
Accelerating Hierarchical Associative Memory:
A Deep Equilibrium Approach

Cédric Goemaere Johannes Deleu Thomas Demeester
IDLab, Ghent University – imec

Ghent, Belgium
first.last@ugent.be

Abstract

Hierarchical Associative Memory models have recently been proposed as a versatile
extension of continuous Hopfield networks. In order to facilitate future research on
such models, especially at scale, we focus on increasing their simulation efficiency
on digital hardware. In particular, we propose two strategies to speed up memory
retrieval in these models, which corresponds to their use at inference, but is equally
important during training. First, we show how they can be cast as Deep Equilibrium
Models, which allows using faster and more stable solvers. Second, inspired by
earlier work, we show that alternating optimization of the even and odd layers
accelerates memory retrieval by a factor close to two. Combined, these two
techniques allow for a much faster energy minimization, as shown in our proof-
of-concept experimental results. The code is available at https://github.com/
cgoemaere/hamdeq.

1 Introduction and Related Work

In 1982, the Hopfield network was suggested as a model for associative memory retrieval [1].
It restores corrupted memories by minimizing an internal energy function, which holds the true
memories at its minima. In recent years, there has been a renewed interest in Hopfield networks,
which has lead to a series of architectural improvements over the original formulation [2, 3, 4, 5, 6].
In this paper, we work with the Hierarchical Associative Memory (HAM) [6], which extends the
framework of continuous Hopfield networks [7] to arbitrary network architectures.

Accelerating the energy minimization process of such models is currently an underexplored research
direction. However, we consider it an essential step in stimulating future research on Hopfield
networks in general, especially at larger scales than currently investigated. One idea, proposed a few
years ago, is to train a separate feed-forward model to initialize the state close to the energy minimum
[8, 9]. In our paper, we propose and empirically verify two complementary strategies, which do
not require augmenting the models with additional weights. First, we make an explicit connection
between multi-layer HAMs and Deep Equilibrium Models [10]. Second, we identify and resolve
a redundant optimization step that occurs in synchronously updated HAMs. Finally, we show in
Section 4 that combining these two techniques maximizes convergence speed in HAMs.

Hopfield networks as Deep Equilibrium Models The research track of Deep Equilibrium Models
(DEQs) has unfolded largely independently from the aforementioned evolutions in Hopfield networks.
Still, DEQs were introduced as a framework for recurrent neural networks operating on static inputs
[10], which essentially holds for Hopfield networks too. The specific formulation of DEQs as implicit
fixed point equations allows for the use of advanced solvers, such as Anderson acceleration [11, 12]
and Broyden’s method [13]. Furthermore, unlike for Hopfield networks, the stability of DEQs is a
widely studied area, that includes regularization terms and even parametrizations that are provably
stable [10, 14, 15, 16, 17]. The close relationship between DEQs and Hopfield networks has been
noticed before [6, 18, 19], and yet, remarkably, none of the many advantages that come with the

Associative Memory & Hopfield Networks in 2023. NeurIPS 2023 workshop.

https://github.com/cgoemaere/hamdeq
https://github.com/cgoemaere/hamdeq


DEQ framework are exploited in these works. In Section 4, we show the benefits of casting Hopfield
networks (specifically, HAMs) as DEQs.

Even-odd splitting in Hopfield networks Bengio et al. (2016) [8] suggested that a Hopfield
network may be accelerated through a layerwise energy minimization, conditioned on the values of
all other layers. In a sequentially layered network, this enables an update scheme alternating between
even and odd layers, fully optimizing one while keeping the other fixed. However, in their definition
of a Hopfield network, the optimal value of a single neuron does not just depend on its neighbors, but
also on its own value. Solving for this implicit optimal value requires numerical methods, thereby
nullifying the original aim of speeding up the model in practice. We find that HAMs, on the other
hand, are naturally suited for this procedure, which boosts their convergence speed by a factor close
to two. In Appendix A, we explore the implicit optimization problem encountered in [8], and find
that it can actually be reduced to an equivalent HAM.

2 A Deep Equilibrium formulation of Hierarchical Associative Memory

We define the energy function of our multi-layered HAM as follows:

E(s) = (s− b)T ρ(s)− L(s)− 1

2
ρ(s)TW ρ(s) (1)

in which s ∈ Rn is the n-dimensional state vector, E : Rn → R is the HAM’s global energy function,
L : Rn → R is a Lagrangian function such that ∂L

∂s = ρ(s), whereby ρ : Rn → Rn is a non-linear
activation function1. Finally, W ∈ Rn×n and b ∈ Rn are weights and biases, respectively (see
Appendix B.1 for details on the layered structure of W ). The input x ∈ Rd is applied through the
first d states, which are kept equal to x at all times.

The energy E is guaranteed to decrease over time [20] using the following state update rule2:
ds

dt
= −∂E

∂s
= ρ′(s)⊙ (−s+W ρ(s) + b) (2)

The equilibrium state s∗ can be obtained by numerical integration of Eq. (2). In the literature on
Hopfield networks, the forward Euler method is typically used [8, 20, 21, 22]. However, in the field
of Neural ODEs [23], it is customary to use more advanced ODE solvers, and these techniques have
already been suggested for Hopfield networks as well [6]. Nonetheless, in contrast with Neural ODEs,
only the final equilibrium matters in a Hopfield network, not the entire trajectory. In this case, the
ODE can be solved much faster by casting it as a DEQ [10, 24], by requiring ds∗

dt = 0, and hence
0 = ρ′(s∗)⊙ (−s∗ +W ρ(s∗) + b) (3)

Solving this DEQ with a simple damped Picard iteration is mathematically equivalent to solving
the ODE of Eq. (2) with the forward Euler method. However, using more advanced solvers, as is
typically done for DEQs (e.g., see [10]), allows for faster convergence3, as we will show in Section 4.

So far, we have not made the static input explicit. When the equilibrium state s∗ is split up into the
input x and hidden state s̃∗, i.e., s∗ = [x; s̃∗], Eq. (3) becomes

0 = ρ′(s̃∗)⊙ (−s̃∗ + W̃ ρ(s̃∗) + b̃+Uρ(x)) (4)
Similar to W , the weight matrices W̃ and U also have specific structures (see Appendix B.2).

Notice that there are two distinct solutions for components of s̃∗ in Eq. (4). The first is the trivial
solution ρ′(s̃∗) = 0, corresponding to state saturation. The second solution corresponds to:

s̃∗ = W̃ ρ(s̃∗) + b̃+Uρ(x) (5)
As the trivial solution sets states to saturation regardless of x, this solution is undesirable. Therefore,
we will henceforth use Eq. (5) to (implicitly) describe the dynamics of a HAM, instead of Eq. (2).
For readability, we will leave out the tilde from the notation, from now on.

1Note that the particular type of HAM is determined by the choice of L, and hence ρ. For the experiments in
this paper, we assume an additive Lagrangian L, leading to a scalar function ρ (see [6]), applied element-wise to
the state vector as ρ(s). Although the proposed strategies to speed up inference are not relying on the particular
choice of ρ, extending our results to more general models remains a topic of future research.

2We use ⊙ to represent the Hadamard (element-wise) product.
3This approach does not come with any guarantees for energy minimization, and may lead us to spurious

extrema. In this work, however, we will assume that the advanced solver always returns the true energy minimum.

2



3 Insights in even-odd splitting for memory retrieval in HAMs

In this section, we provide new insights on the idea of even-odd splitting, particularly in the context of
HAMs. First, we argue that even-odd splitting corresponds to parallelizing asynchronous updates (see
Insight #1 below). Then, we explain how, for HAMS in particular, a single such update directly yields
the locally optimal next state for a given layer (Insight #2). Finally, we show that even-odd splitting
in HAMs allows for modeling only the even layers explicitly, or only the odd layers, depending on
the parity of the output layer. This corresponds to performing two asynchronous update steps at a
similar computational cost as a single synchronous update (Insight #3).

Insight #1 – Even-odd splitting corresponds to parallel asynchronous updates. In practice,
Hopfield networks (including HAMs) typically update all states in parallel. This is referred to as
synchronous updates, which are more computationally efficient, but may lead to oscillatory state be-
havior [25, 26]. Asynchronous updates, on the other hand, do guarantee stable state convergence, but
are sequential by nature. Here, a single neuron is updated at a time, conditioned on all other neurons.
Usually, this neuron is selected at random, but any order is technically allowed [25]. By grouping the
neurons from all even/odd layers, we maximally parallelize these individual asynchronous updates,
reducing the computational gap with synchronous updates.

Insight #2 – Asynchronous updates in HAMs are locally optimal. In a HAM, as defined by
Eq. (5), a neuron interacts only with its direct neighbors, and its optimal value is not self-dependent,
as was the case for the Hopfield network of Bengio et al. (2016). This avoids the aforementioned
issue of an implicit optimal value, and enables us to quickly calculate the local energy minimum of a
neuron, conditioned on its neighbors.

In fact, the optimal value of a neuron can be calculated in a single step. This becomes evident when
introducing even-odd splitting in HAMs. Mathematically, this comes down to rearranging the state
vector using a permutation matrix P , converting s∗ = [s∗1; s

∗
2; s

∗
3; . . .] into [s∗even; s

∗
odd], whereby

s∗even = [s∗2, s
∗
4, . . .] and s∗odd = [s∗1, s

∗
3, . . .]. Recall that the input layer s∗0 = x has been separated

from s∗ in Eq. (4), and hence is not part of s∗even, nor of s∗odd.

Applying P to W , s∗, b and U , we find:

PWP T =

[
0 W T

P
WP 0

]
, Ps∗ =

[
s∗even
s∗odd

]
, Pb =

[
beven
bodd

]
, PU =

[
0

Uodd

]
In Appendix B.3), we provide more details on this procedure and on the structure of WP , together
with an interpretation on the architectural implications of even-odd splitting.

Transforming W , s∗, b,U → PWP T ,Ps∗,Pb,PU in Eq. (5), we find the following DEQ:{
s∗even = W T

P ρ(s∗odd) + beven

s∗odd = WP ρ(s∗even) + bodd +Uoddρ(x)
(6)

From Eq. (6), we can see that, given a fixed value of s∗odd, the optimal value for s∗even can be found in
a single step, and vice versa.

Insight #3 – Even-odd splitting in HAMs allows for omitting part of the states. Let’s assume an
odd number 2k+ 1 of layers, so that the output layer s∗2k belongs to s∗even. Now, s∗odd consists only of
internal layers, which we do not have to model explicitly. Hence, we can simplify the DEQ from
Eq. (6) to:

s∗even = W T
P ρ

(
WP ρ(s∗even) + bodd +Uoddρ(x)

)
+ beven (7)

A similar approach allows eliminating s∗even when the output layer belongs to s∗odd.

Moreover, our formulation reveals an interesting phenomenon hidden within the HAM. Minimiz-
ing E with synchronous state updates, using the forward Euler method and a time step equal
to 1, is equivalent to solving Eq. (6) using a fixed point iteration. As illustrated in Fig. 1,
this scenario corresponds exactly to simultaneously solving two DEQs of the form of Eq. (7),
one at time t (solid), the other at t + 1 (dashed). State convergence is only guaranteed over

3



...

...

time

st
even

st
odd

st+1
even st+2

even

st+1
odd st+2

odd

Figure 1: A view of synchronous up-
dates across time reveals two separate
even-odd DEQs (solid & dashed)

two time steps (i.e., a length-2 limit cycle exists), as has
long been known for Hopfield networks [25, 26]. Here,
however, absolute convergence can also be achieved, but
only when both the solid and the dashed DEQ of Fig. 1
converge to the same equilibrium point. We can guarantee
this behavior by simply modeling a single DEQ (e.g., the
solid one in Fig. 1) and defining the second DEQ as a
time-shifted copy of the first one. This is effectively what
is happening in Eq. (7). Importantly, by modeling two
time steps (i.e., steven → st+2

even) in a single iteration, this
formulation should converge twice as fast as the HAM
from Eqs. (5) and (6), at the same computational cost.

4 Experimental Results

Model #iters till conv. Test accuracy

HAM 8.2 (±0.3) 96.9% (±0.2%)
HAM-DEQ 6.2 (±0.4) 96.7% (±0.3%)
HAM-EO 5.1 (±0.3) 97.2% (±0.1%)

HAM-EO-DEQ 4.5 (±0.3) 96.7% (±0.3%)

Table 1: Impact of using Anderson acceleration (‘DEQ’)
and even-odd splitting (‘EO’) on the mean number of
iterations till convergence (defined by a relative residual
below 10−4) and MNIST test accuracy. Results averaged
over 10 runs with mean and standard deviation shown.

Experimental setup We test our two
strategies in a 3-layer HAM trained on the
MNIST dataset [27]. Scellier et al. (2017)
[20] advised that layerwise learning rates
should be set so that ||∆Wi||/||Wi|| stays
constant throughout training. For that rea-
son, we decided to use the Madam opti-
mizer [28], which does this automatically,
removing the need for a manual layerwise
learning rate sweep. Further details are
provided in Appendix C.

Interpretation The results of our experiments are shown in Table 1. We see that both the use
of Anderson acceleration, as enabled by the DEQ framework, and the use of even-odd splitting
significantly accelerate the energy minimization of a HAM, without harming the test performance.
Combining the two techniques maximizes convergence speed. While we theoretically derived that
even-odd splitting should converge twice as fast, we see that this is not exactly the case in our
experiments. We suspect that the state initialization might play a role here, as initial dynamics differ
from the regular regime of the model. For a visual comparison of the state dynamics in the different
models, we refer the reader to Fig. 3 in Appendix D.

5 Conclusion

We looked at HAMs through the lens of DEQs, and found a DEQ formulation that functionally
corresponds to a HAM, allowing the use of more advanced fixed point solvers to speed up memory
retrieval. Furthermore, we showed that HAMs could significantly benefit from even-odd splitting, an
idea originally suggested in the context of continuous Hopfield networks. Introducing this technique
in HAMs revealed a redundant optimization procedure hidden within the model. By resolving this
redundancy, we were able to model two time steps at the computational cost of one. Our results
indicate that both advanced DEQ solvers and even-odd splitting provide much faster convergence in
HAMs, especially when combined. The presented work provides tools for the practical scaling-up of
Hopfield networks, which we hope will stimulate further research into this exciting field.

As mentioned in Section 1, the field of DEQs focuses on stability and faster training, an angle that is
often missing from work on Hopfield networks. With this paper, we hope to encourage the use of
the DEQ framework in the Hopfield networks community, to benefit from the many advantages that
come with it. A vectorized derivative-free notation improves readability, and the use of DEQ solvers
and training methods significantly accelerates training. Additionally, DEQ metrics may provide more
insight into why a system is or is not working properly. For example, tracking convergence statistics
is critical in DEQs, and may explain an unexpectedly poor result from a model that simply did not
converge within the given time (e.g., see [29]).

We provide a Limitations section in Appendix E.

4



Acknowledgements

We are grateful to Felix Koulischer and Tom Van Der Meersch for their thorough proofreading and
valuable feedback on this paper.

This research was funded by the Research Foundation - Flanders (FWO-Vlaanderen) under grants
G0C2723N and 11PR824N, the Flemish Government (AI Research Program), and the Special
Research Fund (BOF) of Ghent University.

References
[1] J J Hopfield. “Neural networks and physical systems with emergent collective computational

abilities.” In: Proceedings of the National Academy of Sciences 79.8 (1982), pp. 2554–2558.
DOI: 10.1073/pnas.79.8.2554.

[2] Dmitry Krotov and John J Hopfield. “Dense associative memory for pattern recognition”. In:
Advances in neural information processing systems. Vol. 29. 2016.

[3] Mete Demircigil et al. “On a Model of Associative Memory with Huge Storage Capacity”. In:
Journal of Statistical Physics 168 (2017), pp. 288–299. DOI: 10.1007/s10955-017-1806-y.

[4] Dmitry Krotov and John J. Hopfield. “Large Associative Memory Problem in Neurobiology
and Machine Learning”. In: International Conference on Learning Representations. 2021.

[5] Hubert Ramsauer et al. “Hopfield Networks is All You Need”. In: International Conference on
Learning Representations. 2021.

[6] Dmitry Krotov. “Hierarchical Associative Memory”. In: ArXiv abs/2107.06446 (2021).
[7] John J Hopfield. “Neurons with graded response have collective computational properties

like those of two-state neurons.” In: Proceedings of the National Academy of Sciences 81.10
(1984), pp. 3088–3092. DOI: 10.1073/pnas.81.10.3088.

[8] Yoshua Bengio et al. “Feedforward Initialization for Fast Inference of Deep Generative
Networks is biologically plausible”. In: ArXiv abs/1606.01651 (2016).

[9] Peter O’Connor, Efstratios Gavves, and Max Welling. “Initialized Equilibrium Propagation for
Backprop-Free Training”. In: International Conference on Learning Representations. 2019.

[10] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “Deep Equilibrium Models”. In: Advances in
Neural Information Processing Systems. Vol. 32. 2019.

[11] Donald G Anderson. “Iterative procedures for nonlinear integral equations”. In: Journal of the
ACM (JACM) 12.4 (1965), pp. 547–560. DOI: 10.1145/321296.321305.

[12] Homer F. Walker and Peng Ni. “Anderson Acceleration for Fixed-Point Iterations”. In: SIAM
Journal on Numerical Analysis 49.4 (2011), pp. 1715–1735. DOI: 10.1137/10078356X.

[13] Charles G Broyden. “A class of methods for solving nonlinear simultaneous equations”. In:
Mathematics of Computation 19.92 (1965), pp. 577–593. DOI: 10.2307/2003941.

[14] L. Ghaoui et al. “Implicit Deep Learning”. In: SIAM Journal on Mathematics of Data Science
(2019). DOI: 10.1137/20M1358517.

[15] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. “Stabilizing Equilibrium Models by Jacobian
Regularization”. In: International Conference on Machine Learning. 2021.

[16] Max Revay, Ruigang Wang, and Ian Manchester. “Lipschitz-Bounded Equilibrium Networks”.
In: Submitted to International Conference on Learning Representations (2021). URL: https:
//openreview.net/forum?id=bodgPrarPUJ.

[17] Ezra Winston and J. Z. Kolter. “Monotone operator equilibrium networks”. In: Neural Infor-
mation Processing Systems (2020).

[18] Toshihiro Ota and Masato Taki. “iMixer: hierarchical Hopfield network implies an invertible,
implicit and iterative MLP-Mixer”. In: ArXiv abs/2304.13061 (2023).

[19] Axel Laborieux and F T Zenke. “Improving equilibrium propagation without weight symmetry
through Jacobian homeostasis”. In: ArXiv abs/2309.02214 (2023).

[20] Benjamin Scellier and Yoshua Bengio. “Equilibrium Propagation: Bridging the Gap between
Energy-Based Models and Backpropagation”. In: Frontiers in Computational Neuroscience 11
(2017). DOI: 10.3389/fncom.2017.00024.

[21] Yoshua Bengio. “Early Inference in Energy-Based Models Approximates Back-Propagation”.
In: ArXiv abs/1510.02777 (2015).

5

https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1007/s10955-017-1806-y
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1145/321296.321305
https://doi.org/10.1137/10078356X
https://doi.org/10.2307/2003941
https://doi.org/10.1137/20M1358517
https://openreview.net/forum?id=bodgPrarPUJ
https://openreview.net/forum?id=bodgPrarPUJ
https://doi.org/10.3389/fncom.2017.00024


[22] Jimmy Gammell et al. “Layer-Skipping Connections Improve the Effectiveness of Equilibrium
Propagation on Layered Networks”. In: Frontiers in Computational Neuroscience 15 (2021),
p. 627357. DOI: 10.3389/fncom.2021.627357.

[23] Ricky TQ Chen et al. “Neural Ordinary Differential Equations”. In: Neural Information
Processing Systems. Vol. 31. 2018.

[24] Avik Pal, Alan Edelman, and Christopher Rackauckas. “Continuous Deep Equilibrium Models:
Training Neural ODEs faster by integrating them to Infinity”. In: Submitted to Transactions
on Machine Learning Research (2022). URL: https://openreview.net/forum?id=
mlI9f7u6Zo.

[25] Pascal Koiran. “Dynamics of Discrete Time, Continuous State Hopfield Networks”. In: Neural
Computation 6.3 (May 1994), pp. 459–468. DOI: 10.1162/neco.1994.6.3.459.

[26] Lipo Wang. “On the dynamics of discrete-time, continuous-state Hopfield neural networks”.
In: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45.6
(1998), pp. 747–749. DOI: 10.1109/82.686695.

[27] Gregory Cohen et al. “EMNIST: Extending MNIST to handwritten letters”. In: 2017 inter-
national joint conference on neural networks (IJCNN). IEEE. 2017, pp. 2921–2926. DOI:
10.1109/IJCNN.2017.7966217.

[28] Jeremy Bernstein et al. “Learning compositional functions via multiplicative weight updates”.
In: Neural Information Processing Systems. 2020.

[29] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. “Multiscale deep equilibrium models”. In:
Advances in Neural Information Processing Systems. Vol. 33. 2020, pp. 5238–5250.

[30] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun.
com/exdb/mnist/ (1998).

[31] Patrick J Grother. “NIST special database 19”. In: Handprinted forms and characters database,
National Institute of Standards and Technology 10 (1995), p. 69. DOI: 10.18434/T4H01C.

[32] Axel Laborieux et al. “Scaling Equilibrium Propagation to Deep ConvNets by Drastically
Reducing its Gradient Estimator Bias”. In: Frontiers in Neuroscience (2020). DOI: 10.3389/
fnins.2021.633674.

[33] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 249–256.

[34] Luis B. Almeida. “A Learning Rule for Asynchronous Perceptrons with Feedback in a Com-
binatorial Environment”. In: Proceedings of the IEEE First International Conference on
Neural Networks (San Diego, CA). Vol. II. Piscataway, NJ: IEEE, 1987, pp. 609–618. DOI:
10.5555/104134.104145.

[35] Fernando J Pineda. “Generalization of back-propagation to recurrent neural networks”. In:
Physical review letters 59.19 (1987), p. 2229. DOI: 10.1103/PhysRevLett.59.2229.

6

https://doi.org/10.3389/fncom.2021.627357
https://openreview.net/forum?id=mlI9f7u6Zo
https://openreview.net/forum?id=mlI9f7u6Zo
https://doi.org/10.1162/neco.1994.6.3.459
https://doi.org/10.1109/82.686695
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.18434/T4H01C
https://doi.org/10.3389/fnins.2021.633674
https://doi.org/10.3389/fnins.2021.633674
https://doi.org/10.5555/104134.104145
https://doi.org/10.1103/PhysRevLett.59.2229


Appendix
A Asynchronous local optimization in the continuous Hopfield network of

Bengio et al. (2016) is equivalent to a HAM

In this appendix, we delve deeper into the implicit optimization problem that arises when trying to
find the optimal value for a neuron in the continuous Hopfield network formulated in [8]. We start by
casting the network to a DEQ form, analogous to Section 2. The procedure is exactly the same as for
HAMs, hence, we only provide the most important equations. Using this DEQ form, we find that
the implicit optimization can be solved analytically, by essentially casting the Hopfield network as a
HAM.

Continuous Hopfield network as DEQ
In line with prior work [21], Bengio et al. (2016) define the energy function of the Hopfield network
as follows:

E(s) =
1

2
||s||2 − 1

2
ρ(s)TW ρ(s)− bT ρ(s) (8)

For clarity, we use the same notation as in Eq. (1).

The state update rule becomes:

ds

dt
= −∂E

∂s
= −s+ ρ′(s)⊙ (W ρ(s) + b)

Or in our DEQ form (with implicit input dependence):

s∗ = ρ′(s∗)⊙ (W ρ(s∗) + b)

Locally optimal asynchronous updates in continuous Hopfield networks
The optimal value of a single neuron, conditioned on all other neurons, is given by

s∗i = ρ′(s∗i ) · Ci

where Ci is a constant representing the combined influence of the neighboring neurons of si.

Instead of solving this implicit optimization problem with numerical methods, we can also solve it
analytically. We define

f(x) = x/ρ′(x)

If f is invertible, we can compute s∗i as

s∗i = f−1(Ci)

From continuous Hopfield network to HAM
We can relax the condition of full bijective invertibility by working directly on the DEQ instead of on
the neuron level. A multivariate version of f can easily be defined using elementwise division.

By introducing s∗f = f(s∗) and assuming invertibility of f , we can rearrange the DEQ to:

s∗f = W ρ(f−1(s∗f )) + b

Comparing this equation with Eq. (5), we see that this is exactly a HAM with non-linearity ρ ◦ f−1.
Instead of requiring the bijective invertibility of f , we only need ρ◦f−1 (or an analytical continuation
thereof) to be a bijection. Hence, f is allowed to be non-injective, as long as all inputs belonging to a
certain output value are also mapped to a single value under ρ.

Essentially, this means that every layered continuous Hopfield network with an energy function of
the form of Eq. (8) can be converted into an equivalent HAM, as long as ρ is chosen properly. For
full equivalence, one also needs to properly preprocess x, by replacing it with f(x), such that, under
the mapping of ρ ◦ f−1, we still get the original value of ρ(x) that we would find in the Hopfield
network.

7



B Structure of different weight matrices in layered Hopfield networks

We can represent the different layerwise weight matrices Wi in one single large weight matrix W .
The structure of W is the same for both the Hopfield network from Appendix A and the HAM from
the main body. To stay consistent with the primary focus of the paper, we work with HAMs in this
appendix, although the results apply to any layered Hopfield network.

B.1 Weight matrix in a HAM

For clarity, we restate the DEQ-form of the multi-layer HAM of Eq. (3):

0 = ρ′(s∗)⊙ (−s∗ +W ρ(s∗) + b)

To ensure stability, we exclude self-interaction by enforcing a zero block diagonal on W . Additionally,
the form of the energy function in Eq. (1) only utilizes the symmetric part of W . Hence, for clarity,
W is typically chosen to be symmetric by definition. A HAM consisting of multiple layers gives rise
to a block tridiagonal W . For example, a 5-layer HAM would have the following weight matrix:

W =


0 W T

0 0 0 0
W0 0 W T

1 0 0
0 W1 0 W T

2 0
0 0 W2 0 W T

3
0 0 0 W3 0

 (9)

For a nice visualization of W , see Figure (5, left) of [22].

B.2 Weight matrix in a HAM with explicit input dependence

For clarity, we restate the multi-layer HAM with explicit input dependence of Eq. (4):

0 = ρ′(s̃∗)⊙ (−s̃∗ + W̃ ρ(s̃∗) + b̃+Uρ(x))

To get the structure of W̃ and U , we must simply look at the structure of W in Eq. (9). We drop
the first row, as this represents the influence that other states have on x. The first column represents
the influence that x has on other states, i.e., U . The rest constitutes W̃ . In other words, in a 5-layer
HAM, W̃ and U have the following structure:

W̃ =

 0 W T
1 0 0

W1 0 W T
2 0

0 W2 0 W T
3

0 0 W3 0

 , U =

 W0

0
0
0


One may be tempted to also include the bias term corresponding to x in Eq. (3). However, looking at
the original formulation in Eq. (2), we see that this term only influences the first d states of s, which
are clamped to x at every time step. In essence, the bias term corresponding to x has no influence on
any part of s, and is therefore also left out of Eq. (5), leaving only b̃.

B.3 Permuted weight matrix in even-odd split HAMs

Even-odd splitting of the layers in a HAM is equivalent to applying a permutation matrix P to W ,
s∗, b and U . For example, in a 5-layer HAM, we get:

PWP T =

 0 0 W1 W T
2

0 0 0 W3

W T
1 0 0 0

W2 W T
3 0 0

 , Ps∗ =

 s∗2
s∗4
s∗1
s∗3

 , Pb =

 b2
b4
b1
b3

 , PU =

 0
0

W0

0


Note that Ueven = 0, since x is clamped onto s∗0 and hence is part of the even layers, which do not
interact with one another. Because of the explicit input dependence notation, s∗even starts at s∗2.

8



Mapping PWP T to the structure of Eq. (9), we can see that the permutation effectively allows us to
express a multi-layer HAM as if it had only a single hidden layer, as illustrated in Fig. 2. The bottom
left quadrant can be considered a single weight matrix, and this is exactly WP from Eqs. (6) and (7).

Instead of the structure of Eq. (9), WP now takes a staircase-like structure, varying between regular
and transposed submatrices. When adding another layer, the extra term W4 would be situated below
W T

3 .

s∗
0 = x

s∗
1

s∗
4 = ŷ

=s∗
2

s∗
3 s

∗ 2
s
∗ 0
=

x

s
∗ 1

s
∗ 3

s∗
4 = ŷ

Figure 2: A layered HAM can be split into even and odd layers,
and modelled as a non-fully-connected 2-layer network

9



C Experimental setup

Below is a list of all information required to reproduce the results outlined in Section 4. Moreover,
the code is available at https://github.com/cgoemaere/hamdeq.

Data
• Dataset: EMNIST-MNIST [27]. This is a drop-in replacement for the MNIST dataset [30],

but with a known conversion process from the original NIST digits [31].
• Input preprocessing: rescaling pixel intensities from [0, 255] to [0, 1]
• Batch size: 64
• Epochs: 10
• No data augmentation

Model
• Neurons per layer: [784, 512, 10]
• Non-linearity ρ: sigmoid(4x− 2) (shifted sigmoid; same as [32])
• State initialization: zero initialization, i.e., st=0 = 0

• Weight initialization: Xavier initialization [33] per layer (not on large W ), as we want
bidirectional operation between layers. The biases were initialized at zero.

• Forward iterations: 40 (chosen high enough to ensure convergence at all times during
training)

• No damping, i.e., if the DEQ is s∗ = f(s∗), then we use st+1 = f(st) as update rule.

Training
• Loss function: Mean Square Error
• Backward method: Recurrent Backpropagation [34, 35]
• Backward iterations: 8
• Optimizer

– Type: Madam [28] (chosen as a substitute for layerwise learning rates; Madam auto-
matically scales weight updates according to ||∆W ||/||W ||, as advised by [20])

– Learning rate: 0.01 (not tuned)
• No gradient clipping, dropout or other commonly used training techniques
• GPU: 1x GTX-1080Ti

10

https://github.com/cgoemaere/hamdeq


D Visual comparison of state dynamics in different HAM models

Below, we provide a visual comparison of the state dynamics in the different HAM models from
Section 4. We see that using Anderson acceleration (as indicated by ‘DEQ’) helps guarantee
convergence in samples that would otherwise not have converged. Additionally, even-odd splitting
(as indicated by ‘EO’) seems to boost convergence speed by a factor close to two, as expected. We
can see that the initial dynamics of the models differ from their regular regime, as the trajectories of
all samples start out similarly, and only diverge after a few iterations. As for the low density region
in the models using Anderson acceleration (most noticeable in the bottom right plot), this is likely
caused by the advanced solver finding the exact fixed point solution, bringing the relative residual to
zero.

Figure 3: Density heatmap of the state trajectories for different HAM models. The horizontal axis
represents the number of iterations of the DEQ. The vertical axis represents the relative residual,
which is used to determine the state convergence (the lower, the more converged). The limit of 10−4

as chosen criterion for convergence is indicated with a white dashed line. For every model, we show
the cumulative results of 10 different seeds, run on the entire MNIST test set. In cyan, we show the
mean number of iterations corresponding to a given convergence criterion. The circular marker at the
limit of 10−4 corresponds to the value reported in Table 1.

11



E Limitations

We only performed a limited hyperparameter sweep to ensure the stability of our models. The impact
of designer choices (e.g., in state/weight initialization, choice of non-linearity, choice of optimizer) is
not yet fully understood for Hopfield networks, and we believe there is much room for improvement
in these areas. An important parameter is the choice of Lagrangian that determines the considered
family of HAM models. In particular, we have not yet applied our results to the HAM extension of
the Modern Hopfield Network [4, 5] (corresponding to using the SoftMax function as ρ(s)), which
we plan to work on in the near future.

As a work in progress, our experiments are currently limited to shallow models. In fact, the 3-layer
HAM from our experiments actually corresponds to a regular continuous Hopfield network. We
expect greater gains from the proposed techniques on deeper models. Preliminary results indicate
that the relative difference in convergence speed is maintained as expected, however, we encountered
some stability issues in training these deeper models, and could therefore not provide any conclusive
results in this paper. Solving these stability issues is left for future work.

In theory, the two proposed techniques should not alter the equilibrium state of a HAM, given its
parameters. However, checking whether this holds at all times during training is left for future work
as well.

12


	Introduction and Related Work
	A Deep Equilibrium formulation of Hierarchical Associative Memory
	Insights in even-odd splitting for memory retrieval in HAMs
	Experimental Results
	Conclusion
	Asynchronous local optimization in the continuous Hopfield network of Bengio et al. (2016) is equivalent to a HAM
	Structure of different weight matrices in layered Hopfield networks
	Weight matrix in a HAM
	Weight matrix in a HAM with explicit input dependence
	Permuted weight matrix in even-odd split HAMs

	Experimental setup
	Visual comparison of state dynamics in different HAM models
	Limitations

