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Abstract
We develop an iterative (greedy) deep learning
algorithm which is able to transform an arbitrary
probability distribution function (PDF) into the
target PDF. The model is based on iterative Opti-
mal Transport of a series of 1D slices, matching
on each slice the marginal PDF to the target. As
special cases of this algorithm, we introduce two
Sliced Iterative Normalizing Flows (SINF), which
map from the data to the latent space (GIS) and
vice versa (SIG). We show that SIG is able to gen-
erate high quality samples that match the GAN
benchmarks. GIS obtains better results on small
dataset density estimation tasks compared to the
density trained NFs. SINF approach deviates sig-
nificantly from the current DL paradigm, as it is
greedy and does not use concepts such as mini-
batching, stochastic gradient descent and gradient
back-propagation through deep layers.

1. Introduction
Latent variable generative models such as Normalizing
Flows (NFs) (Rezende & Mohamed, 2015; Dinh et al.,
2014; 2017; Kingma & Dhariwal, 2018), Variational Au-
toEncoders (VAEs) (Kingma & Welling, 2014; Rezende
et al., 2014) and Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014; Radford et al., 2016) aim to model
the distribution p(x) of high-dimensional input data x by
introducing a mapping from a latent variable z to x, where z
is assumed to follow a given prior distribution π(z). These
models usually parameterize the mapping using neural net-
works, and the training of these models typically consists
of minimizing a dissimilarity measure between the model
distribution and the target distribution.

In this work we adopt a different approach to build the map
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from latent variable z to data x. We approach this problem
from the Optimal Transport (OT) point of view. OT studies
whether the transport maps exist between two probability
distributions, and if they do, how to construct the map to
minimize the transport cost. We propose to decompose the
high dimensional problem into a succession of 1D transport
problems, where the OT solution is known. The mapping is
iteratively augmented, and it has a NF structure that allows
explicit density estimation and efficient sampling. We name
the algorithm Sliced Iterative Normalizing Flow (SINF).
Our objective function is inspired by the Wasserstein dis-
tance, which is defined as the minimal transport cost and
has been widely used in the loss functions of generative
models (Arjovsky & Bottou, 2017; Tolstikhin et al., 2018).
We propose a new metric, max K-sliced Wasserstein dis-
tance, which enables the algorithm to scale well to high
dimensions.

2. Background
The p-Wasserstein distance, p ∈ [1,∞), between two prob-
ability distributions p1 and p2 is defined as:

Wp(p1, p2) = inf
γ∈Π(p1,p2)

(
E(x,y)∼γ [‖x− y‖p]

) 1
p , (1)

where Π(p1, p2) is the set of all possible joint distributions
γ(x, y) with marginalized distributions p1 and p2. In 1D
the Wasserstein distance has a closed form solution via Cu-
mulative Distribution Functions (CDFs), but this evaluation
is intractable in high dimension. An alternative metric, the
Sliced p-Wasserstein Distance (SWD) (Rabin et al., 2011;
Bonneel et al., 2015), is defined as:

SWp(p1, p2) =

(∫
Sd−1

W p
p (Rp1(·, θ),Rp2(·, θ))dθ

) 1
p

,

(2)
where Sd−1 denotes the unit sphere θ2

1 + · · · θ2
n = 1 in

Rd, dθ is the normalized uniform measure on Sd−1, and
R denotes the Radon transform. The definition of Radon
transform can be found in the appendix. For a given θ, the
function (Rp)(·, θ) : R → R is essentially the slice (or
projection) of p(x) on axis θ.

The SWD can be calculated by approximating the high di-
mensional integral with Monte Carlo samples. However, in
high dimensions a large number of projections is required
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to accurately estimate SWD. This motivates to use the max-
imum Sliced p-Wasserstein Distance (max SWD):

max -SWp(p1, p2) = max
θ∈Sd−1

Wp(Rp1(·, θ),Rp2(·, θ)),
(3)

which is the maximum of the Wasserstein distance of the
1D marginalized distributions of all possible directions.

3. Sliced Iterative Normalizing Flows
We consider the general problem of building a NF that maps
an arbitrary PDF p1(x) to another arbitrary PDF p2(x) of
the same dimensionality. We firstly introduce our objective
function in Section 3.1. The general SINF algorithm is
presented in Section 3.2. We then consider the special cases
of p1 and p2 being standard Normal distributions in Section
3.3 and Section 3.4, respectively.

3.1. Maximum K-sliced Wasserstein distance

We generalize the idea of maximum SWD and propose
maximum K-Sliced p-Wasserstein Distance (max K-SWD):

max -K-SWp(p1, p2) = max
{θ1,··· ,θK} orthonormal(

1

K

K∑
k=1

W p
p ((Rp1)(·, θk), (Rp2)(·, θk))

) 1
p

. (4)

In this work we fix p = 2. The max K-SWD defines K
orthogonal axes {θ1, · · · , θK} where the marginal distribu-
tions of p1 and p2 are most different, providing a natural
choice for performing 1D marginal matching in our algo-
rithm (see Section 3.2). The proof that max K-SWD is a
proper distance and the details of its estimation are provided
in the appendix.

3.2. Proposed SINF algorithm

The SINF algorithm is based on iteratively matching the 1D
marginalized distribution of p1 to p2. This is motivated by
the inverse Radon Transform (see Appendix) and Cramér-
Wold theorem, which suggest that matching the high di-
mensional distributions is equivalent to matching the 1D
slices on all possible directions, decomposing the high di-
mensional problem into a series of 1D problems. Given a set
of i.i.d. samples X drawn from p1, in each iteration, a set of
1D marginal transformations {Ψk}Kk=1

1 (K ≤ d where d is
the dimensionality of the dataset) are applied to the samples
on orthogonal axes {θk}Kk=1 to match the 1D marginalized
PDF of p2 along those axes. Let A = [θ1, · · · , θK ] be the

1Notation definition: In this paper we use l, k, j and m to
represent different iterations of the algorithm, different axes θk,
different gradient descent iterations of max K-SWD calculation
(see Algorithm 2), and different knots in the spline functions of
1D transformation, respectively.

Algorithm 1 Sliced Iterative Normalizing Flow

Input: {xi ∼ p1}Ni=1, {yi ∼ p2}Ni=1, K, number of
iteration Liter

for l = 1 to Liter do
θ1, · · · , θK = arg max K-SWD(xi, yi,K)
for k = 1 to K do

Compute x̂i = θk · xi and ŷi = θk · yi for each i
x̃m = quantiles(PDF(x̂i))
ỹm = quantiles(PDF(ŷi))
Ψl,k = RationalQuadraticSpline(x̃m, ỹm)

end for
Ψl = [Ψ1, · · · ,ΨK ], Al = [θ1, · · · , θK ]
Update xi = xi −AlATl xi +AlΨl(A

T
l xi)

end for

Table 1. Comparison between SIG and GIS

Model SIG GIS

Initial PDF p1 Gaussian pdata

Final PDF p2 pdata Gaussian

Training Iteratively maps Iteratively maps
Gaussian to pdata pdata to Gaussian

NF structure Yes Yes

Advantage Good samples Good density
estimation

weight matrix (ATA = IK), the transformation at iteration
l of samples Xl can be written as

Xl+1 = AlΨl(A
T
l Xl) +X⊥l , (5)

where X⊥l = Xl − AlATl Xl. Ψl = [Ψl1, · · · ,ΨlK ]T is
the marginal mapping of each dimension of ATl Xl, and its
components are required to be monotonic and differentiable.
The Inverse and Jacobian determinant of transformation 5
can be easily evaluated (see appendix).

The weight matrix Al and the marginal transformations Ψl

are determined by iteratively minimizing the max K-SWD
(Equation 4) between the transformed p1 and p2. Specif-
ically, we propose to iteratively solving for the orthogo-
nal axes {θ1, · · · , θK} in max K-SWD, and then apply 1D
marginal matching on those axes to minimize max K-SWD.

Let p1,l be the transformed p1 at iteration l. The kth compo-
nent of Ψl, Ψl,k, maps the 1D marginalized PDF of p1,l to
p2 and has an OT solution:

Ψl,k(x) = F−1
k (Gl,k(x)), (6)

where Gl,k(x) =
∫ x
−∞(Rp1,l)(t, θk)dt and Fk(x) =∫ x

−∞(Rp2)(t, θk)dt are the CDFs of p1,l and p2 on axis θk,
respectively. The CDFs can be estimated using the quantiles
of the samples (in SIG Section 3.3), or using Kernel Density
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(a) MNIST (T=0.85) (b) Fashion-MNIST (T=0.85)

(c) CIFAR-10 (T=1) (d) CelebA (T=0.85)

Figure 1. Random samples from SIG.

Estimation (KDE, in GIS Section 3.4). Equation 6 is mono-
tonic and therefore invertible. We choose to parametrize
it with monotonic rational quadratic splines (Gregory &
Delbourgo, 1982; Durkan et al., 2019). Details about the
splines are shown in the appendix.

The proposed algorithm iteratively minimizes the max K-
SWD between the transformed p1 and p2. The orthono-
mal vectors {θ1, · · · , θK} specify K axes along which the
marginalized PDF between p1,l and p2 are most different,
thus maximizes the gain at each iteration and improves
the efficiency of the algorithm. The model is able to con-
verge with two orders of magnitude fewer iterations than
random axes, and it also leads to better sample quality. This
is because as the dimensionality d grows, the number of
slices (Rp)(·, θ) required to approximate p(x) using in-
verse Radon formula scales as Ld−1 (Kolouri et al., 2015),
where L is the number of slices needed to approximate a
similar smooth 2D distribution. Therefore, if θ are randomly
chosen, it takes a large number of iterations to converge in
high dimensions due to the curse of dimensionality. Our
objective function reduces the curse of dimensionality in
high dimensions by identifying the most relevant directions.

Unlike KL-divergence which is invariant under flow trans-
formations, max K-SWD is different in data space and in
latent space. Therefore the direction of building the flow
model is of key importance. In the next two sections we dis-
cuss two different ways of building the flow, which are good
at sample generation and density estimation, respectively.
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Figure 2. Density estimation versus training set size. The legend
in panel (a) applies to other panels as well. Higher is better: at
100-1000 training size GIS has the best performance in all cases.

3.3. Sliced Iterative Generator (SIG)

For Sliced Iterative Generator (SIG) p1 is a standard Normal
distribution, and p2 is the target distribution. The model
iteratively maps the Normal distribution to the target dis-
tribution using 1D slice transformations. Specifically, one
firstly draw a set of samples from the standard Normal dis-
tribution, and then iteratively updates the samples following
Equation 5. SIG directly minimizes the max K-SWD be-
tween the generated distribution and the target distribution,
and is able to generate high quality samples.

3.4. Gaussianizing Iterative Slicing (GIS)

For Gaussianizing Iterative Slicing (GIS) p1 is the target
distribution and p2 is a standard Normal distribution. The
model iteratively Gaussianizes the target distribution, and
the mapping is learned in the reverse direction of SIG. In
GIS the max K-SWD between latent data and the Normal
distribution is minimized, thus the model performs well in
density estimation, even though its objective is not p(x). A
comparison between SIG and GIS is shown in Table 1.



Sliced Iterative Normalizing Flows

Table 2. FID scores on different datasets (lower is better). The errors are generally smaller than the differences.

Method MNIST Fashion CIFAR-10 CelebA

iterative SWF 225.1 207.6 - -
SIG (T = 1) (this work) 4.5 13.7 66.5 37.3

adversarial
training

Flow-GAN (ADV) 155.6 216.9 71.1 -
WGAN 6.7 21.5 55.2 41.3

WGAN GP 20.3 24.5 55.8 30.0
Best default GAN ∼ 10 ∼ 32 ∼ 70 ∼ 48

AE based

SWAE(Wu et al., 2019) - - 107.9 48.9
SWAE(Kolouri et al., 2018) 29.8 74.3 141.9 53.9

CWAE 23.6 57.1 120.0 49.7
PAE - 28.0 - 49.2

two-stage VAE 12.6 29.3 96.1 44.4

Table 3. Averaged training time of different NF models on small
datasets (Ntrain = 100) measured in seconds. All the models
are tested on both a cpu and a K80 gpu, and the faster results are
reported here (the results with * are run on gpus.). P: POWER, G:
GAS, H: HEPMASS, M: MINIBOONE, B: BSDS300.

Method P G H M B

GIS (low α) 0.53 1.0 0.63 3.5 7.4
GIS (high α) 6.8 9.4 7.3 44.1 69.1

GF 113∗ 539∗ 360∗ 375∗ 122∗

MAF 18.4 -1 10.2 -1 32.1
FFJORD 1051 1622 1596 499∗ 4548∗

RQ-NSF (AR) 118 127 55.5 38.9 391

1 Training failures.

4. Experiments
4.1. Generative modeling of images

We evaluate SIG as a generative model of images using the
following 4 datasets: MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al.,
2009) and Celeb-A (Liu et al., 2015). In Figure 1 we show
samples of these four datasets. For MNIST, Fashion-MNIST
and CelebA dataset we show samples from the model with
reduced temperature T = 0.85 (i.e., sampling from a Gaus-
sian distribution with standard deviation T = 0.85 in latent
space), which slightly improves the sample quality (Parmar
et al., 2018; Kingma & Dhariwal, 2018). We report the final
FID score (calculated using temperature T=1) in Table 2,
where we compare our results with similar algorithms SWF
(Liutkus et al., 2019) and Flow-Gan (ADV) (Grover et al.,
2018). We also list the FID scores of some other generative
models for comparison, including models using slice-based
distance SWAEs (Wu et al., 2019; Kolouri et al., 2018)
and CWAE (Knop et al., 2018), Wasserstein GAN models

(Arjovsky et al., 2017; Gulrajani et al., 2017), and other
GANs and AE-based models PAE (Böhm & Seljak, 2020)
and two-stage VAE (Dai & Wipf, 2019; Xiao et al., 2019).
We notice that previous iterative algorithms were unable to
produce good samples on high dimensional image datasets.
In contrast, SIG obtains the best FID scores on MNIST and
Fashion-MNIST, while on CIFAR-10 and CelebA it also
outperforms similar algorithms and AE-based models, and
gets comparable results with GANs.

4.2. Density estimation p(x) of small datasets

We perform density estimation with GIS on four UCI
datasets (Lichman et al., 2013) and BSDS300 (Martin
et al., 2001). The data preprocessing of UCI datasets and
BSDS300 follows Papamakarios et al. (2017). We vary the
size of the training set Ntrain from 102 to 105 to test the
model performance on a wide range of dataset size. For
GIS we consider two hyperparameter settings: large regu-
larization α (see appendix for more details) for better log p
performance, and small regularization α for faster training.
In Figure 2 we compare GIS to other NF models GF (Meng
et al., 2020), FFJORD (Grathwohl et al., 2019), MAF (Pa-
pamakarios et al., 2017) and RQ-NSF (AR)(Durkan et al.,
2019), as well as KDE. Some non-GIS NF models collapsed
during training or used more memory than our GPU, and
are not shown in the plot. The results in Figure 2 show
that GIS is more stable compared to other NFs and out-
performs them on small training sets. This highlights that
GIS is less sensitive to hyper-parameter optimization and
achieves good performance out of the box. GIS training
time varies with data size, but is generally lower than other
NFs for small training sets. We report the training time for
100 training data in Table 3. GIS with small regularization
α requires significantly less time than other NFs, while still
outperforming them at 100 training size.
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5. Conclusions
We introduce sliced iterative normalizing flow (SINF) that
iteratively transforms data distribution to a Gaussian (GIS)
or the other way around (SIG) using OT. To the best of
our knowledge, SIG is the first greedy deep learning algo-
rithm that is competitive with the SOTA generators in high
dimensions, while GIS achieves comparable results on den-
sity estimation with current NF models, but is more stable,
faster to train, and achieves higher p(x) when trained on
small training sets even though it does not train on p(x).
SINF has very few hyperparameters, and is very insensitive
to their choice. SINF is related to several previous mod-
els, which is discussed in Appendix. SINF has deep neural
network architecture, but its approach deviates significantly
from the current Deep Learning paradigm, as it does not use
concepts such as mini-batching, stochastic gradient descent
and gradient back-propagation through deep layers. SINF is
an existence proof that greedy Deep Learning without these
ingredients can be SOTA for modern high dimensional ML
applications. SINF may be of particular interest in appli-
cations where robustness, insensitivity to hyperparameters,
small data size, and speed are of primary importance.
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A. Radon transform
Let L1(X) be the space of absolute integrable functions on
X . The Radon transformR : L1(Rd)→ L1(R× Sd−1) is
defined as

(Rp)(t, θ) =

∫
Rd

p(x)δ(t− 〈x, θ〉)dx, (7)

where Sd−1 denotes the unit sphere θ2
1 + · · · θ2

n = 1 in Rd,
δ(·) is the Dirac delta function, and 〈·, ·〉 is the standard
inner product in Rd. For a given θ, the function (Rp)(·, θ) :
R → R is essentially the slice (or projection) of p(x) on
axis θ.

Note that the Radon transform R is invertible. Its inverse,
also known as the filtered back-projection formula, is given
by (Helgason, 2010; Kolouri et al., 2019)

R−1((Rp)(t, θ))(x) =

∫
Sn−1

((Rp)(·, θ) ∗ h)(〈x, θ〉)dθ,
(8)

where ∗ is the convolution operator, and the convolution ker-
nel h has the Fourier transform ĥ(k) = c|k|d−1. The inverse
Radon transform provides a practical way to reconstruct the
original function p(x) using its 1D slices (Rp)(·, θ), and
is widely used in medical imaging. This inverse formula
implies that if the 1D slices of two functions are the same
in all axes, these two functions are identical. This is also
known as Carmér-Wold theorem (Cramér & Wold, 1936).

B. max K-SWD
The optimization in max K-SWD is performed under the
constraints that {θ1, · · · , θK} are orthonormal vectors, or
equivalently, ATA = IK where A = [θ1, · · · , θK ] is the
matrix whose i-th column vector is θi. Mathematically, the
set of all possible A matrices is called Stiefel Manifold
VK(Rd) = {A ∈ Rd×K : ATA = IK}. As suggested
by Tagare (2011), the optimization of matrix A can be per-
formed by doing gradient ascent on the Stiefel Manifold:

A(j+1) =
(
Id +

τ

2
B(j)

)−1 (
Id −

τ

2
B(j)

)
A(j), (9)

where A(j) is the weight matrix at gradient descent iteration
j (which is different from the iteration l of the algorithm),
τ is the learning rate, which is determined by backtrack-
ing line search, B = GAT − AGT , and G is the negative

gradient matrix G = [− ∂F
∂Ap,q

] ∈ Rd×K . Equation 9 has
the properties that A(j+1) ∈ VK(Rd), and that the tangent

vector dA(j+1)

dτ |τ=0 is the projection of gradient [ ∂F
∂Ap,q

] onto
TA(j)

(VK(Rd)) (the tangent space of VK(Rd) at A(j)) un-
der the canonical inner product (Tagare, 2011).

However, Equation 9 requires the inversion of a d×dmatrix,
which is computationally expensive in high dimensions.
The matrix inversion can be simplified using the Sherman-
Morrison-Woodbury formula, which results in the following
equation (Tagare, 2011):

A(j+1) = A(j) − τU(j)(I2K +
τ

2
V T(j)U(j))

−1V T(j)A(j),

(10)
where U = [G,A] (the concatenation of columns of G
and W ) and V = [A,−G]. Equation 10 only involves the
inversion of a 2K × 2K matrix, where K is the number
of axes to apply marginal transformation in each iteration.
For high dimensional data (e.g. images), we use a relatively
small K to avoid the inversion of large matrices. A large K
leads to faster training, but one would converge to similar
results with a small K using more iterations.

The procedure for estimating max K-SWD and A is summa-
rized in Algorithm 2.

Proposition 1. Let Pp(Ω) be the set of Borel probability
measures with finite p’th moment on metric space (Ω, d).
The maximum K-sliced p-Wasserstein distance is a metric
over Pp(Ω).

Proof. We firstly prove the triangle inequality. Let µ1,
µ2 and µ3 be probability measures in Pp(Ω) with prob-
ability density function p1, p2 and p3, respectively. Let
{θ∗1 , · · · , θ∗K} = arg max{θ1,··· ,θK} orthonormal
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Algorithm 2 max K-SWD

Input: {xi ∼ p1}Ni=1, {yi ∼ p2}Ni=1, K, order p, max
iteration Jmaxiter

Randomly initialize A ∈ VK(Rd)
for j = 1 to Jmaxiter do

Initialize D = 0
for k = 1 to K do
θk = A[:, k]
Compute x̂i = θk · xi and ŷi = θk · yi for each i
Sort x̂i and x̂j in ascending order s.t. x̂i[n] ≤
x̂i[n+1] and ŷj[n] ≤ ŷj[n+1]

D = D + 1
KN

∑N
i=1 |x̂i[n] − ŷj[n]|p

end for
G = [− ∂D

∂Ai,j
], U = [G,A] , V = [A,−G]

Determine learning rate τ with backtracking line search
A = A− τU(I2K + τ

2V
TU)−1V TA

if A has converged then
Early stop

end if
end for
Output: D

1
p ≈ max -K-SWp, A ≈ [θ1, · · · , θK ]

(
1
K

∑K
k=1W

p
p ((Rp1)(·, θk), (Rp3)(·, θk))

) 1
p

; then

max -K-SWp(p1, p3)

= max
{θ1,··· ,θK} orthonormal(

1

K

K∑
k=1

W p
p ((Rp1)(·, θk), (Rp3)(·, θk))

) 1
p

=

(
1

K

K∑
k=1

W p
p ((Rp1)(·, θ∗k), (Rp3)(·, θ∗k))

) 1
p

≤

(
1

K

K∑
k=1

[Wp((Rp1)(·, θ∗k), (Rp2)(·, θ∗k))

+Wp((Rp2)(·, θ∗k), (Rp3)(·, θ∗k))]p

) 1
p

≤

(
1

K

K∑
k=1

W p
p ((Rp1)(·, θ∗k), (Rp2)(·, θ∗k))

) 1
p

+

(
1

K

K∑
k=1

W p
p ((Rp2)(·, θ∗k), (Rp3)(·, θ∗k))

) 1
p

≤ max
{θ1,··· ,θK} orthonormal(

1

K

K∑
k=1

W p
p ((Rp1)(·, θk), (Rp2)(·, θk))

) 1
p

+ max
{θ1,··· ,θK} orthonormal(
1

K

K∑
k=1

W p
p ((Rp2)(·, θk), (Rp3)(·, θk))

) 1
p

= max -K-SWp(p1, p2) + max -K-SWp(p2, p3),

(11)

where the first inequality comes from the triangle inequality
of Wasserstein distance, and the second inequality follows
Minkowski inequality. Therefore max -K-SWp satisfies
the triangle inequality.

Now we prove the identity of indiscernibles. For any proba-
bility measures µ1 and µ2 in Pp(Ω) with probability density
function p1 and p2, let
θ̂ = arg maxθ∈Sd−1 Wp((Rp1)(·, θ), (Rp2)(·, θ)), and
{θ∗1 , · · · , θ∗K} = arg max{θ1,··· ,θK} orthonormal(

1
K

∑K
k=1W

p
p ((Rp1)(·, θk), (Rp2)(·, θk))

) 1
p

, we have

max -K-SWp(p1, p2)

=

(
1

K

K∑
k=1

W p
p ((Rp1)(·, θ∗k), (Rp2)(·, θ∗k))

) 1
p

≤

(
1

K

K∑
k=1

W p
p ((Rp1)(·, θ̂), (Rp2)(·, θ̂))

) 1
p

=Wp((Rp1)(·, θ̂), (Rp2)(·, θ̂))
= max -SWp(p1, p2).

(12)

On the other hand, let {θ̂, θ̃2, · · · , θ̃K} be a set of orthonor-
mal vectors in Sd−1 where the first element is θ̂, we have

max -K-SWp(p1, p2)

=

(
1

K

K∑
k=1

W p
p ((Rp1)(·, θ∗k), (Rp2)(·, θ∗k))

) 1
p

≥

(
1

K
W p
p ((Rp1)(·, θ̂), (Rp2)(·, θ̂))

+
1

K

K∑
k=2

W p
p ((Rp1)(·, θ̃k), (Rp2)(·, θ̃k))

) 1
p

≥
(

1

K
W p
p ((Rp1)(·, θ̂), (Rp2)(·, θ̂))

) 1
p

=(
1

K
)

1
p max -SWp(p1, p2).

(13)

Therefore we have ( 1
K )

1
p max -SWp(p1, p2) ≤

max -K-SWp(p1, p2) ≤ max -SWp(p1, p2). Thus
max -K-SWp(p1, p2) = 0 ⇔ max -SWp(p1, p2) = 0 ⇔
µ1 = µ2, where we use the non-negativity and identity of
indiscernibles of max -SWp.

Finally, the symmetry of max -K-SWp can be proven using
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Figure 3. Illustration of 1 iteration of SINF algorithm with K = 1.

the fact that p-Wasserstein distance is symmetric:

max -K-SWp(p1, p2)

=

(
1

K

K∑
k=1

W p
p ((Rp1)(·, θ∗k), (Rp2)(·, θ∗k))

) 1
p

=

(
1

K

K∑
k=1

W p
p ((Rp2)(·, θ∗k), (Rp1)(·, θ∗k))

) 1
p

= max -K-SWp(p2, p1).

(14)

C. More details of SINF
We show an illustration of the SINF algorithm in Figure 3.

C.1. Inverse and Jacobian determinant

The SINF transformation of Equation 5 can be easily in-
verted:

Xl = AlΨ
−1
l (ATl Xl+1) +X⊥l , (15)

where X⊥l = Xl − AlATl Xl = Xl+1 − AlATl Xl+1. The
Jacobian determinant of the transformation is also efficient
to calculate:

det(
∂Xl+1

∂Xl
) =

K∏
k=1

dΨlk(x)

dx
. (16)

Proof of Equation 16. Let {θ1, · · · , θK , · · · , θd} be a set
of orthonormal basis in Rd where the first K vectors
are θ1, · · · , θK , respectively. Let Rl = [θ1, · · · , θd]
be an orthogonal matrix whose i-th column vector is θi,
Ul = [θK+1, · · · , θd]. Since Al = [θ1, · · · , θK ], we have
Rl = [Al, Ul] (the concatenation of columns of A and
U ). Let Id−K = [id1, · · · , idd−K ]T be a marginal trans-
formation that consists of d−K 1D identity transformation,

Ψ̂l =

[
Ψl

Id−K

]
, we have

Xl+1 =AlΨl(A
T
l Xl) +Xl −AlATl Xl

=AlΨl(A
T
l Xl) +RlR

T
l Xl −AlATl Xl

=AlΨl(A
T
l Xl) + [Al, Ul]

[
ATl
UTl

]
Xl −AlATl Xl

=AlΨl(A
T
l Xl) + UlU

T
l Xl

=AlΨl(A
T
l Xl) + UlI

d−K(UTl Xl)

=[Al, Ul]

[
Ψl

Id−K

] (
[Al, Ul]

TXl

)
=RlΨ̂l(R

T
l Xl).

(17)

Since Rl is an orthogonal matrix with determinant ±1, and
the Jacobian of the marginal transformation Ψ̂l is diago-
nal, the Jacobian determinant of the above equation can be
written as

det(
∂Xl+1

∂Xl
) =

K∏
k=1

dΨlk(x)

dx
·
d−K∏
k=1

d(idk(x))

dx

=

K∏
k=1

dΨlk(x)

dx
.

(18)

C.2. Objective

At iteration l, the objective of SINF can be written as:

Fl = min
{Ψl1,··· ,ΨlK}

max
{θl1,··· ,θlK} orthonormal(

1

K

K∑
k=1

W p
p (Ψlk((Rp1,l)(·, θlk)), (Rp2)(·, θlk))

) 1
p

. (19)

The algorithm firstly optimize θlk to maximize the objective,
with Ψlk fixed to identical transformations (equivalent to
Equation 4). Then the axes θlk are fixed and the objective
is minimized with marginal matching Ψl. The samples are
updated, and this process repeats until convergence.

C.3. Monotonic Rational Quadratic Spline

Monotonic Rational Quadratic Splines (Gregory & Del-
bourgo, 1982; Durkan et al., 2019) approximate the function
in each bin with the quotient of two quadratic polynomials.
They are monotonic, contineously differentiable, and can be
inverted analytically. The splines are parametrized by the co-
ordinates and derivatives of M knots: {(xm, ym, y′m)}Mm=1,
with xm+1 > xm, ym+1 > ym and y′m > 0. Given these
parameters, the function in bin m can be written as (Durkan
et al., 2019)

y = ym + (ym+1 − ym)
smξ

2 + y′mξ(1− ξ)
sm + σmξ(1− ξ)

, (20)
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Figure 4. Illustration of the patch-based approach with S = 4,
p = 2 and q = 2. At each iteration, different patches are modeled
separately. The patches are randomly shifted in each iteration
assuming periodic boundaries.

where sm = (ym+1 − ym)/(xm+1 − xm), σm = y′m+1 +
y′m−2sm and ξ = (x−xm)/(xm+1−xm). The derivative
is given by

dy

dx
=
s2
m[y′m+1ξ

2 + 2smξ(1− ξ) + y′m(1− ξ)2]

[sm + σmξ(1− ξ)]2
. (21)

Finally, the inverse can be calculated with

x = xm + (xm+1 − xm)
2c

−b−
√
b2 − 4ac

, (22)

where a = (sm − y′m) + ζσm, b = y′m − ζσm, c = −smζ
and ζ = (y − ym)/(ym+1 − ym). The derivation of these
formula can be found in Appendix A of Durkan et al. (2019).

In our algorithm the coordinates of the knots are determined
by the quantiles of the marginalized PDF (see Algorithm
1). The derivative y′m (1 < m < M) is determined by
fitting a local quadratic polynomial to the neighboring knots
(xm−1, ym−1), (xm, ym), and (xm+1, ym+1):

y′m =
sm−1(xm+1 − xm) + sm(xm − xm−1)

xm+1 − xm−1
. (23)

The function outside [x1, xM ] is linearly extrapolated with
slopes y′1 and y′M . In SIG, y′1 and y′M are fixed to 1, while in
GIS they are fitted to the samples that fall outside [x1, xM ].

We use M = 400 knots in SIG to interpolate each Ψl,k,
while in GIS we set M = min(

√
Ntrain, 200). The perfor-

mance is insensitive to these choices, as long as M is large
enough to fully characterize the 1D transformation Ψl,k.

C.4. Patch-based hierarchical approach for SIG

Generally speaking, the neighboring pixels in images have
stronger correlations than pixels that are far apart. This
fact has been taken advantage by convolutional neural net-
works, which outperform Fully Connected Neural Networks

Figure 5. Illustration of the hierarchical modeling of an S = 8
image. The patch size starts from q = 8 and gradually decreases
to q = 2.

(FCNNs) and have become standard building blocks in com-
puter vision tasks. Like FCNNs, vanilla SIG and GIS make
no assumption about the structure of the data and cannot
model high dimensional images very well. Recently, Meng
et al. (2020) proposed a patch-based approach, providing a
different way to improve the modeling of the local correla-
tions for NF models. The patch-based approach decomposes
an S × S image into p× p patches, with q × q neighboring
pixels in each patch (S = pq). In each iteration the marginal-
ized distribution of each patch is modeled separately without
considering the correlations between different patches. This
approach effectively reduces the dimensionality from S2 to
q2, at the cost of ignoring the long range correlations.

To reduce the effects of ignoring long range correlations,
we propose a hierarchical model. In SIG, we start from
modeling the entire images, which corresponds to q = S
and p = 1. After some iterations the samples show correct
structures, indicating the long range correlations have been
modeled well. We then gradually decrease the patch size
q until q = 2, which allows us to gradually focus on the
smaller scales. Assuming a periodic boundary condition,
we let the patches randomly shift in each iteration. If the
patch size q does not divide S, we set p = bS/qc and the
rest of the pixels are kept unchanged.

C.5. Regularization of GIS

We add regularization to GIS for density estimation tasks
to further improve the performance and reduce overfitting.
The regularization is added in the following two aspects:
1) The weight matrix Wl is regularized by limiting the max-
imum number of iteration Jmaxiter (see Algorithm 2). We
set Jmaxiter = N/d, where N is the number of training data
and d is the dimensionality. Thus for very small datasets
(N/d→ 1) the axes of marginal transformation are almost
random. This has no effect on datasets of regular size.
2) The CDFs in Equation 6 are estimated using KDE, and
the 1D marginal transformation is regularized with:

ψ̃l,k(x) = (1− α)ψl,k(x) + αx, (24)

where α ∈ [0, 1) is the regularization parameter. ψ̃l,k is the
regularized transformation. As α increases, the performance
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improves, but more iterations are needed to converge. Thus
α controls the trade-off between performance and speed.

D. Related work
Iterative normalizing flow models called RBIG (Chen &
Gopinath, 2000; Laparra et al., 2011) are simplified ver-
sions of GIS, as they are based on a succession of rotations
followed by 1D marginal Gaussianizations. Iterative Dis-
tribution Transfer (IDT) (Pitié et al., 2007) is a similar al-
gorithm but does not require the base distribution to be a
Gaussian. These models do not scale well to high dimen-
sions because they do not have a good way of choosing
the axes, and they are not competitive against modern NFs
trained on p(x) (Meng et al., 2020). Meng et al. (2019) use
a similar algorithm Projection Pursuit Monge Map (PPMM)
to construct OT maps. They propose to find the most infor-
mative axis using Projection Pursuit (PP) in each iteration,
and show that PPMM works well in low-dimensional bot-
tleneck settings (d = 8). However, it has yet to be proven
that PPMM scales to high dimensions, considering that PP
scales as O(d3). A DL, non-iterative version of these mod-
els is Gaussianization Flow (GF) (Meng et al., 2020), which
trains on p(x) and achieves good density estimation results
in low dimensions, but does not have good sampling prop-
erties in high dimensions. RBIG, GIS and GF have similar
architectures but are trained differently. We compare their
density estimation results in Section 4.2.

Another iterative generative model is Sliced Wasserstein
Flow (SWF) (Liutkus et al., 2019). Similar to SIG, SWF
tries to minimize the SWD between the distributions of sam-
ples and the data, and transforms this problem into solving a
d dimensional PDE. The PDE is solved iteratively by doing
a gradient flow in the Wasserstein space, and they show
SWF works well for low dimensional bottleneck features.
However, in each iteration the algorithm requires evaluating
an integral over the d dimensional unit sphere approximated
with Monte Carlo integration, which does not scale well to
high dimensions. Another difference with SIG is that SWF
does not have a flow structure, cannot be inverted, and does
not provide the likelihood. We compare the sample qualities
between SWF and SIG in Section 4.1.

SWD, max SWD and other slice-based distance (e.g.
Cramér-Wold distance) have been widely used in training
generative models (Deshpande et al., 2018; 2019; Wu et al.,
2019; Kolouri et al., 2018; Knop et al., 2018; Nguyen et al.,
2020b;a; Nadjahi et al., 2020). Wu et al. (2019) propose
a differentiable SWD block composed of a rotation fol-
lowed by marginalized Gaussianizations, but unlike RBIG,
the rotation matrix is trained in an end-to-end DL fashion.
They propose Sliced Wasserstein AutoEncoder (SWAE)
by adding SWD blocks to an AE to regularize the latent
variables, and show that its sample quality outperforms

VAE and AE + RBIG. Nguyen et al. (2020b;a) generalize
the max-sliced approach using parametrized distributions
over projection axes. Nguyen et al. (2020b) propose Mix-
ture Spherical Sliced Fused Gromov Wasserstein (MSSFG),
which samples the slice axes around a few informative direc-
tions following Von Mises-Fisher distribution. They apply
MSSFG to training Deterministic Relational regularized Au-
toEncoder (DRAE) and name it mixture spherical DRAE
(ms-DRAE). Nguyen et al. (2020a) go further and propose
Distributional Sliced Wasserstein distance (DSW), which
tries to find the optimal axes distribution by parametrizing it
with a neural network. They apply DSW to the training of
GANs, and we will refer to their model as DSWGAN in this
paper. We compare the sample qualities between SWAE and
SIG in Section 4.1. Besides GANs and AE-based models,
OT has also been used in constructing NFs (Zhang et al.,
2018; Finlay et al., 2020b; Onken et al., 2020; Finlay et al.,
2020a; Huang et al., 2020).

Grover et al. (2018) propose Flow-GAN using a NF as the
generator of a GAN, so the model can perform likelihood
evaluation, and allows both maximum likelihood and adver-
sarial training. Similar to our work they find that adversarial
training gives good samples but poor p(x), while training
by maximum likelihood results in bad samples. Similar to
SIG, the adversarial version of Flow-GAN minimizes the
Wasserstein distance between samples and data, and has a
NF structure. We compare their samples in Section 4.1.

E. Hyperparameter study and ablation
analysis

Here we study the sensitivity of SINF to hyperparameters
and perform ablation analyses.

E.1. Hyperparameter K, objective function, and patch
based approach

We firstly test the convergence of SIG on MNIST dataset
with different K choices. We measure the SWD (Equation
2) and max SWD (Equation 3) between the test data and
model samples for different iterations (without patch based
hierarchical modeling). The results are presented in Figure
6. The SWD is measured with 10000 Monte Carlo samples
and averaged over 10 times. The max SWD is measured
with Algorithm 2 (K = 1) using different starting points
in order to find the global maximum. We also measure
the SWD and max SWD between the training data and
test data, which gives an estimate of the noise level arising
from the finite number of test data. For the range of K we
consider (1 ≤ K ≤ 128), all tests we perform converges
to the noise level, and the convergence is insensitive to the
choice of K, but mostly depends on the total number of 1D
transformations (Niter ·K). As a comparison, we also try
running SIG with random orthogonal axes per iteration, and
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Figure 6. Sliced Wasserstein Distance (SWD, top panel) and Max-
Sliced Wasserstein Distance (max SWD, bottom panel) between
the MNIST test data and model samples as a function of total
number of marginal transformations. The legend in the top panel
also applies to the bottom panel. The SWD and max SWD between
the training data and test data is shown in the horizontal solid black
lines. The lines with "random" indicate that the axes are randomly
chosen (like RBIG) instead of using the axes of max K-SWD. We
also test K = 2, 4, 8, 32, and 64. Their curves overlap with
K = 1, 16 and 128 and are not shown in the plot.

for MNIST, our greedy algorithm converges with two orders
of magnitude fewer marginal transformations than random
orthogonal axes (Figure 6).

For K = 1, the objective function (Equation 19) is the same
as max SWD, so one would expect that the max SWD be-
tween the data and the model distribution keep decreasing
as the iteration number increases. For K > 1, the max
K-SWD is bounded by max SWD (Equation 12 and 13)
so one would also expect similar behavior. However, from
Figure 6 we find that max SWD stays constant in the first
400 iterations. This is because SIG fails to find the global
maximum of the objective function in those iterations, i.e.,
the algorithm converges at some local maximum that is
almost perpendicular to the global maximum in the high
dimensional space, and therefore the max SWD is almost
unchanged. This suggests that our algorithm does not re-

Niter ⋅K: 64 512 1024 2048 5120 10240 20480 102400 249600

Niter ⋅K: 64 512 1024 2048 5120 10240 20480 102400 249600

Niter ⋅K: 56 504 1008 2072 5096 10192 20384 102216 249600

Figure 7. Top panel: SIG samples with random axes (K = 64).
Middle panel: SIG samples with optimized axes (K = 64). Bot-
tom panel: SIG samples with optimized axes and patch based
hierarchical approach. The numbers above each panel indicate the
number of marginal transformations.
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Figure 8. The measured maximum sliced Wasserstein distance be-
tween two Gaussian datasets as a function of number of samples.
10 different starting points are used to find the global maximum.

quire global optimization of A at each iteration: even if we
find only a local maximum, it can be compensated with sub-
sequent iterations. Therefore our model is insensitive to the
initialization and random seeds. This is very different from
the standard non-convex loss function optimization in deep
learning with a fixed number of layers, where the random
seeds often make a big difference (Lucic et al., 2018).

In Figure 7 we show the samples of SIG of random axes,
optimized axes and hierarchical approach. On the one hand,
the sample quality of SIG with optimized axes is better
than that of random axes, suggesting that our proposed ob-
jective max K-SWD improves both the efficiency and the
accuracy of the modeling. On the other hand, SIG with
optimized axes has reached the noise level on both SWD
and max SWD at around 2000 marginal transformations
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(Figure 6), but the samples are not good at that point, and
further increasing the number of 1D transformations from
2000 to 200000 does not significantly improve the sample
quality. At this stage the objective function of Equation 19
is dominated by the noise from finite sample size, and the
optimized axes are nearly random, which significantly limits
the efficiency of our algorithm. To better understand this
noise, we do a simple experiment by sampling two sets of
samples from the standard normal distribution N (0, I) and
measuring the max SWD using the samples. The true dis-
tance should be zero, and any nonzero value is caused by the
finite number of samples. In Figure 8 we show the measured
max SWD as a function of sample size and dimensional-
ity. For small number of samples and high dimensionality,
the measured max SWD is quite large, suggesting that we
can easily find an axis where the marginalized PDF of the
two sets of samples are significantly different, while their
underlying distribution are actually the same. Because of
this sample noise, once the generated and the target distribu-
tion are close to each other (the max K-SWD reached the
noise level), the optimized axes becomes random and the
algorithm becomes inefficient. To reduce the noise level,
one needs to either increase the size of training data or de-
crease the dimensionality of the problem. The former can
be achieved with data augmentation. In this study we adopt
the second approach, i.e., we effectively reduce the dimen-
sionality of the modeling with a patch based hierarchical
approach. The corresponding samples are shown in the bot-
tom panel of Figure 7. We see that the sample quality keeps
improving after 2000 marginal transformations, because the
patch based approach reduces the effective noise level.

E.2. Effects of regularization parameter α in density
estimation
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Figure 9. Test log-likelihood (left panel) and number of itera-
tions (right panel) as a function of regularization parameter α
on POWER dataset.

To explore the effect of regularization parameter α, we train
GIS on POWER dataset with different α. We keep adding
iterations until the log-likelihood of validation set stops im-
proving. The final test log p and the number of iterations
are shown in Figure 9. We see that with a larger α, the
algorithm gets better density estimation performance, at the
cost of taking more iterations to converge. Setting the regu-

Iteration: 1 10 20 30 50 100 200 300 500 800

Iteration: 1 10 25 50 100 200 300 500 1000 2500

Figure 10. Gaussian noise (first column), Fashion-MNIST (top
panel) and CelebA (bottom) samples at different iterations.

Figure 11. Middle: interpolations between CelebA samples from
SIG. Left and right: the corresponding nearest training data.

larization parameter α is a trade-off between performance
and computational cost.

F. Other experiments
F.1. Density estimation of full datasets

We perform density estimation with GIS on four UCI
datasets (Lichman et al., 2013) and BSDS300 (Martin et al.,
2001), as well as image datasets MNIST (LeCun et al.,
1998) and Fashion-MNIST (Xiao et al., 2017). The data
preprocessing of UCI datasets and BSDS300 follows Pa-
pamakarios et al. (2017). In Table 4 we compare our re-
sults with RBIG (Laparra et al., 2011) and GF (Meng et al.,
2020). The former can be seen as GIS with random axes
to apply 1D gaussianization, while the latter can be seen
as training non-iterative GIS with MLE training on p(x).
We also list other NF models Real NVP (Dinh et al., 2017),
Glow (Kingma & Dhariwal, 2018), FFJORD (Grathwohl
et al., 2019), MAF (Papamakarios et al., 2017) and RQ-NSF
(AR)(Durkan et al., 2019) for comparison.

We observe that RBIG performs significantly worse than cur-
rent SOTA. GIS outperforms RBIG and is the first iterative
algorithm that achieves comparable performance compared
to maximum likelihood models. This is even more impres-
sive given that GIS is not trained on p(x), yet it outperforms
GF on p(x) on GAS, BSDS300 and Fashion-MNIST.

F.2. More samples from SIG

In Figure 10 we show the SIG samples at different itera-
tions. In Figure 11 we display interpolations between SIG
samples, and the nearest training data, to verify we are not
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Table 4. Negative test log-likelihood for tabular datasets measured in nats, and image datasets measured in bits/dim (lower is better).

Method POWER GAS HEPMASS MINIBOONE BSDS300 MNIST Fashion

iterative RBIG 1.02 0.05 24.59 25.41 -115.96 1.71 4.46
GIS (this work) -0.32 -10.30 19.00 14.26 -155.75 1.34 3.22

maximum
likelihood

GF -0.57 -10.13 17.59 10.32 -152.82 1.29 3.35
Real NVP -0.17 -8.33 18.71 13.55 -153.28 1.06 2.85

Glow -0.17 -8.15 18.92 11.35 -155.07 1.05 2.95
FFJORD -0.46 -8.59 14.92 10.43 -157.40 0.99 -

MAF -0.30 -10.08 17.39 11.68 -156.36 1.89 -
RQ-NSF (AR) -0.66 -13.09 14.01 9.22 -157.31 - -

memorizing the training data.

F.3. Out of Distribution (OoD) detection

Table 5. OoD detection accuracy quantified by the AUROC of data
p(x) trained on Fashion-MNIST.

Method MNIST OMNIGLOT

SIG (this work) 0.980 0.993
GIS (this work) 0.824 0.891
PixelCNN++ 0.089 -

IWAE 0.423 0.568

OoD detection with generative models has recently attracted
a lot of attention, since the log p estimates of NF and VAE
have been shown to be poor OoD detectors: different gen-
erative models can assign higher probabilities to OoD data
than to In Distribution (InD) training data (Nalisnick et al.,
2019). One combination of datasets for which this has been
observed is Fashion-MNIST and MNIST, where a model
trained on the former assigns higher density to the latter.

SINF does not train on the likelihood p(x), which is an
advantage for OoD. Likelihood is sensitive to the smallest
variance directions (Ren et al., 2019): for example, a zero
variance pixel leads to an infinite p(x), and noise must be
added to regularize it. But zero variance directions con-
tain little or no information on the global structure of the
image. SINF objective is more sensitive to the meaning-
ful global structures that can separate between OoD and
InD. Because the patch based approach ignores the long
range correlations and results in bad OoD, we use vanilla
SINF without patch based approach. We train the models
on F-MNIST, and then evaluate anomaly detection on test
data of MNIST and OMNIGLOT (Lake et al., 2015). In
Table 5 we compare our results to maximum likelihood
p(x) models PixelCNN++(Salimans et al., 2017; Ren et al.,
2019), and IWAE (Choi et al., 2018). Other models that
perform well include VIB and WAIC (Choi et al., 2018),

Figure 12. Fashion-MNIST samples before (left panel) and after
SIG improvement (right panel). Top: SWF. Middle: Flow-GAN
(ADV). Bottom: MAF.

which achieve 0.941, 0.943 and 0.766, 0.796, for MNIST
and OMNIGLOT, respectively (below our SIG results). For
the MNIST case Ren et al. (2019) obtained 0.996 using the
likelihood ratio between the model and its perturbed ver-
sion, but they require fine-tuning on some additional OoD
dataset, which may not be available in OoD applications.
Lower dimensional latent space PAE (Böhm & Seljak, 2020)
achieves 0.997 and 0.981 for MNIST and OMNIGLOT, re-
spectively, while VAE based likelihood regret (Xiao et al.,
2020) achieves 0.988 on MNIST, but requires additional
(expensive) processing.

F.4. Improving the samples of other generative models

Since SIG is able to transform any distribution to the target
distribution, it can also be used as a "Plug-and-Play" tool to
improve the samples of other generative models. To demon-
strate this, we train SWF, Flow-GAN(ADV) and MAF(5) on
Fashion-MNIST with the default architectures in their pa-
pers, and then we apply 240 SIG iterations (30% of the total
number of iterations in Section 4.1) to improve the samples.
In Figure 12 we compare the samples before and after SIG
improvement. Their FID scores improve from 207.6, 216.9
and 81.2 to 23.9, 21.2 and 16.6, respectively. These results
can be further improved by adding more iterations.


