Under review as a conference paper at ICLR 2026

EXPECTED ATTENTION:
KV CACHE COMPRESSION BY ESTIMATING ATTENTION
FROM FUTURE QUERIES DISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory consumption of the Key-Value (KV) cache represents a major bottleneck
for efficient large language model (LLM) inference. While attention-score-based
KV cache pruning shows promise, it faces critical practical limitations: atten-
tion scores from future tokens are unavailable during compression, and modern
implementations do not materialize the full attention matrix, making past scores
inaccessible. To overcome these challenges, we introduce Expected Attention,
a training-free compression method that estimates Key-Value (KV) pairs impor-
tance by predicting how future queries will attend to them. Leveraging the distri-
butional properties of LLM activations, we compute expected attention scores in
closed form for each KV pair. These scores enable ranking and pruning of KV
pairs with minimal impact on the residual stream, achieving high compression
without performance degradation. Importantly, our method operates seamlessly
across both prefilling and decoding phases, consistently outperforming state-of-
the-art baselines in both scenarios. Finally, we release a comprehensive research
library for KV cache compression, designed to enable researchers to implement
and benchmark novel methods, in addition to building upon our own.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Anthropic, 2025; MetaAl, 2024; Yang et al.,
2025) have revolutionized text generation and reasoning, enabling advanced applications such as
long multi-round dialogues, extensive multimodal intelligence (Yang et al., 2025; Weng et al., 2024),
and agentic workflows that ingest massive amounts of data (OpenAl, 2024; PerplexityAl, 2025;
Yamada et al., 2025). These applications often require processing extensive contextual information.
For example, processing a large codebase or a short video can easily involve analyzing hundreds of
thousands of tokens. A critical issue in deploying LLMs in such scenarios is the prohibitive memory
consumption of the Key-Value (KV) cache (Fu, 2024; Shi et al., 2024; LI et al., 2025).

During autoregressive generation, the KV cache stores key and value vectors for every processed
token, enabling efficient attention computation. However, its memory footprint grows linearly with
sequence length, quickly becoming the primary bottleneck for long-context inference. A medium-
sized 70B model (MetaAl, 2025) requires approximately 320 GB of GPU memory for a one-million-
token KV cache, far exceeding most GPU capacities. This challenge intensifies with emerging appli-
cations where advanced reasoning models generate thousands of intermediate tokens (DeepSeek-Al,
2024b; Yang et al., 2025) and agentic systems load massive datasets (OpenAl, 2025; PerplexityAl,
2025). While current LLMs promise extended context lengths up to a million tokens (GeminiTeam,
2025; MetaAl, 2024), hardware constraints saturate GPU memory well before reaching theoretical
limits.

State Space Models offer a solution by reducing memory costs (Gu et al., 2022; Gu & Dao, 2024),
yet their inferior performance compared to transformers, especially on long context tasks, limits
adoption (Jelassi et al., 2024; Merrill et al., 2024). Other architectural changes limited to the atten-
tion mechanism, such as multi-head latent attention (DeepSeek-Al, 2024a) or sliding window atten-
tion (Jiang et al., 2023; GemmaTeam, 2025), reduce KV cache size but do not remove the attention
bottleneck and are orthogonal to KV cache compression methods. Additionally, such methods need

Under review as a conference paper at ICLR 2026

to be implemented at training time, limiting their application to pre-trained modern LLMs. This
creates demand for training-free KV cache compression methods that preserve transformer architec-
tures while mitigating memory growth.

KV cache compression exploits semantic redundancy in natural language: not all tokens equally
influence future predictions, and many provide negligible information once their contextual role
is fulfilled. This property allows to compress the KV cache by removing some of the key and
values stored in it. However, determining which tokens can be safely removed is far from trivial,
as any Key-Value (KV) pair’s importance depends on how future queries will attend to it. Existing
approaches use heuristics like discarding oldest tokens (Ge et al., 2024; Xiao et al., 2023) or leverage
attention scores from past queries (Zhang et al., 2024; Li et al., 2025; Oren et al., 2024), but these
strategies are limited for real-world scenarios, and often require accessing attention scores which are
not materialized in modern transformer implementations (Dao et al., 2022).

Instead of relying on heuristics or local attention metrics, we argue that a KV pair’s significance is
best measured by its global effect on the transformer’s output. We quantify this effect by isolating
each KV pair’s contribution within the residual stream, capturing its influence on the model output.
This raises the challenge of estimating how future queries will attend to each token in the context,
which requires accessing attention scores from the past and from future tokens, that are not available
at the time of compression. To address this, we introduce Expected Attention, which estimates
future attention allocation leveraging the distribution of future queries. Expected Attention estimates
the importance that each token in the context has for queries that have not been generated and
accordingly prunes the KV cache up to 60% while preserving performance quality, requiring no
architectural modifications or additional training. We release our code as a comprehensive library
benchmarking over 20 state-of-the-art compression methods.

To summarize, our contributions are the following:

* We analyse the distributional properties of LLM activations through the lenses of KV cache
compression and introduce the concept of Expected Attention to estimate the importance
that current tokens will have in the future.

* We introduce a KV cache compression method that leverages Expected Attention and evicts
irrelevant KV pairs for efficient inference.

* We release all our code as a library, designed for researchers, that allows to easily imple-
ment, test and benchmark KV cache compression methods.

2 EXPECTED ATTENTION

2.1 KEY-VALUE CACHE IN AUTOREGRESSIVE TRANSFORMERS

We consider decoder-only language models based on the transformer architecture (Vaswani et al.,
2017), representing the vast majority of modern LLMs. When an input sequence of tokens x =
[€1, X2, ..., 2] is fed to the model, each token x; is transformed into a hidden state representation
h; € R" and processed by a stack of transformer layers, including feed forward networks and multi-
head attention blocks. For brevity and clarity, we focus our analysis on a single layer and attention

Hidden States - Layer 16 Hidden States - Layer 20 Queries - Head 4 Queries - Head 8

-0.4 -03 -02 -0.1 0.0 01 02 03 04 -06 =04 -02 0.0 . . X 2 3 -4 -3 -2 -1 0 1 2 3

Activation Value Activation Value

Figure 1: Hidden states from layer 16 and 20 and corresponding queries for layer 20 in Llama3.1-8B.
Hidden states in modern LLMs are mostly normally distributed. As a consequence, query activations
also follow a Normal. The best Gaussian fit is overlayed. We show more examples and discuss this
property in Appendix B.

Under review as a conference paper at ICLR 2026

head, noting that the following analysis naturally extends to multi-head attention, grouped query
attention (GQA, Ainslie et al. 2023) and all their variants.

Let h; € R" denote the hidden state at position i in the sequence. In the attention block, the
corresponding Query, Key and Value projections are computed as:

g = RiWoh;, ki=RWgh;, v;=Wyh, (D

where d is the attention head dimension, R; € R4*? is the Rotary Position Embedding (RoPE, Su
et al. 2023) matrix at position i, and W, Wi, Wy € R"*4 are respectively the learnable projection
matrices for query, key, and value in R?. During autoregressive inference, keys and values vectors
are stored in the KV cache to avoid recomputing them in future generation steps. The resulting KV
cache is a collection of Key-Value pairs (k;,v;) from all inference steps in the sequence, leading
to significant computational savings but increasing memory requirements, growing linearly with
sequence length.

At generation step t, the attention mechanism computes the attention score between the current
query ¢; and each previously cached key k; for i < t:

Tl . t
Sy exp (%) 2 =17t

where ay; is the normalized attention score between query at position ¢ and key at position ¢, and

T
Zti = exp (qi/a) represents the unnormalized attention score.

The attention score is used to weight and sum over all values previously stored in the KV cache. The
resulting output is then added to the hidden state h;:

t t
W™ =hy + Y aiWovi = hy + Y Ahy 3)
=1 =1

where h; € R" and h9" € R” represent the hidden state before and after the attention update re-
spectively, and W, € R?*" is the learnable output projection matrix. The hidden states embedding
h; represents the “residual stream,” (Elhage et al., 2021) updated via vector additions by each trans-
former block. The value Ah;; = ay; W,v; isolates the specific residual addition of the i-th KV pair
at step t. This decomposition reveals that each cached KV pair (k;, v;) contributes a residual update
Ahy; to the final output, and provides a natural measure of the importance of each KV pair:

[AR|| = awl|Woui)

where || - || denotes the L2 norm. This metric captures both the attention weight a;; (how much
the query attends to the i-th key) and the transformed value magnitude ||[W,v;|| (the impact of the
i-th value on the output). Equation 4 provides the optimal measure for estimating the importance of
each KV pair in the model output. If we could compute this score for all cached KV pairs, we could
selectively prune the cache by removing pairs with the lowest impact on the residual stream, thereby
minimizing performance degradation. However, computing Equation 4 presents significant practical
challenges. While ||W,v;|| is readily available at inference time, the attention weight a;; depends
on future queries that have not yet been generated. Specifically, we cannot know the attention
scores from future tokens ¢t + 1,¢ + 2, ... before computing them, making it impossible to predict
which KV pairs will be important for upcoming generation steps. Furthermore, modern transformer
implementations utilize Flash Attention (Dao et al., 2022; Dao, 2024), which computes attention
scores on-the-fly without materializing the complete attention matrix, preventing access to even past
attention scores. To address these fundamental limitations, we leverage the properties of activations
in modern LLMs, and introduce Expected Attention.

2.2 EXPECTED ATTENTION: ESTIMATING ATTENTION FROM FUTURE QUERIES

Distributional properties of LLM activations To approximate the unnormalized attention score
z;j, we leverage the findings of Liu et al. (2025), showing that hidden states in modern LLMs
loosely follow a Gaussian distribution & ~ N (u,>). While we show an example of this property

Under review as a conference paper at ICLR 2026

in Figure 1, we also extensively validate it across multiple model architectures in Appendix B.
Given this distributional assumption, queries also inherit Gaussian properties through the linear
transformation in Equation 1 ¢; = R,Wgh,:

Gt ~ N (g, Sq,), where pig, = ReWop, g, = RRWoEWLR{ (5)

where 1 € R% and ¥ € R?* are the mean and covariance of the hidden state distribution, and
R, € R%*4 i the RoPE matrix at position ¢.

To create a single, tractable representation of attention over a future interval, we approximate the
positional embeddings by averaging the RoPE matrix over the next 7" positions. This gives us a
position-averaged query distribution:

a~N(fig,5), where iy = RWqpu, S,=RWoEWLR" (©6)
where R = % Z;‘F: 1 B¢+ represents the averaged RoPE matrix over T future positions.

def compress(queries, keys, values, compression_ratio):
Compute query statistics
mean_query, cov_query = compute_statistics(queries)
Compute unnormalized attention scores (z_1)
scores = matmul (mean_query, keys.T) / math.sqgrt (d)
scores += einsum("i, 17, J—>", keys, cov_query, keys) / (2 % d)
Normalize scores and weight by value norms
scores = softmax(scores, dim=—1) * values.norm(dim=—1)
Keep KV pairs with highest scores
n_kept = int (keys.size(0) * (1 — compression ratio))
indices = scores.topk(n_kept, dim=1).indices
return keys[indices], values[indices]

Listing 1: Pytorch-like pseudo code for KV Cache compression with Expected Attention.

Expected Attention Score With this query distribution, we can now analytically compute the
expected unnormalized attention score in Equation 2. For a query g ~ N (fiq, ¥4) in our interval T’
and a fixed key k;, the expected unnormalized score for that key is:

=T Tk TS
~ q kl l"’q kl ki Eq kl

i = Eqon(y 5 5)| T 7
%= B (g, 20) {GXP (v ﬂ P\ T 2d @
where the second equality follows from the moment-generating function of a Gaussian distribution.

We then define the expected attention score by applying the softmax on our unnormalized expecta-
tion:

2
Tt 2
> j=17%j
With this approximation, we can now estimate the importance of each cached KV pair. We define the

expected contribution magnitude by substituting our expected attention weight into the contribution
score formula from Equation 4:

(®)

>
S,

AR = (@ + €) | Wous | ©)

where a; is the expected attention weight from Equation 8, |W,v;|| € R is the magnitude of the
transformed value vector, and € is a small hyperparameter. This metric provides a tractable approxi-
mation to the true contribution score without requiring future queries.

Compression with Expected Attention Equation 9 captures the contribution of each KV pair
to the transformer output. The Expected Attention compression algorithm scores all cached KV
pairs according to Equation 9 and evicts the r% pairs with the lowest expected contributions, where
r € [0,1] is the compression ratio. Intuitively, this is equivalent to removing those KV pairs that
have the smallest impact on the residual stream and therefore on the model output. We provide
pseudo-code for our compression algorithm in Listing 1.

Under review as a conference paper at ICLR 2026

—— Expected Attention TOVA —— SnapkV —— KeyDiff No compression
w0 2Wikimqga Gov Report Hotpotga Multi News Multifieldqa
\ 60 » 60
25 40
15 40
30 20- 30
20 10
0.1 05 0.9 0.1 0.5 0.9 0.1 05 0.9 0.1 05 0.9 ZD0] 0.5 0.9
Passage Retrieval Qasper Qmsum Repobch-P Vcsum
100 e
0 \ 2 <]
80 §
60 30 2 0 1
40 20
20 55
20 o _. 10
o1 05 05 o1 o5 09 o1 05 05 o1 05 05 o1 05 09
w© 2Wikimqga Gov Report Hotpotga Multi News Multifieldqa
30- 60 60
50 50 2 50
40 » 40 20 40
30 30
30 20 18-
20 20
0.1 05 0.9 0.1 0.5 0.9 0.1 05 0.9 0.1 05 0.9 0.1 0.5 0.9
Passage Retrieval Qasper Qmsum Repobch-P Vcsum
1
100 a0 23l — i
- \ » ” “
60 30
\ 21 50 13
40 20 20
20 19 40 12
1 0.5 0.

©
°
°
°
©
°
°
°
°
°
o
©

Compression Ratio

Figure 2: Scores on LongBench (Bai et al., 2024) for Qwen3-8B (top) and Gemma3-12B (bottom).
The x-axis represents the compression ratio, the y-axis the score for each specific dataset. The
horizontal line represents the baseline performance without cache compression. Expected Attention
achieves optimal trade-off between compression ratio and scores across most datasets (Additional
and averaged results in Appendix D).

Head-Adaptive Compression Previous work has shown that different attention heads serve dif-
ferent roles in the model. We adopt adaptive per-layer compression (Feng et al., 2024) to account
for this heterogeneity, allowing more important heads to retain more KV pairs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Prefilling vs Decoding Generation LLM inference comprises two phases with distinct computa-
tional characteristics. The prefilling phase processes the entire input prompt in parallel, computing
key-value projections for the KV cache, a compute-bound operation requiring substantial floating-
point operations. The decoding phase sequentially generates tokens using the KV cache and previ-
ous logits, appending new key-value pairs iteratively (Deepak & Amr, 2024; Gordi¢, 2025). This
dichotomy has motivated disaggregated architectures that implement prefill and decoding on dif-
ferent hardware (Deepak Patil, 2024; StepFun et al., 2025), at the cost of transferring the cache,
further incentivising compression. An effective compression method must perform well in both
prefilling and decoding (Deepak & Amr, 2024; Gordi¢, 2025). Nevertheless, a number of recent
methods often target a single phase: SnapKV (Li et al., 2025) for prefilling via query attention
scores, Streamingl.LM (Xiao et al., 2023) and KNorm (Devoto et al., 2024) for streaming decoding.
Expected Attention is designed considering these two aspects of LLM inference and addresses both
scenarios efficiently. We present results for prefilling and decoding in Section 4.1 and Section 4.2
respectively.

Models and Datasets For prefilling (one-shot compression before generation), we test three model
families supporting long contexts: Llama3.1-8B (128k) (MetaAl, 2025), Qwen3-8B (32k) (Yang
et al., 2025), and Gemma3-12B (128k) (GemmaTeam, 2025), all instruction-tuned. For decoding
(compression during generation), we analyse reasoning models that generate extensive intermedi-
ate reasoning tokens and therefore large KV caches: Qwen-1.5B-R1, Qwen-7B-R1 (DeepSeek-Al,
2025), and OpenMath-Nemotron-14B (Moshkov et al., 2025).

Under review as a conference paper at ICLR 2026

Table 1: Expected Attention outperforms most baselines on Ruler (Hsieh et al., 2024) with 4K and
16K context length. We show average score with increasing compression ratios across baselines.
Best results for each compression ratio are displayed in bold. The 0% column indicates the baseline
without compression.

Model Method Ruler 4k Ruler 16k
0% 10% 25% 50% 75% 90% 0% 10% 25% 50% 75% 90%
EA (ours) 95.3 953 95.0 94.7 88.3 654 929 93.1 93.2 92.7 856 62.7
Owen3-B TOVA[49] 95.3 &89.0 82,5 77.6 624 24.7 92,9 88.3 81.7 76.2 68.7 524
SnapKV[36] 95.3 92.6 84.0 55.7 33.1 19.2 92.9 90.1 81.5 62.8 41.7 26.8
KeyDiff[50] 95.3 93.8 894 78.6 64.4 379 92,9 88.9 829 745 669 53.1
EA (ours) 95.2 952 949 927 78.2 53.6 86.0 82.8 81.7 76.6 605 41.8
Gemma3-12B TOVA[49] 95.2 89.7 81.1 76.5 581 25.3 86.0 79.7 726 625 46.8 32.7
SnapKV[36] 95.2 829 72.0 54.8 40.3 30.1 86.0 74.1 62.8 464 373 314
KeyDiff[S0] 95.2 94.3 90.6 79.8 62.0 34.3 86.0 81.8 786 726 58.6 37.2
EA (ours) 95.3 95.7 953 92.2 759 30.6 93.4 934 928 86.0 664 25.5
TOVA[49] 95.3 93.2 87.3 76.2 633 37.5 93.4 909 86.1 779 684 59.2
Llama3.1-8B Duo [63] 95.3 95.7 95.7 953 732 24.5 93.4 93.3 93.0 90.1 59.1 12.3
SnapKV[36] 95.3 95.5 88.8 81.8 63.2 434 93.4 89.4 82.0 68.0 43.1 25.6
KeyDiff[S0] 95.3 94.7 91.6 855 729 61.1 93.4 92.1 884 826 749 66.5

Our benchmarks include LongBench (Bai et al., 2024), Ruler (Hsieh et al., 2024), and Needle in a
Haystack (Kamradt, 2023; Liu et al., 2024) for prefilling, and Aime25 (Balunovi¢ et al., 2025) and
MATH-500 (Lightman et al., 2023) for decoding.

Baselines Following an initial benchmarking study on Ruler (see Appendix D), we selected and
compare our method against the best-performing baselines for each use case. For prefilling, we
evaluate attention-based approaches like SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024),
embedding-based KeyDiff (Park et al., 2025), and the trainable DuoAttention (Xiao et al., 2024)
when the checkpoint is available. SnapKV (Li et al., 2025) and TOVA (Oren et al., 2024) rank KV
pairs using attention scores from user queries. KeyDiff (Park et al., 2025) employs distance metrics
between key embeddings for selection, making it also suitable for decoding generation. DuoAtten-
tion (Xiao et al., 2024) takes a trainable approach, learning compression masks for each attention
head. For decoding, we focus on methods designed to be compatible with streaming generation:
KNorm (Devoto et al., 2024), StreamingL.LM (Xiao et al., 2023), and KeyDiff (Park et al., 2025).
KNorm (Devoto et al., 2024) uses a simple approach by preserving keys with the lowest Ly norm.
StreamingLLM (Xiao et al., 2023) maintains initial sink tokens throughout generation.

Implementation details We implement Expected Attention in Pytorch (Paszke et al., 2019). For
all benchmarks, we test the models on 8 H100 GPUs, with batch size 1. We make all the code to
reproduce our method and the baselines available online. In all experiments we use € = 0.02, except
for needle in a haystack where use ¢ = 0, and we average the RoPE embeddings over the next
T = 512 positions. For prefilling, we do not assume any question about the context. This simulates
a real world use case and avoids favouring methods like SnapKV that rely on this assumption. For
decoding, we keep a small buffer of hidden states of 128 tokens to compute statistics, and perform
compression every 512 generation steps. In Equation 9 we only use V instead of W, V/, as using W,
led to a minor increase in results at a significantly higher memory cost.

4 EXPERIMENTAL RESULTS

4.1 PREFILLING

LongBench We evaluate on LongBench (Bai et al., 2024), which tests long-context capabilities
across diverse tasks. The benchmark comprises six categories: single and multi-document QA,
summarization, few-shot learning, synthetic tasks, and code completion. As shown in Figure 2 for
Llama3.1-8B and Qwen3-8B (see Appendix D for Gemma3-12B), Expected Attention consistently
achieves optimal compression-performance trade-offs, maintaining higher scores across all com-
pression ratios. This demonstrates effective retention of critical KV pairs even under significant
compression across varied reasoning and generation tasks.

Under review as a conference paper at ICLR 2026

Streaming LLM

A)

QFilter KeyDiff Duo Attention

L ted Attention
P 5

nnnnnnnnnnnn

Figure 3: Needle in the Haystack test for different methods with Llama3.1-8B and 50% compression
ratio.

Figure 4: Decoding results on Aime25 dataset, Table 2: Decoding scores on MATH-500.
different markers represent different models sizes. Columns indicate the final size of the KV
The x-axis is the maximum size that the KV cache cache with respect to the original full ver-

is allowed to grow to. sion. Best scores in bold.
07— ® Expected Attention ® Knorm © Streaming LLM ® KeyDiff — Model Method Compression
0x | 2x 4x 12x
0.6
EA (ours) 047 | 047 043 033
os KeyDiff[50] | 047 | 042 040 0.30
g Qwen-RI-LSB yorm(15] | 047 | 041 028 011
E 04 Streaming[62] | 0.47 | 045 041 0.31
R I P e EA (ours) 057 | 055 0.53 0.49
go KeyDiff[50] | 0.57 | 054 048 035
5 ; O — Qwen-RI-TB pNom[15] | 0.57 | 047 032 0.2
S e SR Streaming[62] | 0.57 | 0.54 051 041
o1 - =+ DeepSeek-R1-Distill-Qwen-1.5B EA (ours) 0.57 055 0.54 047
—— DeepSeek-R1-Distill-Qwen-78 Y
et T onemthNemotrom 145, Nemotron14p KeyDiff[S01 | 0.57 | 056 051 044
o s oo o o KNorm[15] | 0.57 | 050 036 0.14
Context Length (Tokens) Streaming[62] | 0.57 | 0.57 0.54 042

Ruler Ruler (Hsieh et al., 2024) measures retrieval, multi-hop tracing, and aggregation abilities
within long contexts through four subsets: NIAH (Needle-in-a-Haystack) for single-fact retrieval,
VT (Variable Tracking) for multi-hop reasoning, CWE (Common Words Extraction) for frequency-
based aggregation, and FWE (Frequent Words Extraction) for statistical pattern recognition. Table 1
shows results at various compression ratios for 4k and 16k windows. Expected Attention maintains
strong performance across all subsets, particularly at higher compression ratios. While KeyDiff
performs well on Llama3.1-8B, it struggles on Gemma3-12B and Qwen3-8B, potentially due to
QK normalization (GemmaTeam, 2025; Yang et al., 2025). Our Expected Attention-based policy
effectively preserves information necessary for precise retrieval and complex reasoning tasks.

Needle in a Haystack The NIAH test (Kamradt, 2023) embeds specific information (the “nee-
dle”) within lengthy distracting text (the “haystack™) to evaluate retrieval capabilities across varying
context positions and lengths. The test systematically varies both the needle’s position within the
context (needle depth) and the total context length to assess consistent retrieval performance. Fig-
ure 3 visualizes retrieval success across needle positions and context lengths up to 125k tokens.
Expected Attention demonstrates robust performance comparable to DuoAttention and significantly
more stable than other baselines in long contexts, confirming retention of critical information under
compression regardless of needle placement or context size.

4.2 DECODING

We evaluate Expected Attention on reasoning models, Qwen-1.5B-R1, Qwen-7B-R1, and
OpenMath-Nemotron-14B. Reasoning models are particularly suitable for our evaluation as they
generate extensive chain-of-thought outputs, placing significant demands on KV cache mem-
ory (Lancucki et al., 2025). We use the Aime25 (Yamada et al., 2025) and MATH-500 (Light-
man et al., 2023) datasets. Aime25 consists of competition-level mathematical problems requiring
multi-step reasoning and precise calculation, while MATH-500 encompasses diverse mathematical

Under review as a conference paper at ICLR 2026

0.9

7.32GB
3 No compression 0.8 14.65GB 10.99 GB

B Expected Attention (50%)
BN Expected Attention (90%)

3.66 GB
0.7 No compression ®

s
S

w
&

312GB 8

Peak Memory Usage (GB)
Cache Size (GB)

4

1.46 GB
0.3 L
2

10000 20000 40000 60000 80000 90000 100000 110000 120000 0.0 0.2 0.4 0.6 08 10
Sequence Length Compression Ratio

(a) Peak memory usage vs sequence length up to (b) Needle in a Haystack score with different com-
120k for Llama3.1-8B, with 50% and 90% compres- pression ratios with Qwen3-8B. Expected Attention
sion ratio. As the context length grows the memory has no accuracy loss with a compression ratio of 50%.
savings become more evident, achieving up to 15GB Marker size indicates actual KV cache size in GB.
less memory for large contexts.

domains including algebra, geometry, and number theory with varying difficulty levels. During de-
coding, we allow the KV cache to expand to a predetermined size before initiating token eviction.
We use nx to show that the final cache size is n times smaller than would be without compression.

Results for Aime25 and MATH-500 are presented in Figure 4 and Table 2, respectively. Expected
Attention consistently outperforms or matches baseline methods across all models, with particularly
strong performance at higher compression ratios (4 x and 16 x). Most methods demonstrate minimal
performance degradation at 2x compression, indicating that a large portion of tokens in reasoning
traces contains redundant information that can be pruned without affecting mathematical reason-
ing performance. Expected Attention shows the best performance especially in high-compression
scenarios (12x compression).

4.3 MEMORY SAVINGS AND EFFICIENCY

We evaluate the memory efficiency of our method using Llama3.1-8B and Qwen3-8B for both pre-
filling and decoding phases. All experiments are conducted on a single H100 GPU with bfloat16
precision for both model weights and KV cache. We focus on peak memory usage as the primary ef-
ficiency metric, as KV cache memory consumption is often the primary bottleneck for long-context
inference.

Figure 5a demonstrates peak memory usage as sequence length increases up to 120k tokens, com-
paring Expected Attention at 50% and 90% compression ratios against the uncompressed baseline
with vanilla attention. The results show that memory savings become increasingly substantial as
context length grows.

Figure 5b illustrates the relationship between compression ratio (x-axis) and NIAH benchmark per-
formance for Qwen3-8B, with marker size representing the corresponding KV cache size. While
higher compression ratios naturally reduce KV cache size, they typically incur performance penal-
ties. Remarkably, Expected Attention at 50% compression maintains performance parity with the
uncompressed baseline while achieving a 2 x reduction in KV cache size, demonstrating an optimal
balance between memory efficiency and task performance.

5 RELATED WORKS

Trainable KV-Cache Compression One approach to reducing memory requirements involves
modifying the model architecture or training procedure to inherently produce smaller caches. Ainslie
et al. (2023); Shazeer (2019) reduce cache size by decreasing the number of key-value heads, effec-
tively sharing key-value representations across queries. DeepSeek-V2 (DeepSeek-Al, 2024b) intro-
duced Multi-Head Latent Attention, which projects keys and values into a lower-dimensional latent
space during training, directly reducing the memory footprint of cached representations. Alternative
trainable approaches focus on learning compression policies (Larnicucki et al., 2025; Nawrot et al.,
2024) or masks (Xiao et al., 2024) from pre-trained checkpoints. Finally, State Space Models (Gu

Under review as a conference paper at ICLR 2026

et al., 2022; Gu & Dao, 2024) replace the quadratic attention mechanism with linear-complexity al-
ternatives, while hybrid approaches combine transformer layers with RNN-based components (Ren
et al., 2025; Glorioso et al., 2024). Although these trainable methods typically achieve superior
performance, they require substantial computational resources for pre-training or continued pre-
training, making them less practical for deployment with existing large-scale models.

Training-Free KV cache compression Given the computational costs associated with trainable
methods, significant research effort has focused on developing post-training compression techniques
that can be applied to existing models without modification. Early approaches (Li et al., 2025; Oren
et al., 2024) directly utilize attention scores to rank KV pairs by importance. However, these meth-
ods require access to the full attention matrix, making them incompatible with Flash Attention (Dao
et al., 2022) and thus impractical for modern deployment scenarios. To address this limitation,
several works have developed heuristic-based importance measures that can be computed without
materializing attention matrices, such as keys norm (KNorm Devoto et al. (2024)), token positions
(StreamingLL LM Xiao et al. (2023), H20 Zhang et al. (2024)) or SVD projection (Q-Filters Godey
et al. (2025)). Recognizing that different attention heads exhibit varying sensitivity to compres-
sion, recent methods such as AdaKV (Feng et al., 2024) and PyramidKV (Cai et al., 2025a) adopt
head-specific compression strategies. Expected Attention, adopts insights from these heuristic ap-
proaches while providing a principled theoretical foundation based on the distributional properties
of transformer activations.

Quantization Instead of reducing the KV cache size along the sequence dimension, quantization
methods try to reduce the precision used to store the cache. For example, NQKV Cai et al. (2025b)
partitions the cache into blocks for quantization and processes them separately. KVQuant (Hooper
et al., 2024) performs non uniform per-layer quantization, while KIVI (Zirui Liu et al., 2023) quan-
tizes the key cache by layer and the value cache by token. These methods are orthogonal to Expected
Attention (and to KV cache compression in general), making it possible to integrate them.

Efficient Implementations Alongside compression, sparse attention and quantization, another ef-
fort has been done to devise efficient implementation of inference systems. In this context, a well de-
signed low-level handling of the KV cache can deliver significant performance speed-ups, especially
in multi-user serving systems. The first to investigate this and introduce efficient memory manage-
ment for KV cache was vLLM (Kwon et al., 2023), soon followed by other approaches (Prabhu
et al., 2024; Jiang et al., 2024) and frameworks (NVIDIA, 2024).

6 LIMITATIONS

A key trade-off of our training-free methodology is that its performance does not match that of
trainable methods (DeepSeek-Al, 2024a; Lancucki et al., 2025). This is an intentional design choice
that allows deployment without significant computational resources required for intensive training.
Future work could explore combining our theoretical framework with lightweight fine-tuning.

Another limitation is that our method requires users to specify compression ratios manually, lacking
an automated mechanism to determine optimal compression levels for different scenarios such as
text generation. This represents a promising area for future research.

Finally, while our PyTorch implementation effectively demonstrates our method’s theoretical prin-
ciples, it is not optimized for efficiency. A highly performant implementation with custom CUDA
kernels would significantly improve speed and practical utility.

7 CONCLUSION

We introduced Expected Attention, a training-free algorithm for KV cache compression. We showed
Expected Attention outperforms state-of-art KV cache compression methods on several benchmarks
and in both prefilling and decoding scenarios. Additionally, we released a research library that allows
researchers to easily implement and experiment with KV cache compression methods, and evaluate
them on popular benchmarks for long context.

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we are providing a complete and self-contained codebase
along with this submission. The provided code includes all necessary scripts for data preprocessing
and evaluation, allowing for the direct replication of our experiments and results. For now, we share
the repo in an anonymized github repository.

The codebase is organized to be straightforward to use and is accompanied by a README . md file
with detailed instructions on how to set up the environment and run the experiments.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

Anthropic. System card: Claude opus 4 & claude sonnet 4. arxiv, 2025.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics, 2024.

Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovié, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Junjie Hu, and Wen Xiao. PyramidKV: Dynamic KV cache compression based on pyramidal
information funneling. arXiv, 2025a.

Zhihang Cai, Xingjun Zhang, Zhendong Tan, and Zheng Wei. Ngkv: A kv cache quantization
scheme based on normal distribution characteristics. arXiV, 2025b.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. Interna-
tional Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Patii Deepak and Elmeleegy Amr. How to scale your model.
https://cloud.google.com/blog/products/compute/ai-inference-recipe-using-nvidia-dynamo-
with-ai-hypercomputer, 2024.

Amr Elmeleegy Deepak Patil. Fast and efficient ai inference with new nvidia dynamo recipe on ai
hypercomputer. https://jax-ml.github.io/scaling-book/, 2024.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model. arXiv, 2024a.

DeepSeek-Al Deepseek-v3 technical report, 2024b.

DeepSeek-Al Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,
2025.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective /5
norm-based strategy for kv cache compression. The 2024 Conference on Empirical Methods in
Natural Language Processing, 2024.

10

https://anonymous.4open.science/r/kvpress-72CC
https://matharena.ai/
https://matharena.ai/

Under review as a conference paper at ICLR 2026

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
sis. arXiv preprint arXiv:2405.08944, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

GeminiTeam. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long con-
text, and next generation agentic capabilities. arXiv, 2025.

GemmaTeam. Gemma 3. ArXiV, 2025. URL https://goo.gle/Gemma3Report.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv, 2024.

Nathan Godey, Alessio Devoto, Yu Zhao, Simone Scardapane, Pasquale Minervini, Eric de la Clerg-
erie, and Benoit Sagot. Q-filters: Leveraging gk geometry for efficient kv cache compression.
arXiv, 2025.

Aleksa Gordi¢. Inside vllm: Anatomy of a high-throughput llm inference system. https://www.
aleksagordic.com/blog/v1lmAleksaGordi, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
2312.00752, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. International Conference on Learning Represenations, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with
kv cache quantization. Advances in Neural Information Processing Systems, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. International Conference on Machine
Learning, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. https://arxiv.org/abs/2310.06825,
2023.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MlInference
1.0: Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=fPBACAbgSN.

11

https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://goo.gle/Gemma3Report
https://www.aleksagordic.com/blog/vllm Aleksa Gordić
https://www.aleksagordic.com/blog/vllm Aleksa Gordić
https://openreview.net/forum?id=fPBACAbqSN
https://openreview.net/forum?id=fPBACAbqSN

Under review as a conference paper at ICLR 2026

Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack, 2023.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, and Hyun Oh Song.
Kvzip: Query-agnostic kv cache compression with context reconstruction, 2025. URL https:
//arxiv.org/abs/2505.23416.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. Proceedings of the 29th Symposium on Operating Systems Princi-
ples, 2023.

Haoyang LI, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole HU, Wei
Dong, Li Qing, and Lei Chen. A survey on large language model acceleration based on KV cache
management. Transactions on Machine Learning Research, 2025.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Proceedings of the 38th International Conference on Neural Information Processing
Systems, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models, 2025.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 2024. URL https://aclanthology.org/
2024 .tacl-1.9/.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
International Conference on Machine Learning, 2024.

MetaAl. Introducing llama 4: Advancing multimodal intelligence. arXiv, 2024.
MetaAl. The llama 3 herd of models. arXiv, 2025.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham Toshniwal, Christof Henkel, Benedikt
Schifferer, Wei Du, and Igor Gitman. Aimo-2 winning solution: Building state-of-the-art mathe-
matical reasoning models with openmathreasoning dataset. arXiv, 2025.

Timur Mudarisov, Mikhail Burtsev, Tatiana Petrova, and Radu State. Limitations of normalization
in attention mechanism. arXiv:2508.17821, 2025.

Piotr Nawrot, Adrian Laricucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dy-
namic memory compression: retrofitting llms for accelerated inference. Proceedings of the 41st
International Conference on Machine Learning, 2024.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM, 2024.

OpenAl. Learning to reason with large language models. https://openai.com/index/
learning-to-reason-with-11ms/, 2024.

OpenAl Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv, 2024.

Junyoung Park, Dalton Jones, Matthew J Morse, Raghavv Goel, Mingu Lee, and Chris Lott. Keydift:
Key similarity-based kv cache eviction for long-context llm inference in resource-constrained
environments. arXiv, 2025.

12

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2505.23416
https://arxiv.org/abs/2505.23416
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.tacl-1.9/
https://github.com/NVIDIA/TensorRT-LLM
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Gal Lerer, James Bradbury, Gregory Chillemi, Luca
Antiga, Alban Desmaison, Andreas Tejani, Soumith Chilamkurthy, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv, 2019.

PerplexityAl. Perplexity deep research. https://www.perplexity.ai/hub/blog/introducing-perplexity-
deep-research, 2025.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vatten-
tion: Dynamic memory management for serving llms without pagedattention. arXiv, 2024.

Liliang Ren, Congcong Chen, Haoran Xu, Young Jin Kim, Adam Atkinson, Zheng Zhan, Jiankai
Sun, Baolin Peng, Liyuan Liu, Shuohang Wang, Hao Cheng, Jianfeng Gao, Weizhu Chen, and
Yelong Shen. Decoder-hybrid-decoder architecture for efficient reasoning with long generation.
arXiv, 2025.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv, 2019.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review
on methods to optimize 1lm’ s kv-cache consumption. First Conference on Language Modeling
(COLM), 2024.

StepFun, :, Bin Wang, Bojun Wang, Changyi Wan, Guanzhe Huang, Hanpeng Hu, Haonan Jia,
Hao Nie, Mingliang Li, Nuo Chen, Siyu Chen, Song Yuan, Wuxun Xie, Xiaoniu Song, Xing
Chen, Xingping Yang, Xuelin Zhang, Yanbo Yu, Yaoyu Wang, Yibo Zhu, Yimin Jiang, Yu Zhou,
Yuanwei Lu, Houyi Li, Jingcheng Hu, Ka Man Lo, Ailin Huang, Binxing Jiao, Bo Li, Boyu Chen,
Changxin Miao, Chang Lou, Chen Hu, Chen Xu, Chenfeng Yu, Chengyuan Yao, Daokuan Lyv,
Dapeng Shi, Deshan Sun, Ding Huang, Dingyuan Hu, Dongqing Pang, Enle Liu, Fajie Zhang,
Fangi Wan, Gulin Yan, Han Zhang, Han Zhou, Hanghao Wu, Hangyu Guo, Hangi Chen, Hanshan
Zhang, Hao Wu, Haocheng Zhang, Haolong Yan, Haoran Lv, Haoran Wei, Hebin Zhou, Heng
Wang, Heng Wang, Hongxin Li, Hongyu Zhou, Hongyuan Wang, Huiyong Guo, Jia Wang, Jiahao
Gong, Jialing Xie, Jian Zhou, Jianjian Sun, Jiaoren Wu, Jiaran Zhang, Jiayu Liu, Jie Cheng,
Jie Luo, Jie Yan, Jie Yang, Jieyi Hou, Jinguang Zhang, Jinlan Cao, Jisheng Yin, Junfeng Liu,
Junhao Huang, Junzhe Lin, Kaijun Tan, Kaixiang Li, Kang An, Kangheng Lin, Kenkun Liu, Lei
Yang, Liang Zhao, Liangyu Chen, Lieyu Shi, Liguo Tan, Lin Lin, Lin Zhang, Lina Chen, Liwen
Huang, Liying Shi, Longlong Gu, Mei Chen, Menggiang Ren, Ming Li, Mingzhe Chen, Na Wang,
Nan Wu, Qi Han, Qian Zhao, Qiang Zhang, Qianni Liu, Qiaohui Chen, Qiling Wu, Qinglin He,
Qinyuan Tan, Qiufeng Wang, Qiuping Wu, Qiuyan Liang, Quan Sun, Rui Li, Ruihang Miao,
Ruosi Wan, Ruyan Guo, Shangwu Zhong, Shaoliang Pang, Shengjie Fan, Shijie Shang, Shilei
Jiang, Shiliang Yang, Shiming Hao, Shuli Gao, Siming Huang, Siqi Liu, Tiancheng Cao, Tianhao
Cheng, Tianhao Peng, Wang You, Wei Ji, Wen Sun, Wenjin Deng, Wenqing He, Wenzhen Zheng,
Xi Chen, Xiangwen Kong, Xianzhen Luo, Xiaobo Yang, Xiaojia Liu, Xiaoxiao Ren, Xin Han,
Xin Li, Xin Wu, Xu Zhao, Yanan Wei, Yang Li, Yangguang Li, Yangshijie Xu, Yanming Xu,
Yaqgiang Shi, Yeqing Shen, Yi Yang, Yifei Yang, Yifeng Gong, Yihan Chen, Yijing Yang, Yinmin
Zhang, Yizhuang Zhou, Yuanhao Ding, Yuantao Fan, Yuanzhen Yang, Yuchu Luo, Yue Peng,
Yufan Lu, Yuhang Deng, Yuhe Yin, Yujie Liu, Yukun Chen, Yuling Zhao, Yun Mou, Yunlong
Li, Yunzhou Ju, Yusheng Li, Yuxiang Yang, Yuxiang Zhang, Yuyang Chen, Zejia Weng, Zhe
Xie, Zheng Ge, Zheng Gong, Zhenyi Lu, Zhewei Huang, Zhichao Chang, Zhiguo Huang, Zhirui
Wang, Zidong Yang, Zili Wang, Ziqi Wang, Zixin Zhang, Binxing Jiao, Daxin Jiang, Heung-
Yeung Shum, and Xiangyu Zhang. Step-3 is large yet affordable: Model-system co-design for
cost-effective decoding, 2025. URL https://arxiv.org/abs/2507.19427.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, 2017.

13

https://arxiv.org/abs/2507.19427
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864

Under review as a conference paper at ICLR 2026

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvim: Efficient
long video understanding via large language models. In European Conference on Computer
Vision, pp. 453-470. Springer, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. Internation Conference on Learning Represenations, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context 1lm inference with retrieval and streaming
heads. Internation Conference on Learning Represenation, 2024.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune,
and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree
search, 2025. URL https://arxiv.org/abs/2504.08066.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, and Clark Barrett. H20: Heavy-hitter oracle for efficient gener-
ative inference of large language models. Advances in Neural Information Processing Systems,
2024.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi : Plug-and-play 2bit kv cache quantization with streaming asymmetric
quantization. ICML, 2023.

Adrian Lancucki, Konrad Staniszewski, Piotr Nawrot, and Edoardo M. Ponti. Inference-time hyper-
scaling with kv cache compression. arXiv, 2025.

14

https://arxiv.org/abs/2504.08066

Under review as a conference paper at ICLR 2026

Qwen3-88 Llama-3.1-8B-Instruct gemma-3-4b-it

—e— Expected Attention
351 —e— Knorm

—— Expected Attention —— Expected Attention
150 —o— Knorm —e— Knorm /
TOVA TOVA TOVA
301 —e— KeyDiff —e— KeyDiff —e— KeyDiff
125
2 —e— SnapKV —e— SnapKV —e— SnapkV.
> Pyramidkyv = Pyramidkv < Pyramidky
E
<

Streaming LLM Streaming LLM Streaming LLM
~e- Optimal - Optimal ~e- Optimal

10
-
025 -
: _/// e .
. PR e GRS Ly . PSP

00 o1 o0z 03 04 05 06 07 08 09 00 01 o0z 03 04 05 06 07 08 09 00 01 o2 03 04 05 06 07 08 09
Compression Ratio Compression Ratio Compression Ratio

I = heomprll
lh = heomprll

Figure 6: Reconstruction error ||A — Acompr||
averaged across model layers. Expected Attention achieves the best error, minimizing the impact
on the residual stream.

A RECONSTRUCTION ERROR ACROSS METHODS

In Section 2, we discussed the challenge of compressing the KV cache without significantly alter-
ing the residual stream. To understand the impact of Expected Attention on the model output, we
quantify the reconstruction error of the residual stream, i.e. how the difference between the original,
uncompressed hidden states and the corresponding hidden states after compression. We define the
reconstruction error as || — heompr ||, Where h is the original hidden state without compression and
heompr the hidden state after the KV cache has been compressed. We average the reconstrcution
error over a long sequence of ~ 5K tokens and display the results for several methods in Figure 6.
Expected Attention consistently achieves a lower reconstruction error, indicating that it preserves
the integrity of the hidden state more effectively than competing methods, a crucial property for
maintaining downstream performance (Mudarisov et al., 2025; Gordi¢, 2025).

B DISTRIBUTIONAL PROPERTIES OF LLM ACTIVATIONS

In this section, we analyse the distributional properties of activations within Large Language Mod-
els. Our investigation aligns with the findings of prior work, which has demonstrated that LLM
activations often exhibit normal distributions. More specifically Liu et al. (2025) finds that hidden
states are zero-mean unimodal, and qualitatively fall into two distinctly shaped distributions. The
hidden states before the Attention and the MLP layers tend to be Gaussian-like, while the hidden
states in the intermediate of such layers tend to be Laplacian-like.

For Expected Attention, we are interested in the hidden states before the MLP layers and the corre-
sponding queries. Our study confirms that such activations are predominantly unimodal and can be
approximated as Gaussian distributions, albeit with the presence of a few heavy-tailed outliers, as
already found in Xiao et al. (2023); Sun et al. (2024). In Figure 9a, Figure 8a, and Figure 7a we
show hidden states and queries for different models. For our method, the distributional properties
of queries are of particular importance, and we observe that queries maintain a clear Gaussian-like
behaviour. This also applies to models with QK normalization, where the query projection is not
guaranteed to be linear. The concentration of these activations around a central value and their
Gaussian like shape provides the theoretical basis for Expected Attention.

We stress that in this work, our goal is not to explain or investigate this property, but rather to
leverage it for KV cache compression.

C EXPECTED ATTENTION SCORE

To empirically validate that the expected attention score is strongly correlated to the real model
attention score, we plot the correlation between the observed attention and the expected attention
score across different layers and heads. We use sequence of 5K tokens and use the first 1K tokens to
compute the query statistics. We display the results in Figure 10. We see that for different layers and
attention heads, the expected attention score from Equation 4 is strongly correlated to the original
attention score.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hidden States - Layer 8 Hidden States - Layer 16 Hidden States - Layer 24 Hidden States - Layer 30

-15 -10 -05 00 05 10 15 -3 -2 -1 [1 2 3 -6 -4 -2 0 2

Activation Value

(a) Qwen3-8B Hidden States distributions.

Queries - Head 2 Queries - Head 4 Queries - Head 6 Queries - Head 8

Activation Value

(b) Qwen3-8B queries distributions.

Figure 7: Distributions of Qwen3-8B Hidden States and queries.

Hidden States - Layer 8 Hidden States - Layer 16 Hidden States - Layer 24 Hidden States - Layer 30
-04 -03 -02 -01 00 01 0.2 03 04 -1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 -15 -10 -05 0.0

Activation Value

(a) Llama3.1-8B hidden states distributions.

Queries - Head 2 Queries - Head 4 Queries - Head 6 Queries - Head 8

4 5 -3 -2 -1 0 1 2

Activation Value

(b) Llama3.1-8B queries distributions.

Figure 8: Distributions of Llama3.1-8B hidden states and queries.

D ADDITIONAL RESULTS
In Table 3 we show additional results on the LongBench dataset, averaged across all subsets.

Ruler In order to select the most competitive baselines we performed an initial search on 15+
methods on Ruler. We selected the best performing ones as displayed in Figure 11. We did not
include KVZip (Kim et al., 2025) despite achieving a high score as it needs two forward passes,
therefore implying a higher cost FLOPs that is double as much as the other baselines.

E LLM USAGE STATEMENT

We used LLMs to polish the text and refine the language.

16

Under review as a conference paper at ICLR 2026

864
865
866
867
868
869
870

871 -30 -20 -10 0 10 20 30 -60 -40 -20 O 20 60 -150 -100 -50

Hidden States - Layer 8 Hidden States - Layer 16 Hidden States - Layer 24 Hidden States - Layer 30

872 Activation Value

873 (a) Gemma3-12B hidden states distributions

874 Queries - Head 2 Queries - Head 4 Queries - Head 6 Queries - Head 8
875
876
877
878
879
880
881 (b) Gemma3-12B queries distributions.
882
883
884
885
886
887
888
889
890
891
892
893
894

Activation Value

Figure 9: Distributions of Gemma3-12B hidden states and queries.

Layer 1, head 0 Layer 1, head 8 Layer 1, head 16

Observed attention score aj

Observed attention score aj

Observed attention score aj

10 10 10
895 Expected attention score &; Expected attention score &; Expected attention score &;

896 Layer 10, head 0 Layer 10, head 8 Layer 10, head 16
897)))
898
899
900
901
902 w0

Tt 0 o Tt o o Tt T o2

903 Expected attention score év Expected attention score év Expected attention score é,,

Observed attention score aj
Observed attention score aj
Observed attention score aj

904 Layer 20, head 8 Layer 20, head 8 Layer 20, head 8
905
906
907
908
909

910 104 107 102 10 107 102 10 107 102
91 1 Expected attention score éu Expected attention score éu Expected attention score é,,

912
913
914
915
916
917

Observed attention score aj
Observed attention score aj
Observed attention score aj

Figure 10: Correlation between attention score and expected attention score for Llama3.1-8B. We
compute the expected attentions score on a sequence of 5K tokens, using the first 1K for statistics.
A strong correlation exists between our attention score approximation and the observed attention
score.

17

Under review as a conference paper at ICLR 2026

Table 3: Expected Attention outperforms most baselines on Longbench (Bai et al., 2024). We show
average score with increasing compression ratios across baselines.

Model Method Longbench
0% 10% 25% 50% 75% 90%

Expected Attention 48.63 48.30 50.25 50.1 48.06 39.71

Owen3-8B TOVA 48.63 48.41 48.14 46.49 43.19 37.21
SnapKV 48.63 48.40 47.85 46.25 42.42 34.57

KeyDiff 48.63 48.13 46.23 40.08 29.42 20.69

Expected Attention 51.04 54.02 50.98 47.51 40.41 32.67

Gemma3-12B TOVA 51.04 53.05 51.52 50.7 46.88 40.45
SnapKV 51.04 51.83 51.31 48.14 44.31 34.97

KeyDiff 51.04 51.64 48.74 42.15 33.68 23.46

Expected Attention 46.42 46.59 46.8 4791 44.04 3397

Liama3.1-S8B TOVA 46.42 46.22 45.62 44.13 40.5 34.77
' SnapKV 46.42 46.56 46.07 45.07 41.24 32.55
KeyDiff 46.42 46.45 48.01 46.9 42.24 35.51

100

80

60

== Expected Attention
20 DuoAttention
-@— Kvzip

@ KeyDiff

—@—- Knorm

—@— ObservedAttention

20 PyramidKV
QFilter
~@- Random
SnapkV
~®- StreamingLLM

01 -~ TovA 9

Score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio

Figure 11: Initial experiments on Ruler 4K to select the best baselines. We did not use KVZip as it
requires two forward passes and increases latency significantly.

18

	Introduction
	Expected Attention
	Key-Value Cache in Autoregressive Transformers
	Expected Attention: Estimating Attention From Future Queries

	Experiments
	Experimental Setup

	Experimental Results
	Prefilling
	Decoding
	Memory Savings and Efficiency

	Related Works
	Limitations
	Conclusion
	Reproducibility statement
	Reconstruction Error Across Methods
	Distributional Properties of LLM activations
	Expected Attention Score
	Additional Results
	LLM Usage Statement

