Under review as a conference paper at ICLR 2026

EXPECTED ATTENTION:
KV CACHE COMPRESSION BY ESTIMATING ATTENTION
FROM FUTURE QUERIES DISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory consumption of the Key-Value (KV) cache represents a major bottleneck
for efficient large language model (LLM) inference. While attention-score-based
KV cache pruning shows promise, it faces critical practical limitations: atten-
tion scores from future tokens are unavailable during compression, and modern
implementations do not materialize the full attention matrix, making past scores
inaccessible. To overcome these challenges, we introduce Expected Attention,
a training-free compression method that estimates Key-Value (KV) pairs impor-
tance by predicting how future queries will attend to them. Leveraging the distri-
butional properties of LLM activations, we compute expected attention scores in
closed form for each KV pair. These scores enable ranking and pruning of KV
pairs with minimal impact on the residual stream, achieving high compression
without performance degradation. Importantly, our method operates seamlessly
across both prefilling and decoding phases, consistently outperforming state-of-
the-art baselines in both scenarios. Finally, we release a comprehensive research
library for KV cache compression, designed to enable researchers to implement
and benchmark novel methods, in addition to building upon our own.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Anthropic, 2025; MetaAl, 2024; Yang et al.,
2025) have revolutionized text generation and reasoning, enabling advanced applications such as
long multi-round dialogues, extensive multimodal intelligence (Yang et al., 2025; Weng et al., 2024),
and agentic workflows that ingest massive amounts of data (OpenAl, 2024; PerplexityAl, 2025;
Yamada et al., 2025). These applications often require processing extensive contextual information.
For example, processing a large codebase or a short video can easily involve analyzing hundreds of
thousands of tokens. A critical issue in deploying LLMs in such scenarios is the prohibitive memory
consumption of the Key-Value (KV) cache (Fu, 2024; Shi et al., 2024; LI et al., 2025).

During autoregressive generation, the KV cache stores key and value vectors for every processed
token, enabling efficient attention computation. However, its memory footprint grows linearly with
sequence length, quickly becoming the primary bottleneck for long-context inference. A medium-
sized 70B model (MetaAl, 2025) requires approximately 320 GB of GPU memory for a one-million-
token KV cache, far exceeding most GPU capacities. This challenge intensifies with emerging appli-
cations where advanced reasoning models generate thousands of intermediate tokens (DeepSeek-Al,
2024b; Yang et al., 2025) and agentic systems load massive datasets (OpenAl, 2025; PerplexityAl,
2025). While current LLMs promise extended context lengths up to a million tokens (GeminiTeam,
2025; MetaAl, 2024), hardware constraints saturate GPU memory well before reaching theoretical
limits.

State Space Models offer a solution by reducing memory costs (Gu et al., 2022; Gu & Dao, 2024),
yet their inferior performance compared to transformers, especially on long context tasks, limits
adoption (Jelassi et al., 2024; Merrill et al., 2024). Other architectural changes limited to the atten-
tion mechanism, such as multi-head latent attention (DeepSeek-Al, 2024a) or sliding window atten-
tion (Jiang et al., 2023; GemmaTeam, 2025), reduce KV cache size but do not remove the attention
bottleneck and are orthogonal to KV cache compression methods. Additionally, such methods need

Under review as a conference paper at ICLR 2026

to be implemented at training time, limiting their application to pre-trained modern LLMs. This
creates demand for training-free KV cache compression methods that preserve transformer architec-
tures while mitigating memory growth.

KV cache compression exploits semantic redundancy in natural language: not all tokens equally
influence future predictions, and many provide negligible information once their contextual role
is fulfilled. This property allows to compress the KV cache by removing some of the key and
values stored in it. However, determining which tokens can be safely removed is far from trivial,
as any Key-Value (KV) pair’s importance depends on how future queries will attend to it. Existing
approaches use heuristics like discarding oldest tokens (Ge et al., 2024; Xiao et al., 2023) or leverage
attention scores from past queries (Zhang et al., 2024; Li et al., 2025; Oren et al., 2024), but these
strategies are limited for real-world scenarios, and often require accessing attention scores which are
not materialized in modern transformer implementations (Dao et al., 2022).

Instead of relying on heuristics or local attention metrics, we argue that a KV pair’s significance is
best measured by its global effect on the transformer’s output. We quantify this effect by isolating
each KV pair’s contribution within the residual stream, capturing its influence on the model output.
This raises the challenge of estimating how future queries will attend to each token in the context,
which requires accessing attention scores from the past and from future tokens, that are not available
at the time of compression. To address this, we introduce Expected Attention, which estimates
future attention allocation leveraging the distribution of future queries. Expected Attention estimates
the importance that each token in the context has for queries that have not been generated and
accordingly prunes the KV cache up to 60% while preserving performance quality, requiring no
architectural modifications or additional training. We release our code as a comprehensive library
benchmarking over 20 state-of-the-art compression methods.

To summarize, our contributions are the following:

* We analyse the distributional properties of LLM activations through the lenses of KV cache
compression and introduce the concept of Expected Attention to estimate the importance
that current tokens will have in the future.

* We introduce a KV cache compression method that leverages Expected Attention and evicts
irrelevant KV pairs for efficient inference.

* We release all our code as a library, designed for researchers, that allows to easily imple-
ment, test and benchmark KV cache compression methods.

2 EXPECTED ATTENTION

2.1 KEY-VALUE CACHE IN AUTOREGRESSIVE TRANSFORMERS

We consider decoder-only language models based on the transformer architecture (Vaswani et al.,
2017), representing the vast majority of modern LLMs. When an input sequence of tokens x =
[€1, X2, ..., 2] is fed to the model, each token x; is transformed into a hidden state representation
h; € R" and processed by a stack of transformer layers, including feed forward networks and multi-
head attention blocks. For brevity and clarity, we focus our analysis on a single layer and attention

Hidden States - Layer 16 Hidden States - Layer 20 Queries - Head 4 Queries - Head 8

-0.4 -03 -02 -0.1 0.0 01 02 03 04 -06 =04 -02 0.0 . . X 2 3 -4 -3 -2 -1 0 1 2 3

Activation Value Activation Value

Figure 1: Hidden states from layer 16 and 20 and corresponding queries for layer 20 in Llama3.1-8B.
Hidden states in modern LLMs are mostly normally distributed. As a consequence, query activations
also follow a Normal. The best Gaussian fit is overlayed. We show more examples and discuss this
property in Appendix B.

Under review as a conference paper at ICLR 2026

head, noting that the following analysis naturally extends to multi-head attention, grouped query
attention (GQA, Ainslie et al. 2023) and all their variants.

Let h; € R" denote the hidden state at position i in the sequence. In the attention block, the
corresponding Query, Key and Value projections are computed as:

g = RiWoh;, ki=RWgh;, v;=Wyh, (D

where d is the attention head dimension, R; € R4*? is the Rotary Position Embedding (RoPE, Su
et al. 2023) matrix at position i, and W, Wi, Wy € R"*4 are respectively the learnable projection
matrices for query, key, and value in R?. During autoregressive inference, keys and values vectors
are stored in the KV cache to avoid recomputing them in future generation steps. The resulting KV
cache is a collection of Key-Value pairs (k;,v;) from all inference steps in the sequence, leading
to significant computational savings but increasing memory requirements, growing linearly with
sequence length.

At generation step t, the attention mechanism computes the attention score between the current
query ¢; and each previously cached key k; for i < t:

Tl . t
Sy exp (%) 2 =17t

where ay; is the normalized attention score between query at position ¢ and key at position ¢, and

T
Zti = exp (qi/a) represents the unnormalized attention score.

The attention score is used to weight and sum over all values previously stored in the KV cache. The
resulting output is then added to the hidden state h;:

t t
W™ =hy + Y aiWovi = hy + Y Ahy 3)
=1 =1

where h; € R" and h9" € R” represent the hidden state before and after the attention update re-
spectively, and W, € R?*" is the learnable output projection matrix. The hidden states embedding
h; represents the “residual stream,” (Elhage et al., 2021) updated via vector additions by each trans-
former block. The value Ah;; = ay; W,v; isolates the specific residual addition of the i-th KV pair
at step t. This decomposition reveals that each cached KV pair (k;, v;) contributes a residual update
Ahy; to the final output, and provides a natural measure of the importance of each KV pair:

[AR|| = awl|Woui)

where || - || denotes the L2 norm. This metric captures both the attention weight a;; (how much
the query attends to the i-th key) and the transformed value magnitude ||[W,v;|| (the impact of the
i-th value on the output). Equation 4 provides the optimal measure for estimating the importance of
each KV pair in the model output. If we could compute this score for all cached KV pairs, we could
selectively prune the cache by removing pairs with the lowest impact on the residual stream, thereby
minimizing performance degradation. However, computing Equation 4 presents significant practical
challenges. While ||W,v;|| is readily available at inference time, the attention weight a;; depends
on future queries that have not yet been generated. Specifically, we cannot know the attention
scores from future tokens ¢t + 1,¢ + 2, ... before computing them, making it impossible to predict
which KV pairs will be important for upcoming generation steps. Furthermore, modern transformer
implementations utilize Flash Attention (Dao et al., 2022; Dao, 2024), which computes attention
scores on-the-fly without materializing the complete attention matrix, preventing access to even past
attention scores. To address these fundamental limitations, we leverage the properties of activations
in modern LLMs, and introduce Expected Attention.

2.2 EXPECTED ATTENTION: ESTIMATING ATTENTION FROM FUTURE QUERIES

Distributional properties of LLM activations To approximate the unnormalized attention score
z;j, we leverage the findings of Liu et al. (2025), showing that hidden states in modern LLMs
h ~ N(u,Y). While we show an example of this property

Under review as a conference paper at ICLR 2026

in Figure 1, we also extensively validate it across multiple model architectures in Appendix B.
Given this distributional assumption, queries also inherit unimodal properties through the linear
transformation in Equation 1 ¢ = R;Wqhy, Liu et al.
2025):

@ ~N(pg,,Sq,), where g, = RiWou, X4, = RWoSWEHR] 5)

where 1 € R? and ¥ € R9*? are the mean and covariance of the hidden state distribution, and
R; € R%*4 i the RoPE matrix at position ¢.

To create a single, tractable representation of attention over a future interval, we approximate the
positional embeddings by averaging the RoPE matrix over the next 7' positions. This gives us a
position-averaged query distribution:

G~ N(jig,5q), where fig = RWqpu, ,=RWoSWSRT (6)
where R = % ZJ.TZI Ry ; represents the averaged RoPE matrix over 1" future positions.

def compress(queries, keys, values, compression_ratio) :
Compute query statistics
mean_query, cov_query = compute_ statistics(queries)
Compute unnormalized attention scores (z_1)
scores = matmul (mean_query, keys.T) / math.sqgrt (d)
scores += einsum("i, 17, J—>", keys, cov_query, keys) / (2 % d)
Normalize scores and weight by value norms
scores = softmax(scores, dim=—1) * values.norm(dim=—1)
Keep KV pairs with highest scores
n_kept = int (keys.size(0) * (1 — compression ratio))
indices = scores.topk(n_kept, dim=1).indices
return keys[indices], values[indices]

Listing 1: Pytorch-like pseudo code for KV Cache compression with Expected Attention.

Expected Attention Score With this query distribution, we can now analytically compute the
expected unnormalized attention score in Equation 2. For a query g ~ N (fiq, ¥4) in our interval T’
and a fixed key k;, the expected unnormalized score for that key is:

~T Tk TS
~ q kz Mq kl kz‘ Eq kz

i = Eqonn, s 2] = i S 7
%= BN (g B,) {GXP(NG ﬂ P\ A 2d @
where the second equality follows from the moment-generating function of a Gaussian distribution.

We then define the expected attention score by applying the softmax on our unnormalized expecta-
tion:

2

Tt 2
> j=17%j

With this approximation, we can now estimate the importance of each cached KV pair. We define the

expected contribution magnitude by substituting our expected attention weight into the contribution
score formula from Equation 4:

®)

>
S,

AR = (@ + €) | Wous | ©)

where G; is the expected attention weight from Equation 8, |[W,v;|| € R is the magnitude of the
transformed value vector, and € is a small hyperparameter. This metric provides a tractable approxi-
mation to the true contribution score without requiring future queries.

Compression with Expected Attention Equation 9 captures the contribution of each KV pair
to the transformer output. The Expected Attention compression algorithm scores all cached KV
pairs according to Equation 9 and evicts the r% pairs with the lowest expected contributions, where
r € [0,1] is the compression ratio. Intuitively, this is equivalent to removing those KV pairs that
have the smallest impact on the residual stream and therefore on the model output. We provide
pseudo-code for our compression algorithm in Listing 1.

Under review as a conference paper at ICLR 2026

—— Expected Attention TOVA —— SnapkV —— KeyDiff No compression
w0 2Wikimqga Gov Report Hotpotga Multi News Multifieldqa
\ 60 » 60
25 40
15 40
30 20- 30
20 10
0.1 05 0.9 0.1 0.5 0.9 0.1 05 0.9 0.1 05 0.9 ZD0] 0.5 0.9
Passage Retrieval Qasper Qmsum Repobch-P Vcsum
100 e
0 \ 2 <]
80 §
60 30 2 0 1
40 20
20 55
20 o _. 10
o1 05 05 o1 o5 09 o1 05 05 o1 05 05 o1 05 09
w© 2Wikimqga Gov Report Hotpotga Multi News Multifieldqa
30- 60 60
50 50 2 50
40 » 40 20 40
30 30
30 20 18-
20 20
0.1 05 0.9 0.1 0.5 0.9 0.1 05 0.9 0.1 05 0.9 0.1 0.5 0.9
Passage Retrieval Qasper Qmsum Repobch-P Vcsum
1
100 a0 23l — i
- \ » ” “
60 30
\ 21 50 13
40 20 20
20 19 40 12
1 0.5 0.

©
°
°
°
©
°
°
°
°
°
o
©

Compression Ratio

Figure 2: Scores on LongBench (Bai et al., 2024) for Qwen3-8B (top) and Gemma3-12B (bottom).
The x-axis represents the compression ratio, the y-axis the score for each specific dataset. The
horizontal line represents the baseline performance without cache compression. Expected Attention
achieves optimal trade-off between compression ratio and scores across most datasets (Additional
and averaged results in Appendix E).

Head-Adaptive Compression Previous work has shown that different attention heads serve dif-
ferent roles in the model. We adopt adaptive per-layer compression (Feng et al., 2024) to account
for this heterogeneity, allowing more important heads to retain more KV pairs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Prefilling vs Decoding Generation LLM inference comprises two phases with distinct computa-
tional characteristics. The prefilling phase processes the entire input prompt in parallel, computing
key-value projections for the KV cache, a compute-bound operation requiring substantial floating-
point operations. The decoding phase sequentially generates tokens using the KV cache and previ-
ous logits, appending new key-value pairs iteratively (Deepak & Amr, 2024; Gordi¢, 2025). This
dichotomy has motivated disaggregated architectures that implement prefill and decoding on dif-
ferent hardware (Deepak Patil, 2024; StepFun et al., 2025), at the cost of transferring the cache,
further incentivising compression. An effective compression method must perform well in both
prefilling and decoding (Deepak & Amr, 2024; Gordi¢, 2025). Nevertheless, a number of recent
methods often target a single phase: SnapKV (Li et al., 2025) for prefilling via query attention
scores, Streamingl.LM (Xiao et al., 2023) and KNorm (Devoto et al., 2024) for streaming decoding.
Expected Attention is designed considering these two aspects of LLM inference and addresses both
scenarios efficiently. We present results for prefilling and decoding in Section 4.1 and Section 4.2
respectively.

Models and Datasets For prefilling (one-shot compression before generation), we test three model
families supporting long contexts: Llama3.1-8B (128k) (MetaAl, 2025), Qwen3-8B (32k) (Yang
et al., 2025), and Gemma3-12B (128k) (GemmaTeam, 2025), all instruction-tuned. For decoding
(compression during generation), we analyse reasoning models that generate extensive intermedi-
ate reasoning tokens and therefore large KV caches: Qwen-1.5B-R1, Qwen-7B-R1 (DeepSeek-Al,
2025), and OpenMath-Nemotron-14B (Moshkov et al., 2025).

Under review as a conference paper at ICLR 2026

Table 1: Expected Attention outperforms most baselines on Ruler (Hsieh et al., 2024) with 4K and
16K context length. We show average score with increasing compression ratios across baselines.
Best results for each compression ratio are displayed in bold. The 0% column indicates the baseline
without compression.

Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%
EA (ours) 95.3 953 95.0 94.7 88.3 654 929 93.1 93.2 92.7 856 62.7
Owen3-B TOVA[51] 95.3 &89.0 82,5 77.6 624 24.7 92,9 88.3 81.7 76.2 68.7 524
SnapKV[38] 95.3 92.6 84.0 55.7 33.1 19.2 92.9 90.1 81.5 62.8 41.7 26.8
KeyDiff[52] 95.3 93.8 894 78.6 64.4 379 92,9 88.9 829 745 669 53.1
EA (ours) 95.2 952 949 927 78.2 53.6 86.0 82.8 81.7 76.6 605 41.8
Gemma3-12B TOVA[51] 95.2 89.7 81.1 76.5 581 25.3 86.0 79.7 726 625 46.8 32.7
SnapKV[38] 95.2 829 72.0 54.8 40.3 30.1 86.0 74.1 62.8 464 373 314
KeyDiff[52] 95.2 94.3 90.6 79.8 62.0 34.3 86.0 81.8 786 726 58.6 37.2
EA (ours) 95.3 95.7 953 92.2 759 30.6 93.4 934 928 86.0 664 25.5
TOVA[51] 95.3 93.2 87.3 76.2 633 37.5 93.4 909 86.1 779 684 59.2
Llama3.1-8B Duo [65] 95.3 95.7 95.7 953 732 24.5 93.4 93.3 93.0 90.1 59.1 12.3
SnapKV[38] 95.3 95.5 88.8 81.8 63.2 434 93.4 89.4 82.0 68.0 43.1 25.6
KeyDiff[52] 95.3 94.7 91.6 855 729 61.1 93.4 92.1 884 826 749 66.5

Our benchmarks include LongBench (Bai et al., 2024), Ruler (Hsieh et al., 2024), and Needle in a
Haystack (Kamradt, 2023; Liu et al., 2024) for prefilling, and Aime25 (Balunovi¢ et al., 2025) and
MATH-500 (Lightman et al., 2023) for decoding.

Baselines Following an initial benchmarking study on Ruler (see Appendix E), we selected and
compare our method against the best-performing baselines for each use case. For prefilling, we
evaluate attention-based approaches like SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024),
embedding-based KeyDiff (Park et al., 2025), and the trainable DuoAttention (Xiao et al., 2024)
when the checkpoint is available. SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024) rank KV
pairs using attention scores from user queries. KeyDiff (Park et al., 2025) employs distance metrics
between key embeddings for selection, making it also suitable for decoding generation. DuoAtten-
tion (Xiao et al., 2024) takes a trainable approach, learning compression masks for each attention
head. For decoding, we focus on methods designed to be compatible with streaming generation:
KNorm (Devoto et al., 2024), StreamingL.LM (Xiao et al., 2023), and KeyDiff (Park et al., 2025).
KNorm (Devoto et al., 2024) uses a simple approach by preserving keys with the lowest Ly norm.
StreamingLLM (Xiao et al., 2023) maintains initial sink tokens throughout generation.

Implementation details We implement Expected Attention in Pytorch (Paszke et al., 2019). For
all benchmarks, we test the models on 8 H100 GPUs, with batch size 1. We make all the code to
reproduce our method and the baselines available online. In all experiments we use , except
for needle in a haystack where use ¢ = 0, and we average the RoPE embeddings over the next
T = 512 positions. For prefilling, we do not assume any question about the context. This simulates
a real world use case and avoids favouring methods like SnapKV that rely on this assumption. For
decoding, we keep a small buffer of hidden states of tokens to compute statistics, and perform
compression every 512 generation steps. In Equation 9 we only use V instead of W, V/, as using W,
led to a minor increase in results at a significantly higher memory cost.

4 EXPERIMENTAL RESULTS

4.1 PREFILLING

LongBench We evaluate on LongBench (Bai et al., 2024), which tests long-context capabilities
across diverse tasks. The benchmark comprises six categories: single and multi-document QA,
summarization, few-shot learning, synthetic tasks, and code completion. As shown in Figure 2 for
Llama3.1-8B and Qwen3-8B (see Appendix E for Gemma3-12B), Expected Attention consistently
achieves optimal compression-performance trade-offs, maintaining higher scores across all com-
pression ratios. This demonstrates effective retention of critical KV pairs even under significant
compression across varied reasoning and generation tasks.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
37
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Streaming LLM

QFilter Duo Attention

P AR 4P AR,

nnnnnnnnnnnn

Figure 3: Needle in the Haystack test for different methods with Llama3.1-8B and 50% compression
ratio.

07— ® Expected Attention @ Knorm o StreamingLLM @ KeyDiff — Table 2: Decoding scores on MATH-500.
Columns indicate the final size of the KV
cache with respect to the original full ver-
sion. Best scores in bold.

Score (AIME 2025)

o Model Method Compression
} 0x | 2x 4x 12x
EA (ours) 047 | 0.47 043 033
- DeepSeek-R1-Distill-Qwen-1.58 Qwen-R1-1.5B KeyDiff[52] 0.47 | 042 040 0.30

KNorm[15] 047 | 041 028 0.11

== DeepSeek-R1-Distill-Qwen-7B

o —— OpenMath-Nemotron-148 Streaming[64] | 0.47 | 045 041 0.31

2038 % o192 16384 EA (ours) 057 | 0.55 053 0.49
Context Length (Tokens) Qwenrigp KeyDIffls2l | 057 [054 048 035

W KNorm[15] | 0.57 | 047 032 0.2

Figure 4: Decoding results on Aime25 dataset, Streaming[64] | 0.57 | 0.54 051 041
different markers represent different models sizes. EA (ours) 0.57 | 055 054 047

- . . KeyDiff[52] | 0.57 | 0.56 051 044
The x-axis is the maximum size that the KV cache Nemowon-14B 1,9 el 10757 | 050 036 014

is allowed to grow to. Streaming[64] | 0.57 | 0.57 0.54 042

Ruler Ruler (Hsieh et al., 2024) measures retrieval, multi-hop tracing, and aggregation abilities
within long contexts through four subsets: NIAH (Needle-in-a-Haystack) for single-fact retrieval,
VT (Variable Tracking) for multi-hop reasoning, CWE (Common Words Extraction) for frequency-
based aggregation, and FWE (Frequent Words Extraction) for statistical pattern recognition. Table 1
shows results at various compression ratios for 4k and 16k windows. EA maintains strong perfor-
mance across all subsets, particularly at higher compression ratios. While KeyDiff performs well
on Llama3.1-8B, it struggles on Gemma3-12B and Qwen3-8B, potentially due to QK normaliza-
tion (GemmaTeam, 2025; Yang et al., 2025). We note that the competitive performance of KeyDiff
is often isolated to the extreme 75-90% compression ratio, a regime that is not the intended operating
point for practical KV cache compression, whose main goal is to keep the downstream performance
as close as possible to the uncompressed baseline. Our Expected Attention-based policy effectively
preserves information necessary for precise retrieval and complex reasoning tasks.

Needle in a Haystack The NIAH test (Kamradt, 2023) embeds specific information (the “nee-
dle”) within lengthy distracting text (the “haystack™) to evaluate retrieval capabilities across varying
context positions and lengths. The test systematically varies both the needle’s position within the
context (needle depth) and the total context length to assess consistent retrieval performance. Fig-
ure 3 visualizes retrieval success across needle positions and context lengths up to 125k tokens.
Expected Attention demonstrates robust performance comparable to DuoAttention and significantly
more stable than other baselines in long contexts, confirming retention of critical information under
compression regardless of needle placement or context size.

4.2 DECODING

We evaluate Expected Attention on reasoning models, Qwen-1.5B-R1, Qwen-7B-R1, and
OpenMath-Nemotron-14B. Reasoning models are particularly suitable for our evaluation as they
generate extensive chain-of-thought outputs, placing significant demands on KV cache mem-

Under review as a conference paper at ICLR 2026

0.9

7.32GB
3 No compression 0.8 14.65GB 10.99 GB

B Expected Attention (50%)
BN Expected Attention (90%)

3.66 GB
0.7 No compression ®

s
S

w
&

312GB 8

Peak Memory Usage (GB)
Cache Size (GB)

4

1.46 GB
0.3 L
2

10000 20000 40000 60000 80000 90000 100000 110000 120000 0.0 0.2 0.4 0.6 08 10
Sequence Length Compression Ratio

(a) Peak memory usage vs sequence length up to (b) Needle in a Haystack score with different com-
120k for Llama3.1-8B, with 50% and 90% compres- pression ratios with Qwen3-8B. Expected Attention
sion ratio. As the context length grows the memory has no accuracy loss with a compression ratio of 50%.
savings become more evident, achieving up to 15GB Marker size indicates actual KV cache size in GB.
less memory for large contexts.

Figure 5: Memory footprint of Expected Attention with different compression ratios.

ory (Lancucki et al., 2025). We use the Aime25 (Yamada et al., 2025) and MATH-500 (Light-
man et al., 2023) datasets. Aime25 consists of competition-level mathematical problems requiring
multi-step reasoning and precise calculation, while MATH-500 encompasses diverse mathematical
domains including algebra, geometry, and number theory with varying difficulty levels. During de-
coding, we allow the KV cache to expand to a predetermined size before initiating token eviction.
We use nx to show that the final cache size is n times smaller than would be without compression.

Results for Aime25 and MATH-500 are presented in Section 4.1 and Table 2, respectively. EA
consistently outperforms or matches baseline methods across all models, with particularly strong
performance at higher compression ratios (4x and 16x). Most methods demonstrate minimal per-
formance degradation at 2x compression, indicating that a large portion of tokens in reasoning
traces contains redundant information that can be pruned without affecting mathematical reason-
ing performance. Expected Attention shows the best performance especially in high-compression
scenarios (12x compression).

4.3 MEMORY SAVINGS AND EFFICIENCY

We evaluate the memory efficiency of our method using Llama3.1-8B and Qwen3-8B for both pre-
filling and decoding phases. All experiments are conducted on a single H100 GPU with bfloat16
precision for both model weights and KV cache. We focus on peak memory usage as the primary ef-
ficiency metric, as KV cache memory consumption is often the primary bottleneck for long-context
inference.

Figure 5a demonstrates peak memory usage as sequence length increases up to 120k tokens, com-
paring Expected Attention at 50% and 90% compression ratios against the uncompressed baseline
with vanilla attention. The results show that memory savings become increasingly substantial as
context length grows.

Figure 5b illustrates the relationship between compression ratio (x-axis) and NIAH benchmark per-
formance for Qwen3-8B, with marker size representing the corresponding KV cache size. While
higher compression ratios naturally reduce KV cache size, they typically incur performance penal-
ties. Remarkably, Expected Attention at 50% compression maintains performance parity with the
uncompressed baseline while achieving a 2 x reduction in KV cache size, demonstrating an optimal
balance between memory efficiency and task performance.

4.4 LATENCY

FLOPs Analysis Hoffmann et al. (2022

Under review as a conference paper at ICLR 2026

Table 3: Latency analysis with Llama3.1-8B for Prefilling, Generation and Total,when performing
decoding on a 128K context with 50% compression. All results in seconds.

Phase No Compression EA (50% compression) Variation (abs) Variation (%)
Prefilling 15.25 +£0.02 15.52 £0.02 +0.27 +1.74 %
Generation 4.33 £+ 0.00 3.22 +0.04 -1.11 -25.58 %
Total 19.58 £0.03 18.74 £ 0.03 -0.84 -4.30 %

accounts for just 0.5% of the model’s total FLOPs. This confirms that the theoretical increase in
computational cost is negligible, validating the efficiency of our method. The complete methodology
and derivation of these FLOPs are detailed in Appendix F.

Empirical Latency Measurements 1o complement the theoretical analysis, we perform latency
measurements using our PyTorch implementation. As summarized in Table 3, we achieve a 25%
reduction in generation latency due to the smaller cache footprint, which outweighs the ~ 2% prefill
overhead. This results in a 4.3% total latency reduction. Note that these measurements serve as an
upper bound, as optimized kernels were not implemented and would further reduce the overhead.

5 ABLATION STUDIES

Sensitivity to Future Window T We investigate the sensitivity of our method to the choice of the
future window size 7" used for the RoPE matrix approximation. As shown in Table 4a, the minimal
performance drop observed across different models when reducing 7" from 1024 to 512 or even 256
is justifying the practical choice of 7' = 512 that we used in our experiments.

Adaptive Compression We conduct an ablation study against a uniform compression baseline
(applying the same ratio to all heads) to assess its importance. The results in Table 4 show a signif-
icant performance drop for the uniform baseline, confirming that the adaptive approach is essential
for retaining model accuracy.

Covariance Term We investigate the contribution of the covariance term. While its removal
causes a noticeable performance drop (92.2 — 90.6) for Llama3.1-8B, the effect is minimal for
Qwen3-8B and Gemma3-12B. We conjecture this reduced dependency is due to their QK normal-
ization. This finding is particularly encouraging as it suggests that for models employing QK nor-
malization, we could safely omit the covariance term in future implementations, thereby making the
method even simpler.

Table 4: Ablation Study Results on Window Size, Adaptive Compression and Covariance

(a) Window Size T' (b) Adaptive Compression and Covariance
Model T=1024 T=512 T=256 T=128 Model EA w/o Adaptive w/o Covariance
Llama3 92.1 922 919 918 Llama3 92.2 86.5 90.6
Qwen3 94.8 947 9477 948 Qwen3d 94.7 86.6 94.7
Gemma3 92.7 927 927 927 Gemma3 92.7 88.2 92.6

6 RELATED WORKS

Trainable KV-Cache Compression One approach to reducing memory requirements involves
modifying the model architecture or training procedure to inherently produce smaller caches. Ainslie
et al. (2023); Shazeer (2019) reduce cache size by decreasing the number of key-value heads, effec-
tively sharing key-value representations across queries. DeepSeek-V2 (DeepSeek-Al, 2024b) intro-
duced Multi-Head Latent Attention, which projects keys and values into a lower-dimensional latent
space during training, directly reducing the memory footprint of cached representations. Alternative
trainable approaches focus on learning compression policies (Laicucki et al., 2025; Nawrot et al.,

Under review as a conference paper at ICLR 2026

2024) or masks (Xiao et al., 2024) from pre-trained checkpoints. Finally, State Space Models (Gu
et al., 2022; Gu & Dao, 2024) replace the quadratic attention mechanism with linear-complexity al-
ternatives, while hybrid approaches combine transformer layers with RNN-based components (Ren
et al., 2025; Glorioso et al., 2024). Although these trainable methods typically achieve superior
performance, they require substantial computational resources for pre-training or continued pre-
training, making them less practical for deployment with existing large-scale models.

Training-Free KV cache compression Given the computational costs associated with trainable
methods, significant research effort has focused on developing post-training compression techniques
that can be applied to existing models without modification. Early approaches (Li et al., 2025; Oren
et al., 2024) directly utilize attention scores to rank KV pairs by importance. However, these meth-
ods require access to the full attention matrix, making them incompatible with Flash Attention (Dao
et al., 2022) and thus impractical for modern deployment scenarios. To address this limitation,
several works have developed heuristic-based importance measures that can be computed without
materializing attention matrices, such as keys norm (KNorm Devoto et al. (2024)), token positions
(StreamingLLLM Xiao et al. (2023), H20 Zhang et al. (2024)) or SVD projection (Q-Filters Godey
et al. (2025)). Recognizing that different attention heads exhibit varying sensitivity to compres-
sion, recent methods such as AdaKV (Feng et al., 2024) and PyramidKV (Cai et al., 2025a) adopt
head-specific compression strategies. Expected Attention, adopts insights from these heuristic ap-
proaches while providing a principled theoretical foundation based on the distributional properties
of transformer activations.

Quantization Instead of reducing the KV cache size along the sequence dimension, quantization
methods try to reduce the precision used to store the cache. For example, NQKV Cai et al. (2025b)
partitions the cache into blocks for quantization and processes them separately. KVQuant (Hooper
et al., 2024) performs non uniform per-layer quantization, while KIVI (Zirui Liu et al., 2023) quan-
tizes the key cache by layer and the value cache by token. These methods are orthogonal to Expected
Attention (and to KV cache compression in general), making it possible to integrate them.

Efficient Implementations Alongside compression, sparse attention and quantization, another ef-
fort has been done to devise efficient implementation of inference systems. In this context, a well de-
signed low-level handling of the KV cache can deliver significant performance speed-ups, especially
in multi-user serving systems. The first to investigate this and introduce efficient memory manage-
ment for KV cache was vLLM (Kwon et al., 2023), soon followed by other approaches (Prabhu
et al., 2024; Jiang et al., 2024) and frameworks (NVIDIA, 2024).

7 LIMITATIONS

A key trade-off of our training-free methodology is that its performance does not match that of
trainable methods (DeepSeek-Al, 2024a; Lancucki et al., 2025). This is an intentional design choice
that allows deployment without significant computational resources required for intensive training.
Future work could explore combining our theoretical framework with lightweight fine-tuning.

Another limitation is that our method requires users to specify compression ratios manually, lacking
an automated mechanism to determine optimal compression levels for different scenarios such as
text generation. This represents a promising area for future research.

Finally, while our PyTorch implementation effectively demonstrates our method’s theoretical prin-
ciples, it is not optimized for efficiency. A highly performant implementation with custom CUDA
kernels would significantly improve speed and practical utility.

8 CONCLUSION

We introduced Expected Attention, a training-free algorithm for KV cache compression. We showed
Expected Attention outperforms state-of-art KV cache compression methods on several benchmarks
and in both prefilling and decoding scenarios. Additionally, we released a research library that allows
researchers to easily implement and experiment with KV cache compression methods, and evaluate
them on popular benchmarks for long context.

10

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we are providing a complete and self-contained codebase
along with this submission. The provided code includes all necessary scripts for data preprocessing
and evaluation, allowing for the direct replication of our experiments and results. For now, we share
the repo in an anonymized github repository.

The codebase is organized to be straightforward to use and is accompanied by a README . md file
with detailed instructions on how to set up the environment and run the experiments.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Anthropic. System card: Claude opus 4 & claude sonnet 4. arxiv, 2025.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics, 2024.

Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovié, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Junjie Hu, and Wen Xiao. PyramidKV: Dynamic KV cache compression based on pyramidal
information funneling. arXiv, 2025a.

Zhihang Cai, Xingjun Zhang, Zhendong Tan, and Zheng Wei. Ngkv: A kv cache quantization
scheme based on normal distribution characteristics. arXiV, 2025b.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. Interna-
tional Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Patii Deepak and Elmeleegy Amr. How to scale your model.
https://cloud.google.com/blog/products/compute/ai-inference-recipe-using-nvidia-dynamo-
with-ai-hypercomputer, 2024.

Amr Elmeleegy Deepak Patil. Fast and efficient ai inference with new nvidia dynamo recipe on ai
hypercomputer. https://jax-ml.github.io/scaling-book/, 2024.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model. arXiv, 2024a.

DeepSeek-Al Deepseek-v3 technical report, 2024b.

DeepSeek-Al Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,
2025.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective /5
norm-based strategy for kv cache compression. The 2024 Conference on Empirical Methods in
Natural Language Processing, 2024.

11

https://anonymous.4open.science/r/kvpress-72CC
https://matharena.ai/
https://matharena.ai/

Under review as a conference paper at ICLR 2026

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
sis. arXiv preprint arXiv:2405.08944, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

GeminiTeam. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long con-
text, and next generation agentic capabilities. arXiv, 2025.

GemmaTeam. Gemma 3. ArXiV, 2025. URL https://goo.gle/Gemma3Report.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv, 2024.

Nathan Godey, Alessio Devoto, Yu Zhao, Simone Scardapane, Pasquale Minervini, Eric de la Clerg-
erie, and Benoit Sagot. Q-filters: Leveraging gk geometry for efficient kv cache compression.
arXiv, 2025.

Aleksa Gordi¢. Inside vllm: Anatomy of a high-throughput llm inference system. https://www.
aleksagordic.com/blog/v1lmAleksaGordi, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
2312.00752, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. International Conference on Learning Represenations, 2022.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in KV cache reduction: Value also matters. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with
kv cache quantization. Advances in Neural Information Processing Systems, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-

formers are better than state space models at copying. International Conference on Machine
Learning, 2024.

12

https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://goo.gle/Gemma3Report
https://www.aleksagordic.com/blog/vllm Aleksa Gordić
https://www.aleksagordic.com/blog/vllm Aleksa Gordić
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. https://arxiv.org/abs/2310.06825,
2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference
1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=fPBACAbgSN.

Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt /LLMTest_NeedleInAHaystack, 2023.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, and Hyun Oh Song.
Kvzip: Query-agnostic kv cache compression with context reconstruction, 2025. URL https:
//arxiv.org/abs/2505.23416.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. Proceedings of the 29th Symposium on Operating Systems Princi-
ples, 2023.

Haoyang LI, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole HU, Wei
Dong, Li Qing, and Lei Chen. A survey on large language model acceleration based on KV cache
management. Transactions on Machine Learning Research, 2025.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Proceedings of the 38th International Conference on Neural Information Processing
Systems, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models, 2025.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 2024. URL https://aclanthology.org/
2024 .tacl-1.9/.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
International Conference on Machine Learning, 2024.

MetaAl. Introducing llama 4: Advancing multimodal intelligence. arXiv, 2024.
MetaAl. The llama 3 herd of models. arXiv, 2025.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art mathe-
matical reasoning models with openmathreasoning dataset. arXiv, 2025.

Timur Mudarisov, Mikhail Burtsev, Tatiana Petrova, and Radu State. Limitations of normalization
in attention mechanism. arXiv:2508.17821, 2025.

Piotr Nawrot, Adrian Laricucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dy-
namic memory compression: retrofitting llms for accelerated inference. Proceedings of the 41st
International Conference on Machine Learning, 2024.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM, 2024.

13

https://openreview.net/forum?id=fPBACAbqSN
https://openreview.net/forum?id=fPBACAbqSN
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2505.23416
https://arxiv.org/abs/2505.23416
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.tacl-1.9/
https://github.com/NVIDIA/TensorRT-LLM

Under review as a conference paper at ICLR 2026

OpenAl. Learning to reason with large language models. https://openai.com/index/
learning-to-reason-with-11ms/, 2024.

OpenAl Introducing deep research. https://openai.com/index/
introducing—deep-research/, 2025.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv, 2024.

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydift:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. arXiv, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Gal Lerer, James Bradbury, Gregory Chillemi, Luca
Antiga, Alban Desmaison, Andreas Tejani, Soumith Chilamkurthy, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv, 2019.

PerplexityAl. Perplexity deep research. https://www.perplexity.ai/hub/blog/introducing-perplexity-
deep-research, 2025.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vatten-
tion: Dynamic memory management for serving llms without pagedattention. arXiv, 2024.

Liliang Ren, Congcong Chen, Haoran Xu, Young Jin Kim, Adam Atkinson, Zheng Zhan, Jiankai
Sun, Baolin Peng, Liyuan Liu, Shuohang Wang, Hao Cheng, Jianfeng Gao, Weizhu Chen, and
Yelong Shen. Decoder-hybrid-decoder architecture for efficient reasoning with long generation.
arXiv, 2025.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv, 2019.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review
on methods to optimize 1lm’ s kv-cache consumption. First Conference on Language Modeling
(COLM), 2024.

StepFun, :, Bin Wang, Bojun Wang, Changyi Wan, Guanzhe Huang, Hanpeng Hu, Haonan Jia,
Hao Nie, Mingliang Li, Nuo Chen, Siyu Chen, Song Yuan, Wuxun Xie, Xiaoniu Song, Xing
Chen, Xingping Yang, Xuelin Zhang, Yanbo Yu, Yaoyu Wang, Yibo Zhu, Yimin Jiang, Yu Zhou,
Yuanwei Lu, Houyi Li, Jingcheng Hu, Ka Man Lo, Ailin Huang, Binxing Jiao, Bo Li, Boyu Chen,
Changxin Miao, Chang Lou, Chen Hu, Chen Xu, Chenfeng Yu, Chengyuan Yao, Daokuan Lyv,
Dapeng Shi, Deshan Sun, Ding Huang, Dingyuan Hu, Dongqing Pang, Enle Liu, Fajie Zhang,
Fanqi Wan, Gulin Yan, Han Zhang, Han Zhou, Hanghao Wu, Hangyu Guo, Hanqgi Chen, Hanshan
Zhang, Hao Wu, Haocheng Zhang, Haolong Yan, Haoran Lv, Haoran Wei, Hebin Zhou, Heng
Wang, Heng Wang, Hongxin Li, Hongyu Zhou, Hongyuan Wang, Huiyong Guo, Jia Wang, Jiahao
Gong, Jialing Xie, Jian Zhou, Jianjian Sun, Jiaoren Wu, Jiaran Zhang, Jiayu Liu, Jie Cheng,
Jie Luo, Jie Yan, Jie Yang, Jieyi Hou, Jinguang Zhang, Jinlan Cao, Jisheng Yin, Junfeng Liu,
Junhao Huang, Junzhe Lin, Kaijun Tan, Kaixiang Li, Kang An, Kangheng Lin, Kenkun Liu, Lei
Yang, Liang Zhao, Liangyu Chen, Lieyu Shi, Liguo Tan, Lin Lin, Lin Zhang, Lina Chen, Liwen
Huang, Liying Shi, Longlong Gu, Mei Chen, Menggiang Ren, Ming Li, Mingzhe Chen, Na Wang,
Nan Wu, Qi Han, Qian Zhao, Qiang Zhang, Qianni Liu, Qiaohui Chen, Qiling Wu, Qinglin He,
Qinyuan Tan, Qiufeng Wang, Qiuping Wu, Qiuyan Liang, Quan Sun, Rui Li, Ruihang Miao,
Ruosi Wan, Ruyan Guo, Shangwu Zhong, Shaoliang Pang, Shengjie Fan, Shijie Shang, Shilei
Jiang, Shiliang Yang, Shiming Hao, Shuli Gao, Siming Huang, Siqi Liu, Tiancheng Cao, Tianhao
Cheng, Tianhao Peng, Wang You, Wei Ji, Wen Sun, Wenjin Deng, Wenqing He, Wenzhen Zheng,
Xi Chen, Xiangwen Kong, Xianzhen Luo, Xiaobo Yang, Xiaojia Liu, Xiaoxiao Ren, Xin Han,
Xin Li, Xin Wu, Xu Zhao, Yanan Wei, Yang Li, Yangguang Li, Yangshijie Xu, Yanming Xu,
Yagiang Shi, Yeqing Shen, Yi Yang, Yifei Yang, Yifeng Gong, Yihan Chen, Yijing Yang, Yinmin
Zhang, Yizhuang Zhou, Yuanhao Ding, Yuantao Fan, Yuanzhen Yang, Yuchu Luo, Yue Peng,
Yufan Lu, Yuhang Deng, Yuhe Yin, Yujie Liu, Yukun Chen, Yuling Zhao, Yun Mou, Yunlong
Li, Yunzhou Ju, Yusheng Li, Yuxiang Yang, Yuxiang Zhang, Yuyang Chen, Zejia Weng, Zhe
Xie, Zheng Ge, Zheng Gong, Zhenyi Lu, Zhewei Huang, Zhichao Chang, Zhiguo Huang, Zhirui
Wang, Zidong Yang, Zili Wang, Ziqi Wang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-
Yeung Shum, and Xiangyu Zhang. Step-3 is large yet affordable: Model-system co-design for
cost-effective decoding, 2025. URL https://arxiv.org/abs/2507.19427.

14

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://arxiv.org/abs/2507.19427

Under review as a conference paper at ICLR 2026

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, 2017.

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvim: Efficient
long video understanding via large language models. In European Conference on Computer
Vision, pp. 453-470. Springer, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. Internation Conference on Learning Represenations, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context 1lm inference with retrieval and streaming
heads. Internation Conference on Learning Represenation, 2024.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
search, 2025. URL https://arxiv.org/abs/2504.08066.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, and Clark Barrett. H20: Heavy-hitter oracle for efficient gener-
ative inference of large language models. Advances in Neural Information Processing Systems,
2024.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi : Plug-and-play 2bit kv cache quantization with streaming asymmetric
quantization. ICML, 2023.

Adrian Lancucki, Konrad Staniszewski, Piotr Nawrot, and Edoardo M. Ponti. Inference-time hyper-
scaling with kv cache compression. arXiv, 2025.

15

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2504.08066

Under review as a conference paper at ICLR 2026

Qwen3-88 Llama-3.1-8B-Instruct gemma-3-4b-it

—e— Expected Attention
351 —e— Knorm

—— Expected Attention —— Expected Attention
150 —o— Knorm —e— Knorm /
TOVA TOVA TOVA
301 —e— KeyDiff —e— KeyDiff —e— KeyDiff
125
2 —e— SnapKV —e— SnapKV —e— SnapkV.
> Pyramidkyv = Pyramidkv < Pyramidky
E
<

Streaming LLM Streaming LLM Streaming LLM
~e- Optimal - Optimal ~e- Optimal

10
-
025 -
: _/// e .
. PR e GRS Ly . PSP

00 o1 o0z 03 04 05 06 07 08 09 00 01 o0z 03 04 05 06 07 08 09 00 01 o2 03 04 05 06 07 08 09
Compression Ratio Compression Ratio Compression Ratio

I = heomprll
lh = heomprll

Figure 6: Reconstruction error ||A — Acompr||
averaged across model layers. Expected Attention achieves the best error, minimizing the impact
on the residual stream.

A RECONSTRUCTION ERROR ACROSS METHODS

In Section 2, we discussed the challenge of compressing the KV cache without significantly alter-
ing the residual stream. To understand the impact of Expected Attention on the model output, we
quantify the reconstruction error of the residual stream, i.e. how the difference between the original,
uncompressed hidden states and the corresponding hidden states after compression. We define the
reconstruction error as || — heompr||, Where A is the original hidden state without compression and
heompr the hidden state after the KV cache has been compressed. We average the reconstrcution
error over a long sequence of ~ 5K tokens and display the results for several methods in Figure 6.
Expected Attention consistently achieves a lower reconstruction error, indicating that it preserves
the integrity of the hidden state more effectively than competing methods, a crucial property for
maintaining downstream performance (Mudarisov et al., 2025; Gordi¢, 2025).

B DISTRIBUTIONAL PROPERTIES OF LLLM ACTIVATIONS

In this section, we analyse the distributional properties of activations within Large Language Mod-
els. Our investigation aligns with the findings of prior work, which has demonstrated that LLM
activations often exhibit normal distributions. More specifically Liu et al. (2025) finds that hidden
states are zero-mean unimodal, and qualitatively fall into two distinctly shaped distributions. The
hidden states before the Attention and the MLP layers tend to be Gaussian-like, while the hidden
states in the intermediate of such layers tend to be Laplacian-like.

For Expected Attention, we are interested in the hidden states before the MLP layers and the corre-
sponding queries. Our study confirms that such activations are predominantly unimodal and can be
approximated as Gaussian distributions, albeit with the presence of a few heavy-tailed outliers, as
already found in Xiao et al. (2023); Sun et al. (2024).

In Figure 9a, Figure 8a, and Figure 7a we show hidden
states and queries for different models. For our method, the distributional properties of queries are
of particular importance, and we observe that queries maintain a clear Gaussian-like behaviour. This
also applies to models with QK normalization, where the query projection is not guaranteed to be
linear. The concentration of these activations around a central value and their Gaussian like shape
provides the theoretical basis for Expected Attention.

We stress that in this work, our goal is not to explain or investigate this property, but rather to
leverage it for KV cache compression.

C EXPECTED ATTENTION SCORE

To empirically validate that the expected attention score is strongly correlated to the real model
attention score, we plot the correlation between the observed attention and the expected attention
score across different layers and heads. We use sequence of 5K tokens and use the first 1K tokens to
compute the query statistics. We display the results in Figure 10. We see that for different layers and
attention heads, the expected attention score from Equation 4 is strongly correlated to the original
attention score.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hidden States - Layer 8 Hidden States - Layer 16 Hidden States - Layer 24 Hidden States - Layer 30

-15 -10 -05 00 05 10 15 -3 -2 -1 [1 2 3 -6 -4 -2 0 2

Activation Value

(a) Qwen3-8B Hidden States distributions.

Queries - Head 2 Queries - Head 4 Queries - Head 6 Queries - Head 8

Activation Value

(b) Qwen3-8B queries distributions.

Figure 7: Distributions of Qwen3-8B Hidden States and queries.

Hidden States - Layer 8 Hidden States - Layer 16 Hidden States - Layer 24 Hidden States - Layer 30

-0.2 0.1 0.0 0.1 0.2 04 -0.3 -0.2 —0.1 0.0 01 02 03 04 -1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 -15 -1.0 -05 0.0 05 1.0 15

Activation Value

(a) Llama3.1-8B hidden states distributions.

Queries - Head 2 Queries - Head 4 Queries - Head 6 Queries - Head 8

4 5 -3 -2 -1 0 1 2 3 4

Activation Value

(b) Llama3.1-8B queries distributions.

Figure 8: Distributions of Llama3.1-8B hidden states and queries.

D CONTRIBUTION OF NORM OF THE VALUES

We perform an additional ablation study on the impact of using the norm of values to contribute to the
Expected Attention score. The results, summarized in Table 5, clearly demonstrate the substantial
importance of incorporating the norm of values into the score calculation. Across all tested models,
removing the value norm contribution leads to a drastic reduction in performance, confirming that
the magnitude of the value vectors plays a critical role in determining the overall attention outcome.
This ablation strongly confirms the findings presented in Guo et al. (2024).

Table 5: Ablation results showing the performance comparison on Ruler 4K of the Expected Atten-
tion (EA) method with and without the contribution of the Value Norm.

Model EA w/o Value Norm
Llama3.1-8B 92.2 77.7
Qwen3-8B 94.7 48.9
Gemma3-12B 92.7 449

17

Under review as a conference paper at ICLR 2026

918 Hidden States - Layer 8 Hidden States - Layer 16 Hidden States - Layer 24 Hidden States - Layer 30
919
920
921)
922 7 N
923 Ceoe e e oo e 0w e TEO T o0 s e s e e o oo
924

925 (a) Gemma3-12B hidden states distributions

926 Queries - Head 2 Queries - Head 4 Queries - Head 6 Queries - Head 8

927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

943 Expected attention score &; Expected attention score &; Expected attention score &;

Activation Value

-2 -1 J 1 2 3 -3 -2 -1 0 1 2 3

Activation Value

(b) Gemma3-12B queries distributions.

Figure 9: Distributions of Gemma3-12B hidden states and queries.

Layer 1, head 0 Layer 1, head 8 Layer 1, head 16

Observed attention score aj
Observed attention score aj
Observed attention score aj

944 Layer 10, head 0 Layer 10, head 8 Layer 10, head 16
945 ’ : .

946
947
948
949

950 b
10 10 102 10 10 107 107 10 102

951 Expected attention score éy Expected attention score év Expected attention score é,‘

Observed attention score aj
Observed attention score aj
Observed attention score aj

952 Layer 20, head 8 Layer 20, head 8 Layer 20, head 8

953
954
955
956
957

Observed attention score aj
Observed attention score aj;
Observed attention score aj;

959
960
961
962

Expected attention score é,, Expected attention score é, Expected attention score é,,

Figure 10: Correlation between attention score and expected attention score for Llama3.1-8B. We
compute the expected attentions score on a sequence of 5K tokens, using the first 1K for statistics.
A strong correlation exists between our attention score approximation and the observed attention
963 score.

964

965

966 E ADDITIONAL RESULTS

967

968 In Table 6 we show additional results on the LongBench dataset, averaged across all subsets. The re-
969 sults for Gemma3-12B on LongBench exhibit behaviors that differ from other models. Specifically,
970 all compression methods show an initial increase in average score at the 10% and 25% compres-
971 sion ratios compared to the 0% baseline. This unexpected gain suggests that removing a small

fraction of the least-important Key-Value pairs effectively prunes noisy or redundant information,

18

Under review as a conference paper at ICLR 2026

Table 6: Expected Attention outperforms most baselines on Longbench (Bai et al., 2024). We show
average score with increasing compression ratios across baselines.

Model Method Longbench
0% 10% 25% 50% 75% 90%

Expected Attention 48.63 48.30 50.25 50.1 48.06 39.71

Owen3-8B TOVA 48.63 48.41 48.14 46.49 43.19 37.21
SnapKV 48.63 48.40 47.85 46.25 42.42 34.57

KeyDiff 48.63 48.13 46.23 40.08 29.42 20.69

Expected Attention 51.04 54.02 50.98 47.51 40.41 32.67

Gemma3-12B TOVA 51.04 53.05 51.52 50.7 46.88 40.45
SnapKV 51.04 51.83 51.31 48.14 44.31 34.97

KeyDiff 51.04 51.64 48.74 42.15 33.68 23.46

Expected Attention 46.42 46.59 46.8 4791 44.04 3397

Liama3.1-S8B TOVA 46.42 46.22 45.62 44.13 40.5 34.77
) SnapKV 46.42 46.56 46.07 45.07 41.24 32.55
KeyDiff 46.42 46.45 48.01 46.9 42.24 35.51

100

80

60

Score

=@~ Expected Attention
20 DuoAttention
-@— Kvzip

~@— KeyDiff

—®— Knorm

~@— ObservedAttention

20 Pyramidkv
QFilter
=®— Random
SnapKV
~®— StreamingLLM

01 -@ TOVA T ————

0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9
Compression Ratio

Figure 11: Initial experiments on Ruler 4K to select the best baselines. We did not use KVZip as it
requires two forward passes and increases latency significantly.

Ruler In order to select the most competitive baselines we performed an initial search on 15+
methods on Ruler. We selected the best performing ones as displayed in Figure 11. We did not
include KVZip (Kim et al., 2025) despite achieving a high score as it needs two forward passes,
therefore implying a higher cost FLOPs that is double as much as the other baselines.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F FLOPS CALCULATION

We follow Hoffmann et al. (2022) and include all inference FLOPs, including those contributed to
by the embedding matrices, in our analysis. Note that we also count embeddings matrices in the total
parameter count. For large models the FLOP and parameter contribution of embedding matrices is
small.

For the forward pass, we consider contributions from:

* Embeddings
— 2 x seq-len x vocab_size x d_model
* Attention (Single Layer)
— Key, query and value projections: 2x 3 xseq_lenxd_model x (key_size x num_heads)
- Key @ Query logits: 2 x seq_len x seq_len x (key_size X num_heads)
Softmax: 3 x num_heads x seq_len x seq-len
Softmax @ query reductions: 2 x seq_len x seq_len x (key_size x num_heads)
Final Linear: 2 x seq_len x (key_size X num_heads) x d_model

Dense Block (Single Layer)

— 2 x seq_len x (d_model x ffw_size + d_model x ffw _size)
¢ Final Logits
— 2 x seq-len x d_model x vocab_size

* Total forward pass FLOPs: embeddings 4+ num_layers x (total_attention + dense_block)
+ logits

G DERIVATION FOR EXPECTED ATTENTION SCORE

The equality in Equation eq. (7) is derived by applying the formula for the expected value of the
exponential of a Gaussian random variable.

e The term in the exponent, X = q\T/]f"' , is a Gaussian random variable, X ~ N (ux,0%).
. ﬁqui
* The mean of X is ux = E[X]| = R
.
¢ The variance of X is 03 = Var(X) = ki Zd"k‘

The expectation E[exp(X)] is then computed using the Moment-Generating Function (MGF)
Mx (t) = E[e!X] of a Gaussian distribution, evaluated at t = 1. Since Mx(t) = exp(uxt +
$0%1?), setting ¢t = 1 yields the identity:

Elexp(X)] = exp (,JX N 02%)

Substituting p1x and 0% recovers Equation eq. (7).

H DETAILED RESULTS ON RULER

I LLM USAGE STATEMENT

We used LLMs to polish the text and refine the language.

20

Under review as a conference paper at ICLR 2026

Table 7:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA(Ours) 989 989 985 961 449 126 828 852 868 878 844 352
Owen3-8B TOVA[51] 989 987 964 842 518 154 828 8.7 835 715 578 202
wen SnapKV[38] 989 989 99.0 985 92.6 492 828 834 826 782 587 192
KeyDiff[52] 989 980 971 907 662 69 828 843 852 864 828 647
EA (Ours) 950 950 953 978 948 657 898 871 866 871 781 232
Gemmas.jop TOVAISIL 950 949 048 948 907 538 898 898 899 905 89.5 78.1
SnapKV[38] 950 958 965 963 948 8l1.1 898 900 900 903 886 738
KeyDiff[52] 950 953 955 846 352 9. 898 892 877 845 425 121
EA (Ours) 99.6 997 996 994 927 518 895 892 869 819 286 22
Liamas.1.gp TOVAISII 996 993 972 850 528 239 895 891 901 913 858 605
: SnapKV([38] 99.6 997 99.5 974 844 389 895 881 855 717 178 03
KeyDiff[(52] 99.6 995 991 943 569 107 895 8904 889 872 711 258
Table 8:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 953 953 955 961 914 564 939 934 934 929 921 871
Owen3-8B TOVA[51] 953 948 930 898 811 594 939 944 955 965 976 970
wen SnapKV[38] 953 961 954 938 883 774 939 943 947 952 939 914
KeyDiff(52] 953 937 913 851 684 369 939 948 949 945 888 659
EA (Ours) 973 973 973 971 918 697 986 980 978 972 945 864
Gemmas.1op TOVAISIl 973 974 970 944 858 6438 986 987 989 987 979 933
SnapKV[38] 973 975 973 971 937 862 986 990 991 988 980 96.0
KeyDiff[52] 973 972 962 905 782 570 98.6 987 971 940 876 629
EA (Ours) 948 948 945 960 915 523 901 900 898 88.1 840 287
Liamas.1.gp TOVAISII 948 935 907 840 70.5 306 901 905 908 907 879 762
: SnapKV([38] 94.8 948 942 898 856 61.0 901 905 915 884 770 621
KeyDiff[52] 948 949 947 929 858 70.1 90.1 899 893 889 875 843
Table 9:
Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 908 662 254 02 0.0 996 998 992 988 982 83.8
Owen3-8B TOVA[51] 1000 1000 1000 100.0 948 282 99.6 99.6 99.6 996 994 862
wen SnapKV[38] 100.0 980 846 396 192 120 99.6 994 974 684 246 126
KeyDiff(52] 100.0 98.6 970 948 790 522 996 964 870 824 706 524
EA (Ours) 99.6 1000 99.8 988 852 508 904 862 838 792 574 306
Gemmas.1op TOVAISI] 996 998 996 978 640 938 904 894 880 710 350 82
SnapKV[38] 99.6 822 602 272 154 108 904 788 576 256 122 104
KeyDiff(52] 99.6 992 992 974 818 388 904 798 780 762 60.8 342
EA (Ours) 998 998 996 948 612 102 998 1000 1000 99.6 956 156
Liamas.1.gp TOVAISI] 998 998 998 998 982 64.8 998 996 996 99.6 99.6 94.6
: SnapKV([38] 99.8 998 988 998 344 994 998 994 996 952 524 174
KeyDiff[52] 99.8 998 1000 100.0 1000 97.6 998 996 99.6 994 99.6 99.4

21

Under review as a conference paper at ICLR 2026

Table 10:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 1000 97.6 478 68 0.2 100.0 1000 99.6 99.6 968 218
Owen3-8B TOVA[51] 1000 69.0 304 66 14 0.2 1000 762 356 94 1.0 0.4
wen SnapKV[38] 100.0 922 752 306 98 2.8 1000 932 748 338 78 1.4
KeyDiff[52] 100.0 990 898 550 130 12 1000 874 734 320 38 0.2
EA (Ours) 988 986 988 956 714 46 554 536 532 416 158 32
Gemmas.1op TOVAISI] 988 602 104 1.0 0.0 0.0 554 308 8.6 14 0.0 0.0
SnapKV([38] 988 976 89.0 518 142 34 554 550 440 216 54 1.6
KeyDiff[52] 988 966 930 640 134 10 554 464 400 246 6.0 1.0
EA (Ours) 1000 1000 99.6 882 308 22 100.0 1000 99.6 958 660 2.8
Llamas.1.gp TOVAISIT 1000 960 728 332 7.0 2.6 1000 904 674 284 88 1.8
: SnapKV[38] 100.0 1000 842 994 172 844 1000 966 808 450 182 38
KeyDiff(52] 1000 99.8 988 888 300 28 100.0 1000 98.0 760 272 3.0
Table 11:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 872 472 98 0.2 0.0 996 998 998 990 454 0.0
Owen3-8B TOVA[51] 1000 504 122 04 0.0 0.0 996 638 244 40 0.6 0.0
wen SnapKV[38] 100.0 878 584 200 16 0.0 99.6 888 596 180 38 1.0
KeyDiff(52] 1000 928 678 186 20 0.0 996 828 502 142 06 0.0
EA (Ours) 998 996 992 8.8 118 0.0 61.6 458 414 250 88 0.0
Gemmas.1op TOVAISI] 998 658 838 0.0 0.0 0.0 616 268 88 0.6 0.0 0.0
emmas- SnapKV[38] 99.8 932 682 288 24 0.0 616 562 412 96 2.0 0.6
KeyDiff[52] 99.8 920 682 72 0.0 0.0 616 324 214 106 00 0.0
EA (Ours) 998 1000 998 270 02 0.0 992 992 990 546 108 0.0
Llomas.1.gp TOVAISII 998 746 334 26 0.0 0.0 992 772 392 82 1.0 0.4
: SnapKV[38] 99.8 998 552 840 16 0.0 992 8.6 602 182 36 1.0
KeyDiff[52] 99.8 872 532 110 0.0 0.0 992 828 432 68 0.0 0.0
Table 12:
Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 5% 90% 0% 10% 25% 50% 75% 90%
EA(Ours) 999 937 764 254 0. 0.0 100.0 1000 99.8 99.6 99.6 94.1
Owen3-8B TOVA[S1] 999 999 999 100.0 967 214 100.0 1000 1000 99.9 100.0 85.0
wen SnapKV[38] 99.9 993 834 409 169 108 100.0 1000 97.1 677 206 107
KeyDiff(52] 99.9 1000 99.8 992 927 653 1000 998 986 978 943 795
EA (Ours) 1000 1000 999 998 887 63.0 992 991 988 985 832 410
Gemmas.jop TOVAISI] 1000 1000 1000 983 600 16 992 988 958 810 361 62
SnapKV([38] 100.0 862 565 206 113 99 992 883 635 231 112 103
KeyDiff(52] 100.0 100.0 100.0 993 89.2 42.1 992 992 992 989 915 580
EA (Ours) 999 985 998 808 441 46 990 990 990 990 970 133
Liamas.1.gp TOVAISII 999 999 999 999 975 508 990 990 99.1 993 993 947
: SnapKV([38] 99.9 999 957 999 266 920 990 990 987 840 349 136
KeyDiff[52] 99.9 999 999 100.0 998 989 990 99.0 99.1 992 995 99.4

22

Under review as a conference paper at ICLR 2026

Table 13:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 980 837 303 03 0.0 996 995 996 995 992 939
Owen3-8B TOVA[51] 1000 1000 1000 99.9 969 222 996 995 996 997 991 827
wen SnapKV[38] 100.0 99.0 89.0 396 127 100 996 996 965 642 17.1 938
KeyDiff(52] 100.0 1000 1000 99.8 942 576 996 993 986 988 976 787
EA (Ours) 997 995 985 953 864 68.1 955 800 845 742 655 394
Gemmas.jop TOVAISI] 997 997 997 986 565 16 955 952 910 722 274 43
SnapKV([38] 99.7 805 439 168 106 97 955 79.1 454 134 101 9.8
KeyDiff[52] 99.7 998 99.8 985 877 353 955 955 952 947 890 53.6
EA (Ours) 999 980 997 861 472 48 989 987 985 976 8l1 148
Llamas.1.gp TOVAISII 999 999 998 997 969 513 989 992 990 99.0 990 927
: SnapKV[38] 99.9 998 90.1 993 253 513 989 988 962 798 301 127
KeyDiff(52] 99.9 998 999 998 990 962 989 992 990 99.1 988 987
Table 14:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 1000 1000 97.6 228 0.0 100.0 1000 1000 100.0 100.0 99.8
Owen3-8B TOVA[51] 100.0 1000 1000 100.0 80.8 174 100.0 1000 100.0 100.0 982 652
wen SnapKV[38] 100.0 928 882 746 392 52 1000 1000 1000 986 930 706
KeyDiff[52] 100.0 100.0 1000 100.0 100.0 100.0 100.0 1000 100.0 100.0 1000 100.0
EA (Ours) 1000 1000 1000 100.0 1000 99.6 100.0 1000 100.0 100.0 100.0 100.0
Gemmas.1op TOVAISI] 1000 1000 1000 998 982 3638 100.0 1000 1000 100.0 100.0 84.8
SnapKV([38] 100.0 99.6 992 986 940 726 100.0 1000 100.0 99.6 964 856
KeyDiff[52] 100.0 1000 1000 100.0 99.8 816 100.0 1000 100.0 100.0 1000 100.0
EA (Ours) 1000 998 1000 97.6 956 938 100.0 1000 1000 100.0 1000 99.4
Liamas.1.gg TOVAISI 10001000 1000 1000 1000 89.8 100.0 1000 1000 100.0 100.0 99.6
: SnapKV[38] 100.0 1000 994 100.0 772 100.0 100.0 998 1000 99.6 942 824
KeyDiff(52] 100.0 1000 1000 100.0 100.0 100.0 100.0 1000 100.0 100.0 1000 100.0
Table 15:
Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 996 920 318 24 0.2 100.0 1000 100.0 100.0 998 96.0
Owen3-8B TOVA[51] 1000 1000 1000 100.0 1000 818 100.0 1000 100.0 100.0 100.0 99.4
wen SnapKV[38] 100.0 1000 998 706 148 54 100.0 1000 998 950 588 9.6
KeyDiff(52] 100.0 1000 1000 99.8 928 5438 100.0 1000 1000 1000 970 69.6
EA (Ours) 1000 1000 1000 100.0 998 78.0 100.0 1000 1000 1000 982 778
Gemmas.jop TOVAISI] 10001000 1000 1000 986 634 100.0 1000 982 898 520 108
SnapKV([38] 100.0 952 87.0 602 204 5.0 1000 908 714 414 116 26
KeyDiff(52] 100.0 100.0 1000 994 810 26.0 100.0 1000 99.6 978 642 158
EA (Ours) 1000 1000 998 942 782 386 100.0 1000 1000 100.0 99.6 218
Liamas.1.gg TOVAISIT 10001000 1000 1000 998 974 100.0 1000 1000 100.0 100.0 99.6
: SnapKV([38] 100.0 1000 99.8 100.0 554 972 100.0 1000 1000 968 80.6 356
KeyDiff[52] 100.0 100.0 1000 100.0 100.0 100.0 100.0 1000 100.0 100.0 100.0 100.0

23

Under review as a conference paper at ICLR 2026

Table 16:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 438 42 0.0 0.0 0.0 998 1000 100.0 1000 89.6 28.8
Owen3-8B TOVA[51] 100.0 1000 100.0 97.8 152 0.0 998 998 998 998 640 2.8
wens- SnapKV[38] 100.0 99.8 842 144 52 24 998 870 454 838 24 24
KeyDiff(52] 100.0 998 998 99.0 928 66.0 998 998 998 99.0 956 784
EA (Ours) 1000 1000 1000 992 812 246 100.0 1000 1000 948 298 122
Gemmas.jop TOVAISI] 1000 1000 1000 840 108 00 100.0 808 424 54 24 2.0
SnapKV([38] 100.0 5.4 28 24 24 24 100.0 5.6 28 24 24 24
KeyDiff[52] 100.0 1000 99.6 99.8 91.6 48.0 100.0 1000 100.0 100.0 960 456
EA (Ours) 1000 646 99.6 4.0 0.2 0.0 100.0 1000 1000 774 102 0.0
Llamas.1.gp TOVAISII 1000 998 954 522 46 0.2 100.0 1000 992 834 290 2.6
: SnapKV([38] 100.0 99.0 112 368 24 24 1000 746 358 144 32 24
KeyDiff(52] 100.0 99.8 1000 100.0 1000 99.8 100.0 1000 100.0 100.0 1000 100.0
Table 17:
Model Method Ruler 4k Ruler 16k
0% 10% 25% S50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 816 810 796 716 584 412 748 744 758 718 586 39.6
Owen3-8B TOVA[51] 816 816 804 756 558 336 748 740 688 542 366 274
wen SnapKV[38] 81.6 79.8 780 690 546 388 748 700 602 444 330 266
KeyDiff(52] 81.6 808 73.6 516 244 88 748 604 476 322 198 82
EA (Ours) 874 880 858 800 650 454 766 712 696 598 372 224
Gemmas.1op TOVAISI] 874 874 850 720 516 344 766 754 732 588 360 22.0
emmas- SnapKV([38] 87.4 864 8.6 706 S10 324 766 718 602 432 262 168
KeyDiff[52] 874 872 748 582 294 130 766 730 606 336 122 5.0
EA (Ours) 878 872 854 810 662 414 81.2 810 788 706 512 268
Llamas.l.gp TOVAISI] 878 878 868 802 564 270 812 812 800 648 416 242
: SnapKV([38] 87.8 876 832 880 562 818 812 780 684 516 330 194
KeyDiff[52] 87.8 872 842 750 450 218 812 806 766 648 454 246
Table 18:
Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 5% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 634 626 624 588 506 356 588 584 582 556 488 354
Owen3-8B TOVA[S1] 634 630 600 546 402 266 588 572 554 494 386 27.0
wen SnapKV[38] 634 616 582 514 418 274 588 556 520 454 332 266
KeyDiff(52] 634 564 460 278 134 106 588 510 430 310 186 128
EA (Ours) 610 600 594 552 428 338 548 520 522 470 336 264
Gemmas.1op TOVAISIL 610 608 590 540 456 352 548 546 528 470 376 304
SnapKV[38] 61.0 594 554 524 436 310 548 546 498 428 326 248
KeyDiff(52] 610 59.0 518 390 214 144 548 532 472 330 192 122
EA (Ours) 628 626 612 586 502 422 570 578 552 544 430 294
Liamas.1.gp TOVAISII 628 614 508 542 428 282 570 556 548 486 368 284
: SnapKV[38] 628 620 586 620 376 596 570 540 544 452 344 2838
KeyDiff[52] 628 634 610 494 316 182 570 568 552 528 456 342

24

Under review as a conference paper at ICLR 2026

Table 19:

Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%
EA (Ours) 1000 1000 999 873 140 07 100.0 1000 1000 100.0 100.0 99.9
Owens.gp TOVASIL 1000 1000 1000 1000 963 154 100.0 1000 1000 100.0 100.0 88.5
wen>- SnapKV([38] 100.0 988 942 812 332 86 1000 999 996 99.0 947 664
KeyDiff[52] 100.0 100.0 1000 1000 989 329 100.0 1000 1000 100.0 1000 79.9
EA (Ours) 997 997 996 994 983 938 964 940 938 909 840 803
Gemmas.12p TOVAISI 997 996 997 996 934 277 964 964 966 962 943 849
SnapKV([38] 99.7 99.0 97.8 892 702 462 9.4 935 916 908 878 741
KeyDiff[52] 99.7 996 99.6 99.6 97.6 80.0 964 966 962 953 933 82.6
EA(Ours) 999 998 998 882 666 356 998 997 995 995 962 763
Lamas 1.sg TOVAISII 999 999 999 999 966 204 998 998 998 998 998 94.1
amas. SnapKV[38] 99.9 996 934 977 598 537 998 962 952 934 814 534
KeyDiff(52] 99.9 999 999 999 99.6 77.6 998 998 997 99.6 987 946

Table 20:

Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 5% 90%
EA (Ours) 953 885 772 522 225 113 93.0 931 932 927 856 627
Owens.gp TOVAISII 953 890 825 776 624 247 93.0 883 817 762 687 524
SnapKV([38] 953 926 840 557 331 192 93.0 90.1 815 628 417 268
KeyDiff(52] 953 938 894 786 644 379 93.0 889 829 745 669 531
EA (Ours) 952 952 949 927 782 536 860 828 817 766 605 418
Gemmas.jop TOVAISII 952 897 811 765 581 253 860 797 726 625 468 327
emma SnapKV[38] 952 829 720 548 403 30. 860 741 628 464 373 314
KeyDiff(52] 952 943 906 798 620 343 86.0 818 786 726 586 372
EA (Ours) 957 927 953 766 557 29.0 934 934 928 860 664 255
Liamas 1.sp TOVAISII 957 932 873 762 633 375 934 909 861 779 684 592
: SnapKV([38] 957 955 818 888 434 632 934 894 820 680 431 256
KeyDiff[52] 957 947 916 855 729 611 934 921 884 826 749 665

25

	Introduction
	Expected Attention
	Key-Value Cache in Autoregressive Transformers
	Expected Attention: Estimating Attention From Future Queries

	Experiments
	Experimental Setup

	Experimental Results
	Prefilling
	Decoding
	Memory Savings and Efficiency
	Latency

	Ablation Studies
	Related Works
	Limitations
	Conclusion
	Reproducibility statement
	Reconstruction Error Across Methods
	Distributional Properties of LLM activations
	Expected Attention Score
	Contribution of Norm of the Values
	Additional Results
	FLOPs calculation
	Derivation for Expected Attention Score
	Detailed Results on Ruler
	LLM Usage Statement

