Under review as a conference paper at ICLR 2024

TRAINABLE TRANSFORMER IN TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works attribute the capability of in-context learning (ICL) in large pre-
trained language models to implicitly simulating and fine-tuning an internal model
(e.g., linear or 2-layer MLP) during inference. However, such constructions require
large memory overhead, which makes simulation of more sophisticated internal
models intractable. In this work, we propose a new efficient construction, Trans-
former in Transformer (in short, TINT), that allows a transformer to simulate
and fine-tune more complex models during inference (e.g., pre-trained language
models). In particular, we introduce innovative approximation techniques that
allow a TINT model with less than 2 billion parameters to simulate and fine-tune
a 125 million parameter transformer model within a single forward pass. TINT
accommodates many common transformer variants and its design ideas also im-
prove the efficiency of past instantiations of simple models inside transformers. We
conduct end-to-end experiments to validate the internal fine-tuning procedure of
TINT on various language modeling and downstream tasks. For example, even with
a limited one-step budget, we observe TINT for a OPT-125M model improves
performance by 4 — 16% absolute on average compared to OPT-125M. These
findings suggest that large pre-trained language models are capable of performing
intricate subroutines. To facilitate further work, a modular and extensible codebase
for TINT is included.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have brought about a revolution in language modeling, and scaling
model size has enabled significant advancements in capabilities (Brown et al., 2020; Chowdhery
et al., 2022). One such capability (Wei et al., 2022) is in-context learning (ICL), where language
models “learn” from given training exemplars in the context and subsequently predict the label of a
test example within a single inference pass.

Several works (Akyurek et al., 2022; Dai et al., 2022; von Oswald et al., 2022) propose that ICL
occurs when the large (“simulator’”) model mimics and trains a smaller and simpler auxiliary model
—such as a linear or 2-layer MLP model— on the in-context data. A crucial limitation of previous
works is the large number of parameters needed for a simulator to perform such a complex subroutine
during its forward pass, which restricts the simulator to performing very few training steps on fairly
simple models. For example, simulating training of a linear layer can require tens of millions of
parameters (Akyurek et al., 2022), and extending the simulator to train a larger model would require
a simulator with trillions of parameters.

The current work shows that minor modifications to the standard transformer architecture allow it to
efficiently simulate and approximately train an internal auxiliary transformer during a single inference
pass (Section 2). We call our architecture Transformer in Transformer, or TINT in short. We show
how TINT can internally simulate and train several popular and capable Transformer models such
as GPT (Radford et al., 2019), OPT (Zhang et al., 2022), and other variants (Touvron et al., 2023;
Scao et al., 2022). TINT requires fewer than two billion parameters to internally simulate and update
an auxiliary transformer with 125 million parameters (e.g., GPT-2 or OPT-125M). The scale of
our construction is crucial to its significance, as it suggests that even transformers of moderate scale
can explicitly learn from context during inference. TINT can also be understood as a meta-learning
architecture (Finn et al., 2017; Kirsch et al., 2022). As our experiments show, TINT can adapt a small
pre-trained model on-the-fly using just the first few tokens of a given context.

Under review as a conference paper at ICLR 2024

F d Modules For Evaluati
orward Modules For Evaluation (D) Simulated forward pass

® 3
\ZBEA] Vk e, e e € eg er (2) Backward simulation of i-1 layer
(3) Descent simulation of i layer
ith Descent Module i-1th Backward Module (i= ¢, .., 1)
V' Auxiliary model params
@@ v Vv Vk dy1 dya dys dys Oys ayr
€ Input embeddings
Last (¢«) Backward Module e Masked input embeddings
Forward Modules dy Gradient of loss wrt. y
@ b -
v,V Wiz e, e e e es er V Updated auxiliary model params

Figure 1: The overall structure of TINT. Each Forward, Backward, and Descent module is represented
using combinations of linear, self-attention, layernorm, and activation layers. The input consists
of prefix embeddings, that represent relevant auxiliary model parameters in each layer, input token
embeddings, and a binary prefix mask to separate the train and evaluation segments of the input.
Auxiliary model parameters are updated in the descent module using the training part, and the updated
prefix tokens are transferred to the forward modules via residual connections for evaluating the rest.

We validate our approach with end-to-end experiments on many language modeling and downstream
tasks. Results demonstrate that a TINT model constructed to simulate and tune an OPT-125M model
leads to a perplexity reduction of 0.3 to 0.7 points in language modeling. Additionally, TINT learns
from in-context exemplars in the few-shot setting, resulting in an absolute gain of 12% to 16% over
the auxiliary model. TINT can also learn from the context tokens of the evaluation inputs in the
zero-shot setting, leading to an absolute performance improvement of up to 4% when no explicit
exemplars are provided (Section 3.2). To the best of our knowledge, TINT is the first simulator to
undergo such a comprehensive end-to-end evaluation on standard language tasks. In contrast, previous
studies primarily conducted probing tests on transformers pre-trained using synthetic datasets or
lacked empirical validation (Akyurek et al., 2022; von Oswald et al., 2022; Giannou et al., 2023),
likely due to the immense scale required by their constructions.

To summarize, our work improves over prior works in three crucial ways.

1. Expressiveness: We allow the auxiliary model to be a complex, general-purpose transformer,
which requires significant technical innovation beyond past work using linear and MLP auxiliary
models. TINT can internally simulate and train popular moderate- and large-scale transformers,
including OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023), BLOOM (Scao et al., 2022),
and Pythia (Biderman et al., 2023).

2. Efficiency: We focus on making TINT orders of magnitude smaller, reducing the construction size
from trillions of parameters to a few billion, despite simulating much complex auxiliary models.
This efficiency is driven by a number of approximations (see Section 2.2).

3. Empirical Validation: TINT can match the performance of fine-tuning the auxiliary model
explicitly, thereby validating the approximations used in the construction. In addition, we provide
an extensible codebase for further training and evaluation of our proposed architecture (Section 3).

2 OUR CONSTRUCTION

2.1 OVERVIEW

We design a transformer architecture, dubbed TINT, to perform the forward, backward, and parameter
update operations of a smaller so-called auxiliary model over the course of a single inference pass
(Figure 1). The first few layers of TINT simulate the forward pass, and then backpropagation and
gradient updates are performed in parallel in the next several layers of the model. The final layers of
TINT simulate another forward pass through the auxiliary model with the updated parameters, and
TINT directly outputs the result. This procedure requires that TINT has (1) read and write access to
the auxiliary model weights, and (2) read access to labelled training data.

Under review as a conference paper at ICLR 2024

For (1), we read from and write to the token embeddings of the first few tokens in the input (i.e., prefix
embeddings, see Definition 2.1 and Section 2.3). For (2), we designate the first few input tokens as
training data. If the input contains in-context demonstrations, then TINT performs a natural operation:
training on in-context demonstrations and testing on the last example. However, the input can also be
standard text tokens without additional formatting or labelling, in which case TINT performs gradient
descent to adapt to the first few tokens in a context before being evaluated on the rest of the context.
This procedure is known as dynamic evaluation, which we describe in further detail in Section 3.1.

2.2 KEY COMPONENTS

Due to space constraints, we defer a complete description of the TINT to the appendix. Here, we detail
the modifications and approximations introduced in our architecture to enable efficient simulation of
training an internal auxiliary model. Experiments in Section 3 verify that these approximations do
not harm performance. Numbers in parentheses indicate the parameter saving factor when relevant.

1. Prefix embeddings (5% compared to Wei et al. (2021); Perez et al. (2021)): As described in
Section 2.3, we use the token embeddings of the first few inputs (i.e., the prefix, see Definition 2.1)
to represent the relevant auxiliary model weights at each layer.

2. Hgm-split linear operations (Hj;, x): We parallelize expensive linear operations by splitting
them across attention heads (Section 2.4).

3. Linear attention: We use linear attention modules to perform the forward, backward, and gradient
operations for an auxiliary model linear layer. Softmax attention also suffices but requires more
parameters and incurs an approximation error (Theorem 2.5). We use softmax attention modules
to simulate the auxiliary model attention modules in TINT.

4. First order gradients (4x): We use the first-order term of the gradient for layer normalization
and activation functions (Section 2.5).

5. Only train the value vectors of the attention (5x): We only update and backpropagate through
the value vectors of the attention layers. TINT is designed to simulate only a few steps of
training the auxiliary model, so we expect this approximation not to drastically modify the final
performance. Our experiments in Tables 1 and 2 validate that it does not hurt performance.
Moreover, in Theorem 2.13, we formally show that under certain conditions, backpropagating
through just the value vectors can be arbitrarily accurate to standard backpropagation.

6. Parameter sharing (3x or 4x): We save 3x parameters by applying the same forward module
in TINT to simulate the query, key, and value computation of the auxiliary model’s self-attention
module (Section 2.7). Similarly, we divide the feedforward layer in the auxiliary model into 4
sub-layers and save 4 X parameters by employing a single TINT module to simulate each sub-layer.

Notation: Let D denote the embedding dimension for a token and 7" denote the length of an input
sequence. H denotes the number of attention heads. With the exception of contextual embeddings,
we use subscripts to indicate if the quantity is from TINT or from the auxiliary model. For example,
Dy refers to the embedding dimension and Dy, refers to the TINT embedding dimension. For
contextual embeddings, we use eff> € RPsn to denote activations in TINT and wgf) € RPw to
denote activations in the auxiliary model, where ¢ is the layer and ¢ is the sequence position. When
convenient, we drop the superscript that represents the layer index and the subscript that represents
the position index. For a matrix A, a; refers to its jth row, and for any vector b, b; refers to its jth
element. TINT uses one-hot positional embeddings {p]™T € R%sn}, 7. . For illustration, we ignore
the bias parameters here but discuss them in the appendix.

2.3 OPERATING ON AN AUXILIARY MODEL WITH PREFIX EMBEDDINGS

The straightforward way to simulate the forward pass of the auxiliary model would be to store its
weights in the simulator’s weights and run a forward pass as usual. However, this gives the simulator
no way to update the weights of the auxiliary model, since the simulator cannot modify its own
weights during a forward pass. The only way to update the auxiliary model weights is by storing
them in model activations that can be accessed and modified over the course of a forward pass.

Under review as a conference paper at ICLR 2024

2D X Do /2 2Dax Daux/2
R Do X D R R R
| I1 1
wi)|(t 0
1 2 3 1 . <
—Wi— — Wi T wi— 2 . x
Wl w2 3 ‘Tl . |; 0
2 2 == 3 x; : i
stack Wil I 0 :IUIZI W
1 1 X
Wy WD, I i 2 Xt
I ol x2 1sttoken Attn.
. . . w5 . It
| ' gl
X
1 2 3 Wg N |t
—Womz —Wbin — Wb ' !
Key Query Value

Figure 2: TINT simulates the forward pass of a linear layer as a [{-head (H{ = 6 here) attention
layer, with parameters of the auxiliary model as the key, the encodings of input tokens as the query,
and the positional one-hot vector of the prefix embeddings as the value. We omitted the identical
transformation for key, query, and value matrices for simplicity.

Wei et al. (2021); Perez et al. (2021) model the simulator after a Turing machine, where each

eie) € RPsm acts as a workspace for operations, and data is copied between workspaces and memory
using attention operations. Memory can either be allocated in a token embedding, thereby increasing
the embedding size Dg, (Akyurek et al., 2022), or passed into the model as additional tokens,
thereby increasing the simulator’s input sequence length Tg;,,. Both strategies increase the size of
the construction, and using attention modules for copy operations results in a drastic scaling. For
example, if Dy, = 768, a dot product with weight w € R78, i.e. (w, wy)), requires at least 8.7
million parameters in the simulator’.

Alternatively, storing memory as context tokens and allowing the attention modules to attend to those
tokens removes the need for copying operations (Giannou et al., 2023). Then, a dot product with

weight w € R ie. (w,z!"), requires 1.7 million parameters only. Naive implementation is
problematic since the TINT attention module grows quadratically with the sequence length T§;,,. We
thus define prefix embeddings in TINT to contain only the relevant auxiliary parameters at each layer.

Definition 2.1 (Prefix Embeddings). {v]@) } szl denotes the K prefix embeddings at the ¢th layer in
TINT. These contain relevant auxiliary model weights or simulated activations.

Prefix embeddings permit efficient parallelizaton across attention heads while keeping the embedding
dimension Dy, small, as we demonstrate below.

2.4 STACKING IN PREFIX-TOKENS, Hg-SPLIT LINEAR OPERATIONS AND LINEAR ATTENTION

We motivate three parameter-efficient techniques using a D,yx X Dqgux linear layer as a case study.
The linear layer is applied token-wise, so we consider a single position ¢ without loss of generality.

Definition 2.2 (Linear layer). For a weight W € RPawx*Dax g Jinear layer takes & € RPw=x as input
and outputs y = Wa.

Stacking: We compute (w;, x;) for all ¢ € [Dyy], where w; denotes the ith row of W. To do
so, the TINT input embedding e, must contain x; in its first D, coordinates, and the weights
{w;} are in prefix embeddings {v;} (Definition 2.1). A first attempt is to put each w; in its own
v; vector, which requires K = D, prefix embeddings at the start of the sequence. For GPT-2,
D,x = 768, so this strategy will not allow the TINT to accept many standard language context
tokens; moreover, the attention modules in the TINT will grow quadratically with input length.
Therefore, we stack S weights on top of each other to form each prefix embedding v;. S drives a
trade-off between the embedding dimension of the TINT, Dy, := D, S, and the context length to
the TINT, Ty, := K + Thux. We set S = 4.

'The copy attention will require 1.7 million pdarameters, while the dot product with a feedforward module
(following Akyurek et al. (2022)) will require > 7 million parameters.

Under review as a conference paper at ICLR 2024

Attention Module: We use a self-attention module in TINT to compute the matrix-vector product.
We modify the usual attention layer to also include the one-hot position embeddings {p/"™T €
RTsm}, 7. . Here, we use a single attention head (see Definition A.1 for multi-head attention).

Definition 2.3 (TINT self-attention with single head). For parameters {WgINT, WINT W INT ¢
R DPsimX Dsim 1 {(WE, Wi, WY € RPsnxTin} - the self-attention layer with single attention head
and a function fagen @ RTm — RTn takes a sequence {€, € RPn}, 7 as input and outputs
{e; € RPsn}, 1., such that

e = E ag ;v;, where a; ; = faren(Kq1);,
7 <Tsim

q; = ngNTé\t + ng’pt, ke = W"Te, + Wlp,, vy = WyNTe, + Whp, forall t < Ty,
and K € RTm>*Dsn 5 the key matrix defined with its rows as {k; }1<T,, -

q:, k¢, v, are the query, key, and value vectors at position ¢, and a._; is the attention score between
tokens at position ¢ and j. fattn can be either linear or softmax functions, and the corresponding
layers are referred to as linear and softmax self-attention respectively.

Remark 2.4. In order to compute and backpropagate the loss during inference, the self-attention
layers in TINT need to be non-causal on the first few tokens of the input.” Explicit masks apply
bidirectional attention to the input to backpropagate auxiliary self-attention layers (Section 2.6).

TINT Linear Forward module (Figure 2): A first attempt would be to use different attention
heads to operate on different rows; however, this uses S attention heads whereas large transformers
usually have many more heads. Moreover, the output from the multi-head attention would need to be
reorganized by a Dgjy, X Dgin linear layer before it could be reduced efficiently via summation. We
instead parallelize across more attention heads to ensure the resulting output can easily be compiled:
crucially, we shard each individual weight into S’ parts. We set S and S’ such that Hg, = S x 5,
using all available heads to parallelize the dot products.

Hg;-split linear operations (Appendix B.1): The output resulting from the attention module has
shape (Dgim/Hgim) X Hgm and is sparse. To complete linear forward pass, we need to sum and
aggregate the appropriate terms to form a Dgp,-length vector with W in the first D,y coordinates.
Straightforwardly summing along an axis aggregates incorrect terms, since the model was sharded.
Rearranging the entire matrix to enable easy summation requires an additional D, X Dgp, linear
layer. But we can save a Hg;,, X parameters by leveraging the local structure of the attention output.
We space out the results across the Dy, /Hgim rows and then sum along the Hg,, columns to get the
desired Dgjn-length vector. This requires Dfim /Hgim + Dgim Hgim parameters. Note that leveraging
local structure also compresses the constructions for the TINT’s backpropagation modules of layer
normalization and activation operations (Appendices D and E).

Linear Attention: The above construction uses a linear attention mechanism instead of the canonical
softmax. Here, we show that any linear attention module with bounded entries can be approximated
by softmax attention with a few additional parameters. Thus, we often use linear attention in TINT.

Theorem 2.5 (Informal, c.f. Theorem A.2). For any ¢ > 0, B > 0, and a linear attention module
with H heads and bounded parameters, there exists a softmax attention module with 2H g, attention
heads and 4x additional parameters, such that on every sequence of inputs with B-bounded norm,
the output sequences of the softmax attention and the linear attention differ by O(€) at each position.

2.5 FIRST ORDER GRADIENTS FOR LAYER NORMALIZATION

Below, we show that computing exact gradients for layer normalization is expensive, so we efficiently
approximate backpropagation by computing the dominating term.

Definition 2.6. [Layer Normalization] Define a normalization function f : R? — R that performs
f(x) = (x — p)/o, where p and o are the mean and standard deviation of «, respectively. Then,
layer normalization with parameters v, b € RP= takes as input & € R« and outputs y € RPwx,
which is computed as z = f(x),y =7 ® z + b.

2Similar prefix models have been developed in (Raffel et al., 2020; Liu et al., 2018).

Under review as a conference paper at ICLR 2024

Definition 2.7. [Exact Gradient for Layer Normalization] Using notations in Definition 2.6, given the
gradient of the loss w.r.t the output of the Layer Normalization 0,,, backpropagation computes 9, as

DI\IIX
O = (02 = D™ "D 0z, — (0z,2)2) /0 0z =700y
i=1

Exact backpropagation is expensive because (9., z) z requires using at least two sequential MLPs. We
thus approximate it with a first-order Taylor expansion, which is entry-wise close to the true gradient.

Definition 2.8. [e-approximate Layer Normalization Gradient] With notations defined above, this
layer takes 0y, € RP= as input and outputs 0, = 1(f(z + ey © 9y) — f(x)).

€

Theorem 2.9 (Informal, c.f. Thm D.1). With bounded {s-norms of x, 0y, v, b, |0 — 5;

< O(e).

This approximation only works for symmetric Jacobian, so it does not apply when backpropagating
the linear and self-attention layers. We use a TINT module with 2 linear layers, separated by Group

Normalization (Wu and He, 2018), to compute 0y, resulting in a 4x parameter reduction.

2.6 BACKPROPAGATION THROUGH ATTENTION VALUE VECTORS

For simplicity, we show a single head self-attention layer (multi-head attention is in Appendix C). The
self-attention in the auxiliary model is the same as in TINT (Definition 2.3) without a position vector.

Definition 2.10 (Auxiliary model softmax self-attention). A self-attention layer with parameters
{Wq, Wg, Wy} takes a sequence {x; };<7,, and outputs a sequence {y; };<7,,, such that

Yy = Zatﬂjvj, with a; ; = softmax(Kq;);, q = Woxs, ki=Wgx:,, vi= Wy,
J

for all t < Ty, and K € RTwXDax defined with rows {k; },;} .

Definition 2.11 (Exact gradient for softmax self-attention). Given the gradients of the loss w.r.t the
output sequence {9y, };_;, backpropagation computes {95, }{_, with

Oz, = W Oq, + Wi Ok, + Wy} Ou,, Do, = Z a;j 10y, ,
J
g, = _ar; () vj)lk; = > arjkyl, Ok, = ar;(By,) (v; =D aryvj)a;
J j’ J j’

for all ¢ < Ty, with K € RTwxXDax defined with rows {k; },;}.

The computation of Og, 1=} ax,; ((Oy,) "vj)[k; =" j# at,j-k ;] (and similarly O,) requires at least
2 self-attention layers and an MLP layer , as we must compute and multiply attention scores a; ; and
(Oy,)T'Uj before computing Jg,. Thus, we only update the self-attention using the gradients w.r.t. v;.

Definition 2.12 (Approximate Self-Attention Backpropagation). With the notations defined above,
this layer takes a sequence {0, € RPw},op and {z; € RP=},1 as input and outputs

{0, Ye<r. With O, = WiJ Oy, Where Oy, = 3 a0y, -

We formally show that when the attention head for each position pays a lot of attention to a single
token (i.e., behaves like hard attention (Perez et al., 2021)), 0, is entry-wise close to 0, for all £.
Computing {9, }7_; instead of {0y, }7_; induces a 5x parameter reduction.

Theorem 2.13 (Informal, c.f. Theorem C.4). If on input sequence {x,}i<r,,, the attention scores

Bz, — Oy || < O(e).

are e-close to a hard-attention at each position, then for all t,

Under review as a conference paper at ICLR 2024

Single Multi.
Example 1 Example 1
Review: goes to absurd lengths.

. . Review: 1 hs.
Sentiment: Negative eview: goes to absurd lengths

Sentiment: Negative

Example 2
Review: contains no wit, only labored gags . Review: contains no wit, only labored gags .
Sentiment: Negative Sentiment: Negative

Example 3

Review: the greatest musicians

Review: the greatest musicians - <
Sentiment: Positive

Sentiment: Positive

Figure 3: This illustration showcases different settings in few-shot learning (k = 3) using TINT. The
Single mode (left) has one example for each input, and the auxiliary model is updated with a batch of
inputs. The Multi. mode (right) concatenates all examples to form a single input. For Label loss,
only underlined label words are used for internal training, while full context loss includes all tokens.

2.7 PARAMETER SHARING IN THE TINT

Consider the self-attention layer (Section 2.6). The relevant TINT module performs linear operations
with Wg, Wi, Wy to compute query, key, and value vectors at each position ¢ (Definition 2.2) and
hence can be simulated with the Linear Forward module (Section 2.4). We additionally leverage
parameter sharing to apply a single Linear Forward module for each of the three computations, chang-
ing only the prefix embeddings to correspond to Wq, Wi, or Wy,. Applying the same structure to
feed-forward linear layers results in a 4 x reduction in the number of necessary modules (Appendix G).

3 EXPERIMENTS

We conduct experiments on TINT constructed using GPT2 and OPT-125M as auxiliary models to
validate that the approximations introduced (Section 2.2) do not significantly harm the capability of
TINT to simulate and train an internal model.

3.1 EXPERIMENTAL SETUP

We introduce dynamic evaluation (Krause et al., 2019), which updates the model with a segment of
the input and evaluates the updated model on the rest of the input.

Definition 3.1 (Dynamic Evaluation (Krause et al., 2019)). For a sequence s € S of T tokens
81, .., s7 and hyperparameters ¢ and 7, dynamic evaluation of any model f with parameters 6 € © is
defined as follows. Let £ : {S, 0} — R be the cross-entropy language modeling loss. Compute

0" =0 —nVoL((s1,...5:),0).

Then, the dynamic evaluation loss is £((S; 41, ..., $T), 6’). For in-context learning, the first ¢ examples
are used to update the parameters.

For example, suppose we perform dynamic evaluation with ¢ = 5 using the cross-entropy objective on
Machine learning is a useful tool for solving problems. The red part is used to update the pre-trained
model, and the brown part is used for evaluation. This operation is equivalent to TINTinference,
which implicitly updates a model on the red portion during the forward pass and then evaluates the
updated model on the brown portion. Therefore, we use dynamic evaluation as a baseline for TINT:
matching dynamic evaluation performance provides strong evidence that TINT closely approximates
explicitly fine-tuning the auxiliary model.

Tasks: We perform language modeling experiments on Wikitext-103 (Merity et al., 2016) and
evaluate on 7 downstream tasks in zero-shot and few-shot settings: SST-2 (Socher et al., 2013), MR
(Pang and Lee, 2004), CR (Hu and Liu, 2004), MPQA (Wiebe et al., 2005), Amazon Polarity (Zhang
et al., 2015), AGNews (Zhang et al., 2015), and Subj (Pang and Lee, 2005).

Model: We compare a TINT model that tunes an OPT-125M pre-trained model internally to dynamic
evaluation of OPT-125M and standard evaluation of OPT-1.3B.? Given a downstream task input

3Our construction is generally applicable to diverse variants of pre-trained language models (Appendix I).

Under review as a conference paper at ICLR 2024

Table 1: Language modeling results on WIKITEXT-103. We use 30%, 50%, 70% and 90% of
sequences for training in dynamic eval and TINT and the rest of the sequence for evaluation.
TINT improves upon the auxiliary model perplexities by 0.3 — 0.7 absolute on average. The small
perplexity difference between the TINTand dynamic evaluation suggests that the approximations
introduced in the descent algorithm (Section 2.2) can still effectively fine-tune the auxiliary model.

GPT2 OPT-125m
Training proportion 30% 50% 70% 90% 30% 50% 70% 90%

VANILLA MODEL 256 249 245 233 296 28.8 28.0 28.0
DYNA. EVAL 249 240 235 222 290 282 274 274
TINT 251 243 238 226 293 284 275 274

(e.g., a movie review), the model’s predicted label is computed as follows. First, we design a simple
task-specific prompt (e.g., “Sentiment:”) and select label words ¢y, ..., ¢, to serve as surrogates for
each class (e.g., “positive” and “negative”). Then, we provide the input along with the prompt to the
model, and the label word assigned the highest probability is treated as the model’s prediction. If using
calibration, then the probabilities are normalized using just the prompt as input.* Mathematically, the
model’s prediction is computed as

Pr[c; | input, prompt]

No calibration: arg max Pr[c; | input, prompt] Calibration: arg max Prle: | prompl

This is a widely used calibration technique (Holtzman et al., 2021) for prompting language models.

Settings (Figure 3): We explore the following settings in downstream tasks: 1) Single and Multi.:
We finetune the auxiliary model using either separate single examples or concatenated examples
within each input; 2) Label loss and full-context loss: We finetune on the loss either from only label
words or the entire context (Figure 3). We evaluate both zero-shot and few-shot settings, using the
context of the evaluation example and 32 training examples for internal learning respectively.

3.2 VERIFICATION OF TINT

In language modeling (Table 1), the perplexity decreases using TINT, especially as the training
proportion increases. For downstream tasks (Table 2), explicit internal training within TINT surpasses
vanilla zero-shot evaluation and in-context learning, even with a limited budget of a single forward
pass. Moreover, TINT achieves a performance comparable to dynamic evaluation, indicating that
the approximations made during its construction largely preserve its effectiveness for fine-tuning.
Though calibration may not always be beneficial in every setting,” we observe that the efficacy of
TINT remains comparable to dynamic evaluation. Additionally, we find that TINT outperforms
or is on par with a similarly sized pre-trained model (OPT-1.3B) except in the calibrated few-shot
setting. This suggests that the capabilities of existing pre-trained models may be understood via the
simulation of smaller auxiliary models. Please refer to Appendix J for more experiment details.

4 RELATED WORK

Interpretability: Mechanistic interpretability works reverse-engineer the algorithms simulated
by these models (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022; Nanda et al., 2023;
Chughtai et al., 2023). These works study local patterns, e.g. activations and attention heads, to
derive interpretable insights. Other works (Weiss et al., 2021; Lindner et al., 2023) use declarative
programs to algorithmically describe transformer models.

Transformer Expressivity: Perez et al. (2021); Pérez et al. (2019) show that Transformers with hard
attention are Turing complete, with Wei et al. (2021) showing statistically meaningful transformer
constructions for Turing machines for statistical learnability. In Section 2.3, we point out that this
scheme often results in gigantic constructions. To understand the behavior of moderate sized models,

4Calibration is not applied to the language modeling evaluation.
3Such inconsistencies in the calibration method have been observed in previous works (Brown et al., 2020).

Under review as a conference paper at ICLR 2024

Table 2: Zero-shot and few-shot in-context learning results across 7 downstream tasks. All the
few-shot results are averaged over three training seeds. TINT consistently surpasses its auxiliary
model and achieves comparable performance to dynamic evaluation. TINT outperforms auxiliary
models by 3 — 4% and 12 — 16% absolute points on average in 0-shot and 32-shot experiments
respectively. TINT performs competitively with a similar-sized pre-trained model (OPT-1.3B) in both
0-shot and 32-shot settings. We show the standard deviation for few-shot settings in parentheses.

Model Shots | Subj AGNews SST2 CR MR MPQA Amazon Avg.
Without Calibration
OPT-125M 0 64.0 66.0 70.5 64.5 71.0 68.0 76.5 68.6
OPT-1.3B 0 59.0 55.5 54.0 50.5 52.5 74.0 57.0 57.5
OPT-125M DYNA. EVAL 0 71.0 67.0 79.5 71.5 70.0 68.0 85.5 73.2
OPT-125M TINT 0 67.5 66.0 76.5 69.0 76.0 70.5 78.5 72.0
OPT-125M 32 58719y 3374y 50812y 513019 50.000.0) 54325 55067 50.5(1.9)
OPT-1.3B 32 T4.2(6.1) 7133 89836 Tl.5us) 68361 81733 70.39.0) 75.3(0.4)

())

())
OPT-125M DYNA. EVAL 32 78.0(1_4) 66.7(1_(3) 71.5(]»4) 73.7(33) 72.0(0_0) 80.7(0_6) 79.8(0,2) 74.6(2_7)

())

OPT-125M TINT 32 | 82347 693000 73708 7571e) 72312 83200 78202 7640
With Calibration
OPT-125M 0 64.0 66.0 53.0 54.5 52.5 55.5 58.0 57.6
OPT-1.3B 0 73.5 61.5 57.5 53.0 54.5 79.5 61.0 62.9
OPT-125M DYNA. EVAL 0 62.5 66.0 60.5 53.5 54.0 56.5 74.5 61.1
OPT-125M TINT 0 64.0 66.0 56.5 59.0 53.5 62.0 66.5 61.1
OPT-125M 32 | 83504 40.7004) 508(0s 6771 577008 792w 56.0s1) 62207
OPT-1.3B 32 | 51849 66251 93700 8282s 91319 835as 92000 80207
OPT-125M DYNA. EVAL 32 87-2(0_2) 67.2(0_(3) 72.8(59) 73-3(2.6) 66.7(7_4) 81.5(3_7) 70.3(21) 74.1(2_9)
OPT-125M TINT 32 85.3(1_9) 67.3(0_6) 71.8(3.3) 70.7(13) 63.7(()_2) 83.5(1_5) 77.5(1.2) 74.3(14)

other works have investigated specific classes of algorithms, e.g. bounded-depth Dyck languages (Yao
et al., 2021), modular prefix sums (Anil et al., 2022), adders (Nanda et al., 2023), regular languages
(Bhattamishra et al., 2020), and sparse logical predicates (Edelman et al., 2022). Liu et al. (2023)
provide a unified theory to understand automata-like mechanisms within transformers.

Fast Weight Programmers (FWPs) enable input-dependent weight updates during inference. Ba et al.
(2016) connect self-attention and FWPs, and follow-up works (Schlag et al., 2021; Irie et al., 2021)
show the efficacy of self-attention layers to update linear and recurrent networks during inference.
Clark et al. (2022) added Fast Weights Layers (FWL) to a frozen pre-trained model, and efficiently
fine-tune FWL as the model processes the sequence.

Alternative Explanations for ICL: Some works study ICL using a Bayesian framework. Xie et al.
(2022) model pretraining data as a mixture of HMMs and cast ICL identifying one such component.
Hahn and Goyal (2023) later modeled language as a compositional grammar, and propose ICL as a
composition of operations. On the other hand, careful experiments in Chan et al. (2022) show that
data distributional properties (e.g. Zipf’s law) drive in-context learning in transformers.

Transfer learning: Our construction uses a pre-trained model to initialize a larger transformer, which
is similar to several other more empirically oriented works (Gong et al., 2019; Reddi et al., 2023).

5 DISCUSSION

We present a parameter-efficient construction TINT capable of simulating gradient descent on an
internal transformer modelduring inference. Using fewer than 2 billion parameters, it can simulate
fine-tuning a 125 million transformer (e.g., GPT-2) internally, dramatically reducing the scale required
by previous works. Language modeling and in-context learning experiments demonstrate that the
efficient approximations still allow the TINT to fine-tune the model. Our work emphasizes that the
inference behavior of complex models may rely on the training dynamics of smaller models. As such,
the existence of TINT has strong implications for interpretability and Al alignment research.

While our work represents a significant improvement over previous simulations in terms of auxiliary
model complexity, similar to prior research in this area, our insights into existing pre-trained models
are limited. Furthermore, we have not yet examined potential biases that may arise in the auxiliary
models due to one-step gradient descent. We plan to investigate these aspects in future work.

Under review as a conference paper at ICLR 2024

REFERENCES

Ekin Akyurek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. arXiv preprint arXiv:2207.04901, 2022.

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Using fast weights
to attend to the recent past, 2016.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In Infernational
Conference on Machine Learning, pages 2397-2430. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 35:18878-18891, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
how networks learn group operations. arXiv preprint arXiv:2302.03025, 2023.

Kevin Clark, Kelvin Guu, Ming-Wei Chang, Panupong Pasupat, Geoffrey Hinton, and Mohammad
Norouzi. Meta-learning fast weight language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pages 9751-9757, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. URL https://
aclanthology.org/2022.emnlp-main.661.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-context?
language models secretly perform gradient descent as meta-optimizers, 2022.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pages
5793-5831. PMLR, 2022.

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph, B Mann, A Askell, Y Bai, A Chen, T Conerly,
et al. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126—-1135. PMLR, 2017.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers, 2023.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of bert
by progressively stacking. In International conference on machine learning, pages 2337-2346.
PMLR, 2019.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. arXiv preprint arXiv:2303.07971, 2023.

10

https://aclanthology.org/2022.emnlp-main.661
https://aclanthology.org/2022.emnlp-main.661

Under review as a conference paper at ICLR 2024

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface form compe-
tition: Why the highest probability answer isn’t always right. arXiv preprint arXiv:2104.08315,
2021.

Minging Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 168—177,
2004.

Kazuki Irie, Imanol Schlag, Robert Csordas, and Jiirgen Schmidhuber. Going beyond linear trans-
formers with recurrent fast weight programmers. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=0t20RiBgTal.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of trans-
former language models. arXiv preprint arXiv:1904.08378, 2019.

Ananya Kumar, Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. How to fine-tune vision
models with sgd, 2022.

David Lindner, Janos Kramar, Matthew Rahtz, Thomas McGrath, and Vladimir Mikulik. Tracr:
Compiled transformers as a laboratory for interpretability. arXiv preprint arXiv:2301.05062, 2023.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=DedFYgjFueZ.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198,
2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 271-278, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 115124, 2005.

Jorge Perez, Pablo Barcelo, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1-35,2021. URL http://jmlr.org/papers/v22/20-302.
html.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Jorge Pérez, Javier Marinkovié, and Pablo Barceld. On the turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyGBdoOgFm.

11

https://openreview.net/forum?id=ot2ORiBqTa1
https://openreview.net/forum?id=De4FYqjFueZ
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v22/20-302.html
https://openreview.net/forum?id=HyGBdo0qFm

Under review as a conference paper at ICLR 2024

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Sashank J Reddi, Sobhan Miryoosefi, Stefani Karp, Shankar Krishnan, Satyen Kale, Seungyeon Kim,
and Sanjiv Kumar. Efficient training of language models using few-shot learning. 2023.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why language
models help solve downstream tasks. arXiv preprint arXiv:2010.03648, 2020.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
memory systems. CoRR, abs/2102.11174, 2021. URL https://arxiv.org/abs/2102.
11174.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pages
1631-1642, 2013.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent,
2022.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in GPT-2 small. In NeurIPS ML
Safety Workshop, 2022. URL https://openreview.net/forum?id=rvi3Wa768B-.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. CoRR, abs/2107.13163,2021. URL https:
//arxiv.org/abs/2107.13163.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference
on Machine Learning, pages 11080-11090. PMLR, 2021.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and emotions
in language. Language resources and evaluation, 39:165-210, 2005.

12

https://arxiv.org/abs/2102.11174
https://arxiv.org/abs/2102.11174
https://openreview.net/forum?id=rvi3Wa768B-
https://arxiv.org/abs/2107.13163
https://arxiv.org/abs/2107.13163
https://openreview.net/forum?id=yzkSU5zdwD

Under review as a conference paper at ICLR 2024

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pages 3—19, 2018.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=RdJVFCHJUMI.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
can process bounded hierarchical languages. arXiv preprint arXiv:2105.11115,2021.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

13

https://openreview.net/forum?id=RdJVFCHjUMI

Under review as a conference paper at ICLR 2024

CONTENTS
1 Introduction

2 Our Construction
2.1 OVeIVIEW
2.2 Key Components v v v vv it e e e e e
2.3 Operating on an auxiliary model with prefix embeddings
2.4 Stacking in prefix-tokens, Hgn,-split linear operations and Linear attention
2.5 First order gradients for layer normalization
2.6 Backpropagation through Attention Value Vectors

2.7 Parameter sharinginthe TINT

3 Experiments
3.1 Experimental Setup
3.2 Verificationof TINT

4 Related Work
5 Discussion

A Additional Notations
A.l1 Simulating Multiplication from Akyurek etal. (2022)

B Linear layer

B.1 Hgp-splitoperation o0 e e e

C Self-attention layer
C.1 Approximate auxiliary self-attention backpropagation

C.2 Proofs of theorems and gradient definitions

D Layer normalization
D.1 Additional definitions

D.2 Proof of theorems and gradient definitions

E Activation layer

E.1 Proofsoftheorems
F Language model head
G Parameter sharing

H Additional modules

H.1 Root mean square normalization (RMSnorm)

14

~N O AW W

|

15
17

17
19

21
26
26

30
32
32

34
35

37

38

38

Under review as a conference paper at ICLR 2024

H.2 Attention variants 38
H.3 Gated linear units (GLUS) e 39
I Construction of other variants of pre-trained models 42
J Experiments 42
K Broader Impacts 42

A ADDITIONAL NOTATIONS

We differentiate the parameters of the auxiliary model and TINT by using an explicit superscript TINT
for TINT parameters, for example, the weights of a linear layer in TINT will be represented by W TINT,
We use two operations throughout: SPLIT;, and VECTORIZE. Function SPLIT), : R — R* /%]
takes an input € R? and outputs H equal splits of z, for any arbitrary dimension d. Function
VECTORIZE : R"*4 — R concatenates the elements of a sequence {x; € R%},<), into one single
vector, for any arbitrary d and h. Recall that for a matrix A, a; refers to its jth row, and for any
vector b, b; refers to its jth element. However, at a few places in the appendix, for typographical
reasons, for a matrix A, we have also used (A); to refer to its jth row, and for any vector b, (b); to
refer to its jth element.

TINTAttention Module We modify the usual attention module to include the position embeddings
{pINT € RTm}, 7. . In usual self-attention modules, the query, key, and value vectors at each
position are computed by token-wise linear transformations of the input embeddings. In TINT’s
Attention Module, we perform additional linear transformations on the position embeddings, using
parameters W), WE W and decision vectors A\?, A\, AV € Rin decide whether to add these
transformed position vectors to the query, key, and value vectors of different attention heads. The
following definition generalizes single-head attention (Definition 2.3). For the following definition,
we use € to represent input sequence and € to represent the output sequence: we introduce these
general notations below to avoid confusion with the notations for token and prefix embeddings for
TiNTillustrated in Figure 1.

Definition A.1 (TINT’s self-attention with Hym heads). For parameters { W1, WNT, WinNT ¢
IR Dsim X Diim I {ngT’ b}“{INT, bl‘“/INT c RDsim}’ {WP, Wﬁ, W"} c R,TsimXDsim/Hsim} and
{AQNE AV € RHsm) TINT self-attention with Hg, attention heads and a function fyg, : RTm —
RTn takes a sequence {€; € RPsn}, .7 as input and outputs {&; € RPsn}, 1. with

& = VECTORIZE({ Y af 8")n}n<h,,), Withal; = fan (K"q)");

3 <Tiim
;' = SPLITp (qi)n +)\SWSPEINT; ki = SPLITg (ki)n + AR WEP™T;
P = SPLIT (vy), + Af WPpI™T,

Here, q., k;, v; denote the query, key, and value vectors at each position ¢, computed as WgINTa +
BUNT, WENTE, + BT, and W@, + b respectively. K" € RTin* Din/Hun s defined with

its rows as {k]' }1<1,,, for all b < Hgp.

fattn can be either linear or softmax function.

Bounded parameters and input sequence: We define a linear self-attention layer to be B,,-
bounded, if the ¢5 norms of all the parameters are bounded by B,,. Going by Definition A.1, this
implies

max{[| W™ |, [Wi™ [l W™} < Bu, max{[[bg™ ||, o™], - [05™]],} < Bu

2 [WE 2|

mac [W3 | IWE L W) < Bu, - w22, A%, [AY) < B

15

Under review as a conference paper at ICLR 2024

Furthermore, we define an input sequence {€; };+<r,, to B,-bounded, if ||&;||, < B, for all ¢.

Recall from the main paper (Section 2.4), we used Linear TINT Self-Attention layer to represent the
linear operations of the auxiliary model. In the following theorem, we show that a linear attention
layer can be represented as a softmax attention layer that uses an additional attention head and an
extra token u, followed by a linear layer. Therefore, replacing softmax attention with linear attention
does not deviate too far from the canonical transformer. We use the Linear TINT Self-Attention
layers in several places throughout the model.

Theorem A.2. For any B,, > 0, consider a B,,-bounded linear self-attention layer that returns
{elinear ¢ ROV, 7 on any input {&, € RE }i<r,. Consider a softmax self-attention layer
with 2H;,, attention heads and an additional token w € R?*Ps» such that for any B, -bounded
input {€;}<r,,, it takes a modified input sequence {€&,--- ,er, ,u}, and returns {esof tmaz o
R2Dsin}, - . Each modified input token &; € R?*Psn is obtained by concatenating additional Os to
e:. Then, for any B, > 0, and ¢ < O(T,;?B,°B;®), there exists Wo € RPsn*2Dsin and such a
softmax self- attention layer such that

~softmazx ~Slinear
HWO €, —€;

< O(Ve),

2
forallt < Tgp.

Proof. Consider an input sequence {x; };<7,,. Let the attention scores of any linear head h < Hyjn,
in the linear attention layer be given by {a{f ;}i<Tun, at any given position ¢. Additionally, let the
value vectors for the linear attention be given by v;. To repeat our self-attention definition, the output
of the attention layer at any position ¢ is given by VECTORIZE({€L"*“""}, < .), where

~lznearh a
E: t,j]

J<Tsim

Under our assumption, B,, denotes the maximum ¢» norm of all the parameters in the linear self-
attention layer and B, the maximum /5 norm in the input sequence, i.e. max;<7,, ||%¢|ly < B,. With

a simple application of Cauchy-Schwartz inequality, we can show that max ;<7 aﬁ j| < O(B%B2?),

v} ||, < O(BuwBa).

and max;<T,

sim

For e < O(T, 5111110/93540/93;40/9), we can then use Lemma A.3 to represent for each ¢, j < Tgin,

—36511,,,3-

al ;= - — ¢ 4 O ((Tim + al)

h
€a
.t —2loge
v<m, ¢ " te

:= ¢ 3softmax ({eaﬁl, eaZ2, e eal 1, —2log e}) e+ 0 ().

Softmax attention construction: We define u, and the query and key parameters of the softmax
attention layer such that for the first H,, attention heads, the query-key dot products for all the
attention heads between any pairs {(&, €;)}:,j<r,, is given by {ea]' ;Y h< Hyn» While being —2log e

between u and any token ey, with ¢ < Ty, For the rest of Hgy, attention heads, the attention scores
are uniformly distributed across all pairs of tokens (attention score between any pair of tokens is

given by ﬁ)

We set the value parameters of the softmax attention layer such that at any position ¢ < T, the
value vector is given by VECTORIZE({e3v;, v;}). The value vector returned for u contains all Os.

Softmax attention computation: Consider an attention head h < Hg;,, in the softmax attention
layer now. The output of the attention head at any position ¢ < T, is given by

~softmaz h h
€; E softmax ({eat 1,€01 9,5 eat T

)
J<Tiim

= Z (aﬁj +e '+ 0(?)) v;‘.

J S Tsim

—2log e}) ;l

16

Under review as a conference paper at ICLR 2024

This has an additional 5>._.. (e~ + O(e%9)) v”, compared to €"“*"" However, consider the
3 <Tsim 7 p t
output of the attention head Hy;,, + h at the same position:
~softmax,Hgm+h 1 h
e; ’ = vl
Hence, we can use the output matrix Wy to get e;offmenh _ %Efof tmaz, Hun th

i<t (at; +O("?)) vl The additional term O(e%?) Y7, . v} can be further shown to be
O(€%%) small with the assumed bound of e, since each v? is atmost O(B,,B;) in {2 norm with a

Cauchy Schwartz inequality. O
Lemma A.3. Fore >0, B > 0, and a sequence {ay,as, - ,ar} with each a; € R and |a;| < B,
the following holds true for all i < T,

67366(11

— 1 0.9

provided € < O(T—10/9B—20/9)_

Proof. We will use the following first-order Taylor expansions:
e =14+ 0(z?). (H

—1-0(). @

Hence, forany x < 1, x = e* — 1.
Simplifying the L.H.S. of the desired bound, we have
€ 3eca B € 3(1+ ea; + O(%a?))
dopcr e +em2lose N YSop<r(l 4 €ay +O(e%a7)) + e=2los e

B et +a; + O(ea?)
 Yver(€ + Say + Oetaf)) + 1
= (7' +a;+O(eal)) (1+ O(€°T)) ®)
=e 4 a;+O(T + a2Te* + alTe +ea?) = e 4+ a; + O(L?).

3

“

We used taylor expansion of exponential function(Equation (1)) in Equation (3) to get Equation (4),
and taylor expansion of inverse function(Equation (2)) to get Equation (5) from Equation (4). Fur-
thermore, with the lower bound assumption on €, 3_,, . -(¢* + ¢*a + O(e*af,)) can be shown to be

atmost 3¢27T', which amounts to O(€2T') error in Equation (5). The final error bound has again been
simplified using the lower bound assumption on . O

A.1 SIMULATING MULTIPLICATION FROM AKYUREK ET AL. (2022)

We refer to the multiplication strategy of Akyurek et al. (2022) at various places.

Lemma A.4. [Lemma 4 in Akyurek et al. (2022)] The GeLU Hendrycks and Gimpel (2016) nonlin-
earity can be used to perform multiplication: specifically,

V7 /2(GeLU (2 + y) — GeLU (y)) = zy + O(«*y®).

Thus, to represent an element-wise product or a dot product between two sub-vectors in a token
embedding, we can use a MLP with a GeLU activation.

B LINEAR LAYER

In the main paper, we defined the linear layer without the bias term for simplicity (Definition 2.2).
In this section, we will redefine the linear layer with the bias term and present a comprehensive
construction of the Linear Forward module.

17

Under review as a conference paper at ICLR 2024

R3Daux RDaux/2 R2Daux
Il
(0y2)1 ! it
(0y+)s 0 VTIK
: . Wi Multi
(0y2)b,..—1 : L T
t)Daua—1| x 3 0 wi head W ayt
Eg)’f,;z 15t token “I’é Actn.
y~t 4 “Ilg
0 |
(0Y1)Dous / %3 1%t token
Query Key Value

Figure 4: TINT simulates the backward pass of a linear layer as a H-head attention layer (H = 6
pictured), with the gradient of the loss w.r.t. linear layer output (Jy,) as the query, the positional
one-hot vector of prefix embeddings as the key, and the parameters of the auxiliary model stored in
the prefix embeddings as the value. Similar to the Linear Forward module (Figure 2), we distribute
the dot product computations across all attention heads by sharding the vectors into S’ (S’ = 3 here)
parts. We omitted the identical transformation for query, and value matrices, and permutation-based
transformation for key matrix for illustration purposes.

Definition B.1 (Linear layer). For a weight W € RPw*Dux and bias b € RP=x, a linear layer takes
@ € RP=x as input and outputs y = Wz + b.

In the discussions below, we consider a linear layer in the auxiliary model with parameters {W, b}
that takes in input sequence 1, - - - , 1, and outputs y1, - - - , Y1, wWith y» = Wz, + b for each

t < Tux- Since this involves a token-wise operation, we will present our constructed modules with a
general token position ¢ and the prefix tokens {v; }.

TINT Linear Forward module Continuing our discussion from Section 2.4, we represent S
stacked rows of W as a prefix embedding. In addition, we store the bias b in the first prefix
embedding (vy).

Using a set of S’ unique attention heads in a TINT attention module (Definition A.1), we copy the
bias b to respective token embeddings and use a TINT linear layer to add the biases to the final output.

Auxiliary’s backpropagation through linear layer For a linear layer as defined in Definition B.1,
the linear backpropagation layer takes in the loss gradient w.r.t. output (0,) and computes the loss
gradient w.r.t. input (9z).

aux X Daux

Definition B.2 (Linear backpropagation). For a weight W € RP
layer takes 0, € RPw* as input and outputs 0, = W ' 9.

, the linear backpropagation

TINT Linear backpropagation module This module will aim to simulate the auxiliary’s linear
backpropagation. The input embedding e, to this module will contain the gradient of the loss w.r.t.
Yy, i.e. Oy,. As given in Definition B.2, this module will output the gradient of the loss w.r.t. x;,
given by 9z, = WT0,,.

We first use the residual connection to copy the prefix embeddings {v,} (i.e., the rows of W) from
the forward propagation module. A straightforward construction would be to use the Linear Forward
module but with the columns of W stored in the prefix tokens, thereby simulating multiplication with
W T. However, such a construction requires applying attention to the prefix tokens, which increases
the size of the construction substantially.

We instead perform the operation more efficiently by splitting it across attention heads. In particular,
once we view the operation as 0, = >, (0y,), w;, we can see that the attention score between the
current token and the prefix token containing w; must be (9,),. Using value vectors as rows of W
returns the desired output. Similar to the Linear Forward module, we shard the weights into S’ parts
to parallelize across more attention heads. Please see Figure 4.

18

Under review as a conference paper at ICLR 2024

R3Daux RPwux/2 R2Daox 0y _(dyehxi
t
‘ 1 |
Eg;’jgi g Ti = Z(a}’t)le —'w}—
t): A t 9
. . | Multi 3 Wi Wi Wi — 1 y.)1x
(9<yan)b,.”,—1 3 ; - Xlg head (&) —n[Z({)y:)lx, ® —wf— 1 1 72(Vi) 1Xe
Yt)2 x; Attn. "¢ —wl—
(0y+t)a & ”’Z:(‘)y')?xé ug Wy Wy = > (Fyi)axs
: [—~ —wr— t
0y] %3)f'l 1> Oy)exd —wi—
t) Do t “
tth token tth token —nz(@yg)gx'}
Key Query Value ¢

Figure 5: TINT computes the parameter gradients for a linear layer as a H-head attention layer
(H = 6 pictured), with the gradient of the loss w.r.t. linear layer output (Jy,) as the query, the
positional one-hot vector of prefix embeddings as the key, and the input to the linear layer (x;)
as the value. The auxiliary model parameters in the prefix embeddings are then updated using
a residual connection. Similar to the Linear Forward module (Figure 2), we distribute the dot
product computations across all attention heads, by sharding the vectors into S’ (S’ = 3 here)
parts. We omitted the identical transformation for query, and value matrices, and permutation-based
transformation for key matrix for simplicity.

Auxiliary’s linear descent update Finally, the linear descent layer updates the weight and the bias
parameters using a batch of inputs {x, };<7,, and the loss gradient w.r.t. the corresponding outputs

{0y, }t< T -

Definition B.3 (Linear descent). For a weight W € RPw*DPax and a bias b € RPwx, the linear
descent layer takes in a batch of inputs {z; € RZ, }:<r,, and gradients {9,, € RL, }i<r,, and
updates the parameters as follows:

WeW-n> dyz/; beb-nd 0

tgnux tgnux

TINT Linear descent module The input embedding e; to this module will contain the gradient of
the loss w.r.t. yy, i.e. Oy,.

As in the Linear backpropagation module, the prefix tokens {v;} will contain the rows of W and
b, which have been copied from the Linear forward module using residual connections. Since, in
addition to the gradients, we also require the input to the linear layer, we will use residual connections
to copy the input {x;} to their respective embeddings {e;}, from the Linear Forward module. As
given in Definition B.3, this module will update W and b using the gradient descent rule.

Focusing on w;, the descent update is given by w; <— w; — 1), (Oy,), ;. For the prefix token
v; that contains w;, the update term —7 >, (9y,), x; can be expressed with an attention head that
represents the attention between the prefix token v; and any token e; with score (0,), and value
—nx¢. The residual connection can then be used to update the weights w; in v;.

For the bias b, the descent update is give by b <— b —n), 0,,. With b present in v, we use one
attention head to represent the attention score between prefix token v; and any token e, as 1, with
the value being —nd,, . The residual connection can then be used to update the weights b in v;.

The above process can be further parallelized across multiple attention heads, by sharding each
weight computation into S’ parts. Please see Figure 5.

B.1 Hgy-SPLIT OPERATION

We leverage local structure within the linear operations of TINT to make the construction smaller. We
build two H;n-split operations to replace all the linear operations. We use dgin, to denote Dy / Him
in the following definitions.

Definition B.4 (Split-wise Hgy-split Linear operation). For weight and bias parameters W TINT ¢
R X dsimX dsim | BTINT - - RHsim>dsim | this layer takes in input e € RPs» and returns e =
VECTORIZE(S + B™™T), with § € RHsinXin defined with rows {W,I'™NTSPLIT (€)1 < g -

19

Under review as a conference paper at ICLR 2024

Definition B.5 (Dimension-wise Hjy,-split Linear operation). For weight and bias parameters
WTINT ¢ Resimx Hsmx Ham - BTINT < RdsmxHsm this layer takes in input e € RPsm defines S €
Rim* Hin with columns {SPLIT,, (€)n }h<m,,» and returns € = VECTORIZE((S + BTT)T),

where S € Rbin*Hsin s defined with rows {W N gTNT}

sim *

We find that we can replace all the linear operations with a splitwise Hgy,-split Linear operation
followed by a dimensionwise Hy,-split Linear operation, and an additional splitwise Hn-split Linear
operation, if necessary. A linear operation on Dg,-dimensional space involves Dfim parameters,
while its replacement requires Dfim /Hgm + 2Dgim Hgm parameters, effectively reducing the total
number of necessary parameters by Hp,.

We motivate the Hgn,-split linear operations with an example. We consider the Linear Forward
module in Figure 2 for simulating a linear operation with parameters W € RPax*Pax and no biases.
For simplicity of presentation, we assume D, is divisible by 4. We stack 2 rows of weights per
prefix embedding. We distribute the dot-product computation across the Hg, = 6 attention heads, by
sharding each weight into 3 parts. Since we require to have enough space to store all the sharded
computation from the linear attention heads, we require Dg, = 3D« (We get 3 values for each of
the D,.x weights in W). For presentation, for a given vector v € RP«x, we represent SPLIT3(v); by
viforalll <i<3.

Now, consider the final linear operation responsible for combining the output of the attention heads.
The output, after the linear operation, should contain Wx; in the first D, coordinates. At any
position ¢, if we stack the output of the linear attention heads as rows of a matrix §; € RHsmxDsim/ Huim
we get

<wivwé> <w§1)7wt;> (w%,xé> <wijaux—1awt;>
<w:1)), $§> ('w%, 3’3%> <"Uga $§> <w3Ddux—1a wé>
S, = <w%, wt1> <w%,w§> <w51>a wt1> <wDTM71a :ft>
<w% Ty) <w§ Ty) <we2;7 o) (Wp,,, o)
<w§v w§> <w%7 w:t3> <wgv w§> <wDuuxa CB§>
(ws, z7) (wy, i) (wg,xy) (wp,, . T7)

Note that for each j < Dy, we have (w;, z;) = Zle ('w;-, x!). Thus, with a column-wise linear
operation on S, we can sum the relevant elements in each column to get

Stcol _
<’w1, l‘t> <'w3, 33t> s <me/2—17 33t> 0 0 ce 0
(wo, @) (wa,) -+ (Wp,, /2, Tt) 0 0 e 0
0 0 s 0 (Wp,, /241, Tt) (WD, 243, @) ~+ (WD,—1,Tt)
0 0 e 0 (Wp,,/242:Tt) (Wpy, /244, Tt) -+ (Wb, Tt)

A row-wise linear operation on S¢°! can space out the non-zero elements in the matrix and give us

SZ’O?U —
(wy, xy) 0 (w3, x¢) 0 o A{wp,, j2-1,T¢)
0 (wa, x4) 0 (wy, xy) :
(Wp,, /241, Tt) 0 (Wp,, /243 Tt) 0 o (Wpy—1,Tt)
(wp,, /242, Tt) 0 (Wp,, /244, Tt)
0 0 ... 0 .. 0
0 0 . 0 . 0

20

0
<wDaux/27 xt)
0
<wDuux7 wt)
0
0

Under review as a conference paper at ICLR 2024

Linear Forward cet [VVQX"’l] ﬁ’v@x"] [WQX‘“J ce
Module (Figure 2)

Query
- X1 Xt Xt+1| Taux
[] [] [] ce [WKXFJ [Vvkxt] E’VKXzH] s Multihead {ye 2y
Attn.
Key

€1 €t €+l

o o o

Value

Figure 6: TINT simulates the forward pass of a self-attention layer of the auxiliary model with a
Linear Forward module (Figure 2) and a TINT softmax attention layer (Definition A.1). The Linear
Forward module computes the query, key, and value vectors using a Linear Forward module on
the current embeddings, changing the prefix embeddings to correspond to Wy, Wi, and Wi
respectively.

Finally, a column-wise linear operation on S;°* helps to get the non-zero elements in the correct
order.

Svfol —
(wy,xy) (wo, xy) (w3,) (wy, xy) T <’wDaux/2—1, xy) <wDaUX/2, xy)
(Wp,, /241, ®t) (Wp,, /242, %) (Wp, /243, Tt) (Wp,,/244:Tt) (WD —1,Tt) (Wp,,, T1)
. 0
0 0 0 0 0 0

Dux

The desired output is then given by VECTORIZE({5¢%}} i21), which contains W, in the first

J
D,yx coordinates. The operations that convert Sy to SfOl and S7°% to S’{ °% represents a split-wise
6-split linear operation, while the operation that converts S£°! to S7°" represents a dimension-wise
6-split linear operation. A naive linear operation on the output of the attention heads would require
D2 parameters, while its replacement requires D2 _ /6 parameters to represent a dimension-wise

sim sim

6-split linear operation, and an additional 12 Dy;,, parameters to represent the split-wise 6-split linear
operations.

C SELF-ATTENTION LAYER

We first introduce multi-head attention, generalizing single-head attention (Definition 2.10).
Definition C.1 (Auxiliary self-attention with H,, heads). For query, key, and value weights
Wy, Wi, Wy, € RPwXDux and bias by, b, by € RPw, a self-attention layer with Hy,y at-
tention heads and a function fagn : R7 — RTw takes a sequence {x; € RP»}, <1 asinput and
outputs {y; }1<m,,, with

ye = VECTORIZE({ > af ;0! }n<n,,)- (6)
J<Tux

aﬁ ; is defined as the attention score of head between tokens at positions ¢ and j, and is given by
aﬁj = softmax(thf)j. @)

Here, g, k;, v, denote the query, key, and value vectors at each position ¢, computed as Wz, +
bo, Wik, + by, and Wy, + by respectively. In addition, g, k', v} denote SPLIT,, (q¢)n.
SPLITy,, (ki)n, and SPLITy, (v;)y respectively for all t < Ty, and b < Hyyy. K € RTwX Da
is defined with its rows as {kl'};<7,, forall b < Hyyy.

aux

21

Under review as a conference paper at ICLR 2024

e

Query
P Multi
Yi-1 0y: | |0y head
Woxi | |[Woxe | | Woxei1 s W] | Wex | |[WrXeta| - - - Attn. | Ovia| |0V |OVEg| - -
Wexi| [Wex| [Wrxa |7 Key (x2)

e 1 e e i1 s '[0sz] [0}%] [5}’z+1] T
Value

Figure 7: The gradient w.r.t. the value vectors {0y, } (Definition C.2) forms the integral component
for both TINT self-attention backward and descent update modules. TINT computes {9, } using a
softmax attention and a linear attention layer. We first use residual connections to copy the query and
key vectors to the current embeddings from the TINT Self-attention Forward module (Figure 6). The

softmax attention layer re-computes the attention scores {aj’;} between all token pairs {(t, j)} and
stores them in the token embeddings. The linear attention layer uses the one-hot position embeddlngs
of the input tokens as the query to use the transposed attention scores {a,} for all token pairs { (¢, j) }

and use the gradients {9, } as the value vectors to compute {0y, }.

In the discussions below, we consider a self-attention layer in the auxiliary model with parameters
{Wq, bQ, Wi, b, Wy, by } that takes in input sequence @1, - - - , @7, and outputs yi,- - , yr,,,
with {yt}f »* given by (6). As in the definition, q;, k;, v; denote the query, key, and value vectors
for position t We will use TINT self-attention modules in order to simulate the operations on the
auxiliary’s self-attention layer. To do so, we will need Hg,, > Hyyx in the corresponding TINT
self-attention modules.

TINT Self-attention forward module The input embedding to this module e; at each position
t will contain x; in its first D,,, coordinates. The self-attention module can be divided into four
sub-operations: Computation of (a) query vectors {qt}tST, (b) key vectors {kt}th, (c) value vectors
{vi}i<r, and (d) {y; }+<7 using (6). Please see Figure 6.

* Sub-operations (a): The computation of query vector q; := Wgx, + bg at each position ¢
is a linear operation involving parameters Wg, bg. Thus, we can first feed in the stacked
rows of W, and bg onto the prefix embeddings {v; }. We use a Linear Forward module
(Appendix B) on the current embeddings and the prefix embeddings to get embedding e at
each position ¢ that contains g; in the first Dy coordinates.

* Sub-operations (b, ¢): Similar to (a), we feed in the stacked rows of the necessary parameters
onto the prefix embeddings {v;}, and call two Linear Forward Modules (Appendix B)
independently to get embeddings e, and e? containing k; and v, respectively.

We now combine the embeddings e/, ef, and e to get an embedding e; that contain
q:, k¢, vg in the first 3D, coordinates.

* Sub-operation (d): Finally, we call a TINT self-attention module (Definition A.1) on our
current embeddings {e; },<7 to compute {y, },<7. The query, key, and value parameters in
the self-attention module contain sub-Identity blocks that pick out the relevant information
from gy, k¢, v; stored in e;.

Remark: Sub-operations (a), (b), and (c) can be represented as a single linear operation with a
weight W € R3PwxDax by concatenating the rows of {Wo, Wk, Wy} and abias b € R3 P
that concatenates {bQ, bx, by }. Thus, they can be simulated with a single Linear Forward Module,
with W, b fed into the prefix embeddings. However, we decide to separate them in order to limit
the number of prefix embeddings and the embedding size. E.g. for GPT-2, D, = 768. This
demands either a 3 increase in the embedding size in TINT or a 3x increase in the number of
prefix embeddings. Hence, in order to minimize the parameter cost, we call Linear Forward Module
separately to compute g;, k, and v; at each position ¢.

22

Under review as a conference paper at ICLR 2024

Auxiliary’s backpropagation through self-attention For an auxiliary self-attention layer as de-
fined in Definition C.1, the backpropagation layer takes in the loss gradient w.r.t. output ({y, }1<m,,)
and computes the loss gradient w.r.t. input token ({0, }i<7,,)-

Definition C.2. [Auxiliary self-attention backpropagation] For query, key, and value weights
Wo, Wi, Wy, € RPwxDax and bias bg, b, by € RP=, the backpropagation layer correspond-
ing to a self-attention layer with H,, attention heads takes a sequence {9,, € RP=},1 and
{z; € RPw},p asinput and outputs {9y, }i<1,,» With

O, = W 0q, + Wi Ok, + Wy 0y, with

Oq, = VECTORIZE({> _ af ;((9y) v} [k} — Za”,kz 1 h<Ha);
J

Ok, = VECTORIZE({> _al,q"((0 Za“/v 1 h<)i

J
— h
Oy, = VECTORIZE({) a0y Yz ,,)
J
Here, q;, k:, and v, refer to query, key, and value vectors at each position ¢, with the attention scores
{af ;Y1 j <o < -

Complexity of true backpropagation The much-involved computation in the above operation is
due to the computation of Jq4, and Oy, at each position ¢. For the following discussion, we assume
that our current embeddings e; contain gy, k¢, v, in addition to the gradient 9,,. The computation
of g, (and similarly O,) at any position ¢ involves the following sequential computations and the
necessary TINT modules.

* {{9y;)Tv;’} §<Tu th< Ha, With a TINT linear self-attention module (Definition A.1), with
atleast H,x attention heads that represent the attention score between e; and any other token
T 0
€;, by {(Oyp) V] br<H,,-

* Attention scores {aﬁ Yh< H,y» Which requires a TINT softmax self-attention module (Defi-
nition A.1), with at least H,,, heads, that uses the already present {q;, k, v;} in the current
embeddings e, to re-compute the attention scores.

aux aux

1(9y) V] }h< H,, using an MLP layer (Lemma A.4). Furthermore, {_; a;’ 7k: 3 h< Ho
needs to be computed in parallel as well, with additional attention heads.

s {al i (5'y n) T v} hy h< Ho, forall j < T, by multiplying the attention scores {al. j th< Hy, With

* 0y, with a TINT linear self-attention module (Definition A.1), with atleast H,, at-
tention heads that represent the attention score between any token e; and e; by

{al g (8y n) v} "} h<H,..» With value vectors given by {kh Zj, a?,j'k}}hSHaux-

The sequential computation requires the simulator to store Hayg)T’U;‘L}ngaux}thm and

{aﬁ j}hg H,, 1N the token embedding e;, which requires an additional 27}, H,,x embedding di-
mension size. To avoid the much-involved computation for the true gradient propagation, we instead
only use the gradients w.r.t. v;.

Approximate auxiliary self-attention backpropagation We formally extend the definition of
approximate gradients {0y, }t »> from Definition 2.12 to multi-head attention in Definition C.6.

In the upcoming theorem, we formally show that if on a given sequence {x;};<,,, for all token
positions all the attention heads in a self-attention layer primarily attend to a single token, then the
approximate gradient J,, is close to the true gradient J,, at each position ¢.

Definition C.3 (s-hard attention head) For the Self-Attention layer of H,,x heads in Definition C.1,

on a given input sequence {a;};*}, an attention head h < Hy,, is defined to be &- hard on the input
sequence, if for all positions ¢ < Taux, there exists a position tg < T« such that at’to >1—c¢.

23

Under review as a conference paper at ICLR 2024

{8;(t = W‘T/avt}ﬁ?

Linear Backward Module

“I’v,1 .
B .
Wyi
wi,
e N coe |OVi_a| |OVe] | OV] - -
1 w
Iv2 ‘/1|Da,u
2
“I’VZ WD
3 31
le,z wV.lnm €t—1 €t €41
Vi Vk

Figure 8: TINT simulates the backward pass of a self-attention layer of the auxiliary model using a
Linear Backward module (Figure 4). The input embeddings contain the gradient of the loss w.r.t. the
value vectors (0y,) computed in Figure 7. The value matrix Wy, is encoded in the prefix embeddings.
We call the Linear Backward module on this sequence.

Wy« Wy =) ovix/
t

Linear Descent Module

|1
WI’V,I .
2 .
Wyv,1 .
vJ%,I Ovi—1| (Ove] (OVesa
| ! DRI 1| PR X
“llxl/.z Wle Xt—1 t] | Xt+1
2
“|’V-2 WD
: o1
“ﬁ/,z W?/,ID‘,.L.,,, €t—1 € €41
Vi Vk

Figure 9: TINT simulates the backward pass of the self-attention layer in the auxiliary model by
employing the Linear Descent module (Figure 5). The input embeddings consist of the gradient of
the loss with respect to the value vectors (J,,) computed in Figure 7. Additionally, we incorporate
a residual connection to copy the input from the Self-attention Forward module (Figure 6) into x;.
Before invoking the Linear Descent module, we represent the value parameters (WYy,) into the prefix
embeddings. TINT simulates the backward pass of a self-attention layer of the auxiliary model using
a Linear Descent module (Figure 5).

24

Under review as a conference paper at ICLR 2024

Theorem C.4. With the notations in Definitions 2.12, C.1 and C.2, if on a given input sequence
{wt}tTi‘*i, with its query, key, and value vectors {qy, k¢, vt}?g‘i, all the H,,, attention heads are

e-hard for some € > 0, then for a given sequence of gradients {0y, }tT;’i,

10,115+ 10k, |l < O(eBIBLB,y), forall t < Ty,

where B, = maxi<,, [Tl By = max;<r,

max{||[Wi |5 . [[Woll, . Wy, [[bv]y lIbx]l 1oy 5}

8/;1, _awt,

Oy,lly, and By =

ux

This implies, for each position t, < O(eB2B:B,).
2

TINT Self-attention backpropagation module The input embeddings e; contain J,, in the first
D, coordinates. Since we require to re-compute the attention scores {ag 45 < T, h< Ho» WE DEEd
to copy the query, key, and value vectors q;, k, and v; from the TINT self-attention Forward module
at each position ¢. Furthermore, we use the residual connection to copy the prefix embeddings {v;},
which contain the rows of Wy, from the TINT self-attention Forward module.

The operation can be divided into three sub-operations: Computing (a) attention scores {ai’; j Fh< Hy

for all j < Ty, at each position ¢, (b) J,,, from {aﬁj}hSH and Jy,, and (c) 5; from O, .

* Sub-operation (a): Since, the current embeddings e; contain q;, k;, we can simply call a
self-attention attention module to compute the attention scores {ai’; jtn<m,, forall j <T
and store them in the current embeddings. We further retain d,,, and v, for further operations
using residual connections.

* Sub-operation (b): With the current embeddings e; containing the attention scores
{af' ;Yn<m,, forall j < T, and the gradient d,, we can compute d,, using a TINT
linear self-attention module with atleast H,,x attention heads, that represent the attention
scores between tokens e; and e; for any j as {a”, } <, and use SPLITy,, (8y,) as their
value vectors.

* Sub-operation (c): And finally, the computation of 0, is identical to the backpropagation
through a linear layer, with parameters Wy, and by. Hence, we call a Linear backpropa-
gation module on the current embeddings, that contain d,,, and the prefix embeddings that
contain Wy, and by, .

Separating sub-operations (a) and (b) The operation for computing 0,,, in Definition 2.12 looks
very similar to the computation of y; in Equation (6). However, the major difference is that instead of
the attention scores being {a,’f’ ; Yn<m,, between token ¢ and any token j, we need the attention scores

to be {a;{t} h<H.,- Thus, unless our model allows a transpose operation on the attention scores, we
need to first store them in our embeddings and then use an additional self-attention module that can
pick the right attention scores between tokens using position embeddings. Please see Figure 8.

Auxiliary’s value descent update Similar to the complexity of true backpropagation, the descent
updates for W, b, Wi, by are quite expensive to express with the transformer layers. Hence, we
focus simply on updating on Wy, by, while keeping the others fixed.

Definition C.5 (Auxiliary self-attention value descent). For query, key, and value weights
Wo, Wi, Wy € RPwxDux and bias b, by, by € RPw=x, the value descent layer correspond-
ing to a self-attention layer with H, attention heads and any function f,ty, : RTwx — RTw akes
in a batch of gradients {0,, € RPw=}, o and inputs {x; € RP=},1. and updates Wy, by as
follows:

WV<—WV—nZ&,tm:, bv%bv—nzam,

t<Thux t<Thux

where 0y, = VECTORIZE({Y _ a0, }n<m,,)
10yl Th<
j

Here, v, refers to value vectors at each position ¢, as defined in Definition C.1.

25

Under review as a conference paper at ICLR 2024

TINT Self-attention descent module The input embeddings contain J,, in the first Dy, coordi-
nates, from the TINT self-attention backpropagation module. Furthermore, the prefix embeddings
{v,} contain the stacked rows of Wy and by, continuing from the TINT self-attention backpropaga-
tion module.

Since we further need the input @, to the auxiliary self-attention layer under consideration, we use
residual connections to copy x; from the TINT self-attention Forward module at each position ¢.

The updates of Wy, and by are equivalent to the parameter update in a linear layer, involving
gradients {0y, } and input {x;}. Thus, we call a Linear descent module on the current embeddings
and the prefix embeddings to get the updated value parameters. Please see Figure 9.

C.1 APPROXIMATE AUXILIARY SELF-ATTENTION BACKPROPAGATION

Definition C.6. For query, key, and value weights W, W, Wy € RPwXDax and bias
bg, bk, by € RP the approximate backpropagation layer corresponding to a self-attention layer
with H,,y attention heads takes a sequence {0y, € RP»}, 7. and {x; € RP=},1 asinputand

outputs {9z, := VECTORIZE({Opn }n<H,,) } <, With
5 T h
Oz, = Wy Op,, Where 0, = VECTORIZE({Z aj,tay?}hgw)
J
Here, q;, k;, and v; refer to query, key, and value vectors at each position ¢, as defined in Defini-
tion C.1, with the attention scores {a}; }; j <7, h<H,, defined in Equation (7).

C.2 PROOFS OF THEOREMS AND GRADIENT DEFINITIONS

We restate the theorems and definitions, before presenting their proofs for easy referencing.

Definition C.2. [Auxiliary self-attention backpropagation] For query, key, and value weights
Wo, Wi, Wy, € RPwxDax and bias bg, b, by € RPwx, the backpropagation layer correspond-
ing to a self-attention layer with H,,y attention heads takes a sequence {9,, € RP=},1 and
{x; € RPw}, . asinput and outputs {9y, }i<T,,, With

O, = W 0q, + Wi Ok, + Wy 0y, with
Oq, = VECTORIZE({> _ af' ;((Oy) vk} — Zam/k <);

J J’

Ok, = VECTORIZE({Y _al,q"(((D Za“,v, D h<tn);

J
_ h
Oy, = VECTORIZE({Z ajﬁtayy Yh<Hu)
J
Here, q;, k;, and v, refer to query, key, and value vectors at each position ¢, with the attention scores
{a’?,] }t7.j§nu>uhSHaux °

Derivation of gradient in Definition C.2. Recalling the definition of y; from Definition C.1,

y+ = VECTORIZE({ Z aﬁjv?}hSHaux); aﬁj = softmax(K"q");,
J<Tux

q+ ZWQIl?t—i-bQ ki = Wgx, + b, v, =Wyax, + by.

ql, kP, vl denote SPLITy, (q¢)n, SPLITH,, (k¢)n, and SPLITg,, (v;)s respectively for all ¢ < Ty,
and h < Hyyy. K" € RTuwxXDax ig defined with its rows as {kl'},<7,, forall b < Hyy.

We explain the proof for an arbitrary token position t. With the application of the chain rule, we have

_ (22T (DRt 9yt
aﬂit—(amt) 8qt+(6$t) 8kt+(8:ct) 8'Ut

= W4 0q, + Wg O, + Wy 0y,

where the second step follows from the definitions of g, k;, and v; respectively.

26

Under review as a conference paper at ICLR 2024

Computation of 0g,: With the SPLIT operation of g, across H,., heads for the computation of
y:, the computation of the backpropagated gradient Jg, itself needs to be split across H,ux heads.
Oyf/

= 0 for any ¢’ # t. Thus, we have for

any head h < H,, if yJ* represents the output of attention head h, given by > < T a;j jvjh,

Furthermore, query vector g; only affects y;, implying

oyl
811? = (Tq;)Tay?

dal
= Z <’Uj7a,yh> 8th

J<Toux

B (kT ar)
> <U775yt>aq <M ®)

(kP .al)
5 < T D<€

1 9e k7 -at) (kT al) 9elkiral)
Z<Uj7ay> PR et — Z “odl

K, kP,
5 < T _thgTaux elkinalt Og; Qv <t elkerarly2 5’ < T qt
©))
[oKl al oKl al oKLl
= 2 (W) dy) (e | % - a2 w5
< T 2y<T, ¢ 2y<T, e J T \ 2T €
(10)
h h ph
= Z atj<'vj ,8y > k] — Z at7j/kj/
J<Taux J' STaux
In Equation (8), we have expanded the definition of softmax in a?, ; += softmax(K hgl); in order

to better motivate the derivative of ag j WLt ql'. Finally, Og, is given by VECTORIZE({9gn }h<h,,)-

Computation of O;,: Continuing as the computation of J4,, we split the computation of Oy,
across the H, attention heads. However, unlike q;, k; affects y; for all j < T,,. For any head
h < H,x, we follow the chain-rule step by step to get

.
Oyj \ T 0% <n, %5 V)
Opep = Z (5'k:ﬁ) Oy n= Z _ak? 81/}1

jSTﬂuX j <Taux

ho
= (v, o,n) + (v, 0, n)—L2 (11)
Z t Yy 8kh Z Z 7Y 3’6?

J<Tuux J<Tux J' <Taux;J’ #t

' B (ki ag)
= 2 W0y () (12)

k" .qh)
< T, Zt'<Tm v

A 0 etkjai)
T2 D whoggm Sp (13)

J<Taux ' <Taux; 3’ #t

aux

(ky.a}) (Kt .q}) ?
=3 (@ 7 g — |
AR (z e<’“?“qf’>>qj (zm Ry A
]7 aux — 4 aux — 4+ aux

(Kl o)) (kf.al)
e J J e\t
— Z Z </U;L/aay;1> < kh,,qh>> (kh,,qh>> q;b (15)

((
G < Tux §' <Touxsj' 7t D o<y, € D o<y, €

=¥ @f,ay?)(a;’t_(a;’t)a)q?_ DY (0]}, Oyn)al jaf g

J<Taux J<Toux ' <Taux;j' #1t

= E ahvt E a”,'u,

J<Toux

27

Under review as a conference paper at ICLR 2024

In Equation (11), we separate the inside sum into two components, since the derivative w.r.t. k
differ for the two components, as outlined in the derivation of Equation (14) from Equation (12), and
Equation (15) from Equation (13). We have skipped a step going from Equations (12) and (13) to
Equations (14) and (15) due to typographical simplicity. The skipped step is extremely similar to
Equation (9) in the derivation of Oy Finally, O, is given by VECTORIZE({ O }h<m,,,)-

Computation of 0,,,: Similar to the gradient computation of g;, the computation of J,, needs to be
split across the H,, attention heads. However, like k., v; affects y; for all j < T,,. For any head
h < H,x, we follow the chain-rule step by step to get

.
oy’ T 0 i< ajd’""h' h
Opp = Z (a,vh) Oy = Z (. ool : Oy = Z aj Oyn
t t

jSTZIUX] STﬂUX .] STGUX

O

Theorem C.4. With the notations in Definitions 2.12, C.1 and C.2, if on a given input sequence
{mt}t“"*, with its query, key, and value vectors {q;, k¢, 'Uf}t « all the Hg,, attention heads are
e-hard for some € > 0, then for a given sequence of gradients {0, }t

||aQt||2) Haktnz < O(gB?cBlQuBy)v forallt < Ty,
8yt

where B, = MaX;< Ty, B, = Max; <7,

o,
maX{HWKH27”WQH27||WV||27||bV||27||bKH27||bV|| I3

—~
T amt

and B, =

, S O(eB2B3 By).

Proof of Theorem C.4. For typographical simplicity, we discuss the proof at an arbitrary position ¢.
Recall the definition of an e-hard attention head from Definition C.3. An attention head is defined to
be e-hard on an input sequence {act}t »x, if for each position ¢, there exists a position tg such that the
attention score a; ;, > 1 — €.

For the proof, we simply focus on dy,, and the proof for Jf, follows like-wise.

Bounds on g;: Recalling the definition of J4, from Definition C.2, we have

Og, = VECTORIZE({Y _ a}';((0yn) "Wl [k} = > " af k] n<h,,)-
j/

J

Focusing on a head h < Ho, define 9y = 3 af ;((Qyp) "0l) [k} — Y2, af k] and to < Thu

.. ’
as the token position where the g; attends the most to, i.e. a;’; > 1 — ¢ and ZJ<TJ wiito a < e

Then,

[oct], = |3 al (@il = Sl b
J 3’)
o A SRR SN AIEES W
J#to 3’)
< b (O vty = 2 b kG|] D s (0y) 0k = D eyl
2 j?ﬁto 9
Term1 Term?2

where the final step uses a Cauchy-Schwartz inequality. We focus on the two terms separately.

28

Under review as a conference paper at ICLR 2024

1. Term1: Focusing on k! — >, agj/k?,, we have

J

kP — Zah K== ag)k = > af kD

9 J'#to 2
< (1= auno) [[Rigll, + > at s [[K5
J'#to
(l—CLttU Z at] maXHth
J'#to

< 2smax||k:h (16)

I,

We use a Cauchy-Schwartz inequality in the second and third steps and the attention head
behavior in the final step.

Hence, Term1 can now be bounded as follows:

h)T ol) [k A i T, .h h Rop.h
at’to((ay vy)[kg, — Zat],k: = agy, (ay) vy kto—Zattj,kjﬁ ,
2 7' 2
h
< 25H8 i ||, Il e 5,

In the final step, in addition to the bound from Equation (16), we use a Cauchy-Schwartz

T

inequality to bound ’(8?;?,) vfo ‘ and bound the attention score a,’;to by 1.

2. Term?2: Focusing on k:;l -3 i aZ j,k;?/ for any j < Tk, we have using two Cauchy-
Schwartz inequalities:

k?—Zaiij'k.?f <[l + Zawkh <L+ ayy)
T 5

2

a7

Hence,

h T,..h h h h T h h h h
> ab(Oy) TS =D atykp| < | D aty max‘) v ‘ K= alyk)
j/

J#to I s \i#t

< 2€H3ytr/1

, (21,) (e 51,)-

In the final step, in addition to the bound from Equation (17), we use a Cauchy-Schwartz
inequality to bound ‘(8 y)T h‘ and use the e-hard behavior of the attention head to bound

h
2ty O
Combining the bounds on both terms, we have

Haq?

2 s32% Hayth

ol mee [, + 2= 0

, (o1,) (e 51,)-

We bound the remaining terms as follows.
< By, under the bounded assumption of the gradients.
2

’ Oy

(maXthH) (ngc}XH ;

29

2

Under review as a conference paper at ICLR 2024

* For any j < T, we have ||k}, < |k;l|, since k; = VECTORIZE({k} }iem,,)-
Furthermore, from the defintion of the key vector k;, ||k;ll, = |[Wkax; +bk|, <
Wk |y |4, + [|bx ||, with a Cauchy-Schwartz inequality. Under the bounded assump-
tions of Wi, by and input x;, we have [|k;||, < By (1 + By).

h

* Similar procedure can be followed for bounding max; ij H2

Thus, we have Haqﬁ , < 4e Hﬁyﬁ , (maxj ||v;’||2) (maxj/ k;-‘, 2) < 4531%(1 + Bm)sz'
Bounds on ‘ 8/; — O, From the definitons of 8:; and O, from Definitions 2.12 and C.6, we
2
have
‘ 0o, = O ||, = (Wi Ok, + W g ||, < [Wiclly 0.1z + [Well, 10a. 11

<8B3 (1+ B,)?B, = O(eB2 B2B,),

where we use Cauchy-schwartz inequality in the second step. We use the assumed bounds on
IWall,, |Wk||,, and the computed bounds on [|0q, ||, , | O, ||, in the pre-final step. O

D LAYER NORMALIZATION

We repeat the definition of layer normalization from the main paper below.

Definition 2.6. [Layer Normalization] Define a normalization function f : R¢ — R¢ that performs
f(x) = (x — p)/o, where p and o are the mean and standard deviation of , respectively. Then,
layer normalization with parameters v, b € RP= takes as input € RP= and outputs y € RPwx,
which is computed as z = f(x),y =v© z + b.

In the discussions below, we consider a layer normalization layer in the auxiliary model with
parameters {v, b} that takes in input sequence 1, - - , ®, and outputs y1,- - - , Yy, with y; =
YO zy +b; z = f(x) for each t < T,ux. Since this involves a token-wise operation, we will present
our constructed modules with a general token position ¢ and the prefix tokens {v; }. We will use W/,

as a diagonal matrix in RP=*Pux containing y on its main diagonal.

TINT Layer normalization Forward module The input embedding to this module e; will contain
a; in its first Dy, coordinates. The layer normalization computation can be divided into two sub-
operations: (a) application of f, and (b) linear computation using v, b. We will present a TINT
module for each sub-operation.

We can represent the function f using a layer normalization operation itself, with its weight and bias
parameters set as 1 and O respectively. However, since the relevant input exists only in the first D«
coordinates, the operation on the first D,,x coordinates needs to be independent of the rest of the
coordinates. To do so, we instead use Group normalization (Definition D.3) on e;, with groups of
size D yx.

Now, the embedding e; contains f(x;) in its first Dy, coordinates. The second sub-operation can
then be viewed as a Linear Layer computation, i.e. y. = W, x, + b. Hence, we simply stack the rows
of W, and b,, onto the prefix tokens {v;} and call the TINT Linear Forward module (Appendix B).

Aucxiliary’s gradient backpropagation through layer normalization = With the definition of layer
normalization and the normalization function f in Definition 2.6, the auxiliary’s backpropagation
operation takes in the loss gradient w.r.t. output (dy) and computes the loss gradient w.r.t. input (9z).

Definition 2.7. [Exact Gradient for Layer Normalization] Using notations in Definition 2.6, given the
gradient of the loss w.r.t the output of the Layer Normalization 0,,, backpropagation computes 9, as

Daux

Op = (02 = D "D _ 0z, — (02,2)2) /0 02 =700y
=1

30

Under review as a conference paper at ICLR 2024

Complexity of true backpropagation The above operation is computation heavy since it involves
computing (a) 9, (b) f(9:), (¢) (0%, z)z, and (d) multiplying by a factor of % (0, z)z in itself
will require two MLP layers, following Lemma A.4. In order to reduce the number of layers, we turn
to first-order Taylor expansion for approximating the above operation.

Definition 2.8. [e-approximate Layer Normalization Gradient] With notations defined above, this
layer takes 0y, x € RP= as input and outputs 0, = L (f(z + ey © 0y) — f(x)).

€

The following theorem shows that the first-order gradient is a good approximation of the true gradient,
and in the limit of € tending to 0, the approximation error tends to 0 as well.

Theorem D.1. For any € > 0, and a layer normalization layer with parameters v, b € RP=_ for an
input x € RP« and gradient 9, € RPax,

where o denotes the standard deviation of x. O, 5; have been computed from x, Oy and € using
Definitions 2.7 and 2.8.

é;_am

— 2 2
, S O(eDZo ™ 75 19y 15),

TINT Layer normalization backpropagation module The input embeddings e; contain J,, at
each position ¢ in the first Dy, coordinates. Since we further need the input to the auxiliary’s layer
normalization layer under consideration, we copy x; from the TINT Layer normalization Forward
module at each position ¢ using residual connections. Furthermore, residual connections have been
used to copy the contents of the prefix tokens {v;} from the Layer normalization Forward module,
which contain W, b. Recall that for ease of presentation, we use z; to represent f(x;).

We set € as a hyperparameter and return 5; as the output of this module. The computation of é;
can be divided into two sub-operations: (a) computation of 0, := v ® 0y, , and (b) computation of
L(f(z¢ + €0s,) — f(x+)). We represent each sub-operation as a TINT module.

To compute 0,, := v © 0y, = W,0,,, we can observe that the required operation is identical to
backpropagating through a linear layer with parameters W, and b. Hence, we simply call the Linear
Backpropagation module on the current embeddings. We use residual connections to retain x; at
each location ¢, and the contents of the prefix tokens {v,}.

Now, the embedding e; contains J,, and x;. In order to backpropagate through f, we first use a linear
layer to compute x; + €0,, and retain ;. Following the same procedure as the Forward module, we
use a Group normalization layer with weight and bias parameters 1 and O respectively, to compute
f(x¢ + €d2,) and f(x,). Finally, we use a linear layer to compute < (f(z; + €0s,) — f(x)).

Auxiliary’s Descent update And finally, the auxiliary’s descent operation updates parameters ~y, b
using a batch of inputs {x, },<7 and the loss gradient w.r.t. the corresponding outputs {9y, }+<7.

Definition D.2 (Auxiliary’s layer normalization descent). For parameters v,b € RP=x, descent
update takes in a batch of inputs {x; € RPw=}, o1 —and gradients {9,, € RP=},o1 and updates
the parameters as follows:

Ym0y, Oz bebon Y dy,

t<Thux t<Thux

where z; represents f(x;).

The update of y involves an elementwise multiplication between Jy,, and z;, which requires an MLP
layer (Lemma A.4). With the prefix tokens containing the rows of W, and b, we instead consider the
update of b alone with the descent update.

TINT Layer normalization descent module The input embeddings contain J,, in the first Dy,
coordinates. The prefix tokens contain W, b, which have been copied from the Forward module
using residual connections. The update of b is identical to the auxiliary’s descent update through a
linear layer. Hence, we apply a TINT Linear descent module to the current embeddings, updating
only the bias b and switching off the update to W, .

31

Under review as a conference paper at ICLR 2024

D.1 ADDITIONAL DEFINITIONS
We describe TINT group normalization layer below, which we use in different modules to simulate
the auxiliary’s layer normalization operations.

Definition D.3 (TINT D,,x-Group normalization). Define a normalization function f : R? — R4 that
performs f(x) = (x — p)/o, where u and o are the mean and standard deviation of @, respectively.
Then, D,x-Group RMSnorm with parameters y"™T, pT™NT ¢ RPux takes as input 2 € RPs» and
outputs y = VECTORIZE({y" € RP=}, .\ p./p. |), with

yh _ ,YTINT ® f((L‘h) + bTINT,

where & = SPLIT | p /p,..| ()

D.2 PROOF OF THEOREMS AND GRADIENT DEFINITIONS

We restate the theorems and definitions, before presenting their proofs for easy referencing.

Definition 2.7. [Exact Gradient for Layer Normalization] Using notations in Definition 2.6, given the
gradient of the loss w.r.t the output of the Layer Normalization 0, backpropagation computes 0, as

Oz = (92 — Daux Za (02.2)2)/0 02 =7 @0,

Derivation of gradient in Definition 2.7 . With the normalization function f and parameters x, b €
RPax, recall from Definition 2.6 that given an input € RP«x, a layer normalization layer returns
y=7v0®z+b;z= f(x). Let u and o denote the mean and standard deviation of x. They can be
computed as

1
LS e Yo
aux i=1 aux i=1
With the chain rule, we can compute d,, from Jy as follows.
0z . 0
Op = (52)T0: with 0, = (a—Z)Tay. (18)

Since y = v ® z + b, we have g—z = W,, where W, represents a diagonal matrix with - on the
main diagonal. Thus, 9, = W,0y = v ® 0y.

With z = f(x) = *-¥, we have

0z _ 9 (wu) _ 10z _1on_ (@—p) (30>T

dx Oz o cdx ooz o2 ox
= % (I - illT — zzT) . (19)

ddo

In the final step, we require a” an which are computed as follows.

. (% € RPwx with its jth element given by

D
8# B aﬂ B 1 aux
(8:1;>j Oz, 8% Daux Zz, ux'

=1

m

32

Under review as a conference paper at ICLR 2024

e 92 ¢ RPw withits jth element given by

D,
do do 0 1 =
((9213 >j 6xj a'Ij Dux Z(xl M)

=1

Dux

1 Oz — p)
= Z(ﬂfi - M)i_
VEZ (@i =2 = %

1 1 Dﬂ“x xj _ //L
- — (@1 o D)) = T
Dot (i — p)? W i=1

where we have re-utilized the % in the pre-final step.

Hence, from Equation (18),

0z o, —1<I—111T—zzT>8z:1(8z—
o

O = (Oox) g aux

We repeat Theorem D.1 for easier reference.

Theorem D.1. For any € > 0, and a layer normalization layer with parameters v, b € RPa, for an
input x € RP« and gradient Oy € R D,

|0
where o denotes the standard deviation of x. O, 5; have been computed from x, Oy and € using
Definitions 2.7 and 2.8.

— 2 2
2|, < O(eDif2o 2 3 19y115),

Proof of Theorem D.1 . With the normalization function f and parameters , b € RP= recall from
Definition 2.6 that given an input & € RP=x, a layer normalization layer returns y = v ® z + b; z =
f(x). Let u and o denote the mean and standard deviation of x. They can be computed as

Daux

;x“ o= D:zllux Z(xi_u)z

Diyy “ ;
i=1

We will refer to dw 2 from Equation (19) and the formulation of J,, from Equation (18) for our current
proof. To recall, they are

0z 1 1 0z
T I— 11T — T x — 7 T z-
ox o (Daux ol) ’ g (8:1:)

Using a second-order Taylor expansion of the normalization function f around x, we have

flx+ed.) = f(x) eag(f)a /eaT 0 (M>azed9

Z 8w9 awg

D aux

of () c1
= f(z)+e a; az—/o = <||az|§ auxz ((1,8:))% = ({20, 0 >)2z9> 0do,

=1

where gy represents € + 00,, zg = f(xg). The second step follows similar steps for computing 2—
in Equation (19). We avoid this computation since we only need to make sure that the second-order

term is bounded. Furthermore, if e < O (W) , we can show the £5-norm of the second-order
R

3/2 _

term can be bounded by O(e? Dyix 0=2 ||0s| ;) We avoid this computation as well.

33

Under review as a conference paper at ICLR 2024

Thus, from the above formulation, we have

 flted) — flx) Of(), [(of@)\ . _
lim = 0, = <8:c> 0, = Oy.

e—0 € ox

dx ~ Oz o Diux
be shown to be symmetric. The final step follows from the gradient formulation in Equation (18).
Including the error term, we have the final bound as

flx+edz) — f(x)

€

The pre-final step follows from Equation (19), where) can

— 0z|| < O(eD2072)0.|5).

aux
2

Using 0, = v ® 0y and a Cauchy-Schwartz inequality gives the final bound. O

E ACTIVATION LAYER

Definition E.1 (Auxiliary activation). For a continuous function o, : R — R, an activation layer
takes & € RPw as input and outputs y = oy (x) With y; = 0 (2;) for all i < Dyyy.

In the discussions below, we consider an activation layer in the auxiliary model with activation
function o, that takes in input sequence @1, - - - , @1, and outputs ys, - - - , Yz, With yr = uct(T+)
for each ¢t < T,,. Since this involves a token-wise operation, we will present our constructed
modules with a general token position . Since no parameters of the auxiliary model are involved in

this operation, the prefix tokens {v, } contain 0 in the following modules.

TINT Activation Forward module The embedding e; contains x; in its first D, indices. We
simply pass the embeddings into activation o, which returns o, () in its first D, indices.

Auxiliary’s backpropagation through activation With the definition in Definition E.1, the auxil-
iary’s backpropagation takes in the loss gradient w.r.t. output (J,) and computes the loss gradient
w.r.t. input (0). We further assume that the derivative of o, is well-defined everywhere. This
assumption includes non-differentiable activation functions with well-defined derivatives like Re LU .

Definition E.2 (Auxiliary activation backpropagation). For a continuous function o, : R — R,
with a well-defined derivative o} () = Jo,(x)/0x for each 2 € R, the backpropagation takes
Oy, x € RP» as input and outputs

aﬂ'ﬁ = o—zlict(m) © ay’

where o (x) € RPw with o/ (2); = ol (2;) at each i < Dy.

Complexity of true backpropagation The above operation is computation heavy since it involves
ol(x) © Oy. As mentioned for the layer normalization module, the element-wise multiplication
(x) and 9y, will require an MLP module following Lemma A.4. Furthermore, it involves

between o,
changing the activation function in TINT in specific modules to o} . To circumvent this, we instead

turn to a first-order Taylor approximation.

Definition E.3 (Approximate Activation backpropagation). For a continuous function g, : R — R
and a hyperparameter e, the layer takes 0y, x € RPax as input and outputs

—

1
Op = - (Cact(@ + €0y) — Tact()) -

The following theorems show that under mild assumptions on the activation function and the input,
gradient pair, the first-order gradient is a good approximation to the true gradient.

Theorem E.4. For any € > 0, By, Byt > 0, consider a second-order differentiable activation
function o4 : R — R, with 0%0 () /0(2%) bounded by By for each x € R. Then, for any input
x € RP= and gradient 8,, € RP= with ||dy|, < By, the following holds true:

o

where Oy, 5; have been defined using x, 0y, and € in Definitions E.2 and E.3.

2
9 S O(BactBye)v

34

Under review as a conference paper at ICLR 2024

For ReLU acii\vation, which is not second-order differentiable at O, we instead bound the difference
between 0, 0, by defining some form of alignment between input and gradient pair x, 0.
Definition E.5 ((¢, p)-alignment). Input and gradient x, 9,, € RV are said to be (e, p)-aligned, if
there exist a set C' C [Dyyy, with [C| > (1 — p) Dyuy, such that for each ¢ in C, |z;] > €|(dy);] -

e controls the fraction of coordinates where |z;| < €|(9y);|. As € — 0, p — 0 as well for bounded
gradients.

Example E.6. For any B,,in, Binaz > 0, all inputs x that satisfy min; |z;| > Byn , and gradients
Oy that satisfy max; |(9y) ;| < Bmaz> are (Bmin/Bmag,0)-aligned.

Theorem E.7. For any ¢, p > 0 and B, > 0, for any input x € RPa and gradient Oy € RDawc with
10yl o, < By, that are (¢, p)-aligned by Definition E.5,

|

where Oy, 5; have been defined using x, 0., € and o,., = ReLU in Definitions E.2 and E.3.

6&:_5;

, < O(By/ pDgux)-

TINT Activation backpropagation module The input embeddings contain Jy, in the first Dy,
embeddings. With the requirement of the activation layer input for gradient, we copy x; from the
Forward module at each position ¢. We set € as a hyper-parameter and return J,,, as the output of this
module.

8/; will be computed using a single-layer MLP with activation o, as follows. The first linear layer
of the MLP will be used to compute x; + €0, and x;. After the activation o, the embedding e;
contains oy (; + €0y,) and ouee(). The final linear layer of the MLP will be used to compute

% (Uact(wt + eﬁyt) - Uact(mt))'

E.1 PROOFS OF THEOREMS

We restate the theorems, before presenting their proofs for easy referencing.

Theorem E.4. For any € > 0, By, Boet > 0, consider a second-order differentiable activation
function o : R — R, with 0%04.(2)/0(2%) bounded by By for each x € R. Then, for any input
x € RP« and gradient 8, € RP with |0y, < By, the following holds true:

where Oy, é; have been defined using x, 0y, and € in Definitions E.2 and E.3.

am_g;

2
9 S O(BactBye)v

Proof. The proof follows along the lines of Theorem D.1. Recall that given an input x, the activation
layer outputs y = o, (), where the function o, is applied coordinate-wise on x. Given input x
and the output gradient 0, the gradient w.r.t. the input is given by 0, = o) (z) © 0y, where the o

act act
function is also applied coordinate wise to . We defined 0, as an e-approximate gradient, given by
%(aacl(m + €0y) — Tact()). Since both o, and o, are applied coordinate-wise, we can look at the

coordinate-wise difference between J,, and 0.

Consider an arbitrary coordinate ¢ < D,.,x. Under the assumption that o, is second-order differen-
tiable, we have

(Ba)i = 1 (Gualai + €0y)) — ()

1 ¢ Doz
= 0la(@:) (By)i + - /9 i Towaltn) 5, 2600
= 0

= O-zlicl(xi)(ay)i + O(EBact(ay)?),
where xg represents x; + 6(Jy); in the second step. In the final step, we utilize the upper bound

0?04 (z)

assumption on —5*5

35

Under review as a conference paper at ICLR 2024

—~

Thus, (0g)i — (0z)i = O(€Byet(9y)?), and so

Oz — Da|, = O(cBucr Z O(€Bact |9y 3) < O(€Baet BY).

O

Example E.6. For any Bi,in, Binmaz > 0, all inputs x that satisfy min, |z;| > Byin , and gradients
Oy that satisfy max; |(9y) ;| < Bmaa, are (Bmin/Bmaz,0)-aligned.

Proof. Recall the definition of (e, p)-alignment from Definition E.5. Input and gradient x, 9,, € RPux
are said to be (e, p)-aligned, if there exist a set C C [Dyyx], with |C| > (1 — p) Daux, such that for
each i in C, |z;| > €](0y)i] -

Consider an arbitrary coordinate ¢ < D,ux. We have |x;| > €|(0y);| for any € < |z;| / |(0y):|. Under
the assumption that |x;| > Byyin, and |(9y)i| < Bmaz, @ bound of Biy,ip/Bimag suffices. O

Theorem E.7. For any ¢, p > 0 and B, > 0, for any input x € RPa and gradient Oy € RPaw with
10yl o, < By, that are (¢, p)-aligned by Definition E.5,

| , < O(B,V/pDuw).

where Oy, 5; have been defined using x, 0., € and o,.; = ReLU in Definitions E.2 and E.3.

aw_é;

Proof. Recall that given an input &, the activation layer outputs y = o, (), where the function o,
is applied coordinate-wise on . Given input x and the output gradient J,,, the gradient w.r.t. the
input is given by 0, = o (x) © Oy, where the o, function is also applied coordinate wise to x. We

defined 5; as an e-approximate gradient, given by 1 2(0uct(4 €0y) — 0uet(x)). Since both o, and

o are applied coordinate-wise, we can look at the coordinate-wise difference between 0, and O
For ReLU activation, o} (x) = sign(z) forall z € R\ {0}, with o/, (0) = 1 to avoid ambiguity.

Going by the definition of (¢, p)-alignment of the input and gradient from Definition E.5, we have
a set C' with |C| > (1 — p)Daux such that for each ¢ € Dy, |2;| > €](0y)i|- For all coordinates
i € C, we can then observe that sign(z; + €(0y);) = sign(x;), implying

Uact(zi + E(Gy)z) - O—act(xi) = €(ay)10'act(l'i) = e(am)l

For coordinates i ¢ C, we have three possible cases:

* sign(z;) = sign(x;+€(0y);): In this case, we can again show oo (x;+€(0y);) — Tact(T:) =

(D)10 (5) = (D)

* sign(z;) = 0, sign(x; + €(dy);) = 1: In this case, we have o,
Additionally, sign((dy);) = 1, and so
(@

y)i) = Oact(i) = €(Oz)i| = |2i + €(y)| < €|(Dy)il,

where in the final step, we use the fact that x; < 0 and |z;| < €[(0y):] -

(x;) =0, and so (0z); = 0.

act

|Jact(xz +e€

* sign(z;) = 1, sign(x; + €(dy);) = 0: In this case, we have o, (z;) = 1, and so (05); =
(Oy)i. Additionally, sign((9y);) = 0, and so

‘O—act(xi + e(ay)z) - Uact(xi) - e(am)l‘ = ‘7xi - E(ay)z| < |€(8y)1‘)

where in the final step, we use the fact that x; > 0 and |z;| < €[(0y);] -

36

Under review as a conference paper at ICLR 2024

Thus, from the above discussion, we have

1 Daux 1/2
ol = 2
’ am - 6{c 9 — g (i_zl(aaC[(xi + e(ay)z) — O'act(.’ﬂi) — G(am)l) >
1 1/2
== (Z(O’act(l’i +€(0y)i) — Tact(:) — 6(8m)i)2>
i¢C
1/2
< (%(@;)3) < V/pDuux rg}&g{(@y)f < \/pDan By.

The final step includes a simple Cauchy Schwartz inequality and the desired bound comes from the
assumed bound on |0y ||, O

F LANGUAGE MODEL HEAD

Additionally, we provide a description of the gradient computation for the loss function that involves
the language model head. This computation entails performing a softmax operation over the entire
vocabulary. If V denotes the vocabulary set of the auxiliary model, and E € RIVI*Pwx denotes the
embedding matrix of the auxiliary model, we directly utilize the embedding matrix for the auto-
regressive loss in the TINT. Additionally, we do not update the embedding matrix of the auxiliary
model; instead, we solely backpropagate the gradients through the language model head. Recent
work in (Kumar et al., 2022) has shown that keeping the embedding matrix fixed while updating the
model can stabilize SGD. We demonstrate that the backpropagated gradients can be expressed as the
combination of the language model head and a self-attention layer.

Definition F.1 (KL-loss gradient through auxiliary’s language model head). Given an embedding
matrix E € RIVI*DPa | the language model head takes in input & € RP= and a target distribution
q € RVl and returns gradient 9,, € RPw, with 9, = ET (softmax(Ex) — q).

In the autoregressive loss on a sequence of tokens, the target output distribution at any position is the

next occurring token. If {z#"}7®} denote the uncontextualized embeddings of a sequence of tokens

after encoding them via the embedding matrix, and { sct}tTi‘xl denote their contextualized embeddings

after passing through the auxiliary model, then the gradient O, at any position ¢ can be simplified as
ETsoftmax(Ex;) — 7. We illustrate the involved TINT module w.r.t. an arbitrary position ¢.

TINT autoregressive loss gradient module The current embedding e, contains the contextualized
embedding x; in its first Dy, coordinates. Furthermore, e; includes the uncontextualized embedding
x{", copied from the input layer using residual connections. The prefix tokens v; are assigned a
value of 0 and do not participate in the subsequent computations.

The loss computation can be decomposed into two sub-operations: (a) computing y; =
E Tsoftmax(Ex;), and (b) calculating 0, = y; — .

For the first sub-operation, we use a feed-forward layer with softmax activation, with hidden and
output weights E and E T respectively, that takes in the first D, of e; and returns %, in the first
D,ux coordinates. We retain 3" using a residual connection.

The final sub-operation can be interpreted as a TINT self-attention layer. With e; containing both
y: and x}'™, we use a linear self-attention layer (Definition A.1) with two attention heads. The first
attention head assigns an attention score of 1 to pairs {(¢,¢+1) };<r,,—1, while assigning an attention
score of O to the remaining pairs. At any position ¢, —x}'" is considered the value vector. The second
attention head assigns an attention score of 1 to pairs {(¢,¢) }+<m,,, while assigning an attention score
of 0 to the remaining pairs. At any position ¢, y, is considered the value vector. The outputs of both
attention heads are subsequently combined using a linear layer.

Remark F.2. We conducted experiments using mean-squared loss and Quad loss Saunshi et al. (2020),
which do not necessitate softmax computations for gradient computation. As an example, in the

2 .
, the gradient can

. 1 T un
case of mean-squared loss, if our objective is to minimize § Y, [|@; — =7 |

37

Under review as a conference paper at ICLR 2024

be computed as 0, = x; — x{},. Similarly, in the case of Quad loss, the gradient is 0, =
Ii‘lf\ > ei — x},. However, in all of our language model experiments (Section 3), both gradients

resulted in minimal improvement in perplexity compared to the auxiliary model. Therefore, we
continue utilizing the standard KL loss for optimization.

Remark F.3. For ease of implementation in the codebase, we utilize a dedicated loss module that
takes in y;, i as input and directly computes 05, = y; — T¢};.

G PARAMETER SHARING

Feed-forward layer of auxiliary model: In a standard auxiliary transformer, like GPT-2, the feed-
forward layer is a token-wise operation that takes in an input € RP=x and returns y = Ao (W),
with A € RPwx4Dwn and W € R*APa*Dax - A naive construction of the TINTto simulate its
forward operation will have 2 Linear Forward modules (Section 2.4), separated by an activation.
However, this requires 4 x more prefix embeddings to represent the parameters, compared to other
linear operations in the auxiliary transformer that use R Pan weight parameters.

To avoid this, we can inst¢ad break down the computation into 4 sub-feed-forward layers, each with
its own parameters {{W", A"} }1<;<4. Here {W"}1<,<4 represent 4-shards of the rows of W, and
{A%}1 <i<4 represent 4-shards of the columns of A.

The forward, backward, and descent operations on these 4 sub-feed-forward layers can be effec-
tively parallelized. For example, the forward operation of each layer can be simulated by a single
TINTmodule, consisting of two Linear Forward modules and activation, changing only the prefix
embeddings to correspond to {{W*, A'}}1<;<4.

H ADDITIONAL MODULES

We describe the forward, backward, and decent update operations of additional modules, used in
different model families, like LLaMA Touvron et al. (2023) and BLOOM Scao et al. (2022). We
discuss the simulation of these modules, using similar TINT modules.

H.1 ROOT MEAN SQUARE NORMALIZATION (RMSNORM)

The operation of RMSnorm Zhang and Sennrich (2019) is very similar to layer normalization.

Definition H.1 (RMSnorm). For an arbitrary dimension d, define a normalization function f : R% —
R< that performs f(x) = x/RMS(x), where RMS(z) = (Z?zl x2)'/2. Then, RMSnorm with
parameters v, b € RP= takes as input € RP= and outputs y € RP=x which is computed as
2= f(2)y =7 ©z+b.

The extreme similarity between RMSnorm and layer normalization (Definition 2.6) helps us create
similar TINT modules as described in Appendix D, where instead of Group normalization layers, we
use Group RMSnorm layers described below.

Definition H.2 (TINT D,,x-Group RMSnorm). For an arbitrary dimension d, define a normalization
function f : R? — R? that performs f(x) = &/ RMS(x), where RM S(z) = (3%, #2)/2. Then,
D,ux-Group RMSnorm with parameters v ™™ pT™NT ¢ RPax takes as input € RP5 and outputs
y = VECTORIZE({y" € RP»}, | p. /D)), With

yh _ ,YTINT ® f(iL'h’) + bTINT,
where " = SPLIT [Dsim/ Daux | (:B)h
H.2 ATTENTION VARIANTS
In order to incorporate additional attention variants, e.g. Attention with Linear Biases (ALiBi) Press

et al. (2021), and rotary position embeddings Su et al. (2021), we can change the definition of softmax
attention layer in Definition A.1 likewise.

38

Under review as a conference paper at ICLR 2024

H.3 GATED LINEAR UNITS (GLUS)

We describe the operations of GLUs Shazeer (2020) using similar GLU units available to the TINT.

Definition H.3. For parameters W,V , W° € RPw>Dax and biases by, by, byyo € RP» a GLU
layer with activation g, : R — R, takes input « € RPawx and outputs gy € RPw | with

y=Wzx+by)Oou(Ve+by); =W+ byo.

Typical GLUs have 8/3 x D, as a hidden dimension (i.e. the dimension of y). We can use similar
parameter-sharing techniques discussed for feed-forward layers (Appendix G) with the TINT modules
presented here. Furthermore, since 7 can be expressed as a combination of the gated operation and a
linear operation, we focus on the computation of y here.

For the discussion below, we consider a GLU (without the output linear layer) in the auxiliary model,
with parameters W, V', by, by, that takes in input sequence x1, - - - , 7 and outputs y1, - - - , yr,
with y, = Wz + by) © 0au(Vx, + by) for each t < Tyy. Since this involves a token-wise
operation, we will present our constructed modules with a general token position ¢ and the prefix
tokens {v; }.

TINT GLU Forward module The embedding e; contains x; in its first D, coordinates. The
output y; can be computed using three sub-operations: (a) linear operation for W x; + by, (b) linear
operation for V; + by, and (c) gate operation to get (Wax; 4+ by) @ cue(Vy + by).

We use three TINT modules, representing each sub-operation.

(a) Wxy + by is a linear operation, hence we can use a TINT Linear Forward module
(Appendix B) with the current embedding e; and {v;} containing W', by to get embedding
e, containing Wx; 4+ byy in its first D,y coordinates.

(b) Vx; + by is a linear operation, hence we can similarly use a TINT Linear Forward module
(Appendix B) with the embedding e; and {v,} containing Wy, by, to get embedding e,
containing Vax; + by in its first D,y coordinates.
€; and €; are now combined to get an embedding e; that contains Wx; + by, Vi, + by
in its first 2.D,,, coordinates.

(c) Finally, we can use a TINT GLU layer that can carry out the elementwise multiplication of
Wi + by, 0ae(Va: + by) to get y; in the first Dy, coordinates.

Parameter Sharing: Since (a) and (b) involve a Linear Forward module, we can additionally leverage
parameter sharing to apply a single Linear Forward module for each of the two computations,
changing only the prefix embeddings to correspond to W, by, or Wy, by.

Auxiliary GLU backpropagation For the GLU layer defined in Definition H.3, the backpropa-
gation layer takes in the loss gradient w.r.t. output (0,) and computes the loss gradient w.r.t. input
(Oz)-

Definition H.4 (Auxiliary GLU backpropagation). For the weights W,V € RPwxDux | the
backpropagation layer takes 9,, € RPw~ as input and outputs 0, € RV, with 0 = W T 0, +V " 0,
where

— —

Op = Oy © oa (Ve + by); Op = o0(VE +by) © 0y © (Wa + bw).
A direct computation of 8 involves changing the activation function to o . Following a similar
strategy for backpropagation through an activation layer (Appendix E), we instead use a first-order

Taylor expansion to approximate Oy.

Definition H.5 (Auxiliary GLU approximate backpropagation). For a hyper-parameter ¢ > 0, for the
weights W,V € RPwxDax the approximate backpropagation layer takes Oy € RPax as input and

outputs Jy € RPw, with 9 = W10, + V1 0, where
5; = ay © Uact(vw + bV)

= 1

€

1
O = 0aat(VX + by +€0y) © —(Wax + by) — 00a(V + by) © ;(Wa: + bw).

39

Under review as a conference paper at ICLR 2024

TINT GLU backpropagation module The current embedding contains 0y, in its first Dy, coordi-
nates. Furthermore, since we need Wx; + by and Va; + by in the gradient computations, we copy

them from the Forward module using residual connections. We discuss the computation of W T 9,

and VTaf; as separate sub-modules acting on the same embedding e; in parallel.

1. The computation of W T ; involves two sub-operations: (a) gate operation to get =; :=
Oy, © 0aat(Vey + by), and (b) linear backward operation to get W TZ;. Since for this
operation, we require W, we copy the contents of the prefix embeddings containing W', by
from the Forward module.

(a) Since the current embedding e, contains both 9,, and Wx; + by, we can use a TINT
GLU layer to get an embedding e,(s) that contains 8w,
(b) The final linear backward operation can be performed by using a TINT Linear back-

propagation module (Appendix B) with the embeddings é\?) and the prefix embeddings.

The final embedding €; contains W Tz; in the first D, coordinates.

2. The computation of VT//:BV: involves four sub-operations: (a) gate operation to get < LWz, +
bw)©ow (Ve + by + eayt) (b) gate operation to get - Twaz,+by) o aact(th +by),
(c) a linear layer to compute x;, (c) linear backward operation to get Vth Since for this

operation, we require V', we copy the contents of the prefix embeddings containing V', by
from the Forward module.

(a) Since the current embedding e; contains 0y,, V&, + by and Wz, + by, we can use
two TINT GLU layers to get an embedding Egl) that contains both (W x, + by) ®
Oact (Ve + by + €0y,) and %(Wmt +bw) © guer(Vay + by).

(b) A linear later on Eil) can then return an embedding €§2) containing 50/:,5 in the first D,y
coordinates.

(c) The final operation can be performed by using a TINT Linear backpropagation module
(Appendix B) with the embeddings €7 and the prefix embeddings containing V', by .

The final embedding e; contains V T2, in the first D,y coordinates.

After the two parallel computations, we can sum up &; and €; to get an embedding e; containing 0,
(Definition H.5) in the first D,,x coordinates.

Auxiliary GLU descent Finally, the auxiliary’s descent updates the weight and the bias parameters
using a batch of inputs {x; };<7 and the loss gradient w.r.t. the corresponding outputs {3y, }+<7.

Definition H.6 (Auxiliary GLU descent). For weights W,V € RPw*Dax and bias by, by €
RPax, the linear descent layer takes in a batch of inputs {mt € RPw}, 1 and gradients {9y, €
RPwx}, o7 and updates the parameters as follows:

WeW—nZ(ﬂw:; bwhbw—nzfi,

aux

t<Tuux 1 <Tux
—~ _|_. p
V(*V*T] E &Etmt, bv(*bvfn E (()\'mt,
tSTaux tSTaux

where 5; and (‘5; have been computed as Definition H.4.

—

Due to similar concerns as gradient backpropagation, we instead use 8,; (Definition H.5) in place of
Oz, for each t < T, to update V', by.

TINT GLU descent module We discuss the two descent operations separately.

1. Update of W, by We start with the embeddings 8&” from the backpropagation module,
that contain 0, in the first D, coordinates.

40

Under review as a conference paper at ICLR 2024

For the update, we additionally require the input to the auxiliary GLU layer under con-
sideration, and hence we copy x; from the Forward module using residual connections.
Furthermore, we copy the contents of the prefix embeddings that contain W, by from the
Forward module.

With both 05, and z; in the embeddings, the necessary operation turns out to be the descent
update of a linear layer with parameters W, byy,. That implies, we can call a TINT Linear
descent module (Appendix B) on the current embeddings and prefix embeddings to get the
desired update.

2. We start with the embeddings 5%2) from the backpropagation module, that contain 5; in the
first D,,x coordinates.
For the update, we additionally require the input to the auxiliary GLU layer under con-
sideration, and hence we copy x; from the forward module using residual connections.
Furthermore, we copy the contents of the prefix embeddings that contain V', by, from the
Forward module.

With both 8/; and x; in the embeddings, the necessary operation turns out to be the descent
update of a linear layer with parameters V', by,. That implies we can call a TINT Linear
descent module on the current embeddings and prefix embeddings to get the desired update.

Parameter sharing: Since both the descent updates involve a Linear descent module, we can addition-
ally leverage parameter sharing to apply a single TINT Linear descent module for each of the two

computations, changing the input to correspond to {8%1)} and prefix to correspond to W, by, or the
input to correspond to {éﬁ”} and prefix to correspond to V', by respectively.

41

Under review as a conference paper at ICLR 2024

I CONSTRUCTION OF OTHER VARIANTS OF PRE-TRAINED MODELS

Table 3: Number of parameters of TINT for the forward, backward, and gradient update operations
on various modules. For simplicity, we have ignored biases in the following computation. We
set Hg, = 12 for OPT-125M and Hg;,, = 16 for the other models, Dy, = 4D, for all the
models, and Tgm = Thux + K, with Ty = 2048 for OPT models, and K = Dy /4. Q = 4Qsp1it +
3Tsim Dsim/ Hsim,» Where Qspiit = ﬁ(DSim)2 + Hgm Dgim, denotes the number of parameters in a
TINT Linear Forward module (Section 2.4).

Module Size
Module Name Forward Backward Descent Total
Linear layer Q Q Q 3Q
Layer norms Q Q + 2Dgim Hgim Q 3Q + 2Dgim Him
Self-Attention 2Q) 2Q) 2Q 60Q
Activation Qsplit 2Dsim];-[sim 0 Qsplit + 2-Dsim-PIsim
Self-Attention block 4Q 4Q 4 2Dgim Hyim 4Q 12Q + 2Dgjm Hyim
Feed-forward block 3Q 3Q + 4Dg Hgim 3Q 9Q + 4 Dgjm Hgim
Transformer block 7Q 7Q + 6 Dgim Him 7Q 21Q + 6 Dgim Him
Transformer TQL + LQspiit (7Q + 6Dgim Hsim) L TQL (21Q + 6 Dgim Hgim) L
OPT-125Mm 0.4B 0.4B 0.4B 1.2B
OPT-350M 1.2B 1.1B 1.1B 3.4B
OPT-1.3B 3.7B 3.6B 3.5B 10.8B
OPT-2.7B 7.4B 7.2B 7.2B 21.8B

Though we only conduct experiments on an OPT-125M model, our construction is generally applica-
ble to diverse variants of pre-trained language models. Table 3 highlights many types of modules and
the required size and computation for each. The size of a constructed model is influenced by various
factors, including the number of layers, and embedding dimension in the auxiliary.

J EXPERIMENTS

Computing environment: All the experiments are conducted on a single A100 80G GPU.

Hyperparameters: In the few-shot setting, we employ three different random seeds to select distinct
sets of training examples. Grid search is performed for each seed to determine the optimal learning
rate for both constructed models and dynamic evaluation. The learning rates considered for the
learning rate hyperparameter in the descent update operations in TINT are le — 3,1e — 4,1e — 5. °
Additionally, we explore various layer-step combinations to allocate a fixed budget for one full
forward pass. Specifically, we update the top 3 layers for 4 steps, the top 6 layers for 3 steps, or 12
layers for 1 step.

Results of different settings. Table 4 displays the results of few-shot learning with calibration
across various settings, encompassing different loss types, input formats, and layer-step configurations.
Our analysis reveals that employing a label-only loss, utilizing a single-example input format, and
updating all layers of the internal model for a single step yield the most favorable average result. The
performance of the multi-example format is disadvantaged when dealing with tasks of long sequences
such as Amazon Polarity. In general, we observe that calibrated results tend to be more consistent
and stable.

K BROADER IMPACTS

Our findings suggest that existing transformer-based language models possess the ability to learn
and adapt to context by internally fine-tuning a complex model even during inference. Consequently,

*When utilizing the full-context loss, the learning rates considered are le — 5, 1e — 6, and 1e — 7 due to
gradient summations in TINT.

42

Under review as a conference paper at ICLR 2024

Table 4: Few-shot (k = 32) results with different loss types, input formats, and layer-step configura-
tions with a fixed compute budget, with calibration.

Loss Type Format Layer Step \ Subj AGNews SST2 CR MR MPQA Amazon Avg.

Label Single 12 1 66.0(1_9) 64.7([)‘2) 68.7(1_3) 69.0(0_7) 63.7(02) 82,8(0_5) 7'?"7(0,6) 69,8(0_1)
Single 6 2 | 6270 6632 6831 67202 61841 8l0ams 74305 68814
Single 3 4 | 63500 67208 62504 68704 61706 T768ss 75208 67905
Multi. 12 1 83.2(2_5) 437(6.6) 60.7(5_7) 70.3(6_1) 62.8(8_9) 84.2(]_6) 66.3(12_3> 67.3(0_9)
Multi. 6 2 83.5(2_9) 4342(8.4) 52.0(1_5) 70~5(6.0) 58.5(11_3) 82.0(0_4) 55.8(7_5) 63.6(2_7)
Multi. 3 4 | 84003 42334y B5L5a1s 68246 585120 80201) 58519 633(s0)

Full-context Single 12 1 | 64504 65802 63200 67305 60814 73508 75004 67201
S%ngle 6 2 66.7(2_0) 6640(0_4) 62.7(0_6) 70.5(2_1) 59.7(0_9) 77.7(2_2) 76.0(0_0) 68.5(0_4)
Smgle 3 4 64.0(0_11) 65.8(“_6) 65.0(1_9) 67.3(“_2) 59.5(0_4) 74.2(1_3) 77.0(1_9) 67.5(“_3)
Multi. 12 1 | 838409 41.0u0e 51208 68045 583a1y T790ms 56.0m1) 62504
Multi. 6 2 | 85300 412007 51205 67745 577008 79237 55.8¢e 626026
Multi. 3 4 | 83345 417013 51041 682um 57.700s 79032 56.0s1) 6240

Table 5: Few-shot (k = 32) results with different loss types, input formats, and layer-step configura-
tions with a fixed compute budget, without calibration.

Loss Type Format Layer Step \ Subj AGNews SST2 CR MR MPQA Amazon Avg.

Label Single 12 1 63.3(0_2) 65.7(0_2> 713(0,6) 65.0(14) 70.7(09) 65.0(0_0) 76.7(0_2) 68.2(0_1)
Single 6 2 | 63500 65205 73313 68557 71302 66.000) 77504 69.3(03
Single 3 4 | 64202 66511 73206 75705 72000 83210 78004 73201
Multi. 12 1 | 64545 35574 56807 030467 58759 752108 622535 59406
Muli. 6 2 | 1700 35504 57009 60063 5231y 58501 5587 5670
Muli. 3 4 | 675015 38532 55.3pa 67.0@ms 61.0m0) 65.2112) 625m0 59.6(13)

Full-context Single 12 1 65.5(1_1) 66.5(0_0) 70.7((]‘2) 64.8(()‘5) 72.0(14) 67.0(0_0) 7645(0_0) 69.0(0_3)
Single 6 2 | 64706 66202 71202 65306 71504 67.000) 76.702 68.90.0)
Single 3 4 | 64.202) 66202 713192 64702 7100 67000 76500 68.7(00)
Multi. 12 1 | 62275 33843 52231 52840 50812 558us 53¢z 51.9na)
Multi. 6 2 60.0(5.5) 33.78.4) 50.8(1.2) 522024y 50202y 543025 55.06.7) 50.9(18)
Multi. 3 4 58.7(4_9) 33»7(3_4) 50.8(12) 51.3(13) 50.0((),0) 54.3(2_5> 55.3(7_2) 5046(2_0)

although users are unable to directly modify deployed models, these models may still undergo
dynamic updates while processing a context left-to-right, resulting in previously unseen behavior by
the time the model reaches the end of the context. This has significant implications for the field of
model alignment. It is challenging to impose restrictions on a model that can perform such dynamics
updates internally, so malicious content can influence the output of deployed models.

Alternatively, we recognize the potential benefits of pre-training constructed models that integrate
explicit fine-tuning mechanisms. By embedding the functionalities typically achieved through
explicit fine-tuning, such as detecting malicious content and intent within the models themselves,
the need for external modules can be mitigated. Pre-training the constructed model may offer a
self-contained solution for ensuring safe and responsible language processing without relying on
external dependencies.

43

	Introduction
	Our Construction
	Overview
	Key Components
	Operating on an auxiliary model with prefix embeddings
	Stacking in prefix-tokens, Hsim-split linear operations and Linear attention
	First order gradients for layer normalization
	Backpropagation through Attention Value Vectors
	Parameter sharing in the TinT

	Experiments
	Experimental Setup
	Verification of TinT

	Related Work
	Discussion
	Additional Notations
	Simulating Multiplication from akyurek2022learning

	Linear layer
	Hsim-split operation

	Self-attention layer
	Approximate auxiliary self-attention backpropagation
	Proofs of theorems and gradient definitions

	Layer normalization
	Additional definitions
	Proof of theorems and gradient definitions

	Activation layer
	Proofs of theorems

	Language model head
	Parameter sharing
	Additional modules
	Root mean square normalization (RMSnorm)
	Attention variants
	Gated linear units (GLUs)

	Construction of other variants of pre-trained models
	Experiments
	Broader Impacts

