLM Annot. Conversion Train

(b) The process of acquiring annota-
tions for training planning and ground-
ing modules (see details in §3).

Figure 1: Overall architecture, formulations and training pipeline of LUMOS.

between different modules. Demonstrated in Figure 1a, LUMOS-O is an efficient formulation that
generates all the subgoals and executable actions at once using a one-time inference call. LUMOS-I
is an adaptive formulation that iteratively generates one subgoal and its corresponding executable
actions according to the current environment states.

Fine-tuning the modules with ground-truth data for planning and grounding would enable language
agents to acquire these skills (Wang et al., 2023b; Shridhar et al., 2023; Li et al., 2023). However,
a realistic challenge is that there are no datasets containing these types of annotations — that is
high-level subgoals (e.g., “Subgoal 1: Query the living period of Lowell Sherman”) and executable
actions (e.g., KnowledgeQuery(Lowell Sherman)). To obtain high-quality annotations for training
the modules, as shown in Figure 1b, we harness LLMs to convert ground-truth intermediate rea-
soning steps in existing benchmarks into a unified annotation format compatible with the LUMOS
framework. This approach not only aids in obtaining high-quality training annotations as the con-
version is based upon high-quality ground-truth reasoning steps in existing datasets, but the unified
format also facilitates the training of modules with enhanced generalizability across various domains
of complex interactive tasks, as shown by our experiments.

LUMOS demonstrates competitive or state-of-the-art performance on various complex interactive
tasks, including maths, complex QA and web agent tasks. Specifically: (1) On maths tasks
GSM8K (Cobbe et al., 2021) and SVAMP (Patel et al., 2021), LUMOS competes effectively with
agents that are 2− 4× larger in size, and it even surpasses GPT-based agent frameworks in complex
QA (Geva et al., 2021; Yang et al., 2018) and web agent tasks (Deng et al., 2023). In particu-
lar, LUMOS achieves 3.9-8.5% LLM accuracy gain over GPT-3.5-turbo-based agents on HotpotQA,
as well as 5.1% step success rate gain over GPT-4 on Mind2Web. (2) Compared to other open-
source agent baseline formulations such as chain-of-thoughts fine-tuning and unmodularized agent
training, LUMOS formulations consistently exhibit superior performance. (3) On an unseen interac-
tive task called WebShop (Yao et al., 2022a), LUMOS outperforms larger LLM-based agents (e.g.,
WizardLM-30B) around 20 reward improvement and delivers a remarkable 5-10 reward improve-
ment over domain-specific agents. Together, our proposed framework and unified model provides
valuable resource and direction for advancing open-source interactive language agents.

2 LUMOS: A MODULAR AGENT FRAMEWORK

We introduce the overall design and two formulations for developing agents within this framework.

2.1 LUMOS AGENT ARCHITECTURE

To solve a complex interactive task, it is essential to first decompose the task to a sequence of sub-
goals (i.e., planning), then convert each subgoal to a sequence of executable actions (i.e., grounding),

2

Under review as a conference paper at ICLR 2024

and finally execute the actions. Therefore, there are three modules in LUMOS for planning, ground-
ing, and execution, respectively.

Planning Module (PM). The module is designed to decompose a complex task into a series of
high-level subgoals, which are written in natural language. For example, there are three subgoals to
answer a question “Who lived longer, Lowell Sherman or Jonathan Kaplan?”, as shown in Figure 1b:
(1) Query the living period of ‘Lowell Sherman’; (2) Query the living period of ‘Jonathan Kaplan’;
(3) Compare their living periods and return the answer. The generated subgoals can help agents
translate a complex task to low-level actions in an interpretable manner. Note that the subgoals are
not executable and not bound to any specific tools or APIs.

Grounding Module (GM). This module aims at converting the high-level subgoals produced by the
PM to low-level executable actions. To accomplish the subgoal “Query the living period of Lowell
Sherman”, the GM converts it to one or multiple actions, e.g., KnowledgeQuery(Lowell Sherman),
QA([R2], Query: “What is the living period of Lowell Sherman?”) that query the information
needed for solving the given subgoal.

Execution Module (EM). The execution module is a program that parses actions to a series of
external tools including APIs, small neural models, and virtual simulators that interact with relevant
tools and external environment. For example, the action type KnowledgeQuery can be linked to the
Wikipedia API of querying a document. The web agent tasks also require the interaction with raw
HTML via a simulator that supports website operations such as typing, clicking and selecting.

The main characteristics of LUMOS framework is the interaction between planning, grounding and
execution modules. We propose the following two formulations that foster the communication be-
tween the three modules: LUMOS-Onetime (LUMOS-O) and LUMOS-Iterative (LUMOS-I).

2.2 LUMOS-ONETIME (LUMOS-O)

LUMOS-Onetime (LUMOS-O) is an efficient formulation that generates all the subgoals and
grounded actions at once. In the LUMOS-O formulation described in Figure 1a, the planning mod-
ule generates all the three subgoals with a single inference and no interaction with the other two
modules. We pass all generated subgoals altogether into the grounding module that converts them to
a chain of low-level actions at once without interacting with execution modules. Given the task and
three subgoals, the grounding module would directly compute all converted low-level actions such
as KnowledgeQuery(Lowell Sherman) and ParagraphRetrieve(..., Query: “How long is the
living period of Lowell Sherman?”).

Besides the task description and subgoals to be grounded, action interfaces are also an indispensable
part of grounding module’s input. The action interfaces guide the grounding module to produce valid
executable actions. For example, we provide the action interface “SolveEquation(equation):
Solve the previous set equation” to the grounding module. It defines the action name
“SolveEquation” and action functionality “Solve the previous set equation”. It also forces
acceptable action arguments to be an equation.

More formally, we illustrate the overall planning and grounding process of LUMOS-O in Fig-
ure 2a. For planning, given the parameters of planning module is θplan, we input the task de-
scription T into the planning module. The generated output would be a series of subgoals,
S = θplan(T) = {s1, ..., sn}. Since grounding relies on the task description, action interface
I = {i1, ..., ik} and subgoals generated by the planning module, the grounded actions could be
obtained via A = θground(T, I, S), where θground represents the grounding module parameters.

2.3 LUMOS-ITERATIVE (LUMOS-I)

LUMOS-Iterative (LUMOS-I) is a formulation that generates one subgoal and its corresponding ex-
ecutable actions in each iteration. When generating the current t-th subgoal, the planning module
requires the previous planned subgoals and the execution results of their grounded actions. The exe-
cution results assist the planning module to be aware of the dynamic environmental change and thus
decide actions according to up-to-date environments. We take complex QA task as example to show
its advantage of flexibly adapting to the environmental change. Suppose that we are answering the
question “Which state was the U.S. president in 2014 born in?”.

3

Under review as a conference paper at ICLR 2024

Planning module

Grounding module

Execution module

 Task description:
 Action interfaces:

Subgoals

 Task description:

Actions

Exe. results:

LUMOS-O formulation

(a) Inputs & outputs of each module in LUMOS-O
formulation.

Planning module

Grounding module

Execution module

 Task description:
 Previous subgoals:
 Previous actions:
 Action interface:

Subgoal:

 Task description:
 Previous results:
 Previous subgoals:

Action:

 -th iter. for LUMOS-I formulation

Exe. result:

(b) Inputs & outputs of each module for the t-th iter-
ation in LUMOS-I formulation.

Figure 2: Overview of the inputs & outputs contents for the modules in LUMOS.

In the first iteration, the planning module will first produce a subgoal to identify who the U.S.
president in 2014 is. After passing the subgoal into the grounding module, we are able to acquire
the corresponding query actions for execution. Once we get the executed results “Obama”, the
planning module would accept “Obama” along with the prior planning context as input to generate
the next subgoal grounded in the current environment “Subgoal 2: Query which state Obama was
born”. Planning upon the latest execution results would mitigate the risk of introducing a non-
existent object in the environment or a random entity during the reasoning process.

We demonstrate a single iteration of planning and grounding process of LUMOS-I in Figure 2b. In
order to plan t-th subgoal, we input the 1) task description T , 2) prior subgoals {s1, ..., st−1},
and 3) their executed results {e1, ..., et−1} into the planning module. We concatenate them in
the format of T, s1, e1, ..., st−1, et−1 where the most recent subgoals and their results are placed
in the end, as they have higher influence for planning t-th subgoal. The generated output would
be the t-th subgoal, st = θplan(T, s1, e1, ..., st−1, et−1). After the t-th subgoal is obtained, it
will be directly incorporated into grounding module input together with the prior grounding his-
tory and action interface I to generate the next set of executable actions At. Therefore, At =
θground(T, I, s1, A1, ..., st−1, At−1, st). Note that At is an executable action list that includes one
or multiple low-level actions, as the high-level subgoal can be decomposed into multiple low-level
actions. We finally put the low-level actions At into execution module and the final execution result
et can be sent back for planning (t+ 1)-th subgoal, st+1.

3 LEARNING TO PLAN & GROUND WITH OPEN-SOURCE LLMS

To guide planning and grounding modules to generate subgoals and valid low-level actions under
our specified formulations, we fine-tune the two modules to produce the expected outputs.

Training the modules requires high-quality tasks, subgoals, and low-level actions. One solution to
obtain these annotations is generating tasks, plans and grounded actions by LLMs from scratch.
To equip smaller LLMs with instruction-following ability, prior works leverage methods such as
Self-Instruct (Wang et al., 2023b) to synthesize the instructions, inputs and outputs based on seed
examples. However, these methods are not suitable for generating high-quality annotations for com-
plex interactive tasks. For example, GPT-4 can only achieve around 20% step success rate in a web
agent benchmark Mind2Web (Deng et al., 2023; Liu et al., 2023a). Depending on such methods to
generate complex interactive task annotations may introduce a great number of errors and degrade
the annotation quality.

Instead of creating annotations with API-based LLMs directly, we exploit LLMs as a “style transfer”
tool to convert ground-truth intermediate reasoning steps in existing benchmarks into the expected
format in LUMOS formulations. We notice that there are several complex interactive tasks annotated
with either human-written solutions or structured action sequences. For example, PRM800K (Light-
man et al., 2023) is a maths dataset containing the solution steps written in natural language, inter-
leaved with formulas; Musique (Trivedi et al., 2022) and StrategyQA (Geva et al., 2021) are complex
QA datasets annotated with decomposed questions, supporting facts, and relevant Wikipedia para-
graph indices; Mind2Web includes ground-truth action sequences such as “[combobox] Reservation

4

Under review as a conference paper at ICLR 2024

Type → SELECT: Pickup”. They provide LLMs with ample fundamental information that suffi-
ciently contributes to the annotation conversion.

3.1 CONVERSION PROMPTS

To help LLMs better follow the annotation conversion instructions, we add 4/5-shot in-context ex-
amples in conversion prompts (prompt details in Appendix F). We discuss the important properties
of these in-context examples. The notations of all the converted annotations have hat over letters.

Action Space. Action space defines the available actions that LLMs could ground to. For example,
for web agent annotations, we pre-define several common HTML operations in the action space:
Click, Type, and Select.

Ground-Truth Intermediate Reasoning Steps. We provide LLMs with ground-truth intermediate
reasoning steps in existing benchmarks. With these as a reference, LLMs are able to summarize
high-level subgoals and synthesize corresponding actions according to the given action space.

Subgoals and Corresponding Actions. Subgoals and corresponding actions are denoted as Ŝ and
Â in the proposed formulations. When converting ground-truth reasoning steps into our expected
annotations, it is necessary to provide LLMs with examples about how to distill the high-level sub-
goals from the reasoning steps and map them into corresponding actions. In the in-context examples,
we manually decompose a complex task into several high-level subgoals according to the context of
ground-truth reasoning steps. Under each high-level subgoal, we write down multiple correspond-
ing actions that help to accomplish the subgoal (see examples in Appendix F). Given the aligned
exemplar subgoals and actions in the prompt, LLMs would emulate to generate subgoals and their
paired actions when converting annotations for new tasks.

As the executed results of prior subgoals might be useful in future action implementation, we
interlink the grounded actions in the in-context examples to allow context-dependent execution.
One typical example of the interlinked actions is R1 = KnowledgeQuery(Zombies); R2 =
ParagraphRetrieve(R1, Query: What color skin are zombies typically depicted
with?). The agent could first find the relevant paragraphs in the zombie knowledge page. Written
in interlinked style, the second paragraph retrieval action is able to receive the knowledge about
zombies (R1) as the context, and performs query-based retrieval.

Intermediate Executed Results of Subgoals. The intermediate executed results Ê play an im-
portant role in increasing LUMOS’s adaptability to environmental changes. Some datasets (e.g.,
GSM8K, Mind2Web) offer execution results in their reasoning steps, including the computation
results of formulas and the HTML code after operating on a website. We leverage them as Ê.

For the datasets without any execution results, their reasoning steps actually contain the relevant doc-
uments that include the clues for solving subgoals. We take an annotated example in StrategyQA
dataset. Although the direct answer of the decomposed question “What color skin are zombies typ-
ically depicted with?” is not provided, the annotation contains a related fact “Zombies are often
depicted as green in pallor.” that mentions the answer “green”. Thus, for each in-context example,
we concatenate the relevant documents (e.g., “Zombies are often depicted as green in pallor.”) as
well as our manually captured executed results (e.g., “green”) in the conversion prompts. When ap-
plying to converting new samples into our expected annotations, LLMs would automatically extract
answers from the given documents as the executed results.

After prompting LLMs with the conversion prompts, we are able to acquire the key elements in
training annotations, including subgoals Ŝ, their corresponding actions Â and execution results Ê.

3.2 TRANSFERRING ANNOTATIONS INTO CONVERSATIONS

Finally, to build the interaction between planning and grounding modules, we organize the annota-
tions into conversational format:

Conversational Planning Module Annotation. As shown in Figure 3a, we first play a user role to
provide the task T̂ and an instruction that guides the module to generate subgoals. For LUMOS-O

5

Under review as a conference paper at ICLR 2024

Subgoal 1: Query the living period of Lowell Sherman.

- Action 1-1: R1 = KnowledgeQuery(Lowell Sherman)

- Action 1-2: R2 = ParagraphRetrieval(R1, Query: …)

- Action 1-3: R3 = QA([R2], Query: …) = 46 years

Subgoal 2: Query the living period of Jonathan Kaplan.

- Action 2-1: R4 = KnowledgeQuery(Jonathan Kaplan)

- Action 2-2: R5 = ParagraphRetrieval(R4, Query: …)

- Action 2-3: R6 = QA([R5], Query: …) = 75 years

Subgoal 3: Compare their living periods.

- Action 3-1: R7 = Calculator(R3 > R6)

- …

<|user|>
Please provide a reasonable subgoal-based plan to solve the
given task.
Task: Who lives longer, Lowell Sherman or Jonathan Kaplan?

<|assistant|>
Subgoal 1: Query the living period of Lowell Sherman.

<|user|>
The execution result of Subgoal 1 is 46 years. Should we
keep planning?

<|assistant|>
No, I will keep planning. Subgoal 2: Query the living
period of Jonathan Kaplan.

<|user|>
The execution result of Subgoal 2 is 75 years. Should we
keep planning?
…

Organize subgoals & execution results into conversation format

Final planning module annotation

(a) Final planning module annotation organized from the converted subgoals & execution results.

Subgoal 1: Query the living period of Lowell Sherman.

- Action 1-1: R1 = KnowledgeQuery(Lowell Sherman)

- Action 1-2: R2 = ParagraphRetrieval(R1, Query: …)

- Action 1-3: R3 = QA([R2], Query: …) = 46 years

Subgoal 2: Query the living period of Jonathan Kaplan.

- Action 2-1: R4 = KnowledgeQuery(Jonathan Kaplan)

- Action 2-2: R5 = ParagraphRetrieval(R4, Query: …)

- Action 2-3: R6 = QA([R5], Query: …) = 75 years

Subgoal 3: Compare their living periods.

- Action 3-1: R7 = Calculator(R3 > R6)

- …

<|user|>
Please ground the given subgoal to corresponding executable
actions for solving the given task.

[action space + action interfaces]

Task: Who lives longer, Lowell Sherman or Jonathan Kaplan?
Subgoal to be grounded: Subgoal 1: Query the living period
of Lowell Sherman.

<|assistant|>
R1 = KnowledgeQuery(Lowell Sherman); R2 =
ParagraphRetrieval(R1, Query: …); R3 = QA([R2], Query: …)

<|user|>
Subgoal to be grounded: Subgoal 2: Query the living period
of Jonathan Kaplan.

<|assistant|>
R4 = KnowledgeQuery(Jonathan Kaplan); …
…

Organize subgoals & low-level actions into conversation format

Final grounding module annotation

(b) Final grounding module annotation organized from the converted subgoals & actions.

Figure 3: Process of converting converted subgoals, actions, and executions into the final conversa-
tional training annotations for LUMOS-I formulation.

formulation, the planning module should reply all the annotated subgoals Ŝ at once. There would
be no further conversation needed.

LUMOS-I requires multi-turn conversational style. The planning module append the first ground-
truth subgoal ŝ1 with index “Subgoal 1” in the beginning. We then act as user again and put the
executed results of ŝ1 with prefix “The executed result for Subgoal 1 is ”. The subsequent conver-
sation is constructed in the similar patterns. We assume ourselves as user, tell the execution results
êt−1 of the last subgoal ŝt−1 to planning module, and ask whether the planning should be stopped;
The response would be whether the planning should stop and a new ground-truth subgoal ŝt.

Conversational Grounding Module Annotation. Shown in Figure 3b, we also first play a user
role to provide the task T̂ , action space and interfaces Î . For LUMOS-O formulation, we feed all the
subgoal annotations Ŝ in the first user prompt. All the action annotations Â would be the response
of the user instruction. For LUMOS-I formulation, we attach the first subgoal annotation ŝ1 in the
first user prompt. The response of grounding module should be the corresponding actions Â1. In
the rest conversations, we provide the current ground-truth subgoal ŝt, with prefix “Subgoal to be
grounded: ”. Its response would be ŝt’s corresponding actions Ât.

3.3 TRAINING WITH CONVERTED ANNOTATIONS

As the style of LUMOS training annotations are conversational, we formulate them in the format
of {x1, y1, ..., xi, yi, ..., xn, yn}, where xi and yi indicate i-th user prompts and their ground-truth
responses. Following Wang et al. (2023a), during training process, we feed each entire multi-turn
annotation into a decoder-only model while merely calculating the decoding loss on the tokens of
ground-truth responses Y = {y1, ..., yi, ..., yn}. We apply binary masking on the user prompt tokens
to prevent computing loss on them. The final loss function L = −

∑
j log pθ(tj | t<j)× 1(tj ∈ Y)

where tj denotes j-th input token and 1(·) is a Boolean indicator function.

6

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

We introduce the experimental setups, including the details of annotation conversion, training mod-
ules, and tools used in execution module. We then demonstrate the effectiveness of LUMOS via 1)
comparing LUMOS with larger open-source LLM agents and GPT-4/3.5-based agent frameworks, 2)
comparing with other potential open-sourced agent baselines, 3) evaluating LUMOS’s generalizabil-
ity on an unseen interactive task, and 4) assessing the quality of converted training annotations.

4.1 EXPERIMENTAL SETUPS

Training Annotation Conversion. We seek benchmarks of existing complex interactive tasks that
comprise of ground-truth intermediate reasoning steps. Appendix A lists the data sources for anno-
tation conversion. They encompass a variety of complex interactive tasks: maths, complex QA, and
web agent tasks. Using the conversion prompts discussed in §3.1, we prompt GPT-4 OpenAI (2023)
to perform annotation conversion on ground-truth reasoning steps. After filtering out invalid con-
verted annotations with mismatched parentheses or too long lengths, in total, we obtain 39,441 and
39,558 annotations for training planning and grounding modules, respectively. Detailed statistics of
the annotations in specific domains is shown in Appendix A.

Planning and Grounding Module Training. We use LLAMA-2-7B as the backbone model for
planning and grounding module training. For all the experiments, we conduct training over two
epochs using a learning rate of 2× 10−5. More training details are in the Appendix B.

Action Spaces of Complex Interactive Tasks. We incorporate the common actions frequently used
for solving complex interactive tasks into the pre-defined action spaces. The action space of maths
tasks includes Calculator, SetEquation, SolveEquation, SolveInequality, Code, Define, and
Count; The action space of complex tasks incorporates KnowledgeQuery, ParagraphRetrieval,
QA, Calculator, and Code; Web agent tasks involve the actions Type, Click, and Select. The
execution tools for implementing each action are listed in Appendix D.

4.2 OVERALL PERFORMANCE ON COMPLEX INTERACTIVE TASKS

We evaluate LUMOS, open-source LLM agents and GPT-4/3.5-based agents on a variety of complex
interactive tasks, including maths, complex QA and web agent tasks. We follow the evaluation
settings adopted in AgentBench (Liu et al., 2023a) and ReWOO (Xu et al., 2023a) to assess LUMOS
performance (see details in Appendix C). Table 1 shows the overall performance on each task type.
Note that in Table 1, LUMOS-series agents whose names are free of subscripts (e.g., LUMOS-I)
indicate that the agents are trained with the unification of all the annotations across domains. Agents
like LUMOS-Iwebagent denote that the agents trained with the annotations exclusively derived from
web agent tasks under LUMOS-I formulation.

LUMOS vs. Larger Open-Source LLM Agents. As LUMOS is based on open-source LLMs, we
first compare LUMOS with other existing open-source LLM agents on the three complex interactive
task types. We observe that LUMOS excels various open-source LLM agents over all the tested
datasets. Although the base models of the compared language agents are approximately 2 − 4×
greater than LUMOS, LUMOS still outperforms them by a large margin. In particular, LUMOS-I
achieves 24.6% success rate improvement over WizardLM-30B on Mind2Web.

LUMOS vs. GPT-4/3.5-based Agents. Though LUMOS is built upon small LLAMA-2-7B model,
are they indeed much worse than strong GPT-4/3.5-based agents? Surprisingly, we discover that
LUMOS is still able to perform better than those closed API-based agents. We find that LUMOS-I
performs 5.1% superior to GPT-4 on Mind2Web while bringing 3.9% LLM accuracy improvement
over GPT-3.5-based ReWOO agent on HotpotQA when using GPT-3.5-turbo as auxiliary QA tool.

4.3 COMPARISON WITH OTHER OPEN-SOURCE AGENT FORMULATIONS

To compare LUMOS with other open-source agents, we train open-source LLM agents in the follow-
ing formulations with the same set of training annotations:

Vanilla Training (Van-T): Given a task T , the agent learns to directly generate the answer.

7

Under review as a conference paper at ICLR 2024

Agents Web Agent
Mind2Web

Open-Source Language Agents

Baichuan-13B-chat† 2.3
WizardLM-30B† 3.1

Koala-13B† 6.0

GPT-4/3.5-based Language Agents

GPT-3.5-turbo† 15.7
Claude† 21.0
GPT-4† 22.6

LUMOS-Iwebagent 27.6
LUMOS-I 27.7

(a) Performance on web agent tasks. The evalua-
tion metric is step success rate (%).

Agents Maths
GSM8K SVAMP

Open-Source Language Agents

Code-Llama (PoT)-13B¶ 36.1 60.0
Platypus-30B¶ 37.8 51.7

ReWOO-Planner-7B‡ ∼38 -
Orca-Platypus-13B¶ 38.4 56.9

Alpaca-7B‡ ∼39 -
Galactica-30B¶ 41.7 41.6

LUMOS-Omaths 50.5 65.5
LUMOS-Imaths 47.1 63.6

LUMOS-I 46.7 63.8

(b) Performance on maths tasks. The evaluation metric
is accuracy (%).

Agents Agent Base Model QA Tool Complex QA
StrategyQA HotpotQA

Open-Source Language Agents

ReWOO-LLAMA‡ LLAMA-7B GPT-3.5-turbo ∼56 ∼37

GPT-4/3.5-based Language Agents

GPT-3.5-CoT‡ GPT-3.5-turbo GPT-3.5-turbo 56.0 37.8
ReAcT‡ GPT-3.5-turbo GPT-3.5-turbo 64.6 40.8
ART∗ GPT-3 GPT-3 66.4 -

ReWOO‡ GPT-3.5-turbo GPT-3.5-turbo 66.6 42.4

LUMOS-OcomplexQA LLAMA-2-7B GPT-3.5-turbo 60.6 39.2
LUMOS-IcomplexQA LLAMA-2-7B GPT-3.5-turbo 65.7 45.9
LUMOS-IcomplexQA LLAMA-2-7B GPT-4 72.4 56.8

LUMOS-I LLAMA-2-7B GPT-3.5-turbo 66.3 46.3

(c) Performance on complex QA tasks. The evaluation met-
ric for StrategyQA and HotpotQA is accuarcy (%) and LLM
accuracy (%), respectively.

Agents Unseen Task
WebShop

Open-Source Language Agents

Baichuan-13B-chat† 5.7
Koala-13B† 6.0

WizardLM-30B† 10.6
Vicuna-13B† 12.6

API-based Language Agents

ChatGLM2† 19.4

LUMOS-Iwebagent 34.7
LUMOS-Imaths 30.1

LUMOS-IcomplexQA 33.5
LUMOS-I 39.8

(d) Performance on unseen task, WebShop.
The evaluation metric for WebShop is the av-
erage reward defined in Yao et al. (2022a).

Table 1: Overall performance on diverse complex interactive tasks. †, ‡, ∗, and ¶ denote the results
reported in Liu et al. (2023a), Xu et al. (2023a), Paranjape et al. (2023) and Yue et al. (2023). The
symbol ∼ means that the performance is estimated according to the bar chart in ReWOO’s Figure 6.

Chain-of-Thought Training (CoT-T): Given a task T , the agent learns to directly produce the
chain-of-thought solution as well as the final answer.

Unmodularized Agent Training (UA-T): Given a task T , the agent learns to generate all the sub-
goals and corresponding actions with a single LLM-based module. Execution module is served for
executing the grounded actions.

Note that we do not compare LUMOS formulations with vanilla and CoT training on web agent
tasks, as without any interaction with external environment, their planning is not grounded to the
real websites. Also, because Van-T and CoT-T cannot be successfully applied to web agent task,
we choose not to train the models with unified annotations that cover web agent task annotations;
instead, all the models would be trained with each specific task type’s annotations.

Agents Web Agent
Mind2Web

UA-T 25.3

LUMOS-Iwebagent 27.6

(a) Comparison with other
training formulations on web
agent tasks.

Agents Maths
GSM8K SVAMP

Van-T 9.9 12.7
CoT-T 40.4 52.2
UA-T 45.5 61.7

LUMOS-Omaths 50.5 65.5
LUMOS-Imaths 47.1 63.6

(b) Comparison with other training
formulations on maths tasks.

Agents Complex QA
StrategyQA HotpotQA

Van-T 61.0 23.4
CoT-T 58.3 22.1
UA-T 62.3 39.6

LUMOS-OcomplexQA 60.6 39.2
LUMOS-IcomplexQA 65.7 45.9

(c) Comparison with other training
formulations on complex QA tasks.

Table 2: Comparison with baseline formulations for training language agents.

LUMOS vs. Van-T and CoT-T. From Table 2, we find that LUMOS-I and LUMOS-O both outper-
form the formulations Van-T and CoT-T by a large margin. Building the connections with execution
modules, LUMOS can receive more reliable intermediate results.

LUMOS vs. UA-T. We notice that the two LUMOS formulations also perform better than the unmod-
ularized formulation that makes use of only one model. It further shows the benefits of disentangling
different agent skills and simplifying the learning tasks for language agents.

8

Under review as a conference paper at ICLR 2024

4.4 GENERALIZABILITY TO DIVERSE COMPLEX INTERACTIVE TASK

To evaluate the generalizability of LUMOS, we focus on answering the two questions — Q1: Could
unified training further improve the training task types? Q2: Could unified training achieve
better performance on an unseen task than training with task-specific annotations? Here, we
select WebShop as the unseen task, since its shopping environment and action space greatly differs
from the ones covered in the training annotations. To adapt LUMOS to the new task, we add two-shot
examples in the input of planning and grounding modules for them to learn how to produce subgoals
and ground to new sets of available actions (see more details in Appendix G).

From Table 1, it is shown that LUMOS-I, the product of unified training, slightly enhances the
domain-specific agents on web agent and complex QA tasks. More importantly, as displayed in Ta-
ble 1d, LUMOS-I achieves 5-10 average reward than the domain-specific agents on WebShop. Mean-
while, it significantly excels larger language agents such as WizardLM-30B and Vicuna-13B (Chi-
ang et al., 2023). This manifests that unified training would not hinder the performance on the
trained tasks, while equipping agents with better capacity to plan for new tasks and understand
novel actions.

In the end, we analyze the quality of our converted training annotations in Appendix E. We show
that 1) our proposed annotation conversion method can generate annotations that bring better perfor-
mance than using Self-Instruct method, and 2) the design of having high-level subgoal annotations
is beneficial than using low-level subgoal to supervise the agent training.

5 RELATED WORK

Language Agents. Empowered by reinforcement learning, language agents were previously de-
ployed in text game environments such as TextWorld (Côté et al., 2019) and LIGHT (Urbanek et al.,
2019). With the development of LLMs, language agents demonstrate the potential to solve more
diverse complex interactive tasks. ReAct (Yao et al., 2022b) is a prompting method that makes
LLM-based language agents grounded in external environment and aware of the generated action
feedback for further reasoning. Subsequently, various methods (e.g., HuggingGPT (Shen et al.,
2023), Chamelon (Lu et al., 2023), ReWOO (Xu et al., 2023a), ART (Paranjape et al., 2023), and
BOLAA (Liu et al., 2023b)) aimed to improve agent performance and make agents applicable to
more diverse scenarios. However, these recent language agent works mainly rely on prompting
large closed LLMs such as OpenAI GPT-4/3.5. Different from the prior work, we explore whether
our training paradigm enables smaller open-source LLMs to achieve comparable performance.

Improving Capacity of Smaller Models. Knowledge distillation (Hinton et al., 2015) is a prevalent
technique to transfer knowledge from teacher models to smaller models for better efficiency. Re-
cent works utilize LLMs to generate explicit textual knowledge or training data for training smaller
models (Bosselut et al., 2019; West et al., 2022; Wang et al., 2023b; Shridhar et al., 2023; Li et al.,
2023). We notice that directly generating annotations with for training planning and grounding mod-
ules may introduce large number of errors because several strong LLMs (e.g., GPT-4) achieve very
low performance on some of the complex interactive tasks (Liu et al., 2023a). In our formulation,
instead of using LLMs to create training annotations without any reference, LLMs transform the
gold reasoning steps into our desired annotation format for training system modules.

6 CONCLUSION

We introduce LUMOS, Language agents with Unified formats, Modular design, and Open Source
LLMs. We propose two training formulations LUMOS-I and LUMOS-O that encourage collabora-
tion between planning, grounding, and execution modules to solve complex tasks. To obtain high-
quality annotations for training modules, we leverage LLMs to convert reasoning steps in existing
benchmarks into a unified format usable in the LUMOS framework. Merely built upon small LLMs,
LLAMA-2-7B, LUMOS is competitive with the LLM agents that are 2 − 4× larger on maths tasks,
and even outperforms GPT-4/3.5-based agents on complex QA and web agent tasks. We also show
that LUMOS achieves superior performance against commonly adopted open-source agent baseline
formulations and enjoys considerably better generalization on an unseen interactive task.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin
Choi. COMET: Commonsense transformers for automatic knowledge graph construction. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4762–4779, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1470. URL https://aclanthology.org/P19-1470.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Computer Games: 7th Workshop, CGW 2018, Held in Con-
junction with the 27th International Conference on Artificial Intelligence, IJCAI 2018, Stockholm,
Sweden, July 13, 2018, Revised Selected Papers 7, pp. 41–75. Springer, 2019.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions
of the Association for Computational Linguistics, 9:346–361, 2021. doi: 10.1162/tacl a 00370.
URL https://aclanthology.org/2021.tacl-1.21.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 6769–6781, Online, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.
emnlp-main.550.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
chain-of-thought distillation: Small models can also “think” step-by-step. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2665–2679, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.150. URL https://aclanthology.org/2023.acl-long.150.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023a.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023b.

10

https://aclanthology.org/P19-1470
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/2021.tacl-1.21
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2023.acl-long.150

Under review as a conference paper at ICLR 2024

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. arXiv preprint arXiv:2304.09842, 2023.

OpenAI. ChatGPT. 2022. URL https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities
into smaller language models. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 7059–7073, Toronto, Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-acl.441. URL https://aclanthology.org/2023.
findings-acl.441.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv preprint, abs/2302.13971, 2023. URL https://arxiv.org/abs/2302.
13971.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Computa-
tional Linguistics, 10:539–554, 2022. doi: 10.1162/tacl a 00475. URL https://aclanthology.
org/2022.tacl-1.31.

Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktäschel, Douwe Kiela, Arthur Szlam, and Jason Weston. Learning to speak and act in a
fantasy text adventure game. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 673–683, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1062. URL https://aclanthology.
org/D19-1062.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels
go? exploring the state of instruction tuning on open resources. arXiv preprint arXiv:2306.04751,
2023a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, Toronto, Canada, July 2023b. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.
acl-long.754.

11

https://openai.com/blog/chatgpt
https://aclanthology.org/2023.findings-acl.441
https://aclanthology.org/2023.findings-acl.441
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://aclanthology.org/2022.tacl-1.31
https://aclanthology.org/2022.tacl-1.31
https://aclanthology.org/D19-1062
https://aclanthology.org/D19-1062
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754

Under review as a conference paper at ICLR 2024

Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language
models to commonsense models. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
4602–4625, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.
18653/v1/2022.naacl-main.341. URL https://aclanthology.org/2022.naacl-main.341.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023a.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question an-
swering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2369–2380, Brussels, Belgium, October-November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022b.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

12

https://aclanthology.org/2022.naacl-main.341
https://aclanthology.org/D18-1259

Under review as a conference paper at ICLR 2024

APPENDIX

A STATISTICS OF CONVERTED TRAINING ANNOTATIONS

As discussed in §4.1, the data sources for constructing training annotations cover a broad range of
complex interactive tasks. Table 3 shows the benchmarks leveraged for annotation conversion, along
with the task type information.

To train agents like LUMOS-Imaths mentioned in Table 1b, we need to leverage the annotations
converted from 19778 data specific to maths domain. For training a unified agent such as LUMOS-I,
we would use the annotations transformed from all the listed data as training set.

B DETAILS OF TRAINING MODULES

We describe additional details about our training experiments. We set the maximum sequence length
to 1024. We also apply linear warmup for 3% of the total training steps to adjust the learning rate.
All the training experiments are implemented with 2 NVIDIA 80GB A100 GPUs.

Task Types Datasets Numbers for Conversion Total Numbers

Maths
PRM800K 10000

19778GSM8K 7473
ASDiv 2305

Complex QA Musique 17632 19409StrategyQA 1777

Web Agent Mind2Web 1009 1009

Table 3: Statistics of data sources used for converting annotations.

C DETAILS OF PERFORMANCE EVALUATION

Metrics. Here we mainly discuss the special metrics adopted to evaluate the agent performance. For
HotpotQA, instead of using strict exact matching, we follow Xu et al. (2023a) to use GPT-4 as an
evaluator to judge whether the predicted answer shares the same semantics with the gold answer. We
call this metric as LLM accuracy, frequently mentioned in §4. For Mind2Web, we adopt the same
metric step success rate used for AgentBench evaluation. A step is deemed successful solely when
both the chosen HTML tag and predicted action type exactly match the gold action. For WebShop,
we leverage the reward utilized in both AgentBench and original WebShop paper, which quantify the
similarity between gold and predicted products with regard to product titles and selected attributes.

Evaluation Data. Following Xu et al. (2023a), we only evaluate 300 and 1000 randomly selected
examples from StrategyQA and HotpotQA evaluation set, respectively. The results reported in Ta-
ble 1c are the average performance on three different sets of sampled data. Regarding Mind2Web,
we only evaluate on the “cross-domain” test set that AgentBench utilizes for evaluation. For Web-
Shop, we evaluate the first 500 instances from the entire test set as AgentBench used to do.

D EXECUTION TOOLS ASSOCIATED WITH ACTION SPACES

For each available action defined in the action spaces, there are at least one associated backend
execution tools that help to implement the actual grounded actions. For maths tasks, the main exe-
cution tool is WolframAlpha API 2 as it is capable of performing a large collection of mathematical
functions such as calculating formulas and solving equations. For complex mathematical operations
such as sorting, we would leverage OpenAI Codex (Chen et al., 2021) to generate a short code
snippet for execution. For complex QA tasks, we rely on Wikipedia and Google search to help
us locate relevant entity knowledge. Besides, we leverage a pre-trained semantic matching model

2https://www.wolframalpha.com/.

13

https://www.wolframalpha.com/

Under review as a conference paper at ICLR 2024

dpr-reader-multiset-base3 used in Dense Passage Retrieval (DPR) (Karpukhin et al., 2020) to
capture relevant paragraphs according to the given query. Following ReWOO (Xu et al., 2023a),
we also include GPT-series model as a simple QA tool to answer the query based on our retrieved
knowledge. For web agent tasks, the actions are real mouse and keyboard operations including typ-
ing, clicking and selecting HTML tags. To locate the relevant HTML tags to be operated, following
AgentBench evaluation, we use a pre-trained DeBERTa model4 that ranks and retrieves the tags
according to the current action we would perform.

E FURTHER ANALYSIS ON TRAINING ANNOTATIONS

In the annotation analysis part, we aim to answer two questions regarding the quality and format
decision. Q1: How good is our converted training annotations? Q2: Would it be better if we
adopt low-level subgoals instead of our proposed high-level subgoals?

Training Data Complex QA
StrategyQA HotpotQA

Downstream Perf. of Training Different Data

ReWOO-Planner Data ∼57 ∼37
LUMOS-IcomplexQA Data 58.3 38.1
Perf. Using High-Level and Low-Level Subgoal Annots.

LUMOS-IcomplexQA

w/ Low-Level Subgoals 63.3 44.3

LUMOS-IcomplexQA Data 65.7 45.9

Table 4: Comparison between the agents trained
with different annotations.

Annotation Quality Assessment. We evalu-
ate the annotation quality by checking the agent
performance after training models with the an-
notations. Table 4 has shown the competitive-
ness of LUMOS, implying the high quality of
our annotation data. Furthermore, we com-
pare with ReWOO-Planner annotations, an-
other training annotations to train language
agents, constructed upon HotpotQA and Triv-
iaQA datasets with Self-Instruct method. They
discard all the annotations that cannot lead to
the ground-truth answers to guarantee the an-
notation quality. For fair comparison, we train
ReWOO-Planner’s base model, LLAMA-7B
with our training annotations. As the size of ReWOO-Planner annotations is 2,000, we also sample
2,000 data from our obtained annotations for fair comparison. Since ReWOO-Planner data is fully
based on QA benchmarks, we focus on the comparison on complex QA tasks.

Displayed in Table 4, we find that our training annotations can bring approximately 2.3% accuracy
and 1.1% LLM accuracy improvement over ReWOO-Planner on StrategyQA and HotpotQA, re-
spectively. In particular, while ReWOO-Planner data is built upon HotpotQA, it still cannot help
to achieve better performance than our annotations on the in-domain HotpotQA data. It further
suggests that our proposed annotation conversion method is effective.

Low-Level Subgoal vs. High-Level Subgoal. As discussed in §2, we encourage LLMs to generate
high-level subgoals that correspond to one or multiple low-level actions. A natural alternative an-
notation could be that each subgoal corresponds to only one low-level action, i.e., the subgoal can
also be treated as “low-level”. We prompt LLMs to generate the annotations with low-level subgoals
by changing the in-context examples to the format where a subgoal can only ground to exactly one
action. We perform analysis on complex QA tasks, since each subgoal in converted QA annotations
corresponds to more than two low-level actions. As shown in Table 4, we find that the performance
drops after switching high-level subgoals into low-level ones on both QA datasets. This further
validates the choice of subgoal design.

F IN-CONTEXT EXAMPLES IN CONVERSION PROMPTS

As discussed in §3.1, in-context examples are helpful to instruct LLMs to generate annotations in
our expected format. For each of the training task types, we showcase one in-context example to
help readers better understand how the prompting conversion method works and the format of our
expected annotations. We highlight subgoals and their corresponding actions and execution results
with yellow, red and blue, respectively.

3https://huggingface.co/facebook/dpr-reader-multiset-base.
4https://huggingface.co/osunlp/MindAct CandidateGeneration deberta-v3-base.

14

https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base

Under review as a conference paper at ICLR 2024

F.1 IN-CONTEXT EXAMPLE FOR OBTAINING MATHS TASK ANNOTATIONS

Please convert natural language plans into a series of subgoals and their
corresponding actions that lead to the successful implementation with respect
to the given instructions. Please use ‘R[number]’ to represent the intermediate
results for each subgoal, without generating any exact values. Please also use
functions to represent the corresponding actions. For the actions, they must be
one of ‘Calculator’, ‘SetEquation’, ‘SolveEquation’, ‘SolveInequality’, ‘Count’,
‘Code’, and ‘Define’.

Example 1:

Task: Peter goes to the store to buy a soda. The soda costs $.25 an ounch. He
brought $2 with him and leaves with $.50. How many ounces of soda did he buy?

Natural language plan:
He spend $1.5 on soda because 2 - .5 = 1.5 He bought 6 ounces of soda because 1.5
/ .25 = 6

Subgoal-based plan:
Subgoal 1: Calculate how much the soda costs in total.
Action 1-1: R1 = Calculator(2 - 0.5) = 1.5

Subgoal 2: Calculate the ounces of soda the price per ounch.
Action 2-1: R2 = Calculator(R1 / 0.25) = 6

15

Under review as a conference paper at ICLR 2024

F.2 IN-CONTEXT EXAMPLE FOR OBTAINING COMPLEX QA TASK ANNOTATIONS

Please convert natural language plans into a series of subgoals and their
corresponding actions that lead to the successful implementation with respect
to the given instructions. Please use ‘R[number]’ to represent the intermediate
results for each subgoal, without generating any exact values. Please also use
functions to represent the corresponding actions. For the actions, they must
be one of one of ‘KnowledgeQuery’, ‘ParagraphRetrieve’, ‘QA’, ‘Calculator’ and
‘Code’.

Example 1:

Task: Are more people today related to Genghis Khan than Julius Caesar?

Natural language plan:
We find relevant facts: Julius Caesar had three children. Genghis Khan had sixteen
children. Modern geneticists have determined that out of every 200 men today has
DNA that can be traced to Genghis Khan. We need to answer these questions: 1. How
many kids did Julius Caesar have? (Can be answered based on paragraph ‘Julius
Caesar-75’) 2. How many kids did Genghis Khan have? (Can be answered based on
paragraph ‘Genghis Khan-17’) 3. Is #2 greater than #1? Based on these evidences
and decomposed questions, the answer is True.

Subgoal-based plan:
Subgoal 1: Obtain the number of the kids that Julius Caesar had.
Action 1-1: R1 = KnowledgeQuery(Julius Caesar) = WikipediaPage(Julius Caesar)
Action 1-2: R2 = ParagraphRetrieve(R1, Query: How many kids did Julius Caesar
have?) = Paragraph(Julius Caesar-75).
Action 1-3: R3 = QA([R2], Question: How many kids did Julius Caesar have?) = 3.

Subgoal 2: Obtain the number of the kids that Genghis Khan had.
Action 2-1: R4 = KnowledgeQuery(Genghis Khan) = WikipediaPage(Genghis Khan).
Action 2-2: R5 = ParagraphRetrieve(R4, Query: How many kids did Genghis Khan
have?) = Paragraph(Genghis Khan-17).
Action 2-3: R6 = QA([R5], Question: How many kids did Genghis Khan have?) = 16.

Subgoal 3: Determine if Genghis Khan had more kids.
Action 3-1: R7 = Calculator(R6 > R3) = True

16

Under review as a conference paper at ICLR 2024

F.3 IN-CONTEXT EXAMPLE FOR OBTAINING WEB AGENT TASK ANNOTATIONS

Since the data source for converting annotations, Mind2Web, already provides the ground-truth
execution results after each action, as discussed in §3.1, we do not ask LLMs to capture each action’s
execution results. Therefore, there are no parts highlighted with blue in the in-context example.

Please convert natural language plans into a series of subgoals and their
corresponding actions that lead to the successful implementation with respect
to the given instructions. Please use ‘R[number]’ to represent the intermediate
results for each subgoal, without generating any exact values. Please also use
functions to represent the corresponding actions. For the actions, they must be
one of they must be one of ‘TYPE’, ‘CLICK’, and ‘SELECT’.

Example 1:

Task: Find a Ricky Kej track to listen and share which has been added in the last
year and is between 2 to 10 minutes.

Natural language plan:
[searchbox] Search −→ TYPE: Ricky Kej; [link] Search for ‘‘Ricky Kej’’ −→
CLICK; [link] Tracks −→ CLICK; [link] Added any time −→ CLICK; [link] Past year
−→ SELECT; [link] Any length −→ CLICK; [link] 2-10 min −→ CLICK; [link] To
listen to −→ CLICK; [link] To share −→ CLICK

Subgoal-based plan:
Subgoal 1: Type Ricky Kej to search his songs.
Action 1-1: R1 = TYPE(Env, QUERY: Type Ricky Kej to search his songs, TEXT: Ricky
Kej)

Subgoal 2: Click on the option to search for Ricky Rej.
Action 2-1: R2 = CLICK(R1, QUERY: Click on the option to search for Ricky Rej)

Subgoal 3: Choose tracks as the search category.
Action 3-1: R3 = CLICK(R2, QUERY: Choose tracks as the search category)

Subgoal 4: Find the region to adjust the added time of our interested track.
Action 4-1: R4 = CLICK(R3, QUERY: Find the region to adjust the added time of our
interested track)

Subgoal 5: Choose the last year as the added date.
Action 5-1: R5 = SELECT(R4, QUERY: Choose the last year as the added date, TEXT:
Past year)

Subgoal 6: Find the region to adjust the track length of our interested track.
Action 6-1: R6 = CLICK(R5, QUERY: Find the region to adjust the track length of
our interested track)

Subgoal 7: Choose 2 to 10 minutes as the track length.
Action 7-1: R7 = CLICK(R6, QUERY: Choose 2 to 10 minutes as the track length)

Subgoal 8: Listen to our searched track.
Action 8-1: R8 = CLICK(R7, QUERY: Listen to our searched track)

Subgoal 9: Share our searched track.
Action 9-1: R9 = CLICK(R8, QUERY: Share our searched track)

17

Under review as a conference paper at ICLR 2024

G IN-CONTEXT EXAMPLE FOR ADAPTING MODULES TO UNSEEN TASK —
WEBSHOP

As discussed in §4.4, the in-context examples are used for helping modules understand how to plan
and ground to novel available actions. We showcase one in-context WebShop-related example used
for the inference of planning and grounding modules, respectively.

G.1 IN-CONTEXT WEBSHOP-RELATED EXAMPLE FOR PLANNING MODULE

<|user|>
Please provide a reasonable subgoal-based plan to solve the given task.
Task: Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve,
short sleeve with color: a01#black, and size: large, and price lower than 50.00
dollars

<|assistant|>
Subgoal 1: Search two relevant items and the product names according to the
instruction.

<|user|>
The execution result for Subgoal 1 is b09s3bn15c - Mens Linen Shirt,Men’s Striped
Shirts Casual Short Sleeve Button Down Shirts Regular Fit Hawaiian Shirts Beach
Tees Tops ** b094q7b3ss - Women Cold Shoulder Tops, Summer Butterfly Print Shirts
Fashion Casual Short Sleeve Plus-Size Tunic Top Tee and Blouse.

<|assistant|>
Subgoal 2: Select the most relevant features of item b09s3bn15c.

<|user|>
The execution result for Subgoal 2 is short, casual, shoulder.

<|assistant|>
Subgoal 3: Select the most relevant features of item b094q7b3ss.

<|user|>
The execution result for Subgoal 3 is black, large, x-large.

<|assistant|>
Subgoal 4: Pick up the most related one from the two relevant items according to
the product names and their features.

<|user|>
The execution result for Subgoal 4 is b094q7b3ss.

<|assistant|>
Subgoal 5: Buy this item by selecting its relevant features.

<|user|>
The execution result for Subgoal 5 is Done.

18

Under review as a conference paper at ICLR 2024

G.2 IN-CONTEXT WEBSHOP-RELATED EXAMPLE FOR GROUNDING MODULE

<|user|>
Please ground the given subgoal to corresponding executable actions for solving
the given task. The grounded actions must be the one in available action list.

The available action list is ‘Search’, ‘FeatureRetrieval’, ‘Pick’ and
‘Click’. Search(Query): Search related items according to the Query;
FeatureRetrieval(Feature list, Query): Select the most relevant features from
Feature list according to Query; Pick(Item names, Item features, Query): Pick
the most relevant item from Item names according to Query, Item names and
Item features; Click(Item): Click the Item to check more information.

Task: Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve,
short sleeve with color: a01#black, and size: large, and price lower than 50.00
dollars
Subgoal to be grounded: Subgoal 1: Search two relevant items and the product
names according to the instruction.

<|assistant|>
R1 = Search(Find me slim fit, loose fit women’s tops, tees & blouses with long
sleeve, short sleeve with color: a01#black, and size: large, and price lower than
50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 2: Select the most relevant features of item
b09s3bn15c.

<|assistant|>
R2 = Click(b09s3bn15c); R3 = FeatureRetrieval(R2, Query: Find me slim fit, loose
fit women’s tops, tees & blouses with long sleeve, short sleeve with color:
a01#black, and size: large, and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 3: Select the most relevant features of item
b094q7b3ss.

<|assistant|>
R4 = Click(< prev); R5 = Click(b094q7b3ss); R6 = FeatureRetrieval(R5, Query: Find
me slim fit, loose fit women’s tops, tees & blouses with long sleeve, short sleeve
with color: a01#black, and size: large, and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 4: Pick up the most related one from the two
relevant items according to the product names and their features.

<|assistant|>
R7 = Pick(Item names: R1, Item features: [R3, R6], Query: Find me slim fit,
loose fit women’s tops, tees & blouses with long sleeve, short sleeve with color:
a01#black, and size: large, and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 5: Buy this item by selecting its relevant
features.

<|assistant|>
R8 = Click(< prev); R9 = Click(R7); R10 = Click(black); R11 = Click(large); R12
= Click(x-large); R13 = Click(buy now)

19

	Introduction
	[width=1em, trim=0 0 0 0, clip]figure/lumosicon.png Lumos: A Modular Agent Framework
	Lumos Agent Architecture
	Lumos-Onetime (Lumos-O)
	Lumos-Iterative (Lumos-I)

	Learning to Plan & Ground with Open-Source LLMs
	Conversion Prompts
	Transferring Annotations into Conversations
	Training with Converted Annotations

	Experiments
	Experimental Setups
	Overall Performance on Complex Interactive Tasks
	Comparison with Other Open-Source Agent Formulations
	Generalizability to Diverse Complex Interactive Task

	Related Work
	Conclusion
	Statistics of Converted Training Annotations
	Details of Training Modules
	Details of Performance Evaluation
	Execution Tools Associated with Action Spaces
	Further Analysis on Training Annotations
	In-Context Examples in Conversion Prompts
	In-Context Example For Obtaining Maths Task Annotations
	In-Context Example For Obtaining Complex QA Task Annotations
	In-Context Example For Obtaining Web Agent Task Annotations

	In-Context Example for Adapting Modules to Unseen Task — WebShop
	In-Context WebShop-Related Example for Planning Module
	In-Context WebShop-Related Example for Grounding Module

