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ABSTRACT

Memory consumption of the Key-Value (KV) cache represents a major bottleneck
for efficient large language model (LLM) inference. While attention-score-based
KV cache pruning shows promise, it faces critical practical limitations: atten-
tion scores from future tokens are unavailable during compression, and modern
implementations do not materialize the full attention matrix, making past scores
inaccessible. To overcome these challenges, we introduce Expected Attention,
a training-free compression method that estimates Key-Value (KV) pairs impor-
tance by predicting how future queries will attend to them. Leveraging the distri-
butional properties of LLM activations, we compute expected attention scores in
closed form for each KV pair. These scores enable ranking and pruning of KV
pairs with minimal impact on the residual stream, achieving high compression
without performance degradation. Importantly, our method operates seamlessly
across both prefilling and decoding phases, consistently outperforming state-of-
the-art baselines in both scenarios. Finally, we release a comprehensive research
library for KV cache compression, designed to enable researchers to implement
and benchmark novel methods, in addition to building upon our own.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Anthropic, 2025; MetaAI, 2024; Yang et al.,
2025) have revolutionized text generation and reasoning, enabling advanced applications such as
long multi-round dialogues, extensive multimodal intelligence (Yang et al., 2025; Weng et al., 2024),
and agentic workflows that ingest massive amounts of data (OpenAI, 2024; PerplexityAI, 2025;
Yamada et al., 2025). These applications often require processing extensive contextual information.
For example, processing a large codebase or a short video can easily involve analyzing hundreds of
thousands of tokens. A critical issue in deploying LLMs in such scenarios is the prohibitive memory
consumption of the Key-Value (KV) cache (Fu, 2024; Shi et al., 2024; LI et al., 2025).

During autoregressive generation, the KV cache stores key and value vectors for every processed
token, enabling efficient attention computation. However, its memory footprint grows linearly with
sequence length, quickly becoming the primary bottleneck for long-context inference. A medium-
sized 70B model (MetaAI, 2025) requires approximately 320 GB of GPU memory for a one-million-
token KV cache, far exceeding most GPU capacities. This challenge intensifies with emerging appli-
cations where advanced reasoning models generate thousands of intermediate tokens (DeepSeek-AI,
2024b; Yang et al., 2025) and agentic systems load massive datasets (OpenAI, 2025; PerplexityAI,
2025). While current LLMs promise extended context lengths up to a million tokens (GeminiTeam,
2025; MetaAI, 2024), hardware constraints saturate GPU memory well before reaching theoretical
limits.

State Space Models offer a solution by reducing memory costs (Gu et al., 2022; Gu & Dao, 2024),
yet their inferior performance compared to transformers, especially on long context tasks, limits
adoption (Jelassi et al., 2024; Merrill et al., 2024). Other architectural changes limited to the atten-
tion mechanism, such as multi-head latent attention (DeepSeek-AI, 2024a) or sliding window atten-
tion (Jiang et al., 2023; GemmaTeam, 2025), reduce KV cache size but do not remove the attention
bottleneck and are orthogonal to KV cache compression methods. Additionally, such methods need
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to be implemented at training time, limiting their application to pre-trained modern LLMs. This
creates demand for training-free KV cache compression methods that preserve transformer architec-
tures while mitigating memory growth.

KV cache compression exploits semantic redundancy in natural language: not all tokens equally
influence future predictions, and many provide negligible information once their contextual role
is fulfilled. This property allows to compress the KV cache by removing some of the key and
values stored in it. However, determining which tokens can be safely removed is far from trivial,
as any Key-Value (KV) pair’s importance depends on how future queries will attend to it. Existing
approaches use heuristics like discarding oldest tokens (Ge et al., 2024; Xiao et al., 2023) or leverage
attention scores from past queries (Zhang et al., 2024; Li et al., 2025; Oren et al., 2024), but these
strategies are limited for real-world scenarios, and often require accessing attention scores which are
not materialized in modern transformer implementations (Dao et al., 2022).

Instead of relying on heuristics or local attention metrics, we argue that a KV pair’s significance is
best measured by its global effect on the transformer’s output. We quantify this effect by isolating
each KV pair’s contribution within the residual stream, capturing its influence on the model output.
This raises the challenge of estimating how future queries will attend to each token in the context,
which requires accessing attention scores from the past and from future tokens, that are not available
at the time of compression. To address this, we introduce Expected Attention, which estimates
future attention allocation leveraging the distribution of future queries. Expected Attention estimates
the importance that each token in the context has for queries that have not been generated and
accordingly prunes the KV cache up to 60% while preserving performance quality, requiring no
architectural modifications or additional training. We release our code as a comprehensive library
benchmarking over 20 state-of-the-art compression methods.

To summarize, our contributions are the following:

• We analyse the distributional properties of LLM activations through the lenses of KV cache
compression and introduce the concept of Expected Attention to estimate the importance
that current tokens will have in the future.

• We introduce a KV cache compression method that leverages Expected Attention and evicts
irrelevant KV pairs for efficient inference.

• We release all our code as a library, designed for researchers, that allows to easily imple-
ment, test and benchmark KV cache compression methods.

2 EXPECTED ATTENTION

2.1 KEY-VALUE CACHE IN AUTOREGRESSIVE TRANSFORMERS

We consider decoder-only language models based on the transformer architecture (Vaswani et al.,
2017), representing the vast majority of modern LLMs. When an input sequence of tokens x =
[x1, x2, . . . , xt] is fed to the model, each token xi is transformed into a hidden state representation
hi ∈ Rh and processed by a stack of transformer layers, including feed forward networks and multi-
head attention blocks. For brevity and clarity, we focus our analysis on a single layer and attention

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

Hidden States - Layer 16

0.6 0.4 0.2 0.0 0.2 0.4 0.6

Hidden States - Layer 20

Activation Value

2 1 0 1 2 3

Queries - Head 4

4 3 2 1 0 1 2 3

Queries - Head 8

Activation Value

Figure 1: Hidden states from layer 16 and 20 and corresponding queries for layer 20 in Llama3.1-8B.
Hidden states in modern LLMs are mostly normally distributed. As a consequence, query activations
also follow a Normal. The best Gaussian fit is overlayed. We show more examples and discuss this
property in Appendix B.
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head, noting that the following analysis naturally extends to multi-head attention, grouped query
attention (GQA, Ainslie et al. 2023) and all their variants.

Let hi ∈ Rh denote the hidden state at position i in the sequence. In the attention block, the
corresponding Query, Key and Value projections are computed as:

qi = RiWQhi, ki = RiWKhi, vi = WV hi (1)

where d is the attention head dimension, Ri ∈ Rd×d is the Rotary Position Embedding (RoPE, Su
et al. 2023) matrix at position i, and WQ,WK ,WV ∈ Rh×d are respectively the learnable projection
matrices for query, key, and value in Rd. During autoregressive inference, keys and values vectors
are stored in the KV cache to avoid recomputing them in future generation steps. The resulting KV
cache is a collection of Key-Value pairs (ki, vi) from all inference steps in the sequence, leading
to significant computational savings but increasing memory requirements, growing linearly with
sequence length.

At generation step t, the attention mechanism computes the attention score between the current
query qt and each previously cached key ki for i ≤ t:

ati =
exp

(
qTt ki√

d

)
∑t

j=1 exp
(

qTt kj√
d

) =
zti∑t
j=1 ztj

(2)

where ati is the normalized attention score between query at position t and key at position i, and
zti = exp

(
qTt ki√

d

)
represents the unnormalized attention score.

The attention score is used to weight and sum over all values previously stored in the KV cache. The
resulting output is then added to the hidden state ht:

hout
t = ht +

t∑
i=1

atiWovi = ht +

t∑
i=1

∆hti (3)

where ht ∈ Rh and hout
t ∈ Rh represent the hidden state before and after the attention update re-

spectively, and Wo ∈ Rd×h is the learnable output projection matrix. The hidden states embedding
ht represents the ”residual stream,” (Elhage et al., 2021) updated via vector additions by each trans-
former block. The value ∆hti = atiWovi isolates the specific residual addition of the i-th KV pair
at step t. This decomposition reveals that each cached KV pair (ki, vi) contributes a residual update
∆hti to the final output, and provides a natural measure of the importance of each KV pair:

∥∆hti∥ = ati∥Wovi∥ (4)

where ∥ · ∥ denotes the L2 norm. This metric captures both the attention weight ati (how much
the query attends to the i-th key) and the transformed value magnitude ∥Wovi∥ (the impact of the
i-th value on the output). Equation 4 provides the optimal measure for estimating the importance of
each KV pair in the model output. If we could compute this score for all cached KV pairs, we could
selectively prune the cache by removing pairs with the lowest impact on the residual stream, thereby
minimizing performance degradation. However, computing Equation 4 presents significant practical
challenges. While ∥Wovi∥ is readily available at inference time, the attention weight ati depends
on future queries that have not yet been generated. Specifically, we cannot know the attention
scores from future tokens t + 1, t + 2, . . . before computing them, making it impossible to predict
which KV pairs will be important for upcoming generation steps. Furthermore, modern transformer
implementations utilize Flash Attention (Dao et al., 2022; Dao, 2024), which computes attention
scores on-the-fly without materializing the complete attention matrix, preventing access to even past
attention scores. To address these fundamental limitations, we leverage the properties of activations
in modern LLMs, and introduce Expected Attention.

2.2 EXPECTED ATTENTION: ESTIMATING ATTENTION FROM FUTURE QUERIES

Distributional properties of LLM activations To approximate the unnormalized attention score
zij , we leverage the findings of Liu et al. (2025), showing that hidden states in modern LLMs
loosely follow a Gaussian distribution h ∼ N (µ,Σ). While we show an example of this property

3
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in Figure 1, we also extensively validate it across multiple model architectures in Appendix B.
Given this distributional assumption, queries also inherit unimodal properties through the linear
transformation in Equation 1 qt = RtWQht, and can be approximated with a Gaussian (Liu et al.,
2025):

qt ∼ N (µqt ,Σqt), where µqt = RtWQµ, Σqt = RtWQΣW
T
QRT

t (5)

where µ ∈ Rd and Σ ∈ Rd×d are the mean and covariance of the hidden state distribution, and
Rt ∈ Rd×d is the RoPE matrix at position t.

To create a single, tractable representation of attention over a future interval, we approximate the
positional embeddings by averaging the RoPE matrix over the next T positions. This gives us a
position-averaged query distribution:

q̄ ∼ N (µ̄q, Σ̄q), where µ̄q = R̄WQµ, Σ̄q = R̄WQΣW
T
Q R̄T (6)

where R̄ = 1
T

∑T
j=1 Rt+j represents the averaged RoPE matrix over T future positions.

1 def compress(queries, keys, values, compression_ratio):
2 # Compute query statistics
3 mean_query, cov_query = compute_statistics(queries)
4 # Compute unnormalized attention scores (z_i)
5 scores = matmul(mean_query, keys.T) / math.sqrt(d)
6 scores += einsum("i,ij,j->", keys, cov_query, keys) / (2 * d)
7 # Normalize scores and weight by value norms
8 scores = softmax(scores, dim=-1) * values.norm(dim=-1)
9 # Keep KV pairs with highest scores

10 n_kept = int(keys.size(0) * (1 - compression_ratio))
11 indices = scores.topk(n_kept, dim=-1).indices
12 return keys[indices], values[indices]

Listing 1: Pytorch-like pseudo code for KV Cache compression with Expected Attention.

Expected Attention Score With this query distribution, we can now analytically compute the
expected unnormalized attention score in Equation 2. For a query q̄ ∼ N (µ̄q, Σ̄q) in our interval T
and a fixed key ki, the expected unnormalized score for that key is:

ẑi = Eq̄∼N (µ̄q,Σ̄q)

[
exp

(
q̄T ki√

d

)]
= exp

(
µ̄T
q ki√
d

+
kTi Σ̄qki

2d

)
(7)

where the second equality follows from the moment-generating function of a Gaussian distribution.
We then define the expected attention score by applying the softmax on our unnormalized expecta-
tion:

âi =
ẑi∑t
j=1 ẑj

(8)

With this approximation, we can now estimate the importance of each cached KV pair. We define the
expected contribution magnitude by substituting our expected attention weight into the contribution
score formula from Equation 4:

∥∆̂hi∥ = (âi + ϵ)∥Wovi∥ (9)

where âi is the expected attention weight from Equation 8, ∥Wovi∥ ∈ R is the magnitude of the
transformed value vector, and ϵ is a small hyperparameter. This metric provides a tractable approxi-
mation to the true contribution score without requiring future queries.

Compression with Expected Attention Equation 9 captures the contribution of each KV pair
to the transformer output. The Expected Attention compression algorithm scores all cached KV
pairs according to Equation 9 and evicts the r% pairs with the lowest expected contributions, where
r ∈ [0, 1] is the compression ratio. Intuitively, this is equivalent to removing those KV pairs that
have the smallest impact on the residual stream and therefore on the model output. We provide
pseudo-code for our compression algorithm in Listing 1.
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Figure 2: Scores on LongBench (Bai et al., 2024) for Qwen3-8B (top) and Gemma3-12B (bottom).
The x-axis represents the compression ratio, the y-axis the score for each specific dataset. The
horizontal line represents the baseline performance without cache compression. Expected Attention
achieves optimal trade-off between compression ratio and scores across most datasets (Additional
and averaged results in Appendix E).

Head-Adaptive Compression Previous work has shown that different attention heads serve dif-
ferent roles in the model. We adopt adaptive per-layer compression (Feng et al., 2024) to account
for this heterogeneity, allowing more important heads to retain more KV pairs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Prefilling vs Decoding Generation LLM inference comprises two phases with distinct computa-
tional characteristics. The prefilling phase processes the entire input prompt in parallel, computing
key-value projections for the KV cache, a compute-bound operation requiring substantial floating-
point operations. The decoding phase sequentially generates tokens using the KV cache and previ-
ous logits, appending new key-value pairs iteratively (Deepak & Amr, 2024; Gordić, 2025). This
dichotomy has motivated disaggregated architectures that implement prefill and decoding on dif-
ferent hardware (Deepak Patil, 2024; StepFun et al., 2025), at the cost of transferring the cache,
further incentivising compression. An effective compression method must perform well in both
prefilling and decoding (Deepak & Amr, 2024; Gordić, 2025). Nevertheless, a number of recent
methods often target a single phase: SnapKV (Li et al., 2025) for prefilling via query attention
scores, StreamingLLM (Xiao et al., 2023) and KNorm (Devoto et al., 2024) for streaming decoding.
Expected Attention is designed considering these two aspects of LLM inference and addresses both
scenarios efficiently. We present results for prefilling and decoding in Section 4.1 and Section 4.2
respectively.

Models and Datasets For prefilling (one-shot compression before generation), we test three model
families supporting long contexts: Llama3.1-8B (128k) (MetaAI, 2025), Qwen3-8B (32k) (Yang
et al., 2025), and Gemma3-12B (128k) (GemmaTeam, 2025), all instruction-tuned. For decoding
(compression during generation), we analyse reasoning models that generate extensive intermedi-
ate reasoning tokens and therefore large KV caches: Qwen-1.5B-R1, Qwen-7B-R1 (DeepSeek-AI,
2025), and OpenMath-Nemotron-14B (Moshkov et al., 2025).
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Table 1: Expected Attention outperforms most baselines on Ruler (Hsieh et al., 2024) with 4K and
16K context length. We show average score with increasing compression ratios across baselines.
Best results for each compression ratio are displayed in bold. The 0% column indicates the baseline
without compression.

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (ours) 95.3 95.3 95.0 94.7 88.3 65.4 92.9 93.1 93.2 92.7 85.6 62.7
TOVA[51] 95.3 89.0 82.5 77.6 62.4 24.7 92.9 88.3 81.7 76.2 68.7 52.4
SnapKV[38] 95.3 92.6 84.0 55.7 33.1 19.2 92.9 90.1 81.5 62.8 41.7 26.8
KeyDiff[52] 95.3 93.8 89.4 78.6 64.4 37.9 92.9 88.9 82.9 74.5 66.9 53.1

Gemma3-12B

EA (ours) 95.2 95.2 94.9 92.7 78.2 53.6 86.0 82.8 81.7 76.6 60.5 41.8
TOVA[51] 95.2 89.7 81.1 76.5 58.1 25.3 86.0 79.7 72.6 62.5 46.8 32.7
SnapKV[38] 95.2 82.9 72.0 54.8 40.3 30.1 86.0 74.1 62.8 46.4 37.3 31.4
KeyDiff[52] 95.2 94.3 90.6 79.8 62.0 34.3 86.0 81.8 78.6 72.6 58.6 37.2

Llama3.1-8B

EA (ours) 95.3 95.7 95.3 92.2 75.9 30.6 93.4 93.4 92.8 86.0 66.4 25.5
TOVA[51] 95.3 93.2 87.3 76.2 63.3 37.5 93.4 90.9 86.1 77.9 68.4 59.2
Duo [65] 95.3 95.7 95.7 95.3 73.2 24.5 93.4 93.3 93.0 90.1 59.1 12.3
SnapKV[38] 95.3 95.5 88.8 81.8 63.2 43.4 93.4 89.4 82.0 68.0 43.1 25.6
KeyDiff[52] 95.3 94.7 91.6 85.5 72.9 61.1 93.4 92.1 88.4 82.6 74.9 66.5

Our benchmarks include LongBench (Bai et al., 2024), Ruler (Hsieh et al., 2024), and Needle in a
Haystack (Kamradt, 2023; Liu et al., 2024) for prefilling, and Aime25 (Balunović et al., 2025) and
MATH-500 (Lightman et al., 2023) for decoding.

Baselines Following an initial benchmarking study on Ruler (see Appendix E), we selected and
compare our method against the best-performing baselines for each use case. For prefilling, we
evaluate attention-based approaches like SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024),
embedding-based KeyDiff (Park et al., 2025), and the trainable DuoAttention (Xiao et al., 2024)
when the checkpoint is available. SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024) rank KV
pairs using attention scores from user queries. KeyDiff (Park et al., 2025) employs distance metrics
between key embeddings for selection, making it also suitable for decoding generation. DuoAtten-
tion (Xiao et al., 2024) takes a trainable approach, learning compression masks for each attention
head. For decoding, we focus on methods designed to be compatible with streaming generation:
KNorm (Devoto et al., 2024), StreamingLLM (Xiao et al., 2023), and KeyDiff (Park et al., 2025).
KNorm (Devoto et al., 2024) uses a simple approach by preserving keys with the lowest L2 norm.
StreamingLLM (Xiao et al., 2023) maintains initial sink tokens throughout generation.

Implementation details We implement Expected Attention in Pytorch (Paszke et al., 2019). For
all benchmarks, we test the models on 8 H100 GPUs, with batch size 1. We make all the code to
reproduce our method and the baselines available online. In all experiments we use ϵ = 0.01, except
for needle in a haystack where use ϵ = 0, and we average the RoPE embeddings over the next
T = 512 positions. For prefilling, we do not assume any question about the context. This simulates
a real world use case and avoids favouring methods like SnapKV that rely on this assumption. For
decoding, we keep a small buffer of hidden states of 256 tokens to compute statistics, and perform
compression every 512 generation steps. In Equation 9 we only use V instead of WoV , as using Wo

led to a minor increase in results at a significantly higher memory cost.

4 EXPERIMENTAL RESULTS

4.1 PREFILLING

LongBench We evaluate on LongBench (Bai et al., 2024), which tests long-context capabilities
across diverse tasks. The benchmark comprises six categories: single and multi-document QA,
summarization, few-shot learning, synthetic tasks, and code completion. As shown in Figure 2 for
Llama3.1-8B and Qwen3-8B (see Appendix E for Gemma3-12B), Expected Attention consistently
achieves optimal compression-performance trade-offs, maintaining higher scores across all com-
pression ratios. This demonstrates effective retention of critical KV pairs even under significant
compression across varied reasoning and generation tasks.
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Figure 3: Needle in the Haystack test for different methods with Llama3.1-8B and 50% compression
ratio.
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Figure 4: Decoding results on Aime25 dataset,
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is allowed to grow to.

Table 2: Decoding scores on MATH-500.
Columns indicate the final size of the KV
cache with respect to the original full ver-
sion. Best scores in bold.

Model Method Compression
0× 2× 4× 12×

Qwen-R1-1.5B

EA (ours) 0.47 0.47 0.43 0.33
KeyDiff[52] 0.47 0.42 0.40 0.30
KNorm[15] 0.47 0.41 0.28 0.11
Streaming[64] 0.47 0.45 0.41 0.31

Qwen-R1-7B

EA (ours) 0.57 0.55 0.53 0.49
KeyDiff[52] 0.57 0.54 0.48 0.35
KNorm[15] 0.57 0.47 0.32 0.12
Streaming[64] 0.57 0.54 0.51 0.41

Nemotron-14B

EA (ours) 0.57 0.55 0.54 0.47
KeyDiff[52] 0.57 0.56 0.51 0.44
KNorm[15] 0.57 0.50 0.36 0.14
Streaming[64] 0.57 0.57 0.54 0.42

Ruler Ruler (Hsieh et al., 2024) measures retrieval, multi-hop tracing, and aggregation abilities
within long contexts through four subsets: NIAH (Needle-in-a-Haystack) for single-fact retrieval,
VT (Variable Tracking) for multi-hop reasoning, CWE (Common Words Extraction) for frequency-
based aggregation, and FWE (Frequent Words Extraction) for statistical pattern recognition. Table 1
shows results at various compression ratios for 4k and 16k windows. EA maintains strong perfor-
mance across all subsets, particularly at higher compression ratios. While KeyDiff performs well
on Llama3.1-8B, it struggles on Gemma3-12B and Qwen3-8B, potentially due to QK normaliza-
tion (GemmaTeam, 2025; Yang et al., 2025). We note that the competitive performance of KeyDiff
is often isolated to the extreme 75-90% compression ratio, a regime that is not the intended operating
point for practical KV cache compression, whose main goal is to keep the downstream performance
as close as possible to the uncompressed baseline. Our Expected Attention-based policy effectively
preserves information necessary for precise retrieval and complex reasoning tasks.

Needle in a Haystack The NIAH test (Kamradt, 2023) embeds specific information (the ”nee-
dle”) within lengthy distracting text (the ”haystack”) to evaluate retrieval capabilities across varying
context positions and lengths. The test systematically varies both the needle’s position within the
context (needle depth) and the total context length to assess consistent retrieval performance. Fig-
ure 3 visualizes retrieval success across needle positions and context lengths up to 125k tokens.
Expected Attention demonstrates robust performance comparable to DuoAttention and significantly
more stable than other baselines in long contexts, confirming retention of critical information under
compression regardless of needle placement or context size.

4.2 DECODING

We evaluate Expected Attention on reasoning models, Qwen-1.5B-R1, Qwen-7B-R1, and
OpenMath-Nemotron-14B. Reasoning models are particularly suitable for our evaluation as they
generate extensive chain-of-thought outputs, placing significant demands on KV cache mem-
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Figure 5: Memory footprint of Expected Attention with different compression ratios.

ory (Łańcucki et al., 2025). We use the Aime25 (Yamada et al., 2025) and MATH-500 (Light-
man et al., 2023) datasets. Aime25 consists of competition-level mathematical problems requiring
multi-step reasoning and precise calculation, while MATH-500 encompasses diverse mathematical
domains including algebra, geometry, and number theory with varying difficulty levels. During de-
coding, we allow the KV cache to expand to a predetermined size before initiating token eviction.
We use n× to show that the final cache size is n times smaller than would be without compression.

Results for Aime25 and MATH-500 are presented in Section 4.1 and Table 2, respectively. EA
consistently outperforms or matches baseline methods across all models, with particularly strong
performance at higher compression ratios (4× and 16×). Most methods demonstrate minimal per-
formance degradation at 2× compression, indicating that a large portion of tokens in reasoning
traces contains redundant information that can be pruned without affecting mathematical reason-
ing performance. Expected Attention shows the best performance especially in high-compression
scenarios (12× compression).

4.3 MEMORY SAVINGS AND EFFICIENCY

We evaluate the memory efficiency of our method using Llama3.1-8B and Qwen3-8B for both pre-
filling and decoding phases. All experiments are conducted on a single H100 GPU with bfloat16
precision for both model weights and KV cache. We focus on peak memory usage as the primary ef-
ficiency metric, as KV cache memory consumption is often the primary bottleneck for long-context
inference.

Figure 5a demonstrates peak memory usage as sequence length increases up to 120k tokens, com-
paring Expected Attention at 50% and 90% compression ratios against the uncompressed baseline
with vanilla attention. The results show that memory savings become increasingly substantial as
context length grows.

Figure 5b illustrates the relationship between compression ratio (x-axis) and NIAH benchmark per-
formance for Qwen3-8B, with marker size representing the corresponding KV cache size. While
higher compression ratios naturally reduce KV cache size, they typically incur performance penal-
ties. Remarkably, Expected Attention at 50% compression maintains performance parity with the
uncompressed baseline while achieving a 2× reduction in KV cache size, demonstrating an optimal
balance between memory efficiency and task performance.

4.4 LATENCY

FLOPs Analysis We provide a FLOPs analysis performed following Hoffmann et al. (2022), com-
puting the total FLOPs required for the forward pass of Llama3.1-8B and then the additional FLOPs
resulting from the Expected Attention overhead. Results show that the computational overhead

8
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Table 3: Latency analysis with Llama3.1-8B for Prefilling, Generation and Total,when performing
decoding on a 128K context with 50% compression. All results in seconds.

Phase No Compression EA (50% compression) Variation (abs) Variation (%)
Prefilling 15.25 ± 0.02 15.52 ± 0.02 +0.27 +1.74 %

Generation 4.33 ± 0.00 3.22 ± 0.04 -1.11 -25.58 %
Total 19.58 ± 0.03 18.74 ± 0.03 -0.84 -4.30 %

accounts for just 0.5% of the model’s total FLOPs. This confirms that the theoretical increase in
computational cost is negligible, validating the efficiency of our method. The complete methodology
and derivation of these FLOPs are detailed in Appendix F.

Empirical Latency Measurements To complement the theoretical analysis, we perform latency
measurements using our PyTorch implementation. As summarized in Table 3, we achieve a 25%
reduction in generation latency due to the smaller cache footprint, which outweighs the ∼ 2% prefill
overhead. This results in a 4.3% total latency reduction. Note that these measurements serve as an
upper bound, as optimized kernels were not implemented and would further reduce the overhead.

5 ABLATION STUDIES

Sensitivity to Future Window T We investigate the sensitivity of our method to the choice of the
future window size T used for the RoPE matrix approximation. As shown in Table 4a, the minimal
performance drop observed across different models when reducing T from 1024 to 512 or even 256
is justifying the practical choice of T = 512 that we used in our experiments.

Adaptive Compression We conduct an ablation study against a uniform compression baseline
(applying the same ratio to all heads) to assess its importance. The results in Table 4 show a signif-
icant performance drop for the uniform baseline, confirming that the adaptive approach is essential
for retaining model accuracy.

Covariance Term We investigate the contribution of the covariance term. While its removal
causes a noticeable performance drop (92.2 → 90.6) for Llama3.1-8B, the effect is minimal for
Qwen3-8B and Gemma3-12B. We conjecture this reduced dependency is due to their QK normal-
ization. This finding is particularly encouraging as it suggests that for models employing QK nor-
malization, we could safely omit the covariance term in future implementations, thereby making the
method even simpler.

Table 4: Ablation Study Results on Window Size, Adaptive Compression and Covariance

(a) Window Size T

Model T=1024 T=512 T=256 T=128

Llama3 92.1 92.2 91.9 91.8
Qwen3 94.8 94.7 94.7 94.8
Gemma3 92.7 92.7 92.7 92.7

(b) Adaptive Compression and Covariance

Model EA w/o Adaptive w/o Covariance

Llama3 92.2 86.5 90.6
Qwen3 94.7 86.6 94.7
Gemma3 92.7 88.2 92.6

6 RELATED WORKS

Trainable KV-Cache Compression One approach to reducing memory requirements involves
modifying the model architecture or training procedure to inherently produce smaller caches. Ainslie
et al. (2023); Shazeer (2019) reduce cache size by decreasing the number of key-value heads, effec-
tively sharing key-value representations across queries. DeepSeek-V2 (DeepSeek-AI, 2024b) intro-
duced Multi-Head Latent Attention, which projects keys and values into a lower-dimensional latent
space during training, directly reducing the memory footprint of cached representations. Alternative
trainable approaches focus on learning compression policies (Łańcucki et al., 2025; Nawrot et al.,

9
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2024) or masks (Xiao et al., 2024) from pre-trained checkpoints. Finally, State Space Models (Gu
et al., 2022; Gu & Dao, 2024) replace the quadratic attention mechanism with linear-complexity al-
ternatives, while hybrid approaches combine transformer layers with RNN-based components (Ren
et al., 2025; Glorioso et al., 2024). Although these trainable methods typically achieve superior
performance, they require substantial computational resources for pre-training or continued pre-
training, making them less practical for deployment with existing large-scale models.

Training-Free KV cache compression Given the computational costs associated with trainable
methods, significant research effort has focused on developing post-training compression techniques
that can be applied to existing models without modification. Early approaches (Li et al., 2025; Oren
et al., 2024) directly utilize attention scores to rank KV pairs by importance. However, these meth-
ods require access to the full attention matrix, making them incompatible with Flash Attention (Dao
et al., 2022) and thus impractical for modern deployment scenarios. To address this limitation,
several works have developed heuristic-based importance measures that can be computed without
materializing attention matrices, such as keys norm (KNorm Devoto et al. (2024)), token positions
(StreamingLLM Xiao et al. (2023), H2O Zhang et al. (2024)) or SVD projection (Q-Filters Godey
et al. (2025)). Recognizing that different attention heads exhibit varying sensitivity to compres-
sion, recent methods such as AdaKV (Feng et al., 2024) and PyramidKV (Cai et al., 2025a) adopt
head-specific compression strategies. Expected Attention, adopts insights from these heuristic ap-
proaches while providing a principled theoretical foundation based on the distributional properties
of transformer activations.

Quantization Instead of reducing the KV cache size along the sequence dimension, quantization
methods try to reduce the precision used to store the cache. For example, NQKV Cai et al. (2025b)
partitions the cache into blocks for quantization and processes them separately. KVQuant (Hooper
et al., 2024) performs non uniform per-layer quantization, while KIVI (Zirui Liu et al., 2023) quan-
tizes the key cache by layer and the value cache by token. These methods are orthogonal to Expected
Attention (and to KV cache compression in general), making it possible to integrate them.

Efficient Implementations Alongside compression, sparse attention and quantization, another ef-
fort has been done to devise efficient implementation of inference systems. In this context, a well de-
signed low-level handling of the KV cache can deliver significant performance speed-ups, especially
in multi-user serving systems. The first to investigate this and introduce efficient memory manage-
ment for KV cache was vLLM (Kwon et al., 2023), soon followed by other approaches (Prabhu
et al., 2024; Jiang et al., 2024) and frameworks (NVIDIA, 2024).

7 LIMITATIONS

A key trade-off of our training-free methodology is that its performance does not match that of
trainable methods (DeepSeek-AI, 2024a; Łańcucki et al., 2025). This is an intentional design choice
that allows deployment without significant computational resources required for intensive training.
Future work could explore combining our theoretical framework with lightweight fine-tuning.

Another limitation is that our method requires users to specify compression ratios manually, lacking
an automated mechanism to determine optimal compression levels for different scenarios such as
text generation. This represents a promising area for future research.

Finally, while our PyTorch implementation effectively demonstrates our method’s theoretical prin-
ciples, it is not optimized for efficiency. A highly performant implementation with custom CUDA
kernels would significantly improve speed and practical utility.

8 CONCLUSION

We introduced Expected Attention, a training-free algorithm for KV cache compression. We showed
Expected Attention outperforms state-of-art KV cache compression methods on several benchmarks
and in both prefilling and decoding scenarios. Additionally, we released a research library that allows
researchers to easily implement and experiment with KV cache compression methods, and evaluate
them on popular benchmarks for long context.
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9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we are providing a complete and self-contained codebase
along with this submission. The provided code includes all necessary scripts for data preprocessing
and evaluation, allowing for the direct replication of our experiments and results. For now, we share
the repo in an anonymized github repository.

The codebase is organized to be straightforward to use and is accompanied by a README.md file
with detailed instructions on how to set up the environment and run the experiments.
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Figure 6: Reconstruction error ∥h− hcompr∥
averaged across model layers. Expected Attention achieves the best error, minimizing the impact

on the residual stream.

A RECONSTRUCTION ERROR ACROSS METHODS

In Section 2, we discussed the challenge of compressing the KV cache without significantly alter-
ing the residual stream. To understand the impact of Expected Attention on the model output, we
quantify the reconstruction error of the residual stream, i.e. how the difference between the original,
uncompressed hidden states and the corresponding hidden states after compression. We define the
reconstruction error as ∥h − hcompr∥, where h is the original hidden state without compression and
hcompr the hidden state after the KV cache has been compressed. We average the reconstrcution
error over a long sequence of ∼ 5K tokens and display the results for several methods in Figure 6.
Expected Attention consistently achieves a lower reconstruction error, indicating that it preserves
the integrity of the hidden state more effectively than competing methods, a crucial property for
maintaining downstream performance (Mudarisov et al., 2025; Gordić, 2025).

B DISTRIBUTIONAL PROPERTIES OF LLM ACTIVATIONS

In this section, we analyse the distributional properties of activations within Large Language Mod-
els. Our investigation aligns with the findings of prior work, which has demonstrated that LLM
activations often exhibit normal distributions. More specifically Liu et al. (2025) finds that hidden
states are zero-mean unimodal, and qualitatively fall into two distinctly shaped distributions. The
hidden states before the Attention and the MLP layers tend to be Gaussian-like, while the hidden
states in the intermediate of such layers tend to be Laplacian-like.

For Expected Attention, we are interested in the hidden states before the MLP layers and the corre-
sponding queries. Our study confirms that such activations are predominantly unimodal and can be
approximated as Gaussian distributions, albeit with the presence of a few heavy-tailed outliers, as
already found in Xiao et al. (2023); Sun et al. (2024). Importantly, EA does not require strict Gaus-
sianity, the essential property is unimodality. In Figure 9a, Figure 8a, and Figure 7a we show hidden
states and queries for different models. For our method, the distributional properties of queries are
of particular importance, and we observe that queries maintain a clear Gaussian-like behaviour. This
also applies to models with QK normalization, where the query projection is not guaranteed to be
linear. The concentration of these activations around a central value and their Gaussian like shape
provides the theoretical basis for Expected Attention.

We stress that in this work, our goal is not to explain or investigate this property, but rather to
leverage it for KV cache compression.

C EXPECTED ATTENTION SCORE

To empirically validate that the expected attention score is strongly correlated to the real model
attention score, we plot the correlation between the observed attention and the expected attention
score across different layers and heads. We use sequence of 5K tokens and use the first 1K tokens to
compute the query statistics. We display the results in Figure 10. We see that for different layers and
attention heads, the expected attention score from Equation 4 is strongly correlated to the original
attention score.
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Figure 7: Distributions of Qwen3-8B Hidden States and queries.
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Figure 8: Distributions of Llama3.1-8B hidden states and queries.

D CONTRIBUTION OF NORM OF THE VALUES

We perform an additional ablation study on the impact of using the norm of values to contribute to the
Expected Attention score. The results, summarized in Table 5, clearly demonstrate the substantial
importance of incorporating the norm of values into the score calculation. Across all tested models,
removing the value norm contribution leads to a drastic reduction in performance, confirming that
the magnitude of the value vectors plays a critical role in determining the overall attention outcome.
This ablation strongly confirms the findings presented in Guo et al. (2024).

Table 5: Ablation results showing the performance comparison on Ruler 4K of the Expected Atten-
tion (EA) method with and without the contribution of the Value Norm.

Model EA w/o Value Norm
Llama3.1-8B 92.2 77.7
Qwen3-8B 94.7 48.9
Gemma3-12B 92.7 44.9
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Figure 9: Distributions of Gemma3-12B hidden states and queries.

Figure 10: Correlation between attention score and expected attention score for Llama3.1-8B. We
compute the expected attentions score on a sequence of 5K tokens, using the first 1K for statistics.
A strong correlation exists between our attention score approximation and the observed attention
score.

E ADDITIONAL RESULTS

In Table 6 we show additional results on the LongBench dataset, averaged across all subsets. The re-
sults for Gemma3-12B on LongBench exhibit behaviors that differ from other models. Specifically,
all compression methods show an initial increase in average score at the 10% and 25% compres-
sion ratios compared to the 0% baseline. This unexpected gain suggests that removing a small
fraction of the least-important Key-Value pairs effectively prunes noisy or redundant information,
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Table 6: Expected Attention outperforms most baselines on Longbench (Bai et al., 2024). We show
average score with increasing compression ratios across baselines.

Model Method Longbench
0% 10% 25% 50% 75% 90%

Qwen3-8B

Expected Attention 48.63 48.30 50.25 50.1 48.06 39.71
TOVA 48.63 48.41 48.14 46.49 43.19 37.21
SnapKV 48.63 48.40 47.85 46.25 42.42 34.57
KeyDiff 48.63 48.13 46.23 40.08 29.42 20.69

Gemma3-12B

Expected Attention 51.04 54.02 50.98 47.51 40.41 32.67
TOVA 51.04 53.05 51.52 50.7 46.88 40.45
SnapKV 51.04 51.83 51.31 48.14 44.31 34.97
KeyDiff 51.04 51.64 48.74 42.15 33.68 23.46

Llama3.1-8B

Expected Attention 46.42 46.59 46.8 47.91 44.04 33.97
TOVA 46.42 46.22 45.62 44.13 40.5 34.77
SnapKV 46.42 46.56 46.07 45.07 41.24 32.55
KeyDiff 46.42 46.45 48.01 46.9 42.24 35.51
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Figure 11: Initial experiments on Ruler 4K to select the best baselines. We did not use KVZip as it
requires two forward passes and increases latency significantly.

thereby enhancing performance. However, at higher compression ratios (50%, 75%, and 90%), the
attention-based method TOVA maintains superior scores compared to Expected Attention (EA) and
other baselines.

Ruler In order to select the most competitive baselines we performed an initial search on 15+
methods on Ruler. We selected the best performing ones as displayed in Figure 11. We did not
include KVZip (Kim et al., 2025) despite achieving a high score as it needs two forward passes,
therefore implying a higher cost FLOPs that is double as much as the other baselines.
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F FLOPS CALCULATION

We follow Hoffmann et al. (2022) and include all inference FLOPs, including those contributed to
by the embedding matrices, in our analysis. Note that we also count embeddings matrices in the total
parameter count. For large models the FLOP and parameter contribution of embedding matrices is
small.

For the forward pass, we consider contributions from:

• Embeddings
– 2× seq len × vocab size × d model

• Attention (Single Layer)
– Key, query and value projections: 2×3×seq len×d model×(key size×num heads)
– Key @ Query logits: 2× seq len × seq len × (key size × num heads)
– Softmax: 3× num heads × seq len × seq len
– Softmax @ query reductions: 2× seq len × seq len × (key size × num heads)
– Final Linear: 2× seq len × (key size × num heads)× d model

• Dense Block (Single Layer)
– 2× seq len × (d model × ffw size + d model × ffw size)

• Final Logits
– 2× seq len × d model × vocab size

• Total forward pass FLOPs: embeddings + num layers × (total attention + dense block)
+ logits

G DERIVATION FOR EXPECTED ATTENTION SCORE

The equality in Equation eq. (7) is derived by applying the formula for the expected value of the
exponential of a Gaussian random variable.

• The term in the exponent, X = qTki√
d

, is a Gaussian random variable, X ∼ N (µX , σ2
X).

• The mean of X is µX = E[X] =
µ̄T
q ki√
d

.

• The variance of X is σ2
X = Var(X) =

kT
i Σ̄qki

d .

The expectation E[exp(X)] is then computed using the Moment-Generating Function (MGF)
MX(t) = E[etX ] of a Gaussian distribution, evaluated at t = 1. Since MX(t) = exp(µXt +
1
2σ

2
Xt2), setting t = 1 yields the identity:

E[exp(X)] = exp

(
µX +

σ2
X

2

)
Substituting µX and σ2

X recovers Equation eq. (7).

H DETAILED RESULTS ON RULER

I LLM USAGE STATEMENT

We used LLMs to polish the text and refine the language.
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Table 7: Common Word Extraction

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 98.9 98.9 98.5 96.1 44.9 12.6 82.8 85.2 86.8 87.8 84.4 35.2
TOVA[51] 98.9 98.7 96.4 84.2 51.8 15.4 82.8 83.7 83.5 77.5 57.8 20.2
SnapKV[38] 98.9 98.9 99.0 98.5 92.6 49.2 82.8 83.4 82.6 78.2 58.7 19.2
KeyDiff[52] 98.9 98.0 97.1 90.7 66.2 6.9 82.8 84.3 85.2 86.4 82.8 64.7

Gemma3-12B

EA (Ours) 95.0 95.0 95.3 97.8 94.8 65.7 89.8 87.1 86.6 87.1 78.1 23.2
TOVA[51] 95.0 94.9 94.8 94.8 90.7 53.8 89.8 89.8 89.9 90.5 89.5 78.1
SnapKV[38] 95.0 95.8 96.5 96.3 94.8 81.1 89.8 90.0 90.0 90.3 88.6 73.8
KeyDiff[52] 95.0 95.3 95.5 84.6 35.2 9.1 89.8 89.2 87.7 84.5 42.5 12.1

Llama3.1-8B

EA (Ours) 99.6 99.7 99.6 99.4 92.7 51.8 89.5 89.2 86.9 81.9 28.6 2.2
TOVA[51] 99.6 99.3 97.2 85.0 52.8 23.9 89.5 89.1 90.1 91.3 85.8 60.5
SnapKV[38] 99.6 99.7 99.5 97.4 84.4 38.9 89.5 88.1 85.5 71.7 17.8 0.3
KeyDiff[52] 99.6 99.5 99.1 94.3 56.9 10.7 89.5 89.4 88.9 87.2 71.1 25.8

Table 8: Frequent Words Extraction

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 95.3 95.3 95.5 96.1 91.4 56.4 93.9 93.4 93.4 92.9 92.1 87.1
TOVA[51] 95.3 94.8 93.0 89.8 81.1 59.4 93.9 94.4 95.5 96.5 97.6 97.0
SnapKV[38] 95.3 96.1 95.4 93.8 88.3 77.4 93.9 94.3 94.7 95.2 93.9 91.4
KeyDiff[52] 95.3 93.7 91.3 85.1 68.4 36.9 93.9 94.8 94.9 94.5 88.8 65.9

Gemma3-12B

EA (Ours) 97.3 97.3 97.3 97.1 91.8 69.7 98.6 98.0 97.8 97.2 94.5 86.4
TOVA[51] 97.3 97.4 97.0 94.4 85.8 64.8 98.6 98.7 98.9 98.7 97.9 93.3
SnapKV[38] 97.3 97.5 97.3 97.1 93.7 86.2 98.6 99.0 99.1 98.8 98.0 96.0
KeyDiff[52] 97.3 97.2 96.2 90.5 78.2 57.0 98.6 98.7 97.1 94.0 87.6 62.9

Llama3.1-8B

EA (Ours) 94.8 94.8 94.5 96.0 91.5 52.3 90.1 90.0 89.8 88.1 84.0 28.7
TOVA[51] 94.8 93.5 90.7 84.0 70.5 30.6 90.1 90.5 90.8 90.7 87.9 76.2
SnapKV[38] 94.8 94.8 94.2 89.8 85.6 61.0 90.1 90.5 91.5 88.4 77.0 62.1
KeyDiff[52] 94.8 94.9 94.7 92.9 85.8 70.1 90.1 89.9 89.3 88.9 87.5 84.3

Table 9: NIAH Multikey 1

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 90.8 66.2 25.4 0.2 0.0 99.6 99.8 99.2 98.8 98.2 83.8
TOVA[51] 100.0 100.0 100.0 100.0 94.8 28.2 99.6 99.6 99.6 99.6 99.4 86.2
SnapKV[38] 100.0 98.0 84.6 39.6 19.2 12.0 99.6 99.4 97.4 68.4 24.6 12.6
KeyDiff[52] 100.0 98.6 97.0 94.8 79.0 52.2 99.6 96.4 87.0 82.4 70.6 52.4

Gemma3-12B

EA (Ours) 99.6 100.0 99.8 98.8 85.2 50.8 90.4 86.2 83.8 79.2 57.4 30.6
TOVA[51] 99.6 99.8 99.6 97.8 64.0 9.8 90.4 89.4 88.0 71.0 35.0 8.2
SnapKV[38] 99.6 82.2 60.2 27.2 15.4 10.8 90.4 78.8 57.6 25.6 12.2 10.4
KeyDiff[52] 99.6 99.2 99.2 97.4 81.8 38.8 90.4 79.8 78.0 76.2 60.8 34.2

Llama3.1-8B

EA (Ours) 99.8 99.8 99.6 94.8 61.2 10.2 99.8 100.0 100.0 99.6 95.6 15.6
TOVA[51] 99.8 99.8 99.8 99.8 98.2 64.8 99.8 99.6 99.6 99.6 99.6 94.6
SnapKV[38] 99.8 99.8 98.8 99.8 34.4 99.4 99.8 99.4 99.6 95.2 52.4 17.4
KeyDiff[52] 99.8 99.8 100.0 100.0 100.0 97.6 99.8 99.6 99.6 99.4 99.6 99.4
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Table 10: NIAH Multikey 2

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 100.0 97.6 47.8 6.8 0.2 100.0 100.0 99.6 99.6 96.8 21.8
TOVA[51] 100.0 69.0 30.4 6.6 1.4 0.2 100.0 76.2 35.6 9.4 1.0 0.4
SnapKV[38] 100.0 92.2 75.2 30.6 9.8 2.8 100.0 93.2 74.8 33.8 7.8 1.4
KeyDiff[52] 100.0 99.0 89.8 55.0 13.0 1.2 100.0 87.4 73.4 32.0 3.8 0.2

Gemma3-12B

EA (Ours) 98.8 98.6 98.8 95.6 71.4 4.6 55.4 53.6 53.2 41.6 15.8 3.2
TOVA[51] 98.8 60.2 10.4 1.0 0.0 0.0 55.4 30.8 8.6 1.4 0.0 0.0
SnapKV[38] 98.8 97.6 89.0 51.8 14.2 3.4 55.4 55.0 44.0 21.6 5.4 1.6
KeyDiff[52] 98.8 96.6 93.0 64.0 13.4 1.0 55.4 46.4 40.0 24.6 6.0 1.0

Llama3.1-8B

EA (Ours) 100.0 100.0 99.6 88.2 30.8 2.2 100.0 100.0 99.6 95.8 66.0 2.8
TOVA[51] 100.0 96.0 72.8 33.2 7.0 2.6 100.0 90.4 67.4 28.4 8.8 1.8
SnapKV[38] 100.0 100.0 84.2 99.4 17.2 84.4 100.0 96.6 80.8 45.0 18.2 3.8
KeyDiff[52] 100.0 99.8 98.8 88.8 30.0 2.8 100.0 100.0 98.0 76.0 27.2 3.0

Table 11: NIAH Multikey 3

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 87.2 47.2 9.8 0.2 0.0 99.6 99.8 99.8 99.0 45.4 0.0
TOVA[51] 100.0 50.4 12.2 0.4 0.0 0.0 99.6 63.8 24.4 4.0 0.6 0.0
SnapKV[38] 100.0 87.8 58.4 20.0 1.6 0.0 99.6 88.8 59.6 18.0 3.8 1.0
KeyDiff[52] 100.0 92.8 67.8 18.6 2.0 0.0 99.6 82.8 50.2 14.2 0.6 0.0

Gemma3-12B

EA (Ours) 99.8 99.6 99.2 86.8 11.8 0.0 61.6 45.8 41.4 25.0 8.8 0.0
TOVA[51] 99.8 65.8 8.8 0.0 0.0 0.0 61.6 26.8 8.8 0.6 0.0 0.0
SnapKV[38] 99.8 93.2 68.2 28.8 2.4 0.0 61.6 56.2 41.2 9.6 2.0 0.6
KeyDiff[52] 99.8 92.0 68.2 7.2 0.0 0.0 61.6 32.4 21.4 10.6 0.0 0.0

Llama3.1-8B

EA (Ours) 99.8 100.0 99.8 27.0 0.2 0.0 99.2 99.2 99.0 54.6 10.8 0.0
TOVA[51] 99.8 74.6 33.4 2.6 0.0 0.0 99.2 77.2 39.2 8.2 1.0 0.4
SnapKV[38] 99.8 99.8 55.2 84.0 1.6 0.0 99.2 86.6 60.2 18.2 3.6 1.0
KeyDiff[52] 99.8 87.2 53.2 11.0 0.0 0.0 99.2 82.8 43.2 6.8 0.0 0.0

Table 12: NIAH Multiquery

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 99.9 93.7 76.4 25.4 0.1 0.0 100.0 100.0 99.8 99.6 99.6 94.1
TOVA[51] 99.9 99.9 99.9 100.0 96.7 21.4 100.0 100.0 100.0 99.9 100.0 85.0
SnapKV[38] 99.9 99.3 88.4 40.9 16.9 10.8 100.0 100.0 97.1 67.7 20.6 10.7
KeyDiff[52] 99.9 100.0 99.8 99.2 92.7 65.3 100.0 99.8 98.6 97.8 94.3 79.5

Gemma3-12B

EA (Ours) 100.0 100.0 99.9 99.8 88.7 63.0 99.2 99.1 98.8 98.5 83.2 41.0
TOVA[51] 100.0 100.0 100.0 98.3 60.0 1.6 99.2 98.8 95.8 81.0 36.1 6.2
SnapKV[38] 100.0 86.2 56.5 20.6 11.3 9.9 99.2 88.3 63.5 23.1 11.2 10.3
KeyDiff[52] 100.0 100.0 100.0 99.3 89.2 42.1 99.2 99.2 99.2 98.9 91.5 58.0

Llama3.1-8B

EA (Ours) 99.9 98.5 99.8 80.8 44.1 4.6 99.0 99.0 99.0 99.0 97.0 13.3
TOVA[51] 99.9 99.9 99.9 99.9 97.5 50.8 99.0 99.0 99.1 99.3 99.3 94.7
SnapKV[38] 99.9 99.9 95.7 99.9 26.6 92.0 99.0 99.0 98.7 84.0 34.9 13.6
KeyDiff[52] 99.9 99.9 99.9 100.0 99.8 98.9 99.0 99.0 99.1 99.2 99.5 99.4
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Table 13: NIAH Multivalue

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 98.0 83.7 30.3 0.3 0.0 99.6 99.5 99.6 99.5 99.2 93.9
TOVA[51] 100.0 100.0 100.0 99.9 96.9 22.2 99.6 99.5 99.6 99.7 99.1 82.7
SnapKV[38] 100.0 99.0 89.0 39.6 12.7 10.0 99.6 99.6 96.5 64.2 17.1 9.8
KeyDiff[52] 100.0 100.0 100.0 99.8 94.2 57.6 99.6 99.3 98.6 98.8 97.6 78.7

Gemma3-12B

EA (Ours) 99.7 99.5 98.5 95.3 86.4 68.1 95.5 89.0 84.5 74.2 65.5 39.4
TOVA[51] 99.7 99.7 99.7 98.6 56.5 1.6 95.5 95.2 91.0 72.2 27.4 4.3
SnapKV[38] 99.7 80.5 43.9 16.8 10.6 9.7 95.5 79.1 45.4 13.4 10.1 9.8
KeyDiff[52] 99.7 99.8 99.8 98.5 87.7 35.3 95.5 95.5 95.2 94.7 89.0 53.6

Llama3.1-8B

EA (Ours) 99.9 98.0 99.7 86.1 47.2 4.8 98.9 98.7 98.5 97.6 81.1 14.8
TOVA[51] 99.9 99.9 99.8 99.7 96.9 51.3 98.9 99.2 99.0 99.0 99.0 92.7
SnapKV[38] 99.9 99.8 90.1 99.3 25.3 51.3 98.9 98.8 96.2 79.8 30.1 12.7
KeyDiff[52] 99.9 99.8 99.9 99.8 99.0 96.2 98.9 99.2 99.0 99.1 98.8 98.7

Table 14: NIAH Single 1

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 100.0 100.0 97.6 22.8 0.0 100.0 100.0 100.0 100.0 100.0 99.8
TOVA[51] 100.0 100.0 100.0 100.0 80.8 17.4 100.0 100.0 100.0 100.0 98.2 65.2
SnapKV[38] 100.0 92.8 88.2 74.6 39.2 5.2 100.0 100.0 100.0 98.6 93.0 70.6
KeyDiff[52] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Gemma3-12B

EA (Ours) 100.0 100.0 100.0 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0
TOVA[51] 100.0 100.0 100.0 99.8 98.2 36.8 100.0 100.0 100.0 100.0 100.0 84.8
SnapKV[38] 100.0 99.6 99.2 98.6 94.0 72.6 100.0 100.0 100.0 99.6 96.4 85.6
KeyDiff[52] 100.0 100.0 100.0 100.0 99.8 81.6 100.0 100.0 100.0 100.0 100.0 100.0

Llama3.1-8B

EA (Ours) 100.0 99.8 100.0 97.6 95.6 93.8 100.0 100.0 100.0 100.0 100.0 99.4
TOVA[51] 100.0 100.0 100.0 100.0 100.0 89.8 100.0 100.0 100.0 100.0 100.0 99.6
SnapKV[38] 100.0 100.0 99.4 100.0 77.2 100.0 100.0 99.8 100.0 99.6 94.2 82.4
KeyDiff[52] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 15: NIAH Single 2

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 99.6 92.0 31.8 2.4 0.2 100.0 100.0 100.0 100.0 99.8 96.0
TOVA[51] 100.0 100.0 100.0 100.0 100.0 81.8 100.0 100.0 100.0 100.0 100.0 99.4
SnapKV[38] 100.0 100.0 99.8 70.6 14.8 5.4 100.0 100.0 99.8 95.0 58.8 9.6
KeyDiff[52] 100.0 100.0 100.0 99.8 92.8 54.8 100.0 100.0 100.0 100.0 97.0 69.6

Gemma3-12B

EA (Ours) 100.0 100.0 100.0 100.0 99.8 78.0 100.0 100.0 100.0 100.0 98.2 77.8
TOVA[51] 100.0 100.0 100.0 100.0 98.6 63.4 100.0 100.0 98.2 89.8 52.0 10.8
SnapKV[38] 100.0 95.2 87.0 60.2 20.4 5.0 100.0 90.8 71.4 41.4 11.6 2.6
KeyDiff[52] 100.0 100.0 100.0 99.4 81.0 26.0 100.0 100.0 99.6 97.8 64.2 15.8

Llama3.1-8B

EA (Ours) 100.0 100.0 99.8 94.2 78.2 38.6 100.0 100.0 100.0 100.0 99.6 21.8
TOVA[51] 100.0 100.0 100.0 100.0 99.8 97.4 100.0 100.0 100.0 100.0 100.0 99.6
SnapKV[38] 100.0 100.0 99.8 100.0 55.4 97.2 100.0 100.0 100.0 96.8 80.6 35.6
KeyDiff[52] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 16: NIAH Single 3

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 43.8 4.2 0.0 0.0 0.0 99.8 100.0 100.0 100.0 89.6 28.8
TOVA[51] 100.0 100.0 100.0 97.8 15.2 0.0 99.8 99.8 99.8 99.8 64.0 2.8
SnapKV[38] 100.0 99.8 84.2 14.4 5.2 2.4 99.8 87.0 45.4 8.8 2.4 2.4
KeyDiff[52] 100.0 99.8 99.8 99.0 92.8 66.0 99.8 99.8 99.8 99.0 95.6 78.4

Gemma3-12B

EA (Ours) 100.0 100.0 100.0 99.2 81.2 24.6 100.0 100.0 100.0 94.8 29.8 12.2
TOVA[51] 100.0 100.0 100.0 84.0 10.8 0.0 100.0 80.8 42.4 5.4 2.4 2.0
SnapKV[38] 100.0 5.4 2.8 2.4 2.4 2.4 100.0 5.6 2.8 2.4 2.4 2.4
KeyDiff[52] 100.0 100.0 99.6 99.8 91.6 48.0 100.0 100.0 100.0 100.0 96.0 45.6

Llama3.1-8B

EA (Ours) 100.0 64.6 99.6 4.0 0.2 0.0 100.0 100.0 100.0 77.4 10.2 0.0
TOVA[51] 100.0 99.8 95.4 52.2 4.6 0.2 100.0 100.0 99.2 83.4 29.0 2.6
SnapKV[38] 100.0 99.0 11.2 36.8 2.4 2.4 100.0 74.6 35.8 14.4 3.2 2.4
KeyDiff[52] 100.0 99.8 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0

Table 17: Question Answering 1

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 81.6 81.0 79.6 71.6 58.4 41.2 74.8 74.4 75.8 71.8 58.6 39.6
TOVA[51] 81.6 81.6 80.4 75.6 55.8 33.6 74.8 74.0 68.8 54.2 36.6 27.4
SnapKV[38] 81.6 79.8 78.0 69.0 54.6 38.8 74.8 70.0 60.2 44.4 33.0 26.6
KeyDiff[52] 81.6 80.8 73.6 51.6 24.4 8.8 74.8 60.4 47.6 32.2 19.8 8.2

Gemma3-12B

EA (Ours) 87.4 88.0 85.8 80.0 65.0 45.4 76.6 71.2 69.6 59.8 37.2 22.4
TOVA[51] 87.4 87.4 85.0 72.0 51.6 34.4 76.6 75.4 73.2 58.8 36.0 22.0
SnapKV[38] 87.4 86.4 82.6 70.6 51.0 32.4 76.6 71.8 60.2 43.2 26.2 16.8
KeyDiff[52] 87.4 87.2 74.8 58.2 29.4 13.0 76.6 73.0 60.6 33.6 12.2 5.0

Llama3.1-8B

EA (Ours) 87.8 87.2 85.4 81.0 66.2 41.4 81.2 81.0 78.8 70.6 51.2 26.8
TOVA[51] 87.8 87.8 86.8 80.2 56.4 27.0 81.2 81.2 80.0 64.8 41.6 24.2
SnapKV[38] 87.8 87.6 83.2 88.0 56.2 81.8 81.2 78.0 68.4 51.6 33.0 19.4
KeyDiff[52] 87.8 87.2 84.2 75.0 45.0 21.8 81.2 80.6 76.6 64.8 45.4 24.6

Table 18: Question Answering 2

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 63.4 62.6 62.4 58.8 50.6 35.6 58.8 58.4 58.2 55.6 48.8 35.4
TOVA[51] 63.4 63.0 60.0 54.6 40.2 26.6 58.8 57.2 55.4 49.4 38.6 27.0
SnapKV[38] 63.4 61.6 58.2 51.4 41.8 27.4 58.8 55.6 52.0 45.4 33.2 26.6
KeyDiff[52] 63.4 56.4 46.0 27.8 13.4 10.6 58.8 51.0 43.0 31.0 18.6 12.8

Gemma3-12B

EA (Ours) 61.0 60.0 59.4 55.2 42.8 33.8 54.8 52.0 52.2 47.0 33.6 26.4
TOVA[51] 61.0 60.8 59.0 54.0 45.6 35.2 54.8 54.6 52.8 47.0 37.6 30.4
SnapKV[38] 61.0 59.4 55.4 52.4 43.6 31.0 54.8 54.6 49.8 42.8 32.6 24.8
KeyDiff[52] 61.0 59.0 51.8 39.0 21.4 14.4 54.8 53.2 47.2 33.0 19.2 12.2

Llama3.1-8B

EA (Ours) 62.8 62.6 61.2 58.6 50.2 42.2 57.0 57.8 55.2 54.4 43.0 29.4
TOVA[51] 62.8 61.4 59.8 54.2 42.8 28.2 57.0 55.6 54.8 48.6 36.8 28.4
SnapKV[38] 62.8 62.0 58.6 62.0 37.6 59.6 57.0 54.0 54.4 45.2 34.4 28.8
KeyDiff[52] 62.8 63.4 61.0 49.4 31.6 18.2 57.0 56.8 55.2 52.8 45.6 34.2
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Table 19: Variable Tracking

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 100.0 100.0 99.9 87.3 14.0 0.7 100.0 100.0 100.0 100.0 100.0 99.9
TOVA[51] 100.0 100.0 100.0 100.0 96.3 15.4 100.0 100.0 100.0 100.0 100.0 88.5
SnapKV[38] 100.0 98.8 94.2 81.2 33.2 8.6 100.0 99.9 99.6 99.0 94.7 66.4
KeyDiff[52] 100.0 100.0 100.0 100.0 98.9 32.9 100.0 100.0 100.0 100.0 100.0 79.9

Gemma3-12B

EA (Ours) 99.7 99.7 99.6 99.4 98.3 93.8 96.4 94.0 93.8 90.9 84.0 80.3
TOVA[51] 99.7 99.6 99.7 99.6 93.4 27.7 96.4 96.4 96.6 96.2 94.3 84.9
SnapKV[38] 99.7 99.0 97.8 89.2 70.2 46.2 96.4 93.5 91.6 90.8 87.8 74.1
KeyDiff[52] 99.7 99.6 99.6 99.6 97.6 80.0 96.4 96.6 96.2 95.3 93.3 82.6

Llama3.1-8B

EA (Ours) 99.9 99.8 99.8 88.2 66.6 35.6 99.8 99.7 99.5 99.5 96.2 76.3
TOVA[51] 99.9 99.9 99.9 99.9 96.6 20.4 99.8 99.8 99.8 99.8 99.8 94.1
SnapKV[38] 99.9 99.6 93.4 97.7 59.8 53.7 99.8 96.2 95.2 93.4 81.4 53.4
KeyDiff[52] 99.9 99.9 99.9 99.9 99.6 77.6 99.8 99.8 99.7 99.6 98.7 94.6

Table 20: Average

Model Method Ruler 4k Ruler 16k

0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%

Qwen3-8B

EA (Ours) 95.3 88.5 77.2 52.2 22.5 11.3 93.0 93.1 93.2 92.7 85.6 62.7
TOVA[51] 95.3 89.0 82.5 77.6 62.4 24.7 93.0 88.3 81.7 76.2 68.7 52.4
SnapKV[38] 95.3 92.6 84.0 55.7 33.1 19.2 93.0 90.1 81.5 62.8 41.7 26.8
KeyDiff[52] 95.3 93.8 89.4 78.6 64.4 37.9 93.0 88.9 82.9 74.5 66.9 53.1

Gemma3-12B

EA (Ours) 95.2 95.2 94.9 92.7 78.2 53.6 86.0 82.8 81.7 76.6 60.5 41.8
TOVA[51] 95.2 89.7 81.1 76.5 58.1 25.3 86.0 79.7 72.6 62.5 46.8 32.7
SnapKV[38] 95.2 82.9 72.0 54.8 40.3 30.1 86.0 74.1 62.8 46.4 37.3 31.4
KeyDiff[52] 95.2 94.3 90.6 79.8 62.0 34.3 86.0 81.8 78.6 72.6 58.6 37.2

Llama3.1-8B

EA (Ours) 95.7 92.7 95.3 76.6 55.7 29.0 93.4 93.4 92.8 86.0 66.4 25.5
TOVA[51] 95.7 93.2 87.3 76.2 63.3 37.5 93.4 90.9 86.1 77.9 68.4 59.2
SnapKV[38] 95.7 95.5 81.8 88.8 43.4 63.2 93.4 89.4 82.0 68.0 43.1 25.6
KeyDiff[52] 95.7 94.7 91.6 85.5 72.9 61.1 93.4 92.1 88.4 82.6 74.9 66.5
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