

EXPECTED ATTENTION: KV CACHE COMPRESSION BY ESTIMATING ATTENTION FROM FUTURE QUERIES DISTRIBUTION

000
001
002
003
004
005
006
007 **Anonymous authors**
008 Paper under double-blind review
009
010
011
012

ABSTRACT

013 Memory consumption of the Key-Value (KV) cache represents a major bottleneck
014 for efficient large language model (LLM) inference. While attention-score-based
015 KV cache pruning shows promise, it faces critical practical limitations: attention
016 scores from future tokens are unavailable during compression, and modern
017 implementations do not materialize the full attention matrix, making past scores
018 inaccessible. To overcome these challenges, we introduce *Expected Attention*,
019 a training-free compression method that estimates Key-Value (KV) pairs impor-
020 tance by predicting how future queries will attend to them. Leveraging the distri-
021 butional properties of LLM activations, we compute expected attention scores in
022 closed form for each KV pair. These scores enable ranking and pruning of KV
023 pairs with minimal impact on the residual stream, achieving high compression
024 without performance degradation. Importantly, our method operates seamlessly
025 across both prefilling and decoding phases, consistently outperforming state-of-
026 the-art baselines in both scenarios. Finally, we release a comprehensive research
027 library for KV cache compression, designed to enable researchers to implement
028 and benchmark novel methods, in addition to building upon our own.
029
030

1 INTRODUCTION

031 Large language models (LLMs) (Achiam et al., 2023; Anthropic, 2025; MetaAI, 2024; Yang et al.,
032 2025) have revolutionized text generation and reasoning, enabling advanced applications such as
033 long multi-round dialogues, extensive multimodal intelligence (Yang et al., 2025; Weng et al., 2024),
034 and agentic workflows that ingest massive amounts of data (OpenAI, 2024; PerplexityAI, 2025;
035 Yamada et al., 2025). These applications often require processing extensive contextual information.
036 For example, processing a large codebase or a short video can easily involve analyzing hundreds of
037 thousands of tokens. A critical issue in deploying LLMs in such scenarios is the prohibitive memory
038 consumption of the Key-Value (KV) cache (Fu, 2024; Shi et al., 2024; LI et al., 2025).
039

040 During autoregressive generation, the KV cache stores key and value vectors for every processed
041 token, enabling efficient attention computation. However, its memory footprint grows linearly with
042 sequence length, quickly becoming the primary bottleneck for long-context inference. A medium-
043 sized 70B model (MetaAI, 2025) requires approximately 320 GB of GPU memory for a one-million-
044 token KV cache, far exceeding most GPU capacities. This challenge intensifies with emerging appli-
045 cations where advanced reasoning models generate thousands of intermediate tokens (DeepSeek-AI,
046 2024b; Yang et al., 2025) and agentic systems load massive datasets (OpenAI, 2025; PerplexityAI,
047 2025). While current LLMs promise extended context lengths up to a million tokens (GeminiTeam,
048 2025; MetaAI, 2024), hardware constraints saturate GPU memory well before reaching theoretical
049 limits.

050 State Space Models offer a solution by reducing memory costs (Gu et al., 2022; Gu & Dao, 2024),
051 yet their inferior performance compared to transformers, especially on long context tasks, limits
052 adoption (Jelassi et al., 2024; Merrill et al., 2024). Other architectural changes limited to the atten-
053 tion mechanism, such as multi-head latent attention (DeepSeek-AI, 2024a) or sliding window atten-
054 tion (Jiang et al., 2023; GemmaTeam, 2025), reduce KV cache size but do not remove the attention
055 bottleneck and are orthogonal to KV cache compression methods. Additionally, such methods need
056

054 to be implemented at training time, limiting their application to pre-trained modern LLMs. This
 055 creates demand for training-free KV cache compression methods that preserve transformer architec-
 056 tures while mitigating memory growth.

057 KV cache compression exploits semantic redundancy in natural language: not all tokens equally
 058 influence future predictions, and many provide negligible information once their contextual role
 059 is fulfilled. This property allows to compress the KV cache by removing some of the key and
 060 values stored in it. However, determining which tokens can be safely removed is far from trivial,
 061 as any Key-Value (KV) pair’s importance depends on how *future queries* will attend to it. Existing
 062 approaches use heuristics like discarding oldest tokens (Ge et al., 2024; Xiao et al., 2023) or leverage
 063 attention scores from past queries (Zhang et al., 2024; Li et al., 2025; Oren et al., 2024), but these
 064 strategies are limited for real-world scenarios, and often require accessing attention scores which are
 065 not materialized in modern transformer implementations (Dao et al., 2022).

066 Instead of relying on heuristics or local attention metrics, we argue that a KV pair’s significance is
 067 best measured by its global effect on the transformer’s output. We quantify this effect by isolating
 068 each KV pair’s contribution within the residual stream, capturing its influence on the model output.
 069 This raises the challenge of estimating *how future queries will attend to each token in the context*,
 070 which requires accessing attention scores from the past and from future tokens, that are not available
 071 at the time of compression. To address this, we introduce *Expected Attention*, which estimates
 072 future attention allocation leveraging the distribution of future queries. Expected Attention estimates
 073 the importance that each token in the context has for queries that have not been generated and
 074 accordingly prunes the KV cache up to 60% while preserving performance quality, requiring no
 075 architectural modifications or additional training. We release our code as a comprehensive library
 076 benchmarking over 20 state-of-the-art compression methods.

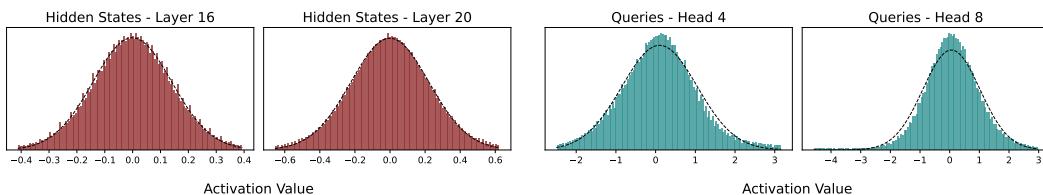
077 To summarize, our contributions are the following:

- 079 • We analyse the distributional properties of LLM activations through the lenses of KV cache
 080 compression and introduce the concept of *Expected Attention* to estimate the importance
 081 that current tokens will have in the future.
- 082 • We introduce a KV cache compression method that leverages Expected Attention and evicts
 083 irrelevant KV pairs for efficient inference.
- 084 • We release all our code as a library, designed for researchers, that allows to easily imple-
 085 ment, test and benchmark KV cache compression methods.

087 2 EXPECTED ATTENTION

090 2.1 KEY-VALUE CACHE IN AUTOREGRESSIVE TRANSFORMERS

091 We consider decoder-only language models based on the transformer architecture (Vaswani et al.,
 092 2017), representing the vast majority of modern LLMs. When an input sequence of tokens $\mathbf{x} =$
 093 $[x_1, x_2, \dots, x_t]$ is fed to the model, each token x_i is transformed into a hidden state representation
 094 $h_i \in \mathbb{R}^h$ and processed by a stack of transformer layers, including feed forward networks and multi-
 095 head attention blocks. For brevity and clarity, we focus our analysis on a single layer and attention



104 Figure 1: Hidden states from layer 16 and 20 and corresponding queries for layer 20 in Llama3.1-8B.
 105 Hidden states in modern LLMs are mostly normally distributed. As a consequence, query activations
 106 also follow a Normal. The best Gaussian fit is overlaid. We show more examples and discuss this
 107 property in Appendix B.

108 head, noting that the following analysis naturally extends to multi-head attention, grouped query
 109 attention (GQA, Ainslie et al. 2023) and all their variants.
 110

111 Let $h_i \in \mathbb{R}^h$ denote the hidden state at position i in the sequence. In the attention block, the
 112 corresponding Query, Key and Value projections are computed as:
 113

$$q_i = R_i W_Q h_i, \quad k_i = R_i W_K h_i, \quad v_i = W_V h_i \quad (1)$$

115 where d is the attention head dimension, $R_i \in \mathbb{R}^{d \times d}$ is the Rotary Position Embedding (RoPE, Su
 116 et al. 2023) matrix at position i , and $W_Q, W_K, W_V \in \mathbb{R}^{h \times d}$ are respectively the learnable projection
 117 matrices for query, key, and value in \mathbb{R}^d . During autoregressive inference, keys and values vectors
 118 are stored in the KV cache to avoid recomputing them in future generation steps. The resulting KV
 119 cache is a collection of Key-Value pairs (k_i, v_i) from all inference steps in the sequence, leading
 120 to significant computational savings but increasing memory requirements, growing linearly with
 121 sequence length.
 122

123 At generation step t , the attention mechanism computes the attention score between the current
 124 query q_t and each previously cached key k_i for $i \leq t$:

$$a_{ti} = \frac{\exp\left(\frac{q_t^T k_i}{\sqrt{d}}\right)}{\sum_{j=1}^t \exp\left(\frac{q_t^T k_j}{\sqrt{d}}\right)} = \frac{z_{ti}}{\sum_{j=1}^t z_{tj}} \quad (2)$$

125 where a_{ti} is the normalized attention score between query at position t and key at position i , and
 126 $z_{ti} = \exp\left(\frac{q_t^T k_i}{\sqrt{d}}\right)$ represents the unnormalized attention score.
 127

128 The attention score is used to weight and sum over all values previously stored in the KV cache. The
 129 resulting output is then added to the hidden state h_t :

$$h_t^{\text{out}} = h_t + \sum_{i=1}^t a_{ti} W_o v_i = h_t + \sum_{i=1}^t \Delta h_{ti} \quad (3)$$

130 where $h_t \in \mathbb{R}^h$ and $h_t^{\text{out}} \in \mathbb{R}^h$ represent the hidden state before and after the attention update re-
 131 spectively, and $W_o \in \mathbb{R}^{d \times h}$ is the learnable output projection matrix. The hidden states embedding
 132 h_t represents the “residual stream,” (Elhage et al., 2021) updated via vector additions by each trans-
 133 former block. The value $\Delta h_{ti} = a_{ti} W_o v_i$ isolates the specific residual addition of the i -th KV pair
 134 at step t . This decomposition reveals that each cached KV pair (k_i, v_i) contributes a residual update
 135 Δh_{ti} to the final output, and provides a natural measure of the importance of each KV pair:
 136

$$\|\Delta h_{ti}\| = a_{ti} \|W_o v_i\| \quad (4)$$

137 where $\|\cdot\|$ denotes the L2 norm. This metric captures both the attention weight a_{ti} (how much
 138 the query attends to the i -th key) and the transformed value magnitude $\|W_o v_i\|$ (the impact of the
 139 i -th value on the output). Equation 4 provides the optimal measure for estimating the importance of
 140 each KV pair in the model output. If we could compute this score for all cached KV pairs, we could
 141 selectively prune the cache by removing pairs with the lowest impact on the residual stream, thereby
 142 minimizing performance degradation. However, computing Equation 4 presents significant practical
 143 challenges. While $\|W_o v_i\|$ is readily available at inference time, the attention weight a_{ti} depends
 144 on future queries that have not yet been generated. Specifically, we cannot know the attention
 145 scores from future tokens $t+1, t+2, \dots$ before computing them, making it impossible to predict
 146 which KV pairs will be important for upcoming generation steps. Furthermore, modern transformer
 147 implementations utilize Flash Attention (Dao et al., 2022; Dao, 2024), which computes attention
 148 scores on-the-fly without materializing the complete attention matrix, preventing access to even past
 149 attention scores. To address these fundamental limitations, we leverage the properties of activations
 150 in modern LLMs, and introduce *Expected Attention*.
 151

152 2.2 EXPECTED ATTENTION: ESTIMATING ATTENTION FROM FUTURE QUERIES

153 **Distributional properties of LLM activations** To approximate the unnormalized attention score
 154 z_{ij} , we leverage the findings of Liu et al. (2025), showing that hidden states in modern LLMs
 155 loosely follow a Gaussian distribution $h \sim \mathcal{N}(\mu, \Sigma)$. While we show an example of this property

162 in Figure 1, we also extensively validate it across multiple model architectures in Appendix B.
 163 Given this distributional assumption, queries also inherit unimodal properties through the linear
 164 transformation in Equation 1 $q_t = R_t W_Q h_t$, and can be approximated with a Gaussian (Liu et al.,
 165 2025):

$$166 \quad q_t \sim \mathcal{N}(\mu_{q_t}, \Sigma_{q_t}), \quad \text{where } \mu_{q_t} = R_t W_Q \mu, \quad \Sigma_{q_t} = R_t W_Q \Sigma W_Q^T R_t^T \quad (5)$$

167 where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ are the mean and covariance of the hidden state distribution, and
 168 $R_t \in \mathbb{R}^{d \times d}$ is the RoPE matrix at position t .

170 To create a single, tractable representation of attention over a future interval, we approximate the
 171 positional embeddings by averaging the RoPE matrix over the next T positions. This gives us a
 172 position-averaged query distribution:

$$173 \quad \bar{q} \sim \mathcal{N}(\bar{\mu}_q, \bar{\Sigma}_q), \quad \text{where } \bar{\mu}_q = \bar{R} W_Q \mu, \quad \bar{\Sigma}_q = \bar{R} W_Q \Sigma W_Q^T \bar{R}^T \quad (6)$$

175 where $\bar{R} = \frac{1}{T} \sum_{j=1}^T R_{t+j}$ represents the averaged RoPE matrix over T future positions.

```
177 1 def compress(queries, keys, values, compression_ratio):
178 2     # Compute query statistics
179 3     mean_query, cov_query = compute_statistics(queries)
180 4     # Compute unnormalized attention scores (z_i)
181 5     scores = matmul(mean_query, keys.T) / math.sqrt(d)
182 6     scores += einsum("i,ij,j->", keys, cov_query, keys) / (2 * d)
183 7     # Normalize scores and weight by value norms
184 8     scores = softmax(scores, dim=-1) * values.norm(dim=-1)
185 9     # Keep KV pairs with highest scores
186 10    n_kept = int(keys.size(0) * (1 - compression_ratio))
187 11    indices = scores.topk(n_kept, dim=-1).indices
188 12    return keys[indices], values[indices]
```

187 Listing 1: Pytorch-like pseudo code for KV Cache compression with Expected Attention.
 188
 189

190 **Expected Attention Score** With this query distribution, we can now analytically compute the
 191 expected unnormalized attention score in Equation 2. For a query $\bar{q} \sim \mathcal{N}(\bar{\mu}_q, \bar{\Sigma}_q)$ in our interval T
 192 and a fixed key k_i , the expected unnormalized score for that key is:

$$194 \quad \hat{z}_i = \mathbb{E}_{\bar{q} \sim \mathcal{N}(\bar{\mu}_q, \bar{\Sigma}_q)} \left[\exp \left(\frac{\bar{q}^T k_i}{\sqrt{d}} \right) \right] = \exp \left(\frac{\bar{\mu}_q^T k_i}{\sqrt{d}} + \frac{k_i^T \bar{\Sigma}_q k_i}{2d} \right) \quad (7)$$

197 where the second equality follows from the moment-generating function of a Gaussian distribution.
 198 We then define the expected attention score by applying the softmax on our unnormalized expectation:
 199

$$200 \quad \hat{a}_i = \frac{\hat{z}_i}{\sum_{j=1}^t \hat{z}_j} \quad (8)$$

202 With this approximation, we can now estimate the importance of each cached KV pair. We define the
 203 expected contribution magnitude by substituting our expected attention weight into the contribution
 204 score formula from Equation 4:

$$205 \quad \|\widehat{\Delta h}_i\| = (\hat{a}_i + \epsilon) \|W_o v_i\| \quad (9)$$

207 where \hat{a}_i is the expected attention weight from Equation 8, $\|W_o v_i\| \in \mathbb{R}$ is the magnitude of the
 208 transformed value vector, and ϵ is a small hyperparameter. This metric provides a tractable approxi-
 209 mation to the true contribution score without requiring future queries.

211 **Compression with Expected Attention** Equation 9 captures the contribution of each KV pair
 212 to the transformer output. The Expected Attention compression algorithm scores all cached KV
 213 pairs according to Equation 9 and evicts the $r\%$ pairs with the lowest expected contributions, where
 214 $r \in [0, 1]$ is the compression ratio. Intuitively, this is equivalent to removing those KV pairs that
 215 have the smallest impact on the residual stream and therefore on the model output. We provide
 pseudo-code for our compression algorithm in Listing 1.

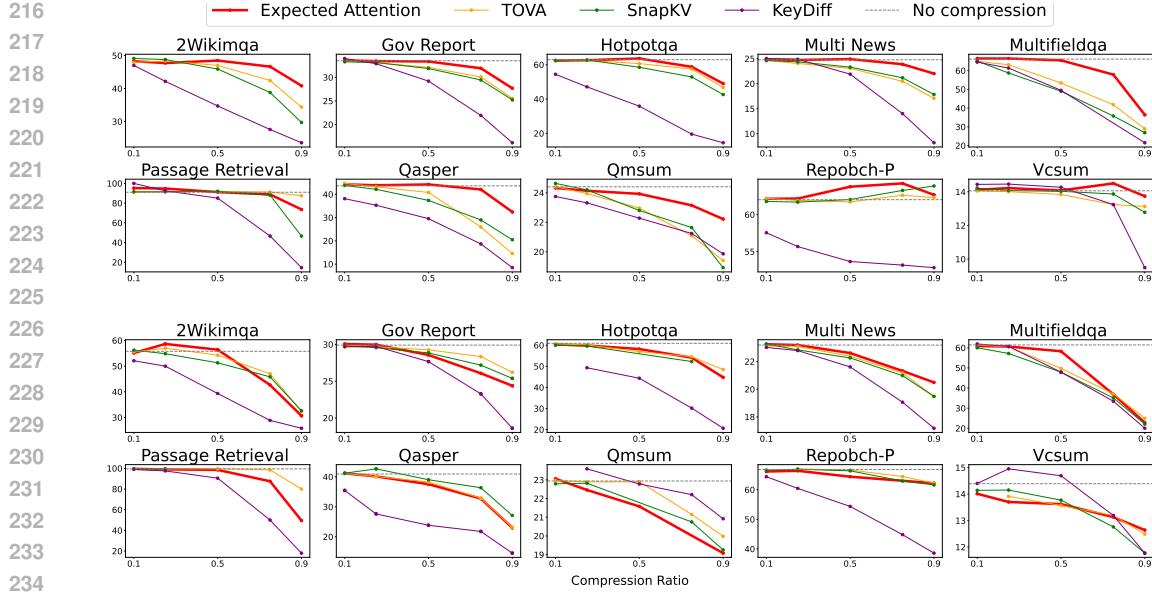


Figure 2: Scores on LongBench (Bai et al., 2024) for Qwen3-8B (top) and Gemma3-12B (bottom). The x-axis represents the compression ratio, the y-axis the score for each specific dataset. The horizontal line represents the baseline performance without cache compression. Expected Attention achieves optimal trade-off between compression ratio and scores across most datasets (Additional and averaged results in Appendix E).

Head-Adaptive Compression Previous work has shown that different attention heads serve different roles in the model. We adopt adaptive per-layer compression (Feng et al., 2024) to account for this heterogeneity, allowing more important heads to retain more KV pairs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Prefilling vs Decoding Generation LLM inference comprises two phases with distinct computational characteristics. The *prefilling phase* processes the entire input prompt in parallel, computing key-value projections for the KV cache, a compute-bound operation requiring substantial floating-point operations. The *decoding phase* sequentially generates tokens using the KV cache and previous logits, appending new key-value pairs iteratively (Deepak & Amr, 2024; Gordić, 2025). This dichotomy has motivated disaggregated architectures that implement prefill and decoding on different hardware (Deepak Patil, 2024; StepFun et al., 2025), at the cost of transferring the cache, further incentivising compression. An effective compression method must perform well in both prefilling and decoding (Deepak & Amr, 2024; Gordić, 2025). Nevertheless, a number of recent methods often target a single phase: SnapKV (Li et al., 2025) for prefilling via query attention scores, StreamingLLM (Xiao et al., 2023) and KNorm (Devoto et al., 2024) for streaming decoding. Expected Attention is designed considering these two aspects of LLM inference and addresses both scenarios efficiently. We present results for prefilling and decoding in Section 4.1 and Section 4.2 respectively.

Models and Datasets For prefilling (one-shot compression before generation), we test three model families supporting long contexts: Llama3.1-8B (128k) (MetaAI, 2025), Qwen3-8B (32k) (Yang et al., 2025), and Gemma3-12B (128k) (GemmaTeam, 2025), all instruction-tuned. For decoding (compression during generation), we analyse reasoning models that generate extensive intermediate reasoning tokens and therefore large KV caches: Qwen-1.5B-R1, Qwen-7B-R1 (DeepSeek-AI, 2025), and OpenMath-Nemotron-14B (Moshkov et al., 2025).

270 Table 1: Expected Attention outperforms most baselines on Ruler (Hsieh et al., 2024) with 4K and
 271 16K context length. We show average score with increasing compression ratios across baselines.
 272 Best results for each compression ratio are displayed in **bold**. The 0% column indicates the baseline
 273 without compression.

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
Qwen3-8B	EA (ours)	95.3	95.3	95.0	94.7	88.3	65.4	92.9	93.1	93.2	92.7	85.6	62.7
	TOVA[51]	95.3	89.0	82.5	77.6	62.4	24.7	92.9	88.3	81.7	76.2	68.7	52.4
	SnapKV[38]	95.3	92.6	84.0	55.7	33.1	19.2	92.9	90.1	81.5	62.8	41.7	26.8
	KeyDiff[52]	95.3	93.8	89.4	78.6	64.4	37.9	92.9	88.9	82.9	74.5	66.9	53.1
Gemma3-12B	EA (ours)	95.2	95.2	94.9	92.7	78.2	53.6	86.0	82.8	81.7	76.6	60.5	41.8
	TOVA[51]	95.2	89.7	81.1	76.5	58.1	25.3	86.0	79.7	72.6	62.5	46.8	32.7
	SnapKV[38]	95.2	82.9	72.0	54.8	40.3	30.1	86.0	74.1	62.8	46.4	37.3	31.4
	KeyDiff[52]	95.2	94.3	90.6	79.8	62.0	34.3	86.0	81.8	78.6	72.6	58.6	37.2
Llama3.1-8B	EA (ours)	95.3	95.7	95.3	92.2	75.9	30.6	93.4	93.4	92.8	86.0	66.4	25.5
	TOVA[51]	95.3	93.2	87.3	76.2	63.3	37.5	93.4	90.9	86.1	77.9	68.4	59.2
	Duo [65]	95.3	95.7	95.7	95.3	73.2	24.5	93.4	93.3	93.0	90.1	59.1	12.3
	SnapKV[38]	95.3	95.5	88.8	81.8	63.2	43.4	93.4	89.4	82.0	68.0	43.1	25.6
	KeyDiff[52]	95.3	94.7	91.6	85.5	72.9	61.1	93.4	92.1	88.4	82.6	74.9	66.5

287
 288 Our benchmarks include LongBench (Bai et al., 2024), Ruler (Hsieh et al., 2024), and Needle in a
 289 Haystack (Kamradt, 2023; Liu et al., 2024) for prefilling, and Aime25 (Balunović et al., 2025) and
 290 MATH-500 (Lightman et al., 2023) for decoding.

291
 292 **Baselines** Following an initial benchmarking study on Ruler (see Appendix E), we selected and
 293 compare our method against the best-performing baselines for each use case. For prefilling, we
 294 evaluate attention-based approaches like SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024),
 295 embedding-based KeyDiff (Park et al., 2025), and the trainable DuoAttention (Xiao et al., 2024)
 296 when the checkpoint is available. SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024) rank KV
 297 pairs using attention scores from user queries. KeyDiff (Park et al., 2025) employs distance metrics
 298 between key embeddings for selection, making it also suitable for decoding generation. DuoAtten-
 299 tion (Xiao et al., 2024) takes a trainable approach, learning compression masks for each attention
 300 head. For decoding, we focus on methods designed to be compatible with streaming generation:
 301 KNORM (Devoto et al., 2024), StreamingLLM (Xiao et al., 2023), and KeyDiff (Park et al., 2025).
 302 KNORM (Devoto et al., 2024) uses a simple approach by preserving keys with the lowest L_2 norm.
 303 StreamingLLM (Xiao et al., 2023) maintains initial sink tokens throughout generation.

304
 305 **Implementation details** We implement Expected Attention in Pytorch (Paszke et al., 2019). For
 306 all benchmarks, we test the models on 8 H100 GPUs, with batch size 1. We make all the code to
 307 reproduce our method and the baselines available online. In all experiments we use $\epsilon = 0.01$, except
 308 for needle in a haystack where use $\epsilon = 0$, and we average the RoPE embeddings over the next
 309 $T = 512$ positions. For prefilling, we do not assume any question about the context. This simulates
 310 a real world use case and avoids favouring methods like SnapKV that rely on this assumption. For
 311 decoding, we keep a small buffer of hidden states of 256 tokens to compute statistics, and perform
 312 compression every 512 generation steps. In Equation 9 we only use V instead of $W_o V$, as using W_o
 313 led to a minor increase in results at a significantly higher memory cost.

314 4 EXPERIMENTAL RESULTS

315 4.1 PREFILLING

316
 317 **LongBench** We evaluate on LongBench (Bai et al., 2024), which tests long-context capabilities
 318 across diverse tasks. The benchmark comprises six categories: single and multi-document QA,
 319 summarization, few-shot learning, synthetic tasks, and code completion. As shown in Figure 2 for
 320 Llama3.1-8B and Qwen3-8B (see Appendix E for Gemma3-12B), Expected Attention consistently
 321 achieves optimal compression-performance trade-offs, maintaining higher scores across all com-
 322 pression ratios. This demonstrates effective retention of critical KV pairs even under significant
 323 compression across varied reasoning and generation tasks.

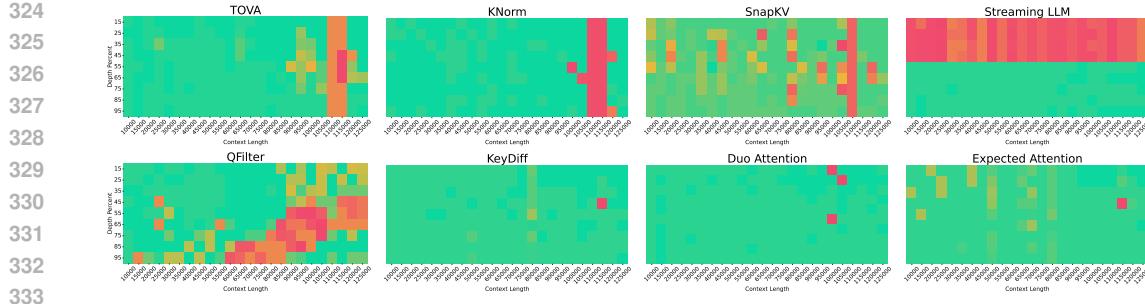


Figure 3: Needle in the Haystack test for different methods with Llama3.1-8B and 50% compression ratio.

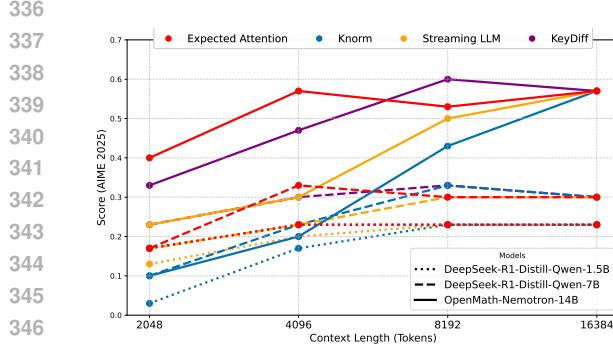


Figure 4: Decoding results on Aime25 dataset, different markers represent different models sizes. The x-axis is the maximum size that the KV cache is allowed to grow to.

Table 2: Decoding scores on MATH-500. Columns indicate the final size of the KV cache with respect to the original full version. Best scores in **bold**.

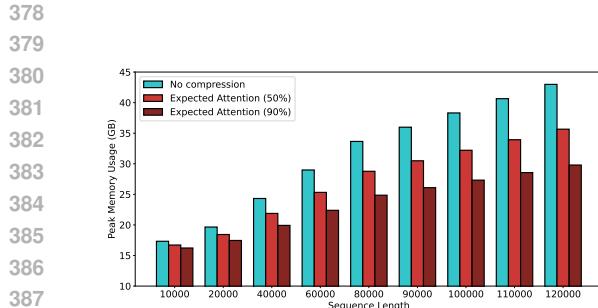
Model	Method	Compression			
		0×	2×	4×	12×
Qwen-R1-1.5B	EA (ours)	0.47	0.47	0.43	0.33
	KeyDiff[52]	0.47	0.42	0.40	0.30
	KNorm[15]	0.47	0.41	0.28	0.11
	Streaming[64]	0.47	0.45	0.41	0.31
Qwen-R1-7B	EA (ours)	0.57	0.55	0.53	0.49
	KeyDiff[52]	0.57	0.54	0.48	0.35
	KNorm[15]	0.57	0.47	0.32	0.12
	Streaming[64]	0.57	0.54	0.51	0.41
Nemotron-14B	EA (ours)	0.57	0.55	0.54	0.47
	KeyDiff[52]	0.57	0.56	0.51	0.44
	KNorm[15]	0.57	0.50	0.36	0.14
	Streaming[64]	0.57	0.57	0.54	0.42

Ruler Ruler (Hsieh et al., 2024) measures retrieval, multi-hop tracing, and aggregation abilities within long contexts through four subsets: NIAH (Needle-in-a-Haystack) for single-fact retrieval, VT (Variable Tracking) for multi-hop reasoning, CWE (Common Words Extraction) for frequency-based aggregation, and FWE (Frequent Words Extraction) for statistical pattern recognition. Table 1 shows results at various compression ratios for 4k and 16k windows. EA maintains strong performance across all subsets, particularly at higher compression ratios. While KeyDiff performs well on Llama3.1-8B, it struggles on Gemma3-12B and Qwen3-8B, potentially due to QK normalization (GemmaTeam, 2025; Yang et al., 2025). We note that the competitive performance of KeyDiff is often isolated to the extreme 75-90% compression ratio, a regime that is not the intended operating point for practical KV cache compression, whose main goal is to keep the downstream performance as close as possible to the uncompressed baseline. Our Expected Attention-based policy effectively preserves information necessary for precise retrieval and complex reasoning tasks.

Needle in a Haystack The NIAH test (Kamradt, 2023) embeds specific information (the “needle”) within lengthy distracting text (the “haystack”) to evaluate retrieval capabilities across varying context positions and lengths. The test systematically varies both the needle’s position within the context (needle depth) and the total context length to assess consistent retrieval performance. Figure 3 visualizes retrieval success across needle positions and context lengths up to 125k tokens. Expected Attention demonstrates robust performance comparable to DuoAttention and significantly more stable than other baselines in long contexts, confirming retention of critical information under compression regardless of needle placement or context size.

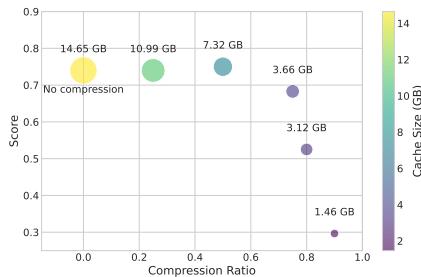
4.2 DECODING

We evaluate Expected Attention on reasoning models, Qwen-1.5B-R1, Qwen-7B-R1, and OpenMath-Nemotron-14B. Reasoning models are particularly suitable for our evaluation as they generate extensive chain-of-thought outputs, placing significant demands on KV cache mem-



388
389
390
391
392

(a) Peak memory usage vs sequence length up to 120k for Llama3.1-8B, with 50% and 90% compression ratio. As the context length grows the memory savings become more evident, achieving up to 15GB less memory for large contexts.



(b) Needle in a Haystack score with different compression ratios with Qwen3-8B. Expected Attention has no accuracy loss with a compression ratio of 50%. Marker size indicates actual KV cache size in GB.

Figure 5: Memory footprint of Expected Attention with different compression ratios.

ory (Łańcucki et al., 2025). We use the Aime25 (Yamada et al., 2025) and MATH-500 (Lightman et al., 2023) datasets. Aime25 consists of competition-level mathematical problems requiring multi-step reasoning and precise calculation, while MATH-500 encompasses diverse mathematical domains including algebra, geometry, and number theory with varying difficulty levels. During decoding, we allow the KV cache to expand to a predetermined size before initiating token eviction. We use $n\times$ to show that the final cache size is n times smaller than would be without compression.

Results for Aime25 and MATH-500 are presented in Section 4.1 and Table 2, respectively. EA consistently outperforms or matches baseline methods across all models, with particularly strong performance at higher compression ratios ($4\times$ and $16\times$). Most methods demonstrate minimal performance degradation at $2\times$ compression, indicating that a large portion of tokens in reasoning traces contains redundant information that can be pruned without affecting mathematical reasoning performance. Expected Attention shows the best performance especially in high-compression scenarios ($12\times$ compression).

4.3 MEMORY SAVINGS AND EFFICIENCY

We evaluate the memory efficiency of our method using Llama3.1-8B and Qwen3-8B for both pre-filling and decoding phases. All experiments are conducted on a single H100 GPU with bfloat16 precision for both model weights and KV cache. We focus on peak memory usage as the primary efficiency metric, as KV cache memory consumption is often the primary bottleneck for long-context inference.

Figure 5a demonstrates peak memory usage as sequence length increases up to 120k tokens, comparing Expected Attention at 50% and 90% compression ratios against the uncompressed baseline with vanilla attention. The results show that memory savings become increasingly substantial as context length grows.

Figure 5b illustrates the relationship between compression ratio (x-axis) and NIAH benchmark performance for Qwen3-8B, with marker size representing the corresponding KV cache size. While higher compression ratios naturally reduce KV cache size, they typically incur performance penalties. Remarkably, Expected Attention at 50% compression maintains performance parity with the uncompressed baseline while achieving a $2\times$ reduction in KV cache size, demonstrating an optimal balance between memory efficiency and task performance.

4.4 LATENCY

FLOPs Analysis We provide a FLOPs analysis performed following Hoffmann et al. (2022), computing the total FLOPs required for the forward pass of Llama3.1-8B and then the additional FLOPs resulting from the Expected Attention overhead. Results show that the computational overhead

432 Table 3: Latency analysis with Llama3.1-8B for Prefilling, Generation and Total, when performing
 433 decoding on a 128K context with 50% compression. All results in seconds.
 434

Phase	No Compression	EA (50% compression)	Variation (abs)	Variation (%)
Prefilling	15.25 ± 0.02	15.52 ± 0.02	+0.27	+1.74 %
Generation	4.33 ± 0.00	3.22 ± 0.04	-1.11	-25.58 %
Total	19.58 ± 0.03	18.74 ± 0.03	-0.84	-4.30 %

439
 440 accounts for just **0.5%** of the model’s total FLOPs. This confirms that the theoretical increase in
 441 computational cost is negligible, validating the efficiency of our method. The complete methodology
 442 and derivation of these FLOPs are detailed in Appendix F.
 443

444 **Empirical Latency Measurements** To complement the theoretical analysis, we perform latency
 445 measurements using our PyTorch implementation. As summarized in Table 3, we achieve a **25%**
 446 reduction in generation latency due to the smaller cache footprint, which outweighs the $\sim 2\%$ prefill
 447 overhead. This results in a **4.3%** total latency reduction. Note that these measurements serve as an
 448 upper bound, as optimized kernels were not implemented and would further reduce the overhead.
 449

450 5 ABLATION STUDIES

451 **Sensitivity to Future Window T** We investigate the sensitivity of our method to the choice of the
 452 future window size T used for the RoPE matrix approximation. As shown in Table 4a, the minimal
 453 performance drop observed across different models when reducing T from 1024 to 512 or even 256
 454 is justifying the practical choice of $T = 512$ that we used in our experiments.
 455

456 **Adaptive Compression** We conduct an ablation study against a uniform compression baseline
 457 (applying the same ratio to all heads) to assess its importance. The results in Table 4 show a significant
 458 performance drop for the uniform baseline, confirming that the adaptive approach is essential
 459 for retaining model accuracy.
 460

461 **Covariance Term** We investigate the contribution of the covariance term. While its removal
 462 causes a noticeable performance drop ($92.2 \rightarrow 90.6$) for Llama3.1-8B, the effect is minimal for
 463 Qwen3-8B and Gemma3-12B. We conjecture this reduced dependency is due to their QK nor-
 464 malization. This finding is particularly encouraging as it suggests that for models employing QK nor-
 465 malization, we could safely omit the covariance term in future implementations, thereby making the
 466 method even simpler.
 467

468 Table 4: Ablation Study Results on Window Size, Adaptive Compression and Covariance
 469

(a) Window Size T				(b) Adaptive Compression and Covariance		
Model	T=1024	T=512	T=256	Model	EA	w/o Adaptive
Llama3	92.1	92.2	91.9	Llama3	92.2	86.5
Qwen3	94.8	94.7	94.7	Qwen3	94.7	86.6
Gemma3	92.7	92.7	92.7	Gemma3	92.7	88.2

478 6 RELATED WORKS

479 **Trainable KV-Cache Compression** One approach to reducing memory requirements involves
 480 modifying the model architecture or training procedure to inherently produce smaller caches. Ainslie
 481 et al. (2023); Shazeer (2019) reduce cache size by decreasing the number of key-value heads, effec-
 482 tively sharing key-value representations across queries. DeepSeek-V2 (DeepSeek-AI, 2024b) intro-
 483 duced Multi-Head Latent Attention, which projects keys and values into a lower-dimensional latent
 484 space during training, directly reducing the memory footprint of cached representations. Alternative
 485 trainable approaches focus on learning compression policies (Łańcucki et al., 2025; Nawrot et al.,

2024) or masks (Xiao et al., 2024) from pre-trained checkpoints. Finally, State Space Models (Gu et al., 2022; Gu & Dao, 2024) replace the quadratic attention mechanism with linear-complexity alternatives, while hybrid approaches combine transformer layers with RNN-based components (Ren et al., 2025; Glorioso et al., 2024). Although these trainable methods typically achieve superior performance, they require substantial computational resources for pre-training or continued pre-training, making them less practical for deployment with existing large-scale models.

Training-Free KV cache compression Given the computational costs associated with trainable methods, significant research effort has focused on developing post-training compression techniques that can be applied to existing models without modification. Early approaches (Li et al., 2025; Oren et al., 2024) directly utilize attention scores to rank KV pairs by importance. However, these methods require access to the full attention matrix, making them incompatible with Flash Attention (Dao et al., 2022) and thus impractical for modern deployment scenarios. To address this limitation, several works have developed heuristic-based importance measures that can be computed without materializing attention matrices, such as keys norm (KNorm Devoto et al. (2024)), token positions (StreamingLLM Xiao et al. (2023), H2O Zhang et al. (2024)) or SVD projection (Q-Filters Godey et al. (2025)). Recognizing that different attention heads exhibit varying sensitivity to compression, recent methods such as AdaKV (Feng et al., 2024) and PyramidKV (Cai et al., 2025a) adopt head-specific compression strategies. *Expected Attention*, adopts insights from these heuristic approaches while providing a principled theoretical foundation based on the distributional properties of transformer activations.

Quantization Instead of reducing the KV cache size along the sequence dimension, quantization methods try to reduce the precision used to store the cache. For example, NQKV Cai et al. (2025b) partitions the cache into blocks for quantization and processes them separately. KVQuant (Hooper et al., 2024) performs non uniform per-layer quantization, while KIVI (Zirui Liu et al., 2023) quantizes the key cache by layer and the value cache by token. These methods are orthogonal to Expected Attention (and to KV cache compression in general), making it possible to integrate them.

Efficient Implementations Alongside compression, sparse attention and quantization, another effort has been done to devise efficient implementation of inference systems. In this context, a well designed low-level handling of the KV cache can deliver significant performance speed-ups, especially in multi-user serving systems. The first to investigate this and introduce efficient memory management for KV cache was vLLM (Kwon et al., 2023), soon followed by other approaches (Prabhu et al., 2024; Jiang et al., 2024) and frameworks (NVIDIA, 2024).

7 LIMITATIONS

A key trade-off of our training-free methodology is that its performance does not match that of trainable methods (DeepSeek-AI, 2024a; Łaniczki et al., 2025). This is an intentional design choice that allows deployment without significant computational resources required for intensive training. Future work could explore combining our theoretical framework with lightweight fine-tuning.

Another limitation is that our method requires users to specify compression ratios manually, lacking an automated mechanism to determine optimal compression levels for different scenarios such as text generation. This represents a promising area for future research.

Finally, while our PyTorch implementation effectively demonstrates our method’s theoretical principles, it is not optimized for efficiency. A highly performant implementation with custom CUDA kernels would significantly improve speed and practical utility.

8 CONCLUSION

We introduced Expected Attention, a training-free algorithm for KV cache compression. We showed Expected Attention outperforms state-of-art KV cache compression methods on several benchmarks and in both prefilling and decoding scenarios. Additionally, we released a research library that allows researchers to easily implement and experiment with KV cache compression methods, and evaluate them on popular benchmarks for long context.

540 9 REPRODUCIBILITY STATEMENT
541542 To ensure the reproducibility of our work, we are providing a complete and self-contained codebase
543 along with this submission. The provided code includes all necessary scripts for data preprocessing
544 and evaluation, allowing for the direct replication of our experiments and results. For now, we share
545 the repo in an [anonymized github repository](#).546 The codebase is organized to be straightforward to use and is accompanied by a `README.md` file
547 with detailed instructions on how to set up the environment and run the experiments.
548549 550 REFERENCES
551552 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
553 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
554 report. *arXiv preprint arXiv:2303.08774*, 2023.555 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
556 Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
557 points. *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023.558 Anthropic. System card: Claude opus 4 & claude sonnet 4. *arxiv*, 2025.559 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
560 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
561 multitask benchmark for long context understanding. *Proceedings of the 62nd Annual Meeting of*
562 *the Association for Computational Linguistics*, 2024.563 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-
564 arena: Evaluating llms on uncontaminated math competitions, February 2025. URL <https://matharena.ai/>.565 Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
566 Junjie Hu, and Wen Xiao. PyramidKV: Dynamic KV cache compression based on pyramidal
567 information funneling. *arXiv*, 2025a.568 Zhihang Cai, Xingjun Zhang, Zhendong Tan, and Zheng Wei. Nqkv: A kv cache quantization
569 scheme based on normal distribution characteristics. *arXiv*, 2025b.570 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. *Inter-
571 national Conference on Learning Representations (ICLR)*, 2024.572 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
573 memory-efficient exact attention with io-awareness. *Advances in Neural Information Processing
574 Systems (NeurIPS)*, 2022.575 Patil Deepak and Elmeleegy Amr. How to scale your model.
576 [https://cloud.google.com/blog/products/compute/ai-inference-recipe-using-nvidia-dynamo-
578 with-ai-hypercomputer](https://cloud.google.com/blog/products/compute/ai-inference-recipe-using-nvidia-dynamo-
577 with-ai-hypercomputer), 2024.579 Amr Elmeleegy Deepak Patil. Fast and efficient ai inference with new nvidia dynamo recipe on ai
580 hypercomputer. <https://jax-ml.github.io/scaling-book/>, 2024.581 DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
582 model. *arXiv*, 2024a.

583 DeepSeek-AI. Deepseek-v3 technical report, 2024b.

584 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
585 2025.586 Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l_2
587 norm-based strategy for kv cache compression. *The 2024 Conference on Empirical Methods in
588 Natural Language Processing*, 2024.

594 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
 595 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
 596 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
 597 Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
 598 Chris Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*,
 599 2021. <https://transformer-circuits.pub/2021/framework/index.html>.

600 Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
 601 eviction by adaptive budget allocation for efficient llm inference. *arXiv*, 2024.

602 Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
 603 sis. *arXiv preprint arXiv:2405.08944*, 2024.

604 Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
 605 you what to discard: Adaptive KV cache compression for LLMs. In *The Twelfth International
 606 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=uNrFpDPMyo>.

607 GeminiTeam. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long con-
 608 text, and next generation agentic capabilities. *arXiv*, 2025.

609 GemmaTeam. Gemma 3. *ArXiV*, 2025. URL <https://goo.gle/Gemma3Report>.

610 Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
 611 Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. *arXiv*, 2024.

612 Nathan Godey, Alessio Devoto, Yu Zhao, Simone Scardapane, Pasquale Minervini, Éric de la Clerg-
 613 erie, and Benoît Sagot. Q-filters: Leveraging qk geometry for efficient kv cache compression.
 614 *arXiv*, 2025.

615 Alekša Gordić. Inside vllm: Anatomy of a high-throughput llm inference system. <https://www.aleksagordic.com/blog/vllmAlekšaGordić>, 2025.

616 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
 617 2312.00752, 2024.

618 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 619 state spaces. *International Conference on Learning Representations*, 2022.

620 Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
 621 importance indicator in KV cache reduction: Value also matters. In Yaser Al-Onaizan, Mohit
 622 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods
 623 in Natural Language Processing*. Association for Computational Linguistics, 2024.

624 Jordan Hoffmann, Sébastien Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 625 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 626 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 627 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 628 Training compute-optimal large language models, 2022. URL <https://arxiv.org/abs/2203.15556>.

629 Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
 630 Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
 631 kv cache quantization. *Advances in Neural Information Processing Systems*, 2024.

632 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
 633 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language
 634 models? *arXiv preprint arXiv:2404.06654*, 2024.

635 Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
 636 formers are better than state space models at copying. *International Conference on Machine
 637 Learning*, 2024.

648 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 649 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 650 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 651 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. <https://arxiv.org/abs/2310.06825>,
 652 2023.

653 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
 654 Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference
 655 1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In *The Thirty-*
 656 *eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=fPBACAbqSN>.

657

658 Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/gkamradt/LLMTest_NeedleInAHaystack, 2023.

659

660

661 Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, and Hyun Oh Song.
 662 Kvzip: Query-agnostic kv cache compression with context reconstruction, 2025. URL <https://arxiv.org/abs/2505.23416>.

663

664 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 665 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 666 serving with pagedattention. *Proceedings of the 29th Symposium on Operating Systems Princi-*
 667 *ples*, 2023.

668

669 Haoyang LI, Yiming Li, Anxin Tian, Tianhao Tang, Zhanhao Xu, Xuejia Chen, Nicole HU, Wei
 670 Dong, Li Qing, and Lei Chen. A survey on large language model acceleration based on KV cache
 671 management. *Transactions on Machine Learning Research*, 2025.

672

673 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
 674 Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
 675 generation. *Proceedings of the 38th International Conference on Neural Information Processing*
 676 *Systems*, 2025.

677

678 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 679 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 arXiv:2305.20050, 2023.

680

681 James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
 682 free activation sparsity in large language models, 2025.

683

684 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 685 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of*
 686 *the Association for Computational Linguistics*, 2024. URL <https://aclanthology.org/2024.tacl-1.9/>.

687

688 William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
 689 *International Conference on Machine Learning*, 2024.

690

691 MetaAI. Introducing llama 4: Advancing multimodal intelligence. *arXiv*, 2024.

692

693 MetaAI. The llama 3 herd of models. *arXiv*, 2025.

694

695 Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
 Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art mathe-
 696 matical reasoning models with openmathreasoning dataset. *arXiv*, 2025.

697

698 Timur Mudarisov, Mikhail Burtsev, Tatiana Petrova, and Radu State. Limitations of normalization
 699 in attention mechanism. *arXiv:2508.17821*, 2025.

700

701 Piotr Nawrot, Adrian Łaćucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dy-
 702 namic memory compression: retrofitting llms for accelerated inference. *Proceedings of the 41st*
 703 *International Conference on Machine Learning*, 2024.

704

NVIDIA. TensorRT-LLM. <https://github.com/NVIDIA/TensorRT-LLM>, 2024.

702 OpenAI. Learning to reason with large language models. <https://openai.com/index/learning-to-reason-with-llms/>, 2024.

703

704

705 OpenAI. Introducing deep research. <https://openai.com/index/introducing-deep-research/>, 2025.

706

707 Matan Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
708 state rnns. *arXiv*, 2024.

709

710 Junyoung Park, Dalton Jones, Matthew J Morse, Raghav Goel, Mingu Lee, and Chris Lott. Keydiff:
711 Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
712 environments. *arXiv*, 2025.

713 Adam Paszke, Sam Gross, Francisco Massa, Gal Lerer, James Bradbury, Gregory Chillemi, Luca
714 Antiga, Alban Desmaison, Andreas Tejani, Soumith Chilamkurthy, et al. Pytorch: An imperative
715 style, high-performance deep learning library. *arXiv*, 2019.

716 PerplexityAI. Perplexity deep research. <https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research>, 2025.

717

718 Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vatten-
719 tion: Dynamic memory management for serving llms without pagedattention. *arXiv*, 2024.

720

721 Liliang Ren, Congcong Chen, Haoran Xu, Young Jin Kim, Adam Atkinson, Zheng Zhan, Jiankai
722 Sun, Baolin Peng, Liyuan Liu, Shuohang Wang, Hao Cheng, Jianfeng Gao, Weizhu Chen, and
723 Yelong Shen. Decoder-hybrid-decoder architecture for efficient reasoning with long generation.
724 *arXiv*, 2025.

725 Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv*, 2019.

726

727 Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review
728 on methods to optimize llm's kv-cache consumption. *First Conference on Language Modeling
(COLM)*, 2024.

729

730 StepFun, :, Bin Wang, Bojun Wang, Changyi Wan, Guanzhe Huang, Hanpeng Hu, Haonan Jia,
731 Hao Nie, Mingliang Li, Nuo Chen, Siyu Chen, Song Yuan, Wuxun Xie, Xiaoniu Song, Xing
732 Chen, Xingping Yang, Xuelin Zhang, Yanbo Yu, Yaoyu Wang, Yibo Zhu, Yimin Jiang, Yu Zhou,
733 Yuanwei Lu, Houyi Li, Jingcheng Hu, Ka Man Lo, Ailin Huang, Binxing Jiao, Bo Li, Boyu Chen,
734 Changxin Miao, Chang Lou, Chen Hu, Chen Xu, Chenfeng Yu, Chengyuan Yao, Daokuan Lv,
735 Dapeng Shi, Deshan Sun, Ding Huang, Dingyuan Hu, Dongqing Pang, Enle Liu, Fajie Zhang,
736 Fanqi Wan, Gulin Yan, Han Zhang, Han Zhou, Hanghao Wu, Hangyu Guo, Hanqi Chen, Hanshan
737 Zhang, Hao Wu, Haocheng Zhang, Haolong Yan, Haoran Lv, Haoran Wei, Hebin Zhou, Heng
738 Wang, Heng Wang, Hongxin Li, Hongyu Zhou, Hongyuan Wang, Huiyong Guo, Jia Wang, Jiahao
739 Gong, Jialing Xie, Jian Zhou, Jianjian Sun, Jiaoren Wu, Jiaran Zhang, Jiayu Liu, Jie Cheng,
740 Jie Luo, Jie Yan, Jieyi Hou, Jinguang Zhang, Jinlan Cao, Jisheng Yin, Junfeng Liu,
741 Junhao Huang, Junzhe Lin, Kaijun Tan, Kaixiang Li, Kang An, Kangheng Lin, Kenkun Liu, Lei
742 Yang, Liang Zhao, Liangyu Chen, Lieyu Shi, Liguo Tan, Lin Lin, Lin Zhang, Lina Chen, Liwen
743 Huang, Liying Shi, Longlong Gu, Mei Chen, Mengqiang Ren, Ming Li, Mingzhe Chen, Na Wang,
744 Nan Wu, Qi Han, Qian Zhao, Qiang Zhang, Qianni Liu, Qiaohui Chen, Qiling Wu, Qinglin He,
745 Qinyuan Tan, Qiufeng Wang, Qiuping Wu, Qiuyan Liang, Quan Sun, Rui Li, Ruihang Miao,
746 Ruosi Wan, Ruyan Guo, Shangwu Zhong, Shaoliang Pang, Shengjie Fan, Shijie Shang, Shilei
747 Jiang, Shiliang Yang, Shiming Hao, Shuli Gao, Siming Huang, Siqi Liu, Tiancheng Cao, Tianhao
748 Cheng, Tianhao Peng, Wang You, Wei Ji, Wen Sun, Wenjin Deng, Wenqing He, Wenzhen Zheng,
749 Xi Chen, Xiangwen Kong, Xianzhen Luo, Xiaobo Yang, Xiaojia Liu, Xiaoxiao Ren, Xin Han,
750 Xin Li, Xin Wu, Xu Zhao, Yanan Wei, Yang Li, Yangguang Li, Yangshijie Xu, Yamming Xu,
751 Yaqiang Shi, Yeqing Shen, Yi Yang, Yifei Yang, Yifeng Gong, Yihan Chen, Yijing Yang, Yinmin
752 Zhang, Yizhuang Zhou, Yuanhao Ding, Yuantao Fan, Yuanzhen Yang, Yuchu Luo, Yue Peng,
753 Yufan Lu, Yuhang Deng, Yuhe Yin, Yujie Liu, Yukun Chen, Yuling Zhao, Yun Mou, Yunlong
754 Li, Yunzhou Ju, Yusheng Li, Yuxiang Yang, Yuxiang Zhang, Yuyang Chen, Zejia Weng, Zhe
755 Xie, Zheng Ge, Zheng Gong, Zhenyi Lu, Zhewei Huang, Zhichao Chang, Zhiguo Huang, Zhirui
Wang, Zidong Yang, Zili Wang, Ziqi Wang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-
Yeung Shum, and Xiangyu Zhang. Step-3 is large yet affordable: Model-system co-design for
cost-effective decoding, 2025. URL <https://arxiv.org/abs/2507.19427>.

756 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 757 hanced transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

759 Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
 760 models. *arXiv preprint arXiv:2402.17762*, 2024.

762 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 763 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Proceedings of the 31st Inter-
 764 national Conference on Neural Information Processing Systems*, 2017.

765 Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
 766 long video understanding via large language models. In *European Conference on Computer
 767 Vision*, pp. 453–470. Springer, 2024.

769 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 770 language models with attention sinks. *International Conference on Learning Representations*, 2023.

771 Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
 772 and Song Han. Duoattention: Efficient long-context lilm inference with retrieval and streaming
 773 heads. *International Conference on Learning Representation*, 2024.

775 Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
 776 and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
 777 search, 2025. URL <https://arxiv.org/abs/2504.08066>.

778 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 779 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 780 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 781 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 782 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 783 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 784 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 785 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 786 Qiu. Qwen3 technical report. *arXiv*, 2025.

787 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 788 Yuandong Tian, Christopher Ré, and Clark Barrett. H2o: Heavy-hitter oracle for efficient gener-
 789 ative inference of large language models. *Advances in Neural Information Processing Systems*,
 790 2024.

791 Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
 792 Chen, and Xia Hu. Kivi : Plug-and-play 2bit kv cache quantization with streaming asymmetric
 793 quantization. *ICML*, 2023.

795 Adrian Łaniczki, Konrad Staniszewski, Piotr Nawrot, and Edoardo M. Ponti. Inference-time hyper-
 796 scaling with kv cache compression. *arXiv*, 2025.

797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

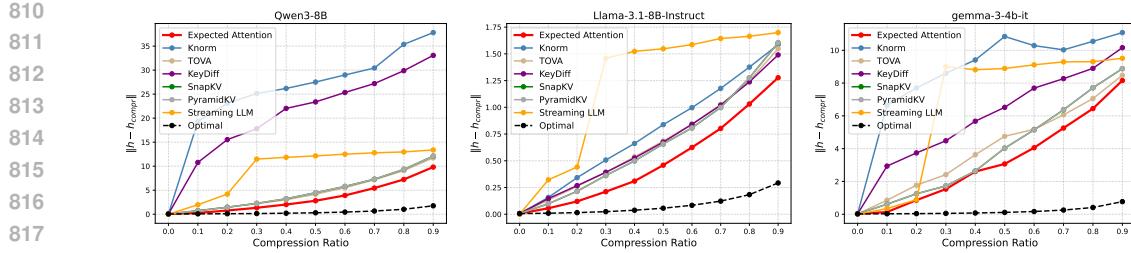


Figure 6: Reconstruction error $\|h - h_{\text{compr}}\|$ averaged across model layers. Expected Attention achieves the best error, minimizing the impact on the residual stream.

A RECONSTRUCTION ERROR ACROSS METHODS

In Section 2, we discussed the challenge of compressing the KV cache without significantly altering the residual stream. To understand the impact of Expected Attention on the model output, we quantify the reconstruction error of the residual stream, i.e. how the difference between the original, uncompressed hidden states and the corresponding hidden states after compression. We define the reconstruction error as $\|h - h_{\text{compr}}\|$, where h is the original hidden state without compression and h_{compr} the hidden state after the KV cache has been compressed. We average the reconstruction error over a long sequence of $\sim 5K$ tokens and display the results for several methods in Figure 6. Expected Attention consistently achieves a lower reconstruction error, indicating that it preserves the integrity of the hidden state more effectively than competing methods, a crucial property for maintaining downstream performance (Mudarisov et al., 2025; Gordić, 2025).

B DISTRIBUTIONAL PROPERTIES OF LLM ACTIVATIONS

In this section, we analyse the distributional properties of activations within Large Language Models. Our investigation aligns with the findings of prior work, which has demonstrated that LLM activations often exhibit normal distributions. More specifically Liu et al. (2025) finds that hidden states are zero-mean unimodal, and qualitatively fall into two distinctly shaped distributions. The hidden states before the Attention and the MLP layers tend to be Gaussian-like, while the hidden states in the intermediate of such layers tend to be Laplacian-like.

For Expected Attention, we are interested in the hidden states before the MLP layers and the corresponding queries. Our study confirms that such activations are predominantly unimodal and can be approximated as Gaussian distributions, albeit with the presence of a few heavy-tailed outliers, as already found in Xiao et al. (2023); Sun et al. (2024). **Importantly, EA does not require strict Gaussianity, the essential property is unimodality.** In Figure 9a, Figure 8a, and Figure 7a we show hidden states and queries for different models. For our method, the distributional properties of queries are of particular importance, and we observe that queries maintain a clear Gaussian-like behaviour. This also applies to models with QK normalization, where the query projection is not guaranteed to be linear. The concentration of these activations around a central value and their Gaussian like shape provides the theoretical basis for Expected Attention.

We stress that in this work, our goal is not to explain or investigate this property, but rather to leverage it for KV cache compression.

C EXPECTED ATTENTION SCORE

To empirically validate that the expected attention score is strongly correlated to the real model attention score, we plot the correlation between the observed attention and the expected attention score across different layers and heads. We use sequence of 5K tokens and use the first 1K tokens to compute the query statistics. We display the results in Figure 10. We see that for different layers and attention heads, the expected attention score from Equation 4 is strongly correlated to the original attention score.

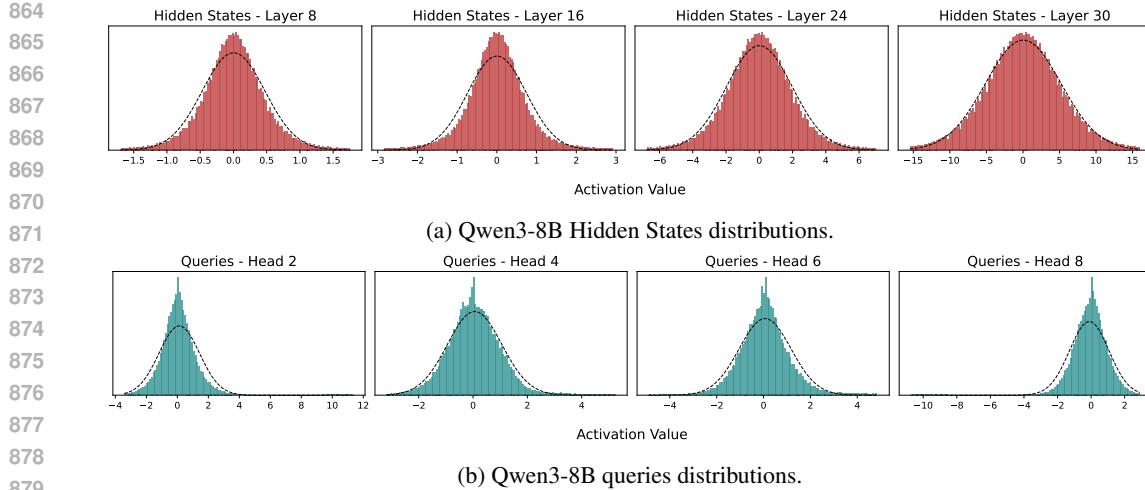


Figure 7: Distributions of Qwen3-8B Hidden States and queries.

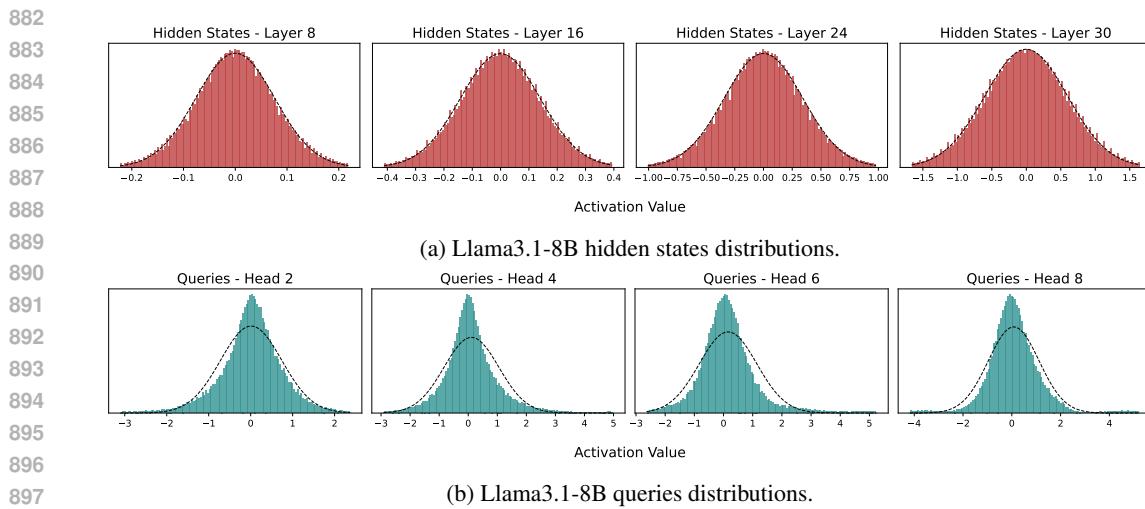


Figure 8: Distributions of Llama3.1-8B hidden states and queries.

D CONTRIBUTION OF NORM OF THE VALUES

We perform an additional ablation study on the impact of using the norm of values to contribute to the Expected Attention score. The results, summarized in Table 5, clearly demonstrate the substantial importance of incorporating the norm of values into the score calculation. Across all tested models, removing the value norm contribution leads to a drastic reduction in performance, confirming that the magnitude of the value vectors plays a critical role in determining the overall attention outcome. This ablation strongly confirms the findings presented in [Guo et al. \(2024\)](#).

Table 5: Ablation results showing the performance comparison on Ruler 4K of the Expected Attention (EA) method with and without the contribution of the Value Norm.

Model	EA	w/o Value Norm
Llama3.1-8B	92.2	77.7
Qwen3-8B	94.7	48.9
Gemma3-12B	92.7	44.9

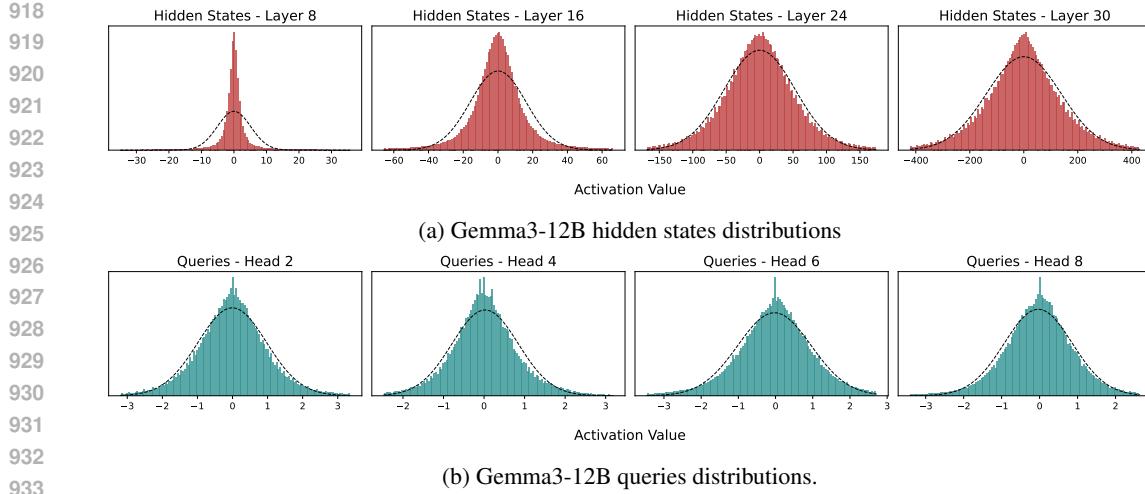
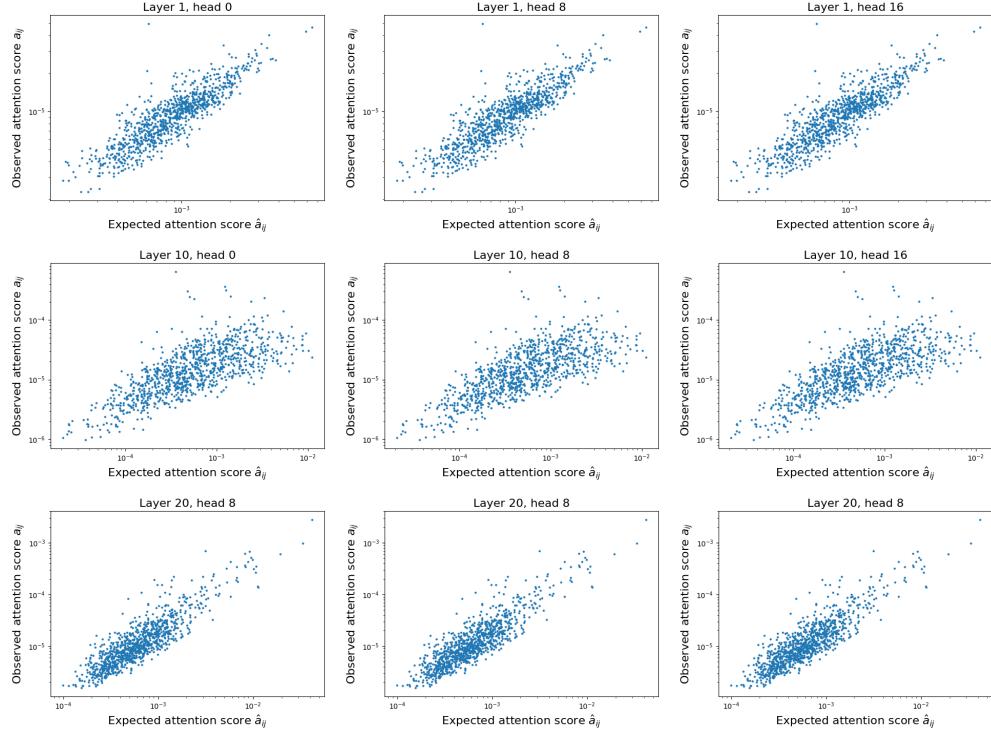


Figure 9: Distributions of Gemma3-12B hidden states and queries.



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 6: Expected Attention outperforms most baselines on Longbench (Bai et al., 2024). We show average score with increasing compression ratios across baselines.

Model	Method	Longbench					
		0 %	10 %	25 %	50 %	75 %	90 %
<i>Qwen3-8B</i>	Expected Attention	48.63	48.30	50.25	50.1	48.06	39.71
	TOVA	48.63	48.41	48.14	46.49	43.19	37.21
	SnapKV	48.63	48.40	47.85	46.25	42.42	34.57
	KeyDiff	48.63	48.13	46.23	40.08	29.42	20.69
<i>Gemma3-12B</i>	Expected Attention	51.04	54.02	50.98	47.51	40.41	32.67
	TOVA	51.04	53.05	51.52	50.7	46.88	40.45
	SnapKV	51.04	51.83	51.31	48.14	44.31	34.97
	KeyDiff	51.04	51.64	48.74	42.15	33.68	23.46
<i>Llama3.1-8B</i>	Expected Attention	46.42	46.59	46.8	47.91	44.04	33.97
	TOVA	46.42	46.22	45.62	44.13	40.5	34.77
	SnapKV	46.42	46.56	46.07	45.07	41.24	32.55
	KeyDiff	46.42	46.45	48.01	46.9	42.24	35.51

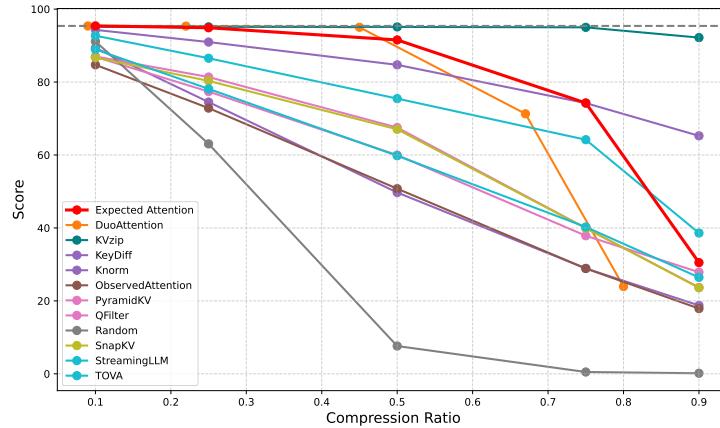


Figure 11: Initial experiments on Ruler 4K to select the best baselines. We did not use KVZip as it requires two forward passes and increases latency significantly.

thereby enhancing performance. However, at higher compression ratios (50%, 75%, and 90%), the attention-based method TOVA maintains superior scores compared to Expected Attention (EA) and other baselines.

Ruler In order to select the most competitive baselines we performed an initial search on 15+ methods on Ruler. We selected the best performing ones as displayed in Figure 11. We did not include KVZip (Kim et al., 2025) despite achieving a high score as it needs two forward passes, therefore implying a higher cost FLOPs that is double as much as the other baselines.

1026
1027

F FLOPs CALCULATION

1028
1029
1030
1031

We follow Hoffmann et al. (2022) and include all inference FLOPs, including those contributed to by the embedding matrices, in our analysis. Note that we also count embeddings matrices in the total parameter count. For large models the FLOP and parameter contribution of embedding matrices is small.

1032
1033

For the forward pass, we consider contributions from:

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

- Embeddings
 - $2 \times \text{seq_len} \times \text{vocab_size} \times \text{d_model}$
- Attention (Single Layer)
 - **Key, query and value projections:** $2 \times 3 \times \text{seq_len} \times \text{d_model} \times (\text{key_size} \times \text{num_heads})$
 - **Key @ Query logits:** $2 \times \text{seq_len} \times \text{seq_len} \times (\text{key_size} \times \text{num_heads})$
 - **Softmax:** $3 \times \text{num_heads} \times \text{seq_len} \times \text{seq_len}$
 - **Softmax @ query reductions:** $2 \times \text{seq_len} \times \text{seq_len} \times (\text{key_size} \times \text{num_heads})$
 - **Final Linear:** $2 \times \text{seq_len} \times (\text{key_size} \times \text{num_heads}) \times \text{d_model}$
- Dense Block (Single Layer)
 - $2 \times \text{seq_len} \times (\text{d_model} \times \text{ffw_size} + \text{d_model} \times \text{ffw_size})$
- Final Logits
 - $2 \times \text{seq_len} \times \text{d_model} \times \text{vocab_size}$
- **Total forward pass FLOPs:** $\text{embeddings} + \text{num_layers} \times (\text{total_attention} + \text{dense_block}) + \text{logits}$

G DERIVATION FOR EXPECTED ATTENTION SCORE

1052
1053

The equality in Equation eq. (7) is derived by applying the formula for the expected value of the exponential of a Gaussian random variable.

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

- The term in the exponent, $X = \frac{\mathbf{q}^T \mathbf{k}_i}{\sqrt{d}}$, is a Gaussian random variable, $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$.
- The mean of X is $\mu_X = \mathbb{E}[X] = \frac{\bar{\mu}_q^T \mathbf{k}_i}{\sqrt{d}}$.
- The variance of X is $\sigma_X^2 = \text{Var}(X) = \frac{\mathbf{k}_i^T \Sigma_q \mathbf{k}_i}{d}$.

The expectation $\mathbb{E}[\exp(X)]$ is then computed using the Moment-Generating Function (MGF) $M_X(t) = \mathbb{E}[e^{tX}]$ of a Gaussian distribution, evaluated at $t = 1$. Since $M_X(t) = \exp(\mu_X t + \frac{1}{2} \sigma_X^2 t^2)$, setting $t = 1$ yields the identity:

1066
1067
1068
1069
1070

$$\mathbb{E}[\exp(X)] = \exp\left(\mu_X + \frac{\sigma_X^2}{2}\right)$$

Substituting μ_X and σ_X^2 recovers Equation eq. (7).

1071
1072

H DETAILED RESULTS ON RULER

1073
1074

I LLM USAGE STATEMENT

1075
1076
1077
1078
1079

We used LLMs to polish the text and refine the language.

Table 7: Common Word Extraction

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	98.9	98.9	98.5	96.1	44.9	12.6	82.8	85.2	86.8	87.8	84.4	35.2
	TOVA[51]	98.9	98.7	96.4	84.2	51.8	15.4	82.8	83.7	83.5	77.5	57.8	20.2
	SnapKV[38]	98.9	98.9	99.0	98.5	92.6	49.2	82.8	83.4	82.6	78.2	58.7	19.2
	KeyDiff[52]	98.9	98.0	97.1	90.7	66.2	6.9	82.8	84.3	85.2	86.4	82.8	64.7
<i>Gemma3-12B</i>	EA (Ours)	95.0	95.0	95.3	97.8	94.8	65.7	89.8	87.1	86.6	87.1	78.1	23.2
	TOVA[51]	95.0	94.9	94.8	94.8	90.7	53.8	89.8	89.8	89.9	90.5	89.5	78.1
	SnapKV[38]	95.0	95.8	96.5	96.3	94.8	81.1	89.8	90.0	90.0	90.3	88.6	73.8
	KeyDiff[52]	95.0	95.3	95.5	84.6	35.2	9.1	89.8	89.2	87.7	84.5	42.5	12.1
<i>Llama3.1-8B</i>	EA (Ours)	99.6	99.7	99.6	99.4	92.7	51.8	89.5	89.2	86.9	81.9	28.6	2.2
	TOVA[51]	99.6	99.3	97.2	85.0	52.8	23.9	89.5	89.1	90.1	91.3	85.8	60.5
	SnapKV[38]	99.6	99.7	99.5	97.4	84.4	38.9	89.5	88.1	85.5	71.7	17.8	0.3
	KeyDiff[52]	99.6	99.5	99.1	94.3	56.9	10.7	89.5	89.4	88.9	87.2	71.1	25.8

Table 8: Frequent Words Extraction

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	95.3	95.3	95.5	96.1	91.4	56.4	93.9	93.4	93.4	92.9	92.1	87.1
	TOVA[51]	95.3	94.8	93.0	89.8	81.1	59.4	93.9	94.4	95.5	96.5	97.6	97.0
	SnapKV[38]	95.3	96.1	95.4	93.8	88.3	77.4	93.9	94.3	94.7	95.2	93.9	91.4
	KeyDiff[52]	95.3	93.7	91.3	85.1	68.4	36.9	93.9	94.8	94.9	94.5	88.8	65.9
<i>Gemma3-12B</i>	EA (Ours)	97.3	97.3	97.3	97.1	91.8	69.7	98.6	98.0	97.8	97.2	94.5	86.4
	TOVA[51]	97.3	97.4	97.0	94.4	85.8	64.8	98.6	98.7	98.9	98.7	97.9	93.3
	SnapKV[38]	97.3	97.5	97.3	97.1	93.7	86.2	98.6	99.0	99.1	98.8	98.0	96.0
	KeyDiff[52]	97.3	97.2	96.2	90.5	78.2	57.0	98.6	98.7	97.1	94.0	87.6	62.9
<i>Llama3.1-8B</i>	EA (Ours)	94.8	94.8	94.5	96.0	91.5	52.3	90.1	90.0	89.8	88.1	84.0	28.7
	TOVA[51]	94.8	93.5	90.7	84.0	70.5	30.6	90.1	90.5	90.8	90.7	87.9	76.2
	SnapKV[38]	94.8	94.8	94.2	89.8	85.6	61.0	90.1	90.5	91.5	88.4	77.0	62.1
	KeyDiff[52]	94.8	94.9	94.7	92.9	85.8	70.1	90.1	89.9	89.3	88.9	87.5	84.3

Table 9: NIAH Multikey 1

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	90.8	66.2	25.4	0.2	0.0	99.6	99.8	99.2	98.8	98.2	83.8
	TOVA[51]	100.0	100.0	100.0	100.0	94.8	28.2	99.6	99.6	99.6	99.6	99.4	86.2
	SnapKV[38]	100.0	98.0	84.6	39.6	19.2	12.0	99.6	99.4	97.4	68.4	24.6	12.6
	KeyDiff[52]	100.0	98.6	97.0	94.8	79.0	52.2	99.6	96.4	87.0	82.4	70.6	52.4
<i>Gemma3-12B</i>	EA (Ours)	99.6	100.0	99.8	98.8	85.2	50.8	90.4	86.2	83.8	79.2	57.4	30.6
	TOVA[51]	99.6	99.8	99.6	97.8	64.0	9.8	90.4	89.4	88.0	71.0	35.0	8.2
	SnapKV[38]	99.6	82.2	60.2	27.2	15.4	10.8	90.4	78.8	57.6	25.6	12.2	10.4
	KeyDiff[52]	99.6	99.2	99.2	97.4	81.8	38.8	90.4	79.8	78.0	76.2	60.8	34.2
<i>Llama3.1-8B</i>	EA (Ours)	99.8	99.8	99.6	94.8	61.2	10.2	99.8	100.0	100.0	99.6	95.6	15.6
	TOVA[51]	99.8	99.8	99.8	99.8	98.2	64.8	99.8	99.6	99.6	99.6	99.6	94.6
	SnapKV[38]	99.8	99.8	98.8	99.8	34.4	99.4	99.8	99.4	99.6	95.2	52.4	17.4
	KeyDiff[52]	99.8	99.8	100.0	100.0	100.0	97.6	99.8	99.6	99.6	99.4	99.6	99.4

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

Table 10: **NIAH Multikey 2**

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	100.0	97.6	47.8	6.8	0.2	100.0	100.0	99.6	99.6	96.8	21.8
	TOVA[51]	100.0	69.0	30.4	6.6	1.4	0.2	100.0	76.2	35.6	9.4	1.0	0.4
	SnapKV[38]	100.0	92.2	75.2	30.6	9.8	2.8	100.0	93.2	74.8	33.8	7.8	1.4
	KeyDiff[52]	100.0	99.0	89.8	55.0	13.0	1.2	100.0	87.4	73.4	32.0	3.8	0.2
<i>Gemma3-12B</i>	EA (Ours)	98.8	98.6	98.8	95.6	71.4	4.6	55.4	53.6	53.2	41.6	15.8	3.2
	TOVA[51]	98.8	60.2	10.4	1.0	0.0	0.0	55.4	30.8	8.6	1.4	0.0	0.0
	SnapKV[38]	98.8	97.6	89.0	51.8	14.2	3.4	55.4	55.0	44.0	21.6	5.4	1.6
	KeyDiff[52]	98.8	96.6	93.0	64.0	13.4	1.0	55.4	46.4	40.0	24.6	6.0	1.0
<i>Llama3.1-8B</i>	EA (Ours)	100.0	100.0	99.6	88.2	30.8	2.2	100.0	100.0	99.6	95.8	66.0	2.8
	TOVA[51]	100.0	96.0	72.8	33.2	7.0	2.6	100.0	90.4	67.4	28.4	8.8	1.8
	SnapKV[38]	100.0	100.0	84.2	99.4	17.2	84.4	100.0	96.6	80.8	45.0	18.2	3.8
	KeyDiff[52]	100.0	99.8	98.8	88.8	30.0	2.8	100.0	100.0	98.0	76.0	27.2	3.0

1150

1151

1152

1153

1154

1155

1156

Table 11: **NIAH Multikey 3**

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	87.2	47.2	9.8	0.2	0.0	99.6	99.8	99.8	99.0	45.4	0.0
	TOVA[51]	100.0	50.4	12.2	0.4	0.0	0.0	99.6	63.8	24.4	4.0	0.6	0.0
	SnapKV[38]	100.0	87.8	58.4	20.0	1.6	0.0	99.6	88.8	59.6	18.0	3.8	1.0
	KeyDiff[52]	100.0	92.8	67.8	18.6	2.0	0.0	99.6	82.8	50.2	14.2	0.6	0.0
<i>Gemma3-12B</i>	EA (Ours)	99.8	99.6	99.2	86.8	11.8	0.0	61.6	45.8	41.4	25.0	8.8	0.0
	TOVA[51]	99.8	65.8	8.8	0.0	0.0	0.0	61.6	26.8	8.8	0.6	0.0	0.0
	SnapKV[38]	99.8	93.2	68.2	28.8	2.4	0.0	61.6	56.2	41.2	9.6	2.0	0.6
	KeyDiff[52]	99.8	92.0	68.2	7.2	0.0	0.0	61.6	32.4	21.4	10.6	0.0	0.0
<i>Llama3.1-8B</i>	EA (Ours)	99.8	100.0	99.8	27.0	0.2	0.0	99.2	99.2	99.0	54.6	10.8	0.0
	TOVA[51]	99.8	74.6	33.4	2.6	0.0	0.0	99.2	77.2	39.2	8.2	1.0	0.4
	SnapKV[38]	99.8	99.8	55.2	84.0	1.6	0.0	99.2	86.6	60.2	18.2	3.6	1.0
	KeyDiff[52]	99.8	87.2	53.2	11.0	0.0	0.0	99.2	82.8	43.2	6.8	0.0	0.0

1168

1169

1170

1171

1172

1173

1174

Table 12: **NIAH Multiquery**

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	99.9	93.7	76.4	25.4	0.1	0.0	100.0	100.0	99.8	99.6	99.6	94.1
	TOVA[51]	99.9	99.9	99.9	100.0	96.7	21.4	100.0	100.0	100.0	99.9	100.0	85.0
	SnapKV[38]	99.9	99.3	88.4	40.9	16.9	10.8	100.0	100.0	97.1	67.7	20.6	10.7
	KeyDiff[52]	99.9	100.0	99.8	99.2	92.7	65.3	100.0	99.8	98.6	97.8	94.3	79.5
<i>Gemma3-12B</i>	EA (Ours)	100.0	100.0	99.9	99.8	88.7	63.0	99.2	99.1	98.8	98.5	83.2	41.0
	TOVA[51]	100.0	100.0	100.0	98.3	60.0	1.6	99.2	98.8	95.8	81.0	36.1	6.2
	SnapKV[38]	100.0	86.2	56.5	20.6	11.3	9.9	99.2	88.3	63.5	23.1	11.2	10.3
	KeyDiff[52]	100.0	100.0	100.0	99.3	89.2	42.1	99.2	99.2	99.2	98.9	91.5	58.0
<i>Llama3.1-8B</i>	EA (Ours)	99.9	98.5	99.8	80.8	44.1	4.6	99.0	99.0	99.0	99.0	97.0	13.3
	TOVA[51]	99.9	99.9	99.9	99.9	97.5	50.8	99.0	99.0	99.1	99.3	99.3	94.7
	SnapKV[38]	99.9	99.9	95.7	99.9	26.6	92.0	99.0	99.0	98.7	84.0	34.9	13.6
	KeyDiff[52]	99.9	99.9	99.9	100.0	99.8	98.9	99.0	99.0	99.1	99.2	99.5	99.4

1186

1187

1188

1189

1190

1191

1192

1193

Table 13: **NIAH Multivalue**

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	98.0	83.7	30.3	0.3	0.0	99.6	99.5	99.6	99.5	99.2	93.9
	TOVA[51]	100.0	100.0	100.0	99.9	96.9	22.2	99.6	99.5	99.6	99.7	99.1	82.7
	SnapKV[38]	100.0	99.0	89.0	39.6	12.7	10.0	99.6	99.6	96.5	64.2	17.1	9.8
	KeyDiff[52]	100.0	100.0	100.0	99.8	94.2	57.6	99.6	99.3	98.6	98.8	97.6	78.7
<i>Gemma3-12B</i>	EA (Ours)	99.7	99.5	98.5	95.3	86.4	68.1	95.5	89.0	84.5	74.2	65.5	39.4
	TOVA[51]	99.7	99.7	99.7	98.6	56.5	1.6	95.5	95.2	91.0	72.2	27.4	4.3
	SnapKV[38]	99.7	80.5	43.9	16.8	10.6	9.7	95.5	79.1	45.4	13.4	10.1	9.8
	KeyDiff[52]	99.7	99.8	99.8	98.5	87.7	35.3	95.5	95.5	95.2	94.7	89.0	53.6
<i>Llama3.1-8B</i>	EA (Ours)	99.9	98.0	99.7	86.1	47.2	4.8	98.9	98.7	98.5	97.6	81.1	14.8
	TOVA[51]	99.9	99.9	99.8	99.7	96.9	51.3	98.9	99.2	99.0	99.0	99.0	92.7
	SnapKV[38]	99.9	99.8	90.1	99.3	25.3	51.3	98.9	98.8	96.2	79.8	30.1	12.7
	KeyDiff[52]	99.9	99.8	99.9	99.8	99.0	96.2	98.9	99.2	99.0	99.1	98.8	98.7

1204

1205

1206

1207

1208

1209

Table 14: **NIAH Single 1**

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	100.0	100.0	97.6	22.8	0.0	100.0	100.0	100.0	100.0	100.0	99.8
	TOVA[51]	100.0	100.0	100.0	100.0	80.8	17.4	100.0	100.0	100.0	100.0	100.0	65.2
	SnapKV[38]	100.0	92.8	88.2	74.6	39.2	5.2	100.0	100.0	100.0	98.6	93.0	70.6
	KeyDiff[52]	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
<i>Gemma3-12B</i>	EA (Ours)	100.0	100.0	100.0	100.0	100.0	99.6	100.0	100.0	100.0	100.0	100.0	100.0
	TOVA[51]	100.0	100.0	100.0	99.8	98.2	36.8	100.0	100.0	100.0	100.0	100.0	84.8
	SnapKV[38]	100.0	99.6	99.2	98.6	94.0	72.6	100.0	100.0	100.0	99.6	96.4	85.6
	KeyDiff[52]	100.0	100.0	100.0	100.0	99.8	81.6	100.0	100.0	100.0	100.0	100.0	100.0
<i>Llama3.1-8B</i>	EA (Ours)	100.0	99.8	100.0	97.6	95.6	93.8	100.0	100.0	100.0	100.0	100.0	99.4
	TOVA[51]	100.0	100.0	100.0	100.0	100.0	89.8	100.0	100.0	100.0	100.0	100.0	99.6
	SnapKV[38]	100.0	100.0	99.4	100.0	77.2	100.0	100.0	99.8	100.0	99.6	94.2	82.4
	KeyDiff[52]	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

1222

1223

1224

1225

1226

1227

Table 15: **NIAH Single 2**

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	99.6	92.0	31.8	2.4	0.2	100.0	100.0	100.0	100.0	99.8	96.0
	TOVA[51]	100.0	100.0	100.0	100.0	100.0	81.8	100.0	100.0	100.0	100.0	100.0	99.4
	SnapKV[38]	100.0	100.0	99.8	70.6	14.8	5.4	100.0	100.0	99.8	95.0	58.8	9.6
	KeyDiff[52]	100.0	100.0	100.0	99.8	92.8	54.8	100.0	100.0	100.0	100.0	97.0	69.6
<i>Gemma3-12B</i>	EA (Ours)	100.0	100.0	100.0	100.0	99.8	78.0	100.0	100.0	100.0	100.0	98.2	77.8
	TOVA[51]	100.0	100.0	100.0	100.0	98.6	63.4	100.0	100.0	98.2	89.8	52.0	10.8
	SnapKV[38]	100.0	95.2	87.0	60.2	20.4	5.0	100.0	90.8	71.4	41.4	11.6	2.6
	KeyDiff[52]	100.0	100.0	100.0	99.4	81.0	26.0	100.0	100.0	99.6	97.8	64.2	15.8
<i>Llama3.1-8B</i>	EA (Ours)	100.0	100.0	99.8	94.2	78.2	38.6	100.0	100.0	100.0	100.0	99.6	21.8
	TOVA[51]	100.0	100.0	100.0	100.0	99.8	97.4	100.0	100.0	100.0	100.0	100.0	99.6
	SnapKV[38]	100.0	100.0	99.8	100.0	55.4	97.2	100.0	100.0	100.0	96.8	80.6	35.6
	KeyDiff[52]	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

1240

1241

Table 16: NIAH Single 3

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	43.8	4.2	0.0	0.0	0.0	99.8	100.0	100.0	100.0	89.6	28.8
	TOVA[51]	100.0	100.0	100.0	97.8	15.2	0.0	99.8	99.8	99.8	99.8	64.0	2.8
	SnapKV[38]	100.0	99.8	84.2	14.4	5.2	2.4	99.8	87.0	45.4	8.8	2.4	2.4
	KeyDiff[52]	100.0	99.8	99.8	99.0	92.8	66.0	99.8	99.8	99.8	99.0	95.6	78.4
<i>Gemma3-12B</i>	EA (Ours)	100.0	100.0	100.0	99.2	81.2	24.6	100.0	100.0	100.0	94.8	29.8	12.2
	TOVA[51]	100.0	100.0	100.0	84.0	10.8	0.0	100.0	80.8	42.4	5.4	2.4	2.0
	SnapKV[38]	100.0	5.4	2.8	2.4	2.4	2.4	100.0	5.6	2.8	2.4	2.4	2.4
	KeyDiff[52]	100.0	100.0	99.6	99.8	91.6	48.0	100.0	100.0	100.0	100.0	96.0	45.6
<i>Llama3.1-8B</i>	EA (Ours)	100.0	64.6	99.6	4.0	0.2	0.0	100.0	100.0	100.0	77.4	10.2	0.0
	TOVA[51]	100.0	99.8	95.4	52.2	4.6	0.2	100.0	100.0	99.2	83.4	29.0	2.6
	SnapKV[38]	100.0	99.0	11.2	36.8	2.4	2.4	100.0	74.6	35.8	14.4	3.2	2.4
	KeyDiff[52]	100.0	99.8	100.0	100.0	100.0	99.8	100.0	100.0	100.0	100.0	100.0	100.0

Table 17: Question Answering 1

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	81.6	81.0	79.6	71.6	58.4	41.2	74.8	74.4	75.8	71.8	58.6	39.6
	TOVA[51]	81.6	81.6	80.4	75.6	55.8	33.6	74.8	74.0	68.8	54.2	36.6	27.4
	SnapKV[38]	81.6	79.8	78.0	69.0	54.6	38.8	74.8	70.0	60.2	44.4	33.0	26.6
	KeyDiff[52]	81.6	80.8	73.6	51.6	24.4	8.8	74.8	60.4	47.6	32.2	19.8	8.2
<i>Gemma3-12B</i>	EA (Ours)	87.4	88.0	85.8	80.0	65.0	45.4	76.6	71.2	69.6	59.8	37.2	22.4
	TOVA[51]	87.4	87.4	85.0	72.0	51.6	34.4	76.6	75.4	73.2	58.8	36.0	22.0
	SnapKV[38]	87.4	86.4	82.6	70.6	51.0	32.4	76.6	71.8	60.2	43.2	26.2	16.8
	KeyDiff[52]	87.4	87.2	74.8	58.2	29.4	13.0	76.6	73.0	60.6	33.6	12.2	5.0
<i>Llama3.1-8B</i>	EA (Ours)	87.8	87.2	85.4	81.0	66.2	41.4	81.2	81.0	78.8	70.6	51.2	26.8
	TOVA[51]	87.8	87.8	86.8	80.2	56.4	27.0	81.2	81.2	80.0	64.8	41.6	24.2
	SnapKV[38]	87.8	87.6	83.2	88.0	56.2	81.8	81.2	78.0	68.4	51.6	33.0	19.4
	KeyDiff[52]	87.8	87.2	84.2	75.0	45.0	21.8	81.2	80.6	76.6	64.8	45.4	24.6

Table 18: Question Answering 2

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	63.4	62.6	62.4	58.8	50.6	35.6	58.8	58.4	58.2	55.6	48.8	35.4
	TOVA[51]	63.4	63.0	60.0	54.6	40.2	26.6	58.8	57.2	55.4	49.4	38.6	27.0
	SnapKV[38]	63.4	61.6	58.2	51.4	41.8	27.4	58.8	55.6	52.0	45.4	33.2	26.6
	KeyDiff[52]	63.4	56.4	46.0	27.8	13.4	10.6	58.8	51.0	43.0	31.0	18.6	12.8
<i>Gemma3-12B</i>	EA (Ours)	61.0	60.0	59.4	55.2	42.8	33.8	54.8	52.0	52.2	47.0	33.6	26.4
	TOVA[51]	61.0	60.8	59.0	54.0	45.6	35.2	54.8	54.6	52.8	47.0	37.6	30.4
	SnapKV[38]	61.0	59.4	55.4	52.4	43.6	31.0	54.8	54.6	49.8	42.8	32.6	24.8
	KeyDiff[52]	61.0	59.0	51.8	39.0	21.4	14.4	54.8	53.2	47.2	33.0	19.2	12.2
<i>Llama3.1-8B</i>	EA (Ours)	62.8	62.6	61.2	58.6	50.2	42.2	57.0	57.8	55.2	54.4	43.0	29.4
	TOVA[51]	62.8	61.4	59.8	54.2	42.8	28.2	57.0	55.6	54.8	48.6	36.8	28.4
	SnapKV[38]	62.8	62.0	58.6	62.0	37.6	59.6	57.0	54.0	54.4	45.2	34.4	28.8
	KeyDiff[52]	62.8	63.4	61.0	49.4	31.6	18.2	57.0	56.8	55.2	52.8	45.6	34.2

1296

1297

1298

1299

1300

1301

1302

1303

Table 19: Variable Tracking

1304

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	100.0	100.0	99.9	87.3	14.0	0.7	100.0	100.0	100.0	100.0	100.0	99.9
	TOVA[51]	100.0	100.0	100.0	100.0	96.3	15.4	100.0	100.0	100.0	100.0	100.0	88.5
	SnapKV[38]	100.0	98.8	94.2	81.2	33.2	8.6	100.0	99.9	99.6	99.0	94.7	66.4
	KeyDiff[52]	100.0	100.0	100.0	100.0	98.9	32.9	100.0	100.0	100.0	100.0	100.0	79.9
<i>Gemma3-12B</i>	EA (Ours)	99.7	99.7	99.6	99.4	98.3	93.8	96.4	94.0	93.8	90.9	84.0	80.3
	TOVA[51]	99.7	99.6	99.7	99.6	93.4	27.7	96.4	96.4	96.6	96.2	94.3	84.9
	SnapKV[38]	99.7	99.0	97.8	89.2	70.2	46.2	96.4	93.5	91.6	90.8	87.8	74.1
	KeyDiff[52]	99.7	99.6	99.6	99.6	97.6	80.0	96.4	96.6	96.2	95.3	93.3	82.6
<i>Llama3.1-8B</i>	EA (Ours)	99.9	99.8	99.8	88.2	66.6	35.6	99.8	99.7	99.5	99.5	96.2	76.3
	TOVA[51]	99.9	99.9	99.9	99.9	96.6	20.4	99.8	99.8	99.8	99.8	99.8	94.1
	SnapKV[38]	99.9	99.6	93.4	97.7	59.8	53.7	99.8	96.2	95.2	93.4	81.4	53.4
	KeyDiff[52]	99.9	99.9	99.9	99.9	99.6	77.6	99.8	99.8	99.7	99.6	98.7	94.6

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

Table 20: Average

1332

Model	Method	Ruler 4k						Ruler 16k					
		0%	10%	25%	50%	75%	90%	0%	10%	25%	50%	75%	90%
<i>Qwen3-8B</i>	EA (Ours)	95.3	88.5	77.2	52.2	22.5	11.3	93.0	93.1	93.2	92.7	85.6	62.7
	TOVA[51]	95.3	89.0	82.5	77.6	62.4	24.7	93.0	88.3	81.7	76.2	68.7	52.4
	SnapKV[38]	95.3	92.6	84.0	55.7	33.1	19.2	93.0	90.1	81.5	62.8	41.7	26.8
	KeyDiff[52]	95.3	93.8	89.4	78.6	64.4	37.9	93.0	88.9	82.9	74.5	66.9	53.1
<i>Gemma3-12B</i>	EA (Ours)	95.2	95.2	94.9	92.7	78.2	53.6	86.0	82.8	81.7	76.6	60.5	41.8
	TOVA[51]	95.2	89.7	81.1	76.5	58.1	25.3	86.0	79.7	72.6	62.5	46.8	32.7
	SnapKV[38]	95.2	82.9	72.0	54.8	40.3	30.1	86.0	74.1	62.8	46.4	37.3	31.4
	KeyDiff[52]	95.2	94.3	90.6	79.8	62.0	34.3	86.0	81.8	78.6	72.6	58.6	37.2
<i>Llama3.1-8B</i>	EA (Ours)	95.7	92.7	95.3	76.6	55.7	29.0	93.4	93.4	92.8	86.0	66.4	25.5
	TOVA[51]	95.7	93.2	87.3	76.2	63.3	37.5	93.4	90.9	86.1	77.9	68.4	59.2
	SnapKV[38]	95.7	95.5	81.8	88.8	43.4	63.2	93.4	89.4	82.0	68.0	43.1	25.6
	KeyDiff[52]	95.7	94.7	91.6	85.5	72.9	61.1	93.4	92.1	88.4	82.6	74.9	66.5

1344

1345

1346

1347

1348

1349