
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPECTED ATTENTION:
KV CACHE COMPRESSION BY ESTIMATING ATTENTION
FROM FUTURE QUERIES DISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory consumption of the Key-Value (KV) cache represents a major bottleneck
for efficient large language model (LLM) inference. While attention-score-based
KV cache pruning shows promise, it faces critical practical limitations: atten-
tion scores from future tokens are unavailable during compression, and modern
implementations do not materialize the full attention matrix, making past scores
inaccessible. To overcome these challenges, we introduce Expected Attention,
a training-free compression method that estimates Key-Value (KV) pairs impor-
tance by predicting how future queries will attend to them. Leveraging the distri-
butional properties of LLM activations, we compute expected attention scores in
closed form for each KV pair. These scores enable ranking and pruning of KV
pairs with minimal impact on the residual stream, achieving high compression
without performance degradation. Importantly, our method operates seamlessly
across both prefilling and decoding phases, consistently outperforming state-of-
the-art baselines in both scenarios. Finally, we release a comprehensive research
library for KV cache compression, designed to enable researchers to implement
and benchmark novel methods, in addition to building upon our own.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Anthropic, 2025; MetaAI, 2024; Yang et al.,
2025) have revolutionized text generation and reasoning, enabling advanced applications such as
long multi-round dialogues, extensive multimodal intelligence (Yang et al., 2025; Weng et al., 2024),
and agentic workflows that ingest massive amounts of data (OpenAI, 2024; PerplexityAI, 2025;
Yamada et al., 2025). These applications often require processing extensive contextual information.
For example, processing a large codebase or a short video can easily involve analyzing hundreds of
thousands of tokens. A critical issue in deploying LLMs in such scenarios is the prohibitive memory
consumption of the Key-Value (KV) cache (Fu, 2024; Shi et al., 2024; LI et al., 2025).

During autoregressive generation, the KV cache stores key and value vectors for every processed
token, enabling efficient attention computation. However, its memory footprint grows linearly with
sequence length, quickly becoming the primary bottleneck for long-context inference. A medium-
sized 70B model (MetaAI, 2025) requires approximately 320 GB of GPU memory for a one-million-
token KV cache, far exceeding most GPU capacities. This challenge intensifies with emerging appli-
cations where advanced reasoning models generate thousands of intermediate tokens (DeepSeek-AI,
2024b; Yang et al., 2025) and agentic systems load massive datasets (OpenAI, 2025; PerplexityAI,
2025). While current LLMs promise extended context lengths up to a million tokens (GeminiTeam,
2025; MetaAI, 2024), hardware constraints saturate GPU memory well before reaching theoretical
limits.

State Space Models offer a solution by reducing memory costs (Gu et al., 2022; Gu & Dao, 2024),
yet their inferior performance compared to transformers, especially on long context tasks, limits
adoption (Jelassi et al., 2024; Merrill et al., 2024). Other architectural changes limited to the atten-
tion mechanism, such as multi-head latent attention (DeepSeek-AI, 2024a) or sliding window atten-
tion (Jiang et al., 2023; GemmaTeam, 2025), reduce KV cache size but do not remove the attention
bottleneck and are orthogonal to KV cache compression methods. Additionally, such methods need

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to be implemented at training time, limiting their application to pre-trained modern LLMs. This
creates demand for training-free KV cache compression methods that preserve transformer architec-
tures while mitigating memory growth.

KV cache compression exploits semantic redundancy in natural language: not all tokens equally
influence future predictions, and many provide negligible information once their contextual role
is fulfilled. This property allows to compress the KV cache by removing some of the key and
values stored in it. However, determining which tokens can be safely removed is far from trivial,
as any Key-Value (KV) pair’s importance depends on how future queries will attend to it. Existing
approaches use heuristics like discarding oldest tokens (Ge et al., 2024; Xiao et al., 2023) or leverage
attention scores from past queries (Zhang et al., 2024; Li et al., 2025; Oren et al., 2024), but these
strategies are limited for real-world scenarios, and often require accessing attention scores which are
not materialized in modern transformer implementations (Dao et al., 2022).

Instead of relying on heuristics or local attention metrics, we argue that a KV pair’s significance is
best measured by its global effect on the transformer’s output. We quantify this effect by isolating
each KV pair’s contribution within the residual stream, capturing its influence on the model output.
This raises the challenge of estimating how future queries will attend to each token in the context,
which requires accessing attention scores from the past and from future tokens, that are not available
at the time of compression. To address this, we introduce Expected Attention, which estimates
future attention allocation leveraging the distribution of future queries. Expected Attention estimates
the importance that each token in the context has for queries that have not been generated and
accordingly prunes the KV cache up to 60% while preserving performance quality, requiring no
architectural modifications or additional training. We release our code as a comprehensive library
benchmarking over 20 state-of-the-art compression methods.

To summarize, our contributions are the following:

• We analyse the distributional properties of LLM activations through the lenses of KV cache
compression and introduce the concept of Expected Attention to estimate the importance
that current tokens will have in the future.

• We introduce a KV cache compression method that leverages Expected Attention and evicts
irrelevant KV pairs for efficient inference.

• We release all our code as a library, designed for researchers, that allows to easily imple-
ment, test and benchmark KV cache compression methods.

2 EXPECTED ATTENTION

2.1 KEY-VALUE CACHE IN AUTOREGRESSIVE TRANSFORMERS

We consider decoder-only language models based on the transformer architecture (Vaswani et al.,
2017), representing the vast majority of modern LLMs. When an input sequence of tokens x =
[x1, x2, . . . , xt] is fed to the model, each token xi is transformed into a hidden state representation
hi ∈ Rh and processed by a stack of transformer layers, including feed forward networks and multi-
head attention blocks. For brevity and clarity, we focus our analysis on a single layer and attention

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

Hidden States - Layer 16

0.6 0.4 0.2 0.0 0.2 0.4 0.6

Hidden States - Layer 20

Activation Value

2 1 0 1 2 3

Queries - Head 4

4 3 2 1 0 1 2 3

Queries - Head 8

Activation Value

Figure 1: Hidden states from layer 16 and 20 and corresponding queries for layer 20 in Llama3.1-8B.
Hidden states in modern LLMs are mostly normally distributed. As a consequence, query activations
also follow a Normal. The best Gaussian fit is overlayed. We show more examples and discuss this
property in Appendix B.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

head, noting that the following analysis naturally extends to multi-head attention, grouped query
attention (GQA, Ainslie et al. 2023) and all their variants.

Let hi ∈ Rh denote the hidden state at position i in the sequence. In the attention block, the
corresponding Query, Key and Value projections are computed as:

qi = RiWQhi, ki = RiWKhi, vi = WV hi (1)

where d is the attention head dimension, Ri ∈ Rd×d is the Rotary Position Embedding (RoPE, Su
et al. 2023) matrix at position i, and WQ,WK ,WV ∈ Rh×d are respectively the learnable projection
matrices for query, key, and value in Rd. During autoregressive inference, keys and values vectors
are stored in the KV cache to avoid recomputing them in future generation steps. The resulting KV
cache is a collection of Key-Value pairs (ki, vi) from all inference steps in the sequence, leading
to significant computational savings but increasing memory requirements, growing linearly with
sequence length.

At generation step t, the attention mechanism computes the attention score between the current
query qt and each previously cached key ki for i ≤ t:

ati =
exp

(
qTt ki√

d

)
∑t

j=1 exp
(

qTt kj√
d

) =
zti∑t
j=1 ztj

(2)

where ati is the normalized attention score between query at position t and key at position i, and
zti = exp

(
qTt ki√

d

)
represents the unnormalized attention score.

The attention score is used to weight and sum over all values previously stored in the KV cache. The
resulting output is then added to the hidden state ht:

hout
t = ht +

t∑
i=1

atiWovi = ht +

t∑
i=1

∆hti (3)

where ht ∈ Rh and hout
t ∈ Rh represent the hidden state before and after the attention update re-

spectively, and Wo ∈ Rd×h is the learnable output projection matrix. The hidden states embedding
ht represents the ”residual stream,” (Elhage et al., 2021) updated via vector additions by each trans-
former block. The value ∆hti = atiWovi isolates the specific residual addition of the i-th KV pair
at step t. This decomposition reveals that each cached KV pair (ki, vi) contributes a residual update
∆hti to the final output, and provides a natural measure of the importance of each KV pair:

∥∆hti∥ = ati∥Wovi∥ (4)

where ∥ · ∥ denotes the L2 norm. This metric captures both the attention weight ati (how much
the query attends to the i-th key) and the transformed value magnitude ∥Wovi∥ (the impact of the
i-th value on the output). Equation 4 provides the optimal measure for estimating the importance of
each KV pair in the model output. If we could compute this score for all cached KV pairs, we could
selectively prune the cache by removing pairs with the lowest impact on the residual stream, thereby
minimizing performance degradation. However, computing Equation 4 presents significant practical
challenges. While ∥Wovi∥ is readily available at inference time, the attention weight ati depends
on future queries that have not yet been generated. Specifically, we cannot know the attention
scores from future tokens t + 1, t + 2, . . . before computing them, making it impossible to predict
which KV pairs will be important for upcoming generation steps. Furthermore, modern transformer
implementations utilize Flash Attention (Dao et al., 2022; Dao, 2024), which computes attention
scores on-the-fly without materializing the complete attention matrix, preventing access to even past
attention scores. To address these fundamental limitations, we leverage the properties of activations
in modern LLMs, and introduce Expected Attention.

2.2 EXPECTED ATTENTION: ESTIMATING ATTENTION FROM FUTURE QUERIES

Distributional properties of LLM activations To approximate the unnormalized attention score
zij , we leverage the findings of Liu et al. (2025), showing that hidden states in modern LLMs
loosely follow a Gaussian distribution h ∼ N (µ,Σ). While we show an example of this property

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

in Figure 1, we also extensively validate it across multiple model architectures in Appendix B.
Given this distributional assumption, queries also inherit Gaussian properties through the linear
transformation in Equation 1 qt = RtWQht:

qt ∼ N (µqt ,Σqt), where µqt = RtWQµ, Σqt = RtWQΣW
T
QRT

t (5)

where µ ∈ Rd and Σ ∈ Rd×d are the mean and covariance of the hidden state distribution, and
Rt ∈ Rd×d is the RoPE matrix at position t.

To create a single, tractable representation of attention over a future interval, we approximate the
positional embeddings by averaging the RoPE matrix over the next T positions. This gives us a
position-averaged query distribution:

q̄ ∼ N (µ̄q, Σ̄q), where µ̄q = R̄WQµ, Σ̄q = R̄WQΣW
T
Q R̄T (6)

where R̄ = 1
T

∑T
j=1 Rt+j represents the averaged RoPE matrix over T future positions.

1 def compress(queries, keys, values, compression_ratio):
2 # Compute query statistics
3 mean_query, cov_query = compute_statistics(queries)
4 # Compute unnormalized attention scores (z_i)
5 scores = matmul(mean_query, keys.T) / math.sqrt(d)
6 scores += einsum("i,ij,j->", keys, cov_query, keys) / (2 * d)
7 # Normalize scores and weight by value norms
8 scores = softmax(scores, dim=-1) * values.norm(dim=-1)
9 # Keep KV pairs with highest scores

10 n_kept = int(keys.size(0) * (1 - compression_ratio))
11 indices = scores.topk(n_kept, dim=-1).indices
12 return keys[indices], values[indices]

Listing 1: Pytorch-like pseudo code for KV Cache compression with Expected Attention.

Expected Attention Score With this query distribution, we can now analytically compute the
expected unnormalized attention score in Equation 2. For a query q̄ ∼ N (µ̄q, Σ̄q) in our interval T
and a fixed key ki, the expected unnormalized score for that key is:

ẑi = Eq̄∼N (µ̄q,Σ̄q)

[
exp

(
q̄T ki√

d

)]
= exp

(
µ̄T
q ki√
d

+
kTi Σ̄qki

2d

)
(7)

where the second equality follows from the moment-generating function of a Gaussian distribution.
We then define the expected attention score by applying the softmax on our unnormalized expecta-
tion:

âi =
ẑi∑t
j=1 ẑj

(8)

With this approximation, we can now estimate the importance of each cached KV pair. We define the
expected contribution magnitude by substituting our expected attention weight into the contribution
score formula from Equation 4:

∥∆̂hi∥ = (âi + ϵ)∥Wovi∥ (9)

where âi is the expected attention weight from Equation 8, ∥Wovi∥ ∈ R is the magnitude of the
transformed value vector, and ϵ is a small hyperparameter. This metric provides a tractable approxi-
mation to the true contribution score without requiring future queries.

Compression with Expected Attention Equation 9 captures the contribution of each KV pair
to the transformer output. The Expected Attention compression algorithm scores all cached KV
pairs according to Equation 9 and evicts the r% pairs with the lowest expected contributions, where
r ∈ [0, 1] is the compression ratio. Intuitively, this is equivalent to removing those KV pairs that
have the smallest impact on the residual stream and therefore on the model output. We provide
pseudo-code for our compression algorithm in Listing 1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.1 0.5 0.9

30

40

50
2Wikimqa

0.1 0.5 0.9

20

25

30

Gov Report

0.1 0.5 0.9

20

40

60
Hotpotqa

0.1 0.5 0.9

10

15

20

25
Multi News

0.1 0.5 0.9
20

30

40

50

60

Multifieldqa 

0.1 0.5 0.9
20

40

60

80

100
Passage Retrieval 

0.1 0.5 0.9
10

20

30

40

Qasper

0.1 0.5 0.9

20

22

24

Qmsum

0.1 0.5 0.9

55

60

Repobch-P

0.1 0.5 0.9

10

12

14

Vcsum

Compression Ratio

Expected Attention TOVA SnapKV KeyDiff No compression

0.1 0.5 0.9

30

40

50

60
2Wikimqa

0.1 0.5 0.9

20

25

30
Gov Report

0.1 0.5 0.9
20

30

40

50

60
Hotpotqa

0.1 0.5 0.9

18

20

22

Multi News

0.1 0.5 0.9
20

30

40

50

60
Multifieldqa 

0.1 0.5 0.9
20

40

60

80

100
Passage Retrieval 

0.1 0.5 0.9

20

30

40

Qasper

0.1 0.5 0.9
19

20

21

22

23

Qmsum

0.1 0.5 0.9
40

50

60

Repobch-P

0.1 0.5 0.9
12

13

14

15
Vcsum

Compression Ratio

Figure 2: Scores on LongBench (Bai et al., 2024) for Qwen3-8B (top) and Gemma3-12B (bottom).
The x-axis represents the compression ratio, the y-axis the score for each specific dataset. The
horizontal line represents the baseline performance without cache compression. Expected Attention
achieves optimal trade-off between compression ratio and scores across most datasets (Additional
and averaged results in Appendix D).

Head-Adaptive Compression Previous work has shown that different attention heads serve dif-
ferent roles in the model. We adopt adaptive per-layer compression (Feng et al., 2024) to account
for this heterogeneity, allowing more important heads to retain more KV pairs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Prefilling vs Decoding Generation LLM inference comprises two phases with distinct computa-
tional characteristics. The prefilling phase processes the entire input prompt in parallel, computing
key-value projections for the KV cache, a compute-bound operation requiring substantial floating-
point operations. The decoding phase sequentially generates tokens using the KV cache and previ-
ous logits, appending new key-value pairs iteratively (Deepak & Amr, 2024; Gordić, 2025). This
dichotomy has motivated disaggregated architectures that implement prefill and decoding on dif-
ferent hardware (Deepak Patil, 2024; StepFun et al., 2025), at the cost of transferring the cache,
further incentivising compression. An effective compression method must perform well in both
prefilling and decoding (Deepak & Amr, 2024; Gordić, 2025). Nevertheless, a number of recent
methods often target a single phase: SnapKV (Li et al., 2025) for prefilling via query attention
scores, StreamingLLM (Xiao et al., 2023) and KNorm (Devoto et al., 2024) for streaming decoding.
Expected Attention is designed considering these two aspects of LLM inference and addresses both
scenarios efficiently. We present results for prefilling and decoding in Section 4.1 and Section 4.2
respectively.

Models and Datasets For prefilling (one-shot compression before generation), we test three model
families supporting long contexts: Llama3.1-8B (128k) (MetaAI, 2025), Qwen3-8B (32k) (Yang
et al., 2025), and Gemma3-12B (128k) (GemmaTeam, 2025), all instruction-tuned. For decoding
(compression during generation), we analyse reasoning models that generate extensive intermedi-
ate reasoning tokens and therefore large KV caches: Qwen-1.5B-R1, Qwen-7B-R1 (DeepSeek-AI,
2025), and OpenMath-Nemotron-14B (Moshkov et al., 2025).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Expected Attention outperforms most baselines on Ruler (Hsieh et al., 2024) with 4K and
16K context length. We show average score with increasing compression ratios across baselines.
Best results for each compression ratio are displayed in bold. The 0% column indicates the baseline
without compression.

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (ours) 95.3 95.3 95.0 94.7 88.3 65.4 92.9 93.1 93.2 92.7 85.6 62.7
TOVA[49] 95.3 89.0 82.5 77.6 62.4 24.7 92.9 88.3 81.7 76.2 68.7 52.4
SnapKV[36] 95.3 92.6 84.0 55.7 33.1 19.2 92.9 90.1 81.5 62.8 41.7 26.8
KeyDiff[50] 95.3 93.8 89.4 78.6 64.4 37.9 92.9 88.9 82.9 74.5 66.9 53.1

Gemma3-12B

EA (ours) 95.2 95.2 94.9 92.7 78.2 53.6 86.0 82.8 81.7 76.6 60.5 41.8
TOVA[49] 95.2 89.7 81.1 76.5 58.1 25.3 86.0 79.7 72.6 62.5 46.8 32.7
SnapKV[36] 95.2 82.9 72.0 54.8 40.3 30.1 86.0 74.1 62.8 46.4 37.3 31.4
KeyDiff[50] 95.2 94.3 90.6 79.8 62.0 34.3 86.0 81.8 78.6 72.6 58.6 37.2

Llama3.1-8B

EA (ours) 95.3 95.7 95.3 92.2 75.9 30.6 93.4 93.4 92.8 86.0 66.4 25.5
TOVA[49] 95.3 93.2 87.3 76.2 63.3 37.5 93.4 90.9 86.1 77.9 68.4 59.2
Duo [63] 95.3 95.7 95.7 95.3 73.2 24.5 93.4 93.3 93.0 90.1 59.1 12.3
SnapKV[36] 95.3 95.5 88.8 81.8 63.2 43.4 93.4 89.4 82.0 68.0 43.1 25.6
KeyDiff[50] 95.3 94.7 91.6 85.5 72.9 61.1 93.4 92.1 88.4 82.6 74.9 66.5

Our benchmarks include LongBench (Bai et al., 2024), Ruler (Hsieh et al., 2024), and Needle in a
Haystack (Kamradt, 2023; Liu et al., 2024) for prefilling, and Aime25 (Balunović et al., 2025) and
MATH-500 (Lightman et al., 2023) for decoding.

Baselines Following an initial benchmarking study on Ruler (see Appendix D), we selected and
compare our method against the best-performing baselines for each use case. For prefilling, we
evaluate attention-based approaches like SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024),
embedding-based KeyDiff (Park et al., 2025), and the trainable DuoAttention (Xiao et al., 2024)
when the checkpoint is available. SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024) rank KV
pairs using attention scores from user queries. KeyDiff (Park et al., 2025) employs distance metrics
between key embeddings for selection, making it also suitable for decoding generation. DuoAtten-
tion (Xiao et al., 2024) takes a trainable approach, learning compression masks for each attention
head. For decoding, we focus on methods designed to be compatible with streaming generation:
KNorm (Devoto et al., 2024), StreamingLLM (Xiao et al., 2023), and KeyDiff (Park et al., 2025).
KNorm (Devoto et al., 2024) uses a simple approach by preserving keys with the lowest L2 norm.
StreamingLLM (Xiao et al., 2023) maintains initial sink tokens throughout generation.

Implementation details We implement Expected Attention in Pytorch (Paszke et al., 2019). For
all benchmarks, we test the models on 8 H100 GPUs, with batch size 1. We make all the code to
reproduce our method and the baselines available online. In all experiments we use ϵ = 0.02, except
for needle in a haystack where use ϵ = 0, and we average the RoPE embeddings over the next
T = 512 positions. For prefilling, we do not assume any question about the context. This simulates
a real world use case and avoids favouring methods like SnapKV that rely on this assumption. For
decoding, we keep a small buffer of hidden states of 128 tokens to compute statistics, and perform
compression every 512 generation steps. In Equation 9 we only use V instead of WoV , as using Wo

led to a minor increase in results at a significantly higher memory cost.

4 EXPERIMENTAL RESULTS

4.1 PREFILLING

LongBench We evaluate on LongBench (Bai et al., 2024), which tests long-context capabilities
across diverse tasks. The benchmark comprises six categories: single and multi-document QA,
summarization, few-shot learning, synthetic tasks, and code completion. As shown in Figure 2 for
Llama3.1-8B and Qwen3-8B (see Appendix D for Gemma3-12B), Expected Attention consistently
achieves optimal compression-performance trade-offs, maintaining higher scores across all com-
pression ratios. This demonstrates effective retention of critical KV pairs even under significant
compression across varied reasoning and generation tasks.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

15
25
35
45
55
65
75
85
95

De
pt

h 
Pe

rc
en

t

TOVA

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

KNorm

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

SnapKV

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

Streaming LLM

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

15
25
35
45
55
65
75
85
95

De
pt

h 
Pe

rc
en

t

QFilter

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

KeyDiff

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

Duo Attention

10
00

0
15

00
0
20

00
0
25

00
0
30

00
0
35

00
0
40

00
0
45

00
0
50

00
0
55

00
0
60

00
0
65

00
0
70

00
0
75

00
0
80

00
0
85

00
0
90

00
0
95

00
0

10
00

00

10
50

00

11
00

00

11
50

00

12
00

00

12
50

00

Context Length

Expected Attention

Figure 3: Needle in the Haystack test for different methods with Llama3.1-8B and 50% compression
ratio.

Figure 4: Decoding results on Aime25 dataset,
different markers represent different models sizes.
The x-axis is the maximum size that the KV cache
is allowed to grow to.

40962048 8192 16384
Context Length (Tokens)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e 
(A

IM
E 

20
25

)

Methods
Expected Attention Knorm Streaming LLM KeyDiff

Methods
Expected Attention Knorm Streaming LLM KeyDiff

Models
DeepSeek-R1-Distill-Qwen-1.5B
DeepSeek-R1-Distill-Qwen-7B
OpenMath-Nemotron-14B

Table 2: Decoding scores on MATH-500.
Columns indicate the final size of the KV
cache with respect to the original full ver-
sion. Best scores in bold.

Model Method Compression
0× 2× 4× 12×

Qwen-R1-1.5B

EA (ours) 0.47 0.47 0.43 0.33
KeyDiff[50] 0.47 0.42 0.40 0.30
KNorm[15] 0.47 0.41 0.28 0.11
Streaming[62] 0.47 0.45 0.41 0.31

Qwen-R1-7B

EA (ours) 0.57 0.55 0.53 0.49
KeyDiff[50] 0.57 0.54 0.48 0.35
KNorm[15] 0.57 0.47 0.32 0.12
Streaming[62] 0.57 0.54 0.51 0.41

Nemotron-14B

EA (ours) 0.57 0.55 0.54 0.47
KeyDiff[50] 0.57 0.56 0.51 0.44
KNorm[15] 0.57 0.50 0.36 0.14
Streaming[62] 0.57 0.57 0.54 0.42

Ruler Ruler (Hsieh et al., 2024) measures retrieval, multi-hop tracing, and aggregation abilities
within long contexts through four subsets: NIAH (Needle-in-a-Haystack) for single-fact retrieval,
VT (Variable Tracking) for multi-hop reasoning, CWE (Common Words Extraction) for frequency-
based aggregation, and FWE (Frequent Words Extraction) for statistical pattern recognition. Table 1
shows results at various compression ratios for 4k and 16k windows. Expected Attention maintains
strong performance across all subsets, particularly at higher compression ratios. While KeyDiff
performs well on Llama3.1-8B, it struggles on Gemma3-12B and Qwen3-8B, potentially due to
QK normalization (GemmaTeam, 2025; Yang et al., 2025). Our Expected Attention-based policy
effectively preserves information necessary for precise retrieval and complex reasoning tasks.

Needle in a Haystack The NIAH test (Kamradt, 2023) embeds specific information (the ”nee-
dle”) within lengthy distracting text (the ”haystack”) to evaluate retrieval capabilities across varying
context positions and lengths. The test systematically varies both the needle’s position within the
context (needle depth) and the total context length to assess consistent retrieval performance. Fig-
ure 3 visualizes retrieval success across needle positions and context lengths up to 125k tokens.
Expected Attention demonstrates robust performance comparable to DuoAttention and significantly
more stable than other baselines in long contexts, confirming retention of critical information under
compression regardless of needle placement or context size.

4.2 DECODING

We evaluate Expected Attention on reasoning models, Qwen-1.5B-R1, Qwen-7B-R1, and
OpenMath-Nemotron-14B. Reasoning models are particularly suitable for our evaluation as they
generate extensive chain-of-thought outputs, placing significant demands on KV cache mem-
ory (Łańcucki et al., 2025). We use the Aime25 (Yamada et al., 2025) and MATH-500 (Light-
man et al., 2023) datasets. Aime25 consists of competition-level mathematical problems requiring
multi-step reasoning and precise calculation, while MATH-500 encompasses diverse mathematical

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10000 20000 40000 60000 80000 90000 100000 110000 120000
Sequence Length

10

15

20

25

30

35

40

45
Pe

ak
 M

em
or

y 
Us

ag
e 

(G
B)

No compression
Expected Attention (50%)
Expected Attention (90%)

(a) Peak memory usage vs sequence length up to
120k for Llama3.1-8B, with 50% and 90% compres-
sion ratio. As the context length grows the memory
savings become more evident, achieving up to 15GB
less memory for large contexts.

0.0 0.2 0.4 0.6 0.8 1.0
Compression Ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e

14.65 GB

No compression

10.99 GB 7.32 GB

3.12 GB

3.66 GB

1.46 GB

2

4

6

8

10

12

14

Ca
ch

e 
Si

ze
 (G

B)

(b) Needle in a Haystack score with different com-
pression ratios with Qwen3-8B. Expected Attention
has no accuracy loss with a compression ratio of 50%.
Marker size indicates actual KV cache size in GB.

domains including algebra, geometry, and number theory with varying difficulty levels. During de-
coding, we allow the KV cache to expand to a predetermined size before initiating token eviction.
We use n× to show that the final cache size is n times smaller than would be without compression.

Results for Aime25 and MATH-500 are presented in Figure 4 and Table 2, respectively. Expected
Attention consistently outperforms or matches baseline methods across all models, with particularly
strong performance at higher compression ratios (4× and 16×). Most methods demonstrate minimal
performance degradation at 2× compression, indicating that a large portion of tokens in reasoning
traces contains redundant information that can be pruned without affecting mathematical reason-
ing performance. Expected Attention shows the best performance especially in high-compression
scenarios (12× compression).

4.3 MEMORY SAVINGS AND EFFICIENCY

We evaluate the memory efficiency of our method using Llama3.1-8B and Qwen3-8B for both pre-
filling and decoding phases. All experiments are conducted on a single H100 GPU with bfloat16
precision for both model weights and KV cache. We focus on peak memory usage as the primary ef-
ficiency metric, as KV cache memory consumption is often the primary bottleneck for long-context
inference.

Figure 5a demonstrates peak memory usage as sequence length increases up to 120k tokens, com-
paring Expected Attention at 50% and 90% compression ratios against the uncompressed baseline
with vanilla attention. The results show that memory savings become increasingly substantial as
context length grows.

Figure 5b illustrates the relationship between compression ratio (x-axis) and NIAH benchmark per-
formance for Qwen3-8B, with marker size representing the corresponding KV cache size. While
higher compression ratios naturally reduce KV cache size, they typically incur performance penal-
ties. Remarkably, Expected Attention at 50% compression maintains performance parity with the
uncompressed baseline while achieving a 2× reduction in KV cache size, demonstrating an optimal
balance between memory efficiency and task performance.

5 RELATED WORKS

Trainable KV-Cache Compression One approach to reducing memory requirements involves
modifying the model architecture or training procedure to inherently produce smaller caches. Ainslie
et al. (2023); Shazeer (2019) reduce cache size by decreasing the number of key-value heads, effec-
tively sharing key-value representations across queries. DeepSeek-V2 (DeepSeek-AI, 2024b) intro-
duced Multi-Head Latent Attention, which projects keys and values into a lower-dimensional latent
space during training, directly reducing the memory footprint of cached representations. Alternative
trainable approaches focus on learning compression policies (Łańcucki et al., 2025; Nawrot et al.,
2024) or masks (Xiao et al., 2024) from pre-trained checkpoints. Finally, State Space Models (Gu

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

et al., 2022; Gu & Dao, 2024) replace the quadratic attention mechanism with linear-complexity al-
ternatives, while hybrid approaches combine transformer layers with RNN-based components (Ren
et al., 2025; Glorioso et al., 2024). Although these trainable methods typically achieve superior
performance, they require substantial computational resources for pre-training or continued pre-
training, making them less practical for deployment with existing large-scale models.

Training-Free KV cache compression Given the computational costs associated with trainable
methods, significant research effort has focused on developing post-training compression techniques
that can be applied to existing models without modification. Early approaches (Li et al., 2025; Oren
et al., 2024) directly utilize attention scores to rank KV pairs by importance. However, these meth-
ods require access to the full attention matrix, making them incompatible with Flash Attention (Dao
et al., 2022) and thus impractical for modern deployment scenarios. To address this limitation,
several works have developed heuristic-based importance measures that can be computed without
materializing attention matrices, such as keys norm (KNorm Devoto et al. (2024)), token positions
(StreamingLLM Xiao et al. (2023), H2O Zhang et al. (2024)) or SVD projection (Q-Filters Godey
et al. (2025)). Recognizing that different attention heads exhibit varying sensitivity to compres-
sion, recent methods such as AdaKV (Feng et al., 2024) and PyramidKV (Cai et al., 2025a) adopt
head-specific compression strategies. Expected Attention, adopts insights from these heuristic ap-
proaches while providing a principled theoretical foundation based on the distributional properties
of transformer activations.

Quantization Instead of reducing the KV cache size along the sequence dimension, quantization
methods try to reduce the precision used to store the cache. For example, NQKV Cai et al. (2025b)
partitions the cache into blocks for quantization and processes them separately. KVQuant (Hooper
et al., 2024) performs non uniform per-layer quantization, while KIVI (Zirui Liu et al., 2023) quan-
tizes the key cache by layer and the value cache by token. These methods are orthogonal to Expected
Attention (and to KV cache compression in general), making it possible to integrate them.

Efficient Implementations Alongside compression, sparse attention and quantization, another ef-
fort has been done to devise efficient implementation of inference systems. In this context, a well de-
signed low-level handling of the KV cache can deliver significant performance speed-ups, especially
in multi-user serving systems. The first to investigate this and introduce efficient memory manage-
ment for KV cache was vLLM (Kwon et al., 2023), soon followed by other approaches (Prabhu
et al., 2024; Jiang et al., 2024) and frameworks (NVIDIA, 2024).

6 LIMITATIONS

A key trade-off of our training-free methodology is that its performance does not match that of
trainable methods (DeepSeek-AI, 2024a; Łańcucki et al., 2025). This is an intentional design choice
that allows deployment without significant computational resources required for intensive training.
Future work could explore combining our theoretical framework with lightweight fine-tuning.

Another limitation is that our method requires users to specify compression ratios manually, lacking
an automated mechanism to determine optimal compression levels for different scenarios such as
text generation. This represents a promising area for future research.

Finally, while our PyTorch implementation effectively demonstrates our method’s theoretical prin-
ciples, it is not optimized for efficiency. A highly performant implementation with custom CUDA
kernels would significantly improve speed and practical utility.

7 CONCLUSION

We introduced Expected Attention, a training-free algorithm for KV cache compression. We showed
Expected Attention outperforms state-of-art KV cache compression methods on several benchmarks
and in both prefilling and decoding scenarios. Additionally, we released a research library that allows
researchers to easily implement and experiment with KV cache compression methods, and evaluate
them on popular benchmarks for long context.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we are providing a complete and self-contained codebase
along with this submission. The provided code includes all necessary scripts for data preprocessing
and evaluation, allowing for the direct replication of our experiments and results. For now, we share
the repo in an anonymized github repository.

The codebase is organized to be straightforward to use and is accompanied by a README.md file
with detailed instructions on how to set up the environment and run the experiments.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Anthropic. System card: Claude opus 4 & claude sonnet 4. arxiv, 2025.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics, 2024.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Junjie Hu, and Wen Xiao. PyramidKV: Dynamic KV cache compression based on pyramidal
information funneling. arXiv, 2025a.

Zhihang Cai, Xingjun Zhang, Zhendong Tan, and Zheng Wei. Nqkv: A kv cache quantization
scheme based on normal distribution characteristics. arXiV, 2025b.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. Interna-
tional Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Patil Deepak and Elmeleegy Amr. How to scale your model.
https://cloud.google.com/blog/products/compute/ai-inference-recipe-using-nvidia-dynamo-
with-ai-hypercomputer, 2024.

Amr Elmeleegy Deepak Patil. Fast and efficient ai inference with new nvidia dynamo recipe on ai
hypercomputer. https://jax-ml.github.io/scaling-book/, 2024.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model. arXiv, 2024a.

DeepSeek-AI. Deepseek-v3 technical report, 2024b.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l2
norm-based strategy for kv cache compression. The 2024 Conference on Empirical Methods in
Natural Language Processing, 2024.

10

https://anonymous.4open.science/r/kvpress-72CC
https://matharena.ai/
https://matharena.ai/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
sis. arXiv preprint arXiv:2405.08944, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

GeminiTeam. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long con-
text, and next generation agentic capabilities. arXiv, 2025.

GemmaTeam. Gemma 3. ArXiV, 2025. URL https://goo.gle/Gemma3Report.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv, 2024.

Nathan Godey, Alessio Devoto, Yu Zhao, Simone Scardapane, Pasquale Minervini, Éric de la Clerg-
erie, and Benoı̂t Sagot. Q-filters: Leveraging qk geometry for efficient kv cache compression.
arXiv, 2025.

Aleksa Gordić. Inside vllm: Anatomy of a high-throughput llm inference system. https://www.
aleksagordic.com/blog/vllmAleksaGordi, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
2312.00752, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. International Conference on Learning Represenations, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. Advances in Neural Information Processing Systems, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. International Conference on Machine
Learning, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. https://arxiv.org/abs/2310.06825,
2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference
1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=fPBACAbqSN.

11

https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://goo.gle/Gemma3Report
https://www.aleksagordic.com/blog/vllm Aleksa Gordić
https://www.aleksagordic.com/blog/vllm Aleksa Gordić
https://openreview.net/forum?id=fPBACAbqSN
https://openreview.net/forum?id=fPBACAbqSN


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack, 2023.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, and Hyun Oh Song.
Kvzip: Query-agnostic kv cache compression with context reconstruction, 2025. URL https:
//arxiv.org/abs/2505.23416.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. Proceedings of the 29th Symposium on Operating Systems Princi-
ples, 2023.

Haoyang LI, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole HU, Wei
Dong, Li Qing, and Lei Chen. A survey on large language model acceleration based on KV cache
management. Transactions on Machine Learning Research, 2025.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Proceedings of the 38th International Conference on Neural Information Processing
Systems, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models, 2025.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 2024. URL https://aclanthology.org/
2024.tacl-1.9/.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
International Conference on Machine Learning, 2024.

MetaAI. Introducing llama 4: Advancing multimodal intelligence. arXiv, 2024.

MetaAI. The llama 3 herd of models. arXiv, 2025.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art mathe-
matical reasoning models with openmathreasoning dataset. arXiv, 2025.

Timur Mudarisov, Mikhail Burtsev, Tatiana Petrova, and Radu State. Limitations of normalization
in attention mechanism. arXiv:2508.17821, 2025.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dy-
namic memory compression: retrofitting llms for accelerated inference. Proceedings of the 41st
International Conference on Machine Learning, 2024.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM, 2024.

OpenAI. Learning to reason with large language models. https://openai.com/index/
learning-to-reason-with-llms/, 2024.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv, 2024.

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydiff:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. arXiv, 2025.

12

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2505.23416
https://arxiv.org/abs/2505.23416
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.tacl-1.9/
https://github.com/NVIDIA/TensorRT-LLM
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Gal Lerer, James Bradbury, Gregory Chillemi, Luca
Antiga, Alban Desmaison, Andreas Tejani, Soumith Chilamkurthy, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv, 2019.

PerplexityAI. Perplexity deep research. https://www.perplexity.ai/hub/blog/introducing-perplexity-
deep-research, 2025.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vatten-
tion: Dynamic memory management for serving llms without pagedattention. arXiv, 2024.

Liliang Ren, Congcong Chen, Haoran Xu, Young Jin Kim, Adam Atkinson, Zheng Zhan, Jiankai
Sun, Baolin Peng, Liyuan Liu, Shuohang Wang, Hao Cheng, Jianfeng Gao, Weizhu Chen, and
Yelong Shen. Decoder-hybrid-decoder architecture for efficient reasoning with long generation.
arXiv, 2025.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv, 2019.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review
on methods to optimize llm’ s kv-cache consumption. First Conference on Language Modeling
(COLM), 2024.

StepFun, :, Bin Wang, Bojun Wang, Changyi Wan, Guanzhe Huang, Hanpeng Hu, Haonan Jia,
Hao Nie, Mingliang Li, Nuo Chen, Siyu Chen, Song Yuan, Wuxun Xie, Xiaoniu Song, Xing
Chen, Xingping Yang, Xuelin Zhang, Yanbo Yu, Yaoyu Wang, Yibo Zhu, Yimin Jiang, Yu Zhou,
Yuanwei Lu, Houyi Li, Jingcheng Hu, Ka Man Lo, Ailin Huang, Binxing Jiao, Bo Li, Boyu Chen,
Changxin Miao, Chang Lou, Chen Hu, Chen Xu, Chenfeng Yu, Chengyuan Yao, Daokuan Lv,
Dapeng Shi, Deshan Sun, Ding Huang, Dingyuan Hu, Dongqing Pang, Enle Liu, Fajie Zhang,
Fanqi Wan, Gulin Yan, Han Zhang, Han Zhou, Hanghao Wu, Hangyu Guo, Hanqi Chen, Hanshan
Zhang, Hao Wu, Haocheng Zhang, Haolong Yan, Haoran Lv, Haoran Wei, Hebin Zhou, Heng
Wang, Heng Wang, Hongxin Li, Hongyu Zhou, Hongyuan Wang, Huiyong Guo, Jia Wang, Jiahao
Gong, Jialing Xie, Jian Zhou, Jianjian Sun, Jiaoren Wu, Jiaran Zhang, Jiayu Liu, Jie Cheng,
Jie Luo, Jie Yan, Jie Yang, Jieyi Hou, Jinguang Zhang, Jinlan Cao, Jisheng Yin, Junfeng Liu,
Junhao Huang, Junzhe Lin, Kaijun Tan, Kaixiang Li, Kang An, Kangheng Lin, Kenkun Liu, Lei
Yang, Liang Zhao, Liangyu Chen, Lieyu Shi, Liguo Tan, Lin Lin, Lin Zhang, Lina Chen, Liwen
Huang, Liying Shi, Longlong Gu, Mei Chen, Mengqiang Ren, Ming Li, Mingzhe Chen, Na Wang,
Nan Wu, Qi Han, Qian Zhao, Qiang Zhang, Qianni Liu, Qiaohui Chen, Qiling Wu, Qinglin He,
Qinyuan Tan, Qiufeng Wang, Qiuping Wu, Qiuyan Liang, Quan Sun, Rui Li, Ruihang Miao,
Ruosi Wan, Ruyan Guo, Shangwu Zhong, Shaoliang Pang, Shengjie Fan, Shijie Shang, Shilei
Jiang, Shiliang Yang, Shiming Hao, Shuli Gao, Siming Huang, Siqi Liu, Tiancheng Cao, Tianhao
Cheng, Tianhao Peng, Wang You, Wei Ji, Wen Sun, Wenjin Deng, Wenqing He, Wenzhen Zheng,
Xi Chen, Xiangwen Kong, Xianzhen Luo, Xiaobo Yang, Xiaojia Liu, Xiaoxiao Ren, Xin Han,
Xin Li, Xin Wu, Xu Zhao, Yanan Wei, Yang Li, Yangguang Li, Yangshijie Xu, Yanming Xu,
Yaqiang Shi, Yeqing Shen, Yi Yang, Yifei Yang, Yifeng Gong, Yihan Chen, Yijing Yang, Yinmin
Zhang, Yizhuang Zhou, Yuanhao Ding, Yuantao Fan, Yuanzhen Yang, Yuchu Luo, Yue Peng,
Yufan Lu, Yuhang Deng, Yuhe Yin, Yujie Liu, Yukun Chen, Yuling Zhao, Yun Mou, Yunlong
Li, Yunzhou Ju, Yusheng Li, Yuxiang Yang, Yuxiang Zhang, Yuyang Chen, Zejia Weng, Zhe
Xie, Zheng Ge, Zheng Gong, Zhenyi Lu, Zhewei Huang, Zhichao Chang, Zhiguo Huang, Zhirui
Wang, Zidong Yang, Zili Wang, Ziqi Wang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-
Yeung Shum, and Xiangyu Zhang. Step-3 is large yet affordable: Model-system co-design for
cost-effective decoding, 2025. URL https://arxiv.org/abs/2507.19427.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, 2017.

13

https://arxiv.org/abs/2507.19427
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
long video understanding via large language models. In European Conference on Computer
Vision, pp. 453–470. Springer, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. Internation Conference on Learning Represenations, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. Internation Conference on Learning Represenation, 2024.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
search, 2025. URL https://arxiv.org/abs/2504.08066.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, and Clark Barrett. H2o: Heavy-hitter oracle for efficient gener-
ative inference of large language models. Advances in Neural Information Processing Systems,
2024.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi : Plug-and-play 2bit kv cache quantization with streaming asymmetric
quantization. ICML, 2023.

Adrian Łańcucki, Konrad Staniszewski, Piotr Nawrot, and Edoardo M. Ponti. Inference-time hyper-
scaling with kv cache compression. arXiv, 2025.

14

https://arxiv.org/abs/2504.08066


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio

0

5

10

15

20

25

30

35

h
h c

om
pr

Qwen3-8B
Expected Attention
Knorm
TOVA
KeyDiff
SnapKV
PyramidKV
Streaming LLM
Optimal

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

h
h c

om
pr

Llama-3.1-8B-Instruct
Expected Attention
Knorm
TOVA
KeyDiff
SnapKV
PyramidKV
Streaming LLM
Optimal

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio

0

2

4

6

8

10

h
h c

om
pr

gemma-3-4b-it
Expected Attention
Knorm
TOVA
KeyDiff
SnapKV
PyramidKV
Streaming LLM
Optimal

Figure 6: Reconstruction error ∥h− hcompr∥
averaged across model layers. Expected Attention achieves the best error, minimizing the impact

on the residual stream.

A RECONSTRUCTION ERROR ACROSS METHODS

In Section 2, we discussed the challenge of compressing the KV cache without significantly alter-
ing the residual stream. To understand the impact of Expected Attention on the model output, we
quantify the reconstruction error of the residual stream, i.e. how the difference between the original,
uncompressed hidden states and the corresponding hidden states after compression. We define the
reconstruction error as ∥h − hcompr∥, where h is the original hidden state without compression and
hcompr the hidden state after the KV cache has been compressed. We average the reconstrcution
error over a long sequence of ∼ 5K tokens and display the results for several methods in Figure 6.
Expected Attention consistently achieves a lower reconstruction error, indicating that it preserves
the integrity of the hidden state more effectively than competing methods, a crucial property for
maintaining downstream performance (Mudarisov et al., 2025; Gordić, 2025).

B DISTRIBUTIONAL PROPERTIES OF LLM ACTIVATIONS

In this section, we analyse the distributional properties of activations within Large Language Mod-
els. Our investigation aligns with the findings of prior work, which has demonstrated that LLM
activations often exhibit normal distributions. More specifically Liu et al. (2025) finds that hidden
states are zero-mean unimodal, and qualitatively fall into two distinctly shaped distributions. The
hidden states before the Attention and the MLP layers tend to be Gaussian-like, while the hidden
states in the intermediate of such layers tend to be Laplacian-like.

For Expected Attention, we are interested in the hidden states before the MLP layers and the corre-
sponding queries. Our study confirms that such activations are predominantly unimodal and can be
approximated as Gaussian distributions, albeit with the presence of a few heavy-tailed outliers, as
already found in Xiao et al. (2023); Sun et al. (2024). In Figure 9a, Figure 8a, and Figure 7a we
show hidden states and queries for different models. For our method, the distributional properties
of queries are of particular importance, and we observe that queries maintain a clear Gaussian-like
behaviour. This also applies to models with QK normalization, where the query projection is not
guaranteed to be linear. The concentration of these activations around a central value and their
Gaussian like shape provides the theoretical basis for Expected Attention.

We stress that in this work, our goal is not to explain or investigate this property, but rather to
leverage it for KV cache compression.

C EXPECTED ATTENTION SCORE

To empirically validate that the expected attention score is strongly correlated to the real model
attention score, we plot the correlation between the observed attention and the expected attention
score across different layers and heads. We use sequence of 5K tokens and use the first 1K tokens to
compute the query statistics. We display the results in Figure 10. We see that for different layers and
attention heads, the expected attention score from Equation 4 is strongly correlated to the original
attention score.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Hidden States - Layer 8

3 2 1 0 1 2 3

Hidden States - Layer 16

6 4 2 0 2 4 6

Hidden States - Layer 24

15 10 5 0 5 10 15

Hidden States - Layer 30

Activation Value

(a) Qwen3-8B Hidden States distributions.

4 2 0 2 4 6 8 10 12

Queries - Head 2

2 0 2 4

Queries - Head 4

4 2 0 2 4

Queries - Head 6

10 8 6 4 2 0 2

Queries - Head 8

Activation Value

(b) Qwen3-8B queries distributions.

Figure 7: Distributions of Qwen3-8B Hidden States and queries.

0.2 0.1 0.0 0.1 0.2

Hidden States - Layer 8

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

Hidden States - Layer 16

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Hidden States - Layer 24

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Hidden States - Layer 30

Activation Value

(a) Llama3.1-8B hidden states distributions.

3 2 1 0 1 2

Queries - Head 2

3 2 1 0 1 2 3 4 5

Queries - Head 4

3 2 1 0 1 2 3 4 5

Queries - Head 6

4 2 0 2 4

Queries - Head 8

Activation Value

(b) Llama3.1-8B queries distributions.

Figure 8: Distributions of Llama3.1-8B hidden states and queries.

D ADDITIONAL RESULTS

In Table 3 we show additional results on the LongBench dataset, averaged across all subsets.

Ruler In order to select the most competitive baselines we performed an initial search on 15+
methods on Ruler. We selected the best performing ones as displayed in Figure 11. We did not
include KVZip (Kim et al., 2025) despite achieving a high score as it needs two forward passes,
therefore implying a higher cost FLOPs that is double as much as the other baselines.

E LLM USAGE STATEMENT

We used LLMs to polish the text and refine the language.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

30 20 10 0 10 20 30

Hidden States - Layer 8

60 40 20 0 20 40 60

Hidden States - Layer 16

150 100 50 0 50 100 150

Hidden States - Layer 24

400 200 0 200 400

Hidden States - Layer 30

Activation Value

(a) Gemma3-12B hidden states distributions

3 2 1 0 1 2 3

Queries - Head 2

2 1 0 1 2 3

Queries - Head 4

3 2 1 0 1 2 3

Queries - Head 6

3 2 1 0 1 2

Queries - Head 8

Activation Value

(b) Gemma3-12B queries distributions.

Figure 9: Distributions of Gemma3-12B hidden states and queries.

Figure 10: Correlation between attention score and expected attention score for Llama3.1-8B. We
compute the expected attentions score on a sequence of 5K tokens, using the first 1K for statistics.
A strong correlation exists between our attention score approximation and the observed attention
score.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Expected Attention outperforms most baselines on Longbench (Bai et al., 2024). We show
average score with increasing compression ratios across baselines.

Model Method Longbench
0% 10% 25% 50% 75% 90%

Qwen3-8B

Expected Attention 48.63 48.30 50.25 50.1 48.06 39.71
TOVA 48.63 48.41 48.14 46.49 43.19 37.21
SnapKV 48.63 48.40 47.85 46.25 42.42 34.57
KeyDiff 48.63 48.13 46.23 40.08 29.42 20.69

Gemma3-12B

Expected Attention 51.04 54.02 50.98 47.51 40.41 32.67
TOVA 51.04 53.05 51.52 50.7 46.88 40.45
SnapKV 51.04 51.83 51.31 48.14 44.31 34.97
KeyDiff 51.04 51.64 48.74 42.15 33.68 23.46

Llama3.1-8B

Expected Attention 46.42 46.59 46.8 47.91 44.04 33.97
TOVA 46.42 46.22 45.62 44.13 40.5 34.77
SnapKV 46.42 46.56 46.07 45.07 41.24 32.55
KeyDiff 46.42 46.45 48.01 46.9 42.24 35.51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio

0

20

40

60

80

100

Sc
or

e

Expected Attention
DuoAttention
KVzip
KeyDiff
Knorm
ObservedAttention
PyramidKV
QFilter
Random
SnapKV
StreamingLLM
TOVA

Figure 11: Initial experiments on Ruler 4K to select the best baselines. We did not use KVZip as it
requires two forward passes and increases latency significantly.

18


	Introduction
	Expected Attention
	Key-Value Cache in Autoregressive Transformers
	Expected Attention: Estimating Attention From Future Queries

	Experiments
	Experimental Setup

	Experimental Results
	Prefilling
	Decoding
	Memory Savings and Efficiency

	Related Works
	Limitations
	Conclusion
	Reproducibility statement
	Reconstruction Error Across Methods
	Distributional Properties of LLM activations
	Expected Attention Score 
	Additional Results
	LLM Usage Statement

