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Abstract

We consider maximizing an unknown monotonic, submodular set function f :
2[n] → [0, 1] with cardinality constraint under stochastic bandit feedback. At each
time t = 1, . . . , T the learner chooses a set St ⊂ [n] with |St| ≤ k and receives
reward f(St) + ηt where ηt is mean-zero sub-Gaussian noise. The objective is to
minimize the learner’s regret with respect to an approximation of the maximum
f(S∗) with |S∗| = k, obtained through robust greedy maximization of f . To
date, the best regret bound in the literature scales as kn1/3T 2/3. And by trivially

treating every set as a unique arm one deduces that
√(

n
k

)
T is also achievable us-

ing standard multi-armed bandit algorithms. In this work, we establish the first
minimax lower bound for this setting that scales like Ω̃(minL≤k(L

1/3n1/3T 2/3 +√(
n

k−L

)
T )). For a slightly restricted algorithm class, we prove a stronger regret

lower bound of Ω̃(minL≤k(Ln
1/3T 2/3 +

√(
n

k−L

)
T )). Moreover, we propose an

algorithm Sub-UCB that achieves regret Õ(minL≤k(Ln
1/3T 2/3 +

√(
n

k−L

)
T ))

capable of matching the lower bound on regret for the restricted class up to loga-
rithmic factors.

1 INTRODUCTION

Optimizing over sets of n ground items given noisy feedback is a common problem. For example,
when a patient comes into the hospital with sepsis (bacterial infection of the blood), it is common
for a cocktail of 1 < k ≤ n antibiotics to be prescribed. This can be attractive for reasons including
1) the set could be as effective (or more) than a single drug alone, but each unit of the cocktail could
be administered at a far lower dosage to avoid toxicity, or 2) could be more robust to resistance
by blocking a number of different pathways that would have to be overcome simultaneously, or 3)
could cover a larger set of pathogens present in the population. In this setting the prescriber wants to
balance exploration with exploitation over different subsets to maximize the number of patients that
survive. As a second example, we consider factorial optimization of web-layouts: you have n pieces
of content and k locations on the webpage to place them–how do you choose subsets to maximize
metrics like click-through rate or engagement?

Given there are ≈ nk ways to choose k items amongst a set of n, this optimization problem is
daunting. It is further complicated by the fact that for any set St that we evaluate at time t, we only
get to observe a noisy realization of f , namely yt = f(St)+ηt where ηt is mean-zero, sub-Gaussian
noise. In the antibiotics case, this could be a Bernoulli indicating whether the patient recovered
or not, and in the web-layout case this could be a Bernoulli indicating a click or a (clipped) real
number to represent the engagement time on the website. To make this problem more tractable,
practitioners make structural assumptions about f . A common assumption is to assume that higher-
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order interaction terms are negligible [20, 12]. For example, assuming only interactions up to the
second degree would mean that there exist parameters θ(0) ∈ R, θ(1) ∈ Rn, and θ(2) ∈ R(

n
2) such

that

f(S) = θ(0) +
∑
i∈S

θ
(1)
i +

∑
i,j∈S,i ̸=j

θ
(2)
i,j . (1)

However, this model can be very restrictive and even if true, the number of unknowns scales like n2

which could still be intractably large.

An alternative strategy is to remain within a non-parametric class, but reduce our ambitions to mea-
suring performance relative to a different benchmark which is easier to optimize. We say a set
function f : 2[n] → R is increasing and submodular if for all A ⊂ B ⊂ [n] we have f(A) ≤ f(B)
and

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (2)

Such a condition limits how quickly f can grow and captures some notion of diminishing returns.
Diminishing returns is reasonable in both the antibiotics and webpage optimization examples. It is
instructive to note that a sufficient condition for the parametric form of (1) to be submodular is for
maxi,j θ

(2)
i,j ≤ 0. But in general, f still has ≈ nk degrees of freedom even if it is monotonic and

submodular. And it is known that for an unknown f , identifying S∗ := argmaxS⊂[n]:|S|=k f(S)

may require evaluating f as many as nk times.

The power of submodularity is made apparent through the famous result of [26] which showed
that the greedy algorithm which grows a set one item at a time by adding the item with the highest
marginal gain returns a solution that is within a (1−e−1)-multiplicative factor of the optimal solution.
That is, if we begin with Sf

gr = ∅ and set Sf
gr ← argmaxi∈[n]\Sf

gr
f(Sf

gr∪{i}) until |Sf
gr| = k, then

f(Sf
gr) ≥ (1−1/e)f(Sf

∗ ) where Sf
∗ := argmaxS∈[n]:|S|≤k f(S) if f is increasing and submodular.

This result is complemented by [13] which shows achieving any (1 − e−1 + ϵ)-approximation is
NP-Hard. Under additional assumptions like curvature, this guarantee can be strengthened.

Due to the centrality of the greedily constructed set to the optimization of a submodular function,
it is natural to define a performance measure relative to the greedily constructed set. However, as
discussed at length in the next section, because we only observe noisy observations of the underlying
function, recovering the set constructed greedily from noiseless evaluations is too much to hope for.
Consequently, there is a more natural notion of regret against a noisy greedy solution, denoted Rgr,
that actually appears in the proofs of all upper bounds found in the literature for this setting (see the
next section for a definition).

For this notion of regret, previous works have demonstrated that a regret bound of Rgr =

O(poly(k)n1/3T 2/3) is achievable ([28], [36]). This T 2/3 rate is unusual in multi-armed bandits,
where frequently we expect a regret bound to scale as T 1/2. On the other hand, by treating each
k-subset as a separate arm, one can easily adapt existing algorithms to achieve a regret bound of√(

n
k

)
T . This leads to the following question:

Does there exist an algorithm that obtains
√
nrT regret for r = o(k) on every

instance? And if not, what is the optimal dependence on k and n for a bound
scaling like T 2/3?

To address these questions, we prove a minimax lower bound and complement the result with an
algorithm achieving a matching upper bound. To be precise, the contributions of this paper include:

• A minimax lower bound demonstrating that Rgr = Ω̃
(
min0≤L≤k(L

1/3n1/3T 2/3 +√(
n

k−L

)
T )

)
. In words, for small T , a T 2/3 regret bound is inevitable, for large T the√(

n
k

)
T bound is optimal, with an interpolating regret bound for in between.

– For slightly restricted class of algorithms with non-adaptive greedy error threshold,

we have the improved Rgr = Ω̃(
(
min0≤L≤k(Ln

1/3T 2/3 +
√(

n
k−L

)
T )

)
.
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• We propose an algorithm that for any increasing, submodular f , we have Rgr =

Õmin0≤L≤k(Ln
1/3T 2/3 +

√(
n

k−L

)
T ). As this matches our lower bound, we conclude

that this is the first provably tight algorithm for optimizing increasing, submodular func-
tions with bandit feedback. Existing algorithms construct a set by greedily adding k items.
Our main insight is that it is actually optimal to build up a set up to a size i∗ and then for
the remaining stages play sets of size k that include the initial set of size i∗. Our choice of
i∗ is directly motivated by our lower bound.

In what remains, we will formally define the problem, discuss the related work, and then move on
to the statement of the main theoretical results. Experiments and conclusions follow.

1.1 Problem Statement

Let [n] = {1, . . . , n} denote the set of base arms, T be the time horizon, and k be a given cardinality
constraint. At time t, the agent selects a set St ⊂ [n] where |St| ≤ k, and observes reward f(St)+ηt
where ηt is i.i.d. mean-zero 1-sub-Gaussian noise, and f : 2[n] → [0, 1] is an unknown monotone
non-decreasing submodular function defined for all sets of cardinality at most k.

Ideally, our goal would be to minimize the regret relative to pulling the best set S∗ :=
argmax|S|≤k f(S) at each time. In general, even if we had the ability to evaluate the true
function f(·) (i.e. without noise), maximizing a submodular function with a cardinality con-
straint is NP-hard. However, greedy algorithms which sequentially add points, i.e. S(i+1) =
argmaxa ̸∈S(i) f(S(i) ∪ a), 1 ≤ i ≤ k guarantee that f(S(k)) ≥ αf(S⋆) with α ≥ 1 − 1/e in
worst-case. Unfortunately, since we do not know f(·) and instead only have access to noisy ob-
servations, running the greedy algorithm on any estimate f̂(·) may not necessarily guarantee an
α = (1− 1/e)-approximation to f(S∗)1.

Consequently, a natural notion to address noisy observations is an ϵ-approximate greedy set for
ϵ ∈ [0, 1]k. We define the following collection of sets of size k

Sk,ϵ = {S = S(k) ⊃ · · · ⊃ S(1), |S(i)| = i,

max
a/∈S(i)

f(S(i) ∪ {a})− f(S(i+1)) ≤ ϵi}.

Intuitively, any S ∈ Sk,ϵ can be thought of as being constructed from a process that adds an element
at stage i which is ϵi-optimal compared to the Greedy algorithm run on f . Such a set naturally arises
as the output of the Greedy algorithm run on an approximation f̂ . This set enjoys the following
guarantee.

Lemma 1.1. (Theorem 6 in [36]) For any ϵ ≥ 0 ∈ Rk, and Sk,ϵ
gr ∈ Sk,ϵ, we have

f(Sk,ϵ
gr ) + 1T ϵ ≥ (1− e−1)f(S∗).

Lemma 1.1 is a noise-robust analogous result to the approximation ratio of the perfect greedy algo-
rithm of [26] that says f(Sk,0

gr ) ≥ (1 − e−1)f(S∗). Note that |Sk,ϵ| is non-decreasing in ϵi for all
i ∈ [k], so identifying a set in Sk,ϵ is in some sense easier for a larger 1T ϵ. Thus, to define an ap-
propriate definition of regret, the measure must balance the facts that comparing with the noiseless
greedy approximation in Sk,0 may be impossible, but should account for identifying a set in Sk,ϵ is
strictly easier for larger 1T ϵ. Inspired by the above lemma we define robust greedy regret

Rgr := min
ϵ≥0,Sk,ϵ

gr ∈Sk,ϵ

R(Sk,ϵ
gr ) + T1T ϵ (3)

where

R(S) :=

T∑
t=1

f(S)− f(St).

1The gap between maximum gain and rest of the elements in the greedy path for lower cardinalities can be
arbitrary small, making them indistinguishable with T queries. Therefore, only making queries to sets of size
k would give any information on the greedy solution.
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Function Assumptions Stochastic Regret Upper Bound Lower Bound

Submodular+monotone ✓ Rgr kn1/3T 2/3

[31]
minL(L

1/3n1/3T 2/3 +
√(

n
k−L

)
T )

(This work)

Submodular+monotone × Rgr kn1/3T 2/3

[36]
minL(L

1/3n1/3T 2/3 +
√(

n
k−L

)
T )

(This work)

Degree d Polynomial × R(S∗) min(
√
ndT ,

√
nkT )

[12]
min(

√
ndT ,

√
nkT )

[12]

Submodular+monotone
(This work)

✓ Rgr minL(Ln1/3T 2/3 +
√(

n
k−L

)
T ) mini(L

1/3n1/3T 2/3 +
√(

n
k−L

)
T )

Table 1: Best known regret bounds for combinatorial multiarmed bandits under different assump-
tions. By lemma 1.1 our upperbound can also be stated for R1−e−1 . We note that our lower bound
proven for the stochastic setting immediately applies to the adversarial setting in the table.

This notion of regret captures the fact that if the algorithm plays a set in Sk,ϵ then they may be
incurring up to 1T ϵ extra regret. Note that when ϵ = 0 achieves the minimum (which can happen
if the “gaps” between the greedily added element and all other elements at each stage is large) then
this notion of regret is relative to the greedy set constructed in the noiseless setting.

The definition of regret in (3) is not novel to our paper. This notion is implicitly used in [36] in the
proofs of Lemma 3 for the full-feedback setting and Theorem 13 for the bandit feedback setting, [28]
in Theorem 4.1, [31] in Theorem 1, [27] in Theorem 2 for the full-feedback setting and Theorem
4 for bandit feedback, and [29] in Theorem 1. However, readers of these papers will note that
they report their results not in terms of Rgr, but α-Regret: for an α ∈ [0, 1], define α-regret by,
Rα :=

∑T
t=1 αf(S

∗)− f(St) where S∗ := argmax|S|≤k f(S). Using Lemma 1, one immediately
has that Rα ≤ Rgr for α = (1− e−1). Thus, an upper bound on (3) immediately results in an upper
bound on Rα, which is precisely what previous works exploit to obtain their upper bounds on Rα.

To summarize: all the analyses of these previous works concentrate on showing an upper bound on
Rgr, and only at the last step argue that Rα ≤ Rgr, and report an upper bound on Rα. But Rα can
be a very loose lower bound on Rgr! For instance, when the function is modular (the inequalities of
submodularity are tight), and the gap between the best set and worst set is equal to ∆ < e−1, then
a random selection algorithm would get zero or even negative Rα regret, while Rgr would be linear
∆T , which is more natural. Thus, in studying regret against approximations attained by an offline
step-wise greedy procedure, Rgr can be a more appropriate measure than Rα

1.2 Related Work

There has been several works on combinatorial multi-armed bandits with submodular assumptions
and different feedback assumptions. Table 1 summarizes of the most relevant results as well as
the results of this paper. For monotonic submodular maximization specifically, previous work use
Lemma 1.1 with appropriate ϵ to prove an upper bound on expected Rα-regret when the greedy
result with perfect information gives an α-approximation of the actual maximum value.

Stochastic In the stochastic setting, when the expected reward function is submodular and mono-
tonic, [28] proposed an explore-then-commit algorithm with full-bandit feedback that achieves
Rgr = O(k4/3T 2/3n1/3)2. Recently, [31] showed with the same explore-then-commit algorithm
with different parameters, Rgr = O(kn1/3T 2/3 + kn2/3T 1/3d) is possible with delay feedback pa-
rameter of d. Without the monotonicity, [15] achieves Rα = O(nT 2/3) with bandit feedback for
α = 1/2. There have also been several works in the semi-bandit feedback setting ([42], [45]), and
others such as getting the marginal gain of each element after each query.

Adversarial In the adversarial setting, the environment chooses an arbitrary sequence of monotone
submodular functions {f1, . . . , fT }, and the goal is to minimize regret against an approximation
of the reward of the best set in hindsight ([17], [19], [38], [41]). [37] showed O(k

√
Tn log n)

R(1−e−1)-regret is possible with partially transparent feedback(where after each round, f(S(i)) for

2Most previous works, [28, 31], state their result in terms of Rα however, a careful analysis of the proofs of
their main regret bounds show a stronger result in terms of Rgr.
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all i is revealed instead of only f(S(k))) andO(kn1/3T 2/3)R(1−e−1)-regret for the bandit-feedback
setting. [27] proposed a generalized algorithm with Õ(kn2/3T 2/3) R(1−e−1)-regret with full ban-
dit feedback, and showed all explore-then-commit greedy algorithms have Ω(T 2/3) regret, when
applied to our setting. Without the monotone assumption, [27] gets O(nT 2/3) R(1/2)-regret with
bandit feedback. The upper-bound results in the adversarial setting doesn’t naturally lead to results
in the stochastic setting as the function is submodular and monotone only in expectation in the
stochastic setting.

Continuous Submodular There are several works on online maximization of the continuous
extensions of submodular set functions to a compact subspace such as Lovász and multilinear
extensions([3], [14]). With a stronger assumption of DR-submodularity, it’s possible to achieve
higher approximation ratio guarantees and lower regret bounds ([7], [8], [33]). [41] uses multilin-
ear extension to achieve O(T 2/3) R(1−e−1)-regret for adversarial submodular maximization with
partition matroid constraint.

Low-degree polynomial In general reward functions without the submodular assumption, [12]
showed if the reward function is a d-degree polynomial, Θ

(
min(

√
ndT ,

√
nkT )

)
regret is optimal.

2 LOWER BOUND

Theorem 2.1. For any n ≥ 4, k ≤ ⌊n/3⌋, satisfying 512k7n ≤ T ∈ N, let F denote the set of
submodular functions that are non-decreasing and bounded by [0, 1] for sets of size k or less, with
f(∅) = 0. Then

inf
Alg

sup
f∈F

E[Rgr] ≥
1

16
(k − i∗)1/3T 2/3n1/3e−8 +

1

4
T 1/2

√(
n− k

i∗

)
e−2

where the infimum is over all randomized algorithms and the supremum is over the functions in F ,
and i∗ ∈ [k] is the largest value satisfying 16

n2k6

(
n−k
i∗

)3 ≤ T .

The lowerbound is intuitively a mix of the greedy explore-then-commit algorithm for the first k− i∗

arms, and then a standard MAB algorithm between all superarms of cardinality k that include those
elements. For small T (i.e. T = O(n4)) the regret would be Ω(k1/3n1/3T 2/3), and for large T (i.e.
T = Ω(n3k−2)) the regret would be Ω(

(
n
k

)1/2
T 1/2). This lowerbound also immediately gives a

lower bound for the adversarial setting where fi = f + N (0, 1) is the function chosen by the
environment at time i.

Proof Sketch We construct a hard instance so that at each cardinality a single set gives an elevated
reward. Focusing on k = 2 for illustration, the instance would be the following:

H0 :=


f({i}) = 1/2 if i ∈ {1}
f({i}) = 1/2−∆ if i ∈ [n] \ {1}
f({i, j}) = 3/4 if (i, j) = (1, 2)

f({i, j}) = 3/4−∆ if (i, j) ∈
(
[n]
2

)
\ {(1, 2)}

where ∆ is the gap of the best set that we will tune based on T . Pulling any arm of cardinality less
than 2 would incur Ω(1) regret, however, since there are only n such sets (compared to

(
n
2

)
sets of

size 2), pulling these simple arms give more information on the optimal set.

For a set of alternative instances, we choose a set of size k and elevate its reward by 2∆. We also
elevate every prefix set of a permutation of this set by 2∆ so that the new set can be found by a
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greedy algorithm. Again, for k = 2, and any {̂i, ĵ} ∈ [n]\{1, 2}

Hî,̂j :=



f({i}) = 1/2 if i ∈ {1}
f({i}) = 1/2 + ∆ if i ∈ {̂i}
f({i}) = 1/2−∆ if i ∈ [n] \ {1, î}
f({i, j}) = 3/4 if (i, j) = (1, 2)

f({i, j}) = 3/4 + ∆ if (i, j) = (̂i, ĵ)

f({i, j}) = 3/4−∆ Otherwise

Note that, if ∆ < 1
16 for the k = 2 instance, All the functions are submodular, as f({a, b}) −

f({b}) ≤ 1
4 + 2∆ ≤ 1/2−∆ ≤ f({a})− f({ϕ}) for any a, b ∈ [n].

For H0, if ϵi < ∆ for all i ∈ [2], then fH0
(S2,ϵ

gr ) = 3
4 as the noisy greedy finds the best arm, and

otherwise 1T ϵ ≥ ∆, so minϵ≥0 fH0
(S2,ϵ

gr ) + 1T ϵ = 3
4 . Similarly, minϵ≥0 fHî,ĵ

(S2,ϵ
gr ) + 1T ϵ =

3
4 +∆. So for these instances Rgr = R(S∗).

We show that if the KL divergence between an alternate instance and H0 is small, then the algo-
rithm cannot distinguish between the two environments and the maximum regret of the two would
be Ω(∆T ). Let Pî,̂j ,Eî,̂j be the probability and expectation under Hî,̂j , respectively when exe-
cuting some fixed algorithm with observations being corrupted by standard Gaussian noise. Then
KL(P0|Pî,̂j) =

∆2

2

(
E0[Tî] + 4E0[Tî,̂j ]

)
for k = 2, where TS is the number of pulls of set S, and

E0[Rgr] + Eî,̂j [Rgr] ≥ 1
2

n∑
i=1

E0[Ti] +
∆T
2

(
P0(T1,2 ≤ T

2 ) + Pî,̂j(T1,2 > T
2 )
)

≥ 1
2

n∑
i=1

E0[Ti] +
∆T
4 exp(−KL(P0|Pî,̂j)) =

1
2

n∑
i=1

E0[Ti] +
∆T
4 exp

(
− 2∆2

(
E0[Tî] + E0[Tî,̂j ]

))
.

Since î, ĵ were arbitrary, the following Lemma shows that there exist a pair that are pulled for small
number of times in expectation (see Lemma A.2 for general k).

Lemma 2.2. There exists a pair î, ĵ such that

E0[Tî] + E0[Tî,̂j ] ≤
2
∑

i E0[Ti]

n− 2
+

T(
n−2
2

)
Proof. For a pair (i, j), define Q(i,j) := E0[Ti] + E0[Ti,j ]. Then the sum of this term for all pairs
not equal to 1, 2 would be

Q :=
∑

(i,j) ̸=(1,2)

Q(i,j) ≤ (n− 3)
∑

i ̸=(1,2))

E0[Ti] +
∑

i,j ̸=1,2

E0[Ti,j ] ≤ (n− 3)
∑
i

E0[Ti] + T

Then by Pigeonhole principal there exist a pair î, ĵ such that

Q(̂i,̂j) ≤
Q(

n−2
2

) ≤ 2

n− 2

∑
i

E0[Ti] +
T(

n−2
2

)

Using the lemma, for some (̂i, ĵ), we have

E0[Rgr] + Eî,̂j [Rgr] ≥
1

2

n∑
i=1

E0[Ti] +
∆T
4 exp

(
− 2∆2

( 2

n− 2

∑
i

E0[Ti] +
T(

n−2
2

)))
We choose an appropriate ∆ based on value of i∗.
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• If i∗ = 1, then for ∆ = T−1/3n1/3, we have 2∆2T

(n−2
2 )
≤ 1. So either the KL divergence is less

than 2, then the regret is lowerbounded by ∆Te−2 = T 2/3n1/3e−2 , or for KL divergence
to be larger than 2 we would have

∑
i E0[Ti] ≥ 1

4T
2/3n1/3, which from the above equation

shows the regret is Ω(T 2/3n1/3). This can be extended for expected value of pulls of each
cardinality lower than i∗ + 1 for general k.

• If i∗ = 2, then it can be shown that the term 1
2

∑n
i=1 E0[Ti] + ∆T

4 exp
(
−

2∆2
(

2
n−2

∑
i E0[Ti] + (T −

∑n
i=1 E0[Ti])/

(
n−2
2

)))
with ∆ =

√(
n−2
2

)
/T minimizes

when
∑n

i=1 E0[Ti] = 0 i.e. zero single arm sets being pulled in expectation, so the regret

would be T 1/2
(
n−2
2

)1/2
exp(−2).

This shows that the expected regret is Ω̃(mini(i
1/3n1/3T 2/3+

√(
n

k−i

)
T )). The instance of general

k, and the detailed proof is in appendix A.1. □
We define an algorithm to be in non-adaptive greedy error-threshold class against Rgr regret, if
it selects ϵ′1, . . . , ϵ

′
k at the start only dependent on parameters T, n, k before any arm pulls, and

minimizes regret against f(Sk,ϵ′

gr ) + 1T ϵ′. All the algorithms from previous work in the literature
fall within this restricted class, and with this extra assumption we can prove a stronger lower bound.
Theorem 2.3. For any n ≥ 4, k ≤ ⌊n/3⌋, satisfying 512k9n ≤ T ∈ N, let F denote the set of
submodular functions that are non-decreasing and bounded by [0, 1] for sets of size k or less, with
f(∅) = 0. Then

inf
Alg∈NAET

sup
f∈F

E[Rgr] ≥
1

288
(k − i∗)T 2/3n1/3e−10 +

1

4
T 1/2

√(
n− k

i∗

)
e−2

where the infimum is over all randomized algorithms with non-adaptive greedy error threshold se-
lection, and the supremum is over the functions in F , and i∗ ∈ [k] is the largest value satisfying
16

n2k6

(
n−k
i∗

)3 ≤ T .

3 UCB UPPER BOUND

Algorithm 1 SUB-UCB algorithm for set bandits with cardinality constraints
1: Input: T , m, greedy stop level l
2: Initialization: S(0) = ∅, TA = 0 for all A ⊂ [n]
3: For each a ∈ [n], pull {a} exactly m times and update T{a} ← m. Update t← mn.
4: for i = 1, 2, . . . , l do
5: Ua ←∞ for all a ̸∈ S(i−1)

6: while TS(i−1)∪argmaxUa
< m do

7: Pull arm St = S(i−1) ∪ argmaxa Ua, observe rt, and update TSt ← TSt + 1

8: for each a /∈ S(i−1) do
9: Sa ← S(i−1) ∪ {a}

10: µ̂Sa ← 1
TSa

∑
t:It=Sa

rt

11: Compute UCB: Ua = µ̂Sa +
√

8 log t
TSa

12: end for
13: t← t+ 1
14: end while
15: Update the base set: S(i) ← S(i−1) ∪ {ai} where ai := argmaxa Ua

16: end for
17: while t < T do
18: Run UCB on all size k super-arms A where S(l) ∈ A.
19: end while

A natural approach to minimizing regret is to take an Explore-Then-Commit strategy motivated by
the greedy algorithm. Such an algorithm would be the following - proceed in k rounds. Set S0 = ∅.
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In round i pull each set in the collection {Si−1 ∪{a} : a ∈ [n] \Si−1}, m times. Use these samples
to update our estimate f̂ of f on these sets, and set S(i) ← argmaxa∈[n]\Si−1 f̂(Si−1 ∪ {a}). This
approach has been pursued by existing works [28], and with an appropriate choice of m results in
O(kn1/3T 2/3) regret.

The disadvantage of this approach is that it can not achieve the correct trade-off between
√
nkT

and kn1/3T 2/3 exhibited by the lower bound. Motivated by the statement of the lower bound, our
algorithm SUB-UCB attempts to interpolate between these different regret regimes. The critical
quantity is i∗. For the first k− i∗ cardinalities, our algorithm plays a UCB style strategy which more
or less follows the ETC strategy described in the previous paragraph. After that, it defaults to a UCB
algorithm on all subsets containing Sk−i∗ , a total of

(
n−k+i∗

i∗

)
possible arms.

Theorem 3.1. For any l ≤ k, SUB-UCB guarantees

E[Rgr] ≤ (1 + 4
√
2)lT 2/3n1/3(log T )1/3 + 65

√
T

(
n− k

k − l

)
log T +

32

15

(
n− k

k − l

)
when m = T 2/3n−2/3 log T 1/3.

Proof Sketch We show that for ϵ := 2
√

2 log(2knT 2)/m, the greedy part of SUB-UCB with
high probability adds an ϵ-optimal arm in each step. Defining event G to be |µ̂S − f(S)| ≤√

2TS log(2knT 2) for all iterations, we prove that this event is true with a probability of at least
1− 1

T .

On Event G, We show that an ϵ-good arm is selected at each step of the greedy algorithm for ϵ =

2
√

2 log(2knT 2)
m . Let a be a sub-optimal arm with expected reward value more than 2

√
2 log(2knT 2)

m

from the best arm in the i-th step i.e. ∆S(i),a := maxa′ f(S(i) ∪ {a′}) − f(S(i) ∪ {a}) ≥

2
√

2 log(2knT 2)
m . Then if arm a is added in i-th step, we have Ua(t) ≥ Ua∗(t) ≥ f(S(i))∪{a∗},

and therefore,

Ua(t)− f(S(i) ∪ {a}) ≥ ∆S(i),a > 2

√
2 log(2knT 2)

m
,

so µ̂S(i)∪{a} − f(S(i) ∪ {a}) >
√

2 log(2knT 2)
m . This is a contradiction with event G, so on event G

such an arm cannot be selected. Lastly, we expand the regret of two stages. As UCB in the second

part of the algorithm has the regret of 65
√

T
(
n−k
k−l

)
log T + 32

15

(
n−k
k−l

)
against the best arm containing

S(l)(see [24]), it is an upper bound for the regret against the greedy solution were the first l steps
select an ϵ-good arm, and the last k − l steps select the best arm, so on event G the regret can be
written against a set in Sk,ϵ where

1T ϵ = lϵ+ (k − l)0 = 2l

√
2 log(2knT 2)

m
.

Therefore, the expected regret E[Rgr] on event G can be written as

2T l

√
2 log(2knT 2)

m
+mn(k − i∗) + 65

√
T

(
n− k

k − l

)
log T +

32

15

(
n− k

k − l

)
,

for any choice of m and l. So for m = T 2/3n−2/3 log1/3(2knT 2) the above term becomes

Õ(lT 2/3n1/3 +
√
T
(

n
k−l

)
). The detailed proof is in Appendix B □

4 EXPERIMENTS

For the experiments we compare SUB-UCB (l) for different greedy stop levels l, SUB-UCB (k −
i∗) which selects the best stop level based on the regret analysis, the ETCG (explore-then-commit
greedy) algorithm from [28], and UCB on all size k arms. Each arm pull has a 1-Gaussian noise,
with 50 trials for each setting. The expected reward functions are the following.
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Figure 1: Regret comparison for weighted set cover with n = 15 and k = 4

Functions:

• The Unique greedy path hard instance i.e.

f(S) =

{∑|S|
i=1

1
k+i S = {1, . . . , |S|}∑|S|

i=1
1

k+i +
1

100 S = {1, . . . , |S|}.

This function is inspired by the hard instance in the proof of our lower-bound. Note that
this particular parameterization is submodular when k ≤ 7, not for general k.

• Weighted set cover function i.e. fC(S) =
∑

C∈C w(C)1{S ∩ C ̸= ∅} for a partition C of
[n] and weight function w on the partition. For n = 15 and k = 4, we use the partitions of
size 5, 5, 4, 1 with weights of 1/10, 1/10, 2/10, 6/10 respectively.

Results: As illustrated in figure 1, we observe that our algorithm with the level selection of k − i∗

outperforms both ETCG and naive UCB on all size k arms, as it combines the advantages of greedy
approach for small T s and UCB on many super arms for large T . For smaller T s compared to(
n
k

)
, both SUB-UCB and ETCG outperform normal UCB as it doesn’t have enough budget to find

optimal sets of size k, so it gets linear regret(as the other two get O(T 2/3)). However, as T becomes
larger the reverse happens as

(
n
k

)
T 1/2 becomes smaller than T 2/3, but SUB-UCB adopts to T and

continues to outperform the two until it converges with naive UCB for very large T .

Figure 2: Comparison between all SUB-UCB greedy stop cardinality choices for the unique greedy
path function with n = 20 and k = 5. The worst-case optimal stop cardinality l = k − i∗ is
highlighted

9



In figure 2, we compare the performance of SUB-UCB for different choices of greedy stop cardinal-
ity, and observe that the best choice gradually decreases from k to 0 as T gets larger, and k − i∗ is
a practical selection of the best stop cardinality before running the algorithm. Note that the defined
stop level was chosen to minimize the worst-case bound on the regret, and if the gaps between arms
on a particular instance are larger than the worst case, this stop level could be conservative. So k−i∗
is near the optimal stop level, and not the exact one as seen in these figures. Also, the empirical stan-
dard derivation is much smaller than O(T 1/2) due to the regret symmetry of non-optimal sets at
each cardinality, and it’s not visible in the plots.

5 CONCLUSION

In this paper we showed that minL(L
1/3T 2/3n1/3 +

√(
n

k−L

)
T ), ignoring logarithmic factors, is a

lower bound on the regret against robust greedy solutions of stochastic submodular functions, and
a stronger lower bound if the algorithm class is slightly restricted. We also matched this bound
with an algorithm. This work is the first minimax lower bound for submodular bandits, and beyond
closing the k2/3 gap between the general lowerbound and upperbound, it remains open to prove
similar minimax optimal bounds in settings with different types of constraint such as matroid, or
in general, any offline-to-online greedy procedure that is robust to local noise (e.g. Non-monotonic
submodular maximization where the greedy approach gets a 1/2-approximation of the function, or
DR-submodular optimization for the continuous setting which also has a (1− e−1)-approximation).
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A Lowerbound proofs

A.1 Proof of Theorem 2.1

For any {x1, x2, . . . , xk} ∈
(
[n]\{1,...,k}

k

)
, define instanceH0,H(x1,...,xk),H(xi+1,...,xk) with reward

functions as follows:

fH0(S) :=

{
H|S|+k −Hk =

∑|S|
i=1

1
k+i S = {1, 2, . . . , |S|}

H|S|+k −Hk −∆ Otherwise

fH(x1,...,xk)
(S) :=


H|S|+k −Hk +∆ S = {x1, x2, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆ Otherwise

fH(xi+1,...,xk)
(S) :=


H|S|+k −Hk +∆ S = {1, . . . , i, xi+1, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆ Otherwise

where Hn =
∑n

k=1
1
k is the n-th harmonic number.

Lemma A.1. If ∆ ≤ (1/8k2) thenH0 andH(x1,...,xk) are submodular.

Proof. for any S ⊊ T ⊂ [n] where |T | < k (the function is only defined on sets of cardinality at
most k) and x /∈ T we have to show f(S + x)− f(S) ≥ f(T + x)− f(T ).

f(T + x)− f(T ) ≤ 1

|T |+ k + 1
+ 2∆ ≤ 1

|T |+ k + 1
+

1

4k2
≤ 1

|T |+ k
− 1

4k2
≤ 1

|T |+ k
− 2∆

≤ 1

|S|+ 1 + k
− 2∆ ≤ f(S + x)− f(S)

For H0 if ϵi < ∆ at each step i of the greedy arm selection, then Sk,ϵ
gr = {1, . . . , k}, otherwise

fH0
(Sk,ϵ

gr ) + 1T ϵ ≥ H2k −Hk +∆−∆ = H2k −Hk = fH0
({1, . . . , k}). So minϵ fH0

(Sk,ϵ
gr ) +

1T ϵ = fH0
({1, . . . , k}). This means that we can compute our regret against fH0

({1, . . . , k}).
Similarly, minϵ fH(x1,...,xk)(S

k,ϵ
gr )+1T ϵ = H2k −Hk +∆ = fH(x1,...,xk)({x1, . . . , xk}) showing

that we can compute our regret against {x1, · · · , xk}.
Let E0 and E(x1,...,xk) denote the probability law under H0 and H(x1,...,xk), respectively. For any
S ⊂ [n] let TS denote the random variable describing the number of time the set S is played by a
policy π. Define Ti :=

∑
S⊂[n]:|S|=i TS .

Then by the definition ofH0 we have

E0[Rgr] ≥
k−1∑
i=1

(fH0(1, . . . , k)− max
S:|S|=i

fH0(S))E0[Ti] +
∑

S:|S|=k

(fH0({1, . . . , k})− fH0(S))E0[TS ]

≥
k−1∑
i=1

( k∑
j=i+1

1/(k + j)
)
E0[Ti] + ∆

∑
{y1,...,yk}̸={1,...,k}

E0[T{y1,...,yk}]

≥
k−1∑
i=1

k − i

2k
E0[Ti] +

∆T

2
P0(T{1,...,k} ≤ T/2)

14



Similarly forH(x1,...,xk) we have
E{x1,...,xk}[Rgr]

≥
k−1∑
i=1

(fH(x1,...,xk)
({x1, . . . , xk})−max

|S|=i
fH(x1,...,xk)

(S))E(x1,...,xk)[Ti]

+
∑

S:|S|=k

(fH(x1,...,xk)
({x1, . . . , xk})− fH(x1,...,xk)

(S))E0[TS ]

≥
k−1∑
i

(

k∑
j=i+1

1/(k + j))E{x1,...,xk}[Ti] + ∆
∑

{y1,...,yk}̸={x1,...,xk}

E{x1,...,xk}[T{y1,...,yk}]

≥ ∆T

2
P{x1,...,xk}(T{1,...,k} > T/2).

Lemma A.2. For any i ≤ k here exist a sequence (xi, . . . , xk), where
k∑

j=i

E0[T{1,...,i−1,xi,...,xj}]

≤ 1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1] +

4

(n− k)(n− k − 1)

k−1∑
j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) .
Proof. For i ≤ k and a sequence (xi, ..., xk), define Q(xi,...,xk) :=

∑k
j=i E0[T{1,...,i−1,xi,...,xj}].

Then we have

Q :=
∑

(xi,...,xk) ̸=(i,...,k)

Q(xi,...,xk) ≤
k−1∑
j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− 2k + i− 1)!
E0[Tj ]+((k−i+1)!)E0[Tk].

Then by Pigeonhole principle, the exists a sequence (xi, . . . , xk) such that

Q(xi,...,xk) ≤
Q

(n−k)!
(n−2k+i−1)!

≤
k−1∑
j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− k)!
E0[Tj ] +

(n− 2k + i− 1)!(k − i+ 1)!

(n− k)!
E[Tk]

≤ 1

n− k
E0[Ti] +

1

(n− k)(n− k − 1)

k−1∑
j=i+1

(j − i)(j − i− 1)(
n−k−2
j−i−2

) E[Tj ] +
1(

n−k
k−i+1

)E[Tk]

≤ 1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1]

+
4

(n− k)(n− k − 1)

k−1∑
j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) .

Lemma A.3. ForH0 andH(x1,...,xk) defined above, we have

KL(P0|P{xi,...,xk}) = 2∆2
k−1∑
j=i

E0[T1,...,i−1,xi,...,xj ]

Proof.

KL(P0|P{xi,...,xk}) =
∑

S:|S|≤k

E0[TS ]KL(P0(S)|P{xi,...,xk}(S)) (lemma 15.1 in [24])

=

k∑
j=i

2∆2E0[T1,...,i−1,xi,...,xj
]
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where P0(S) = N (fH0(S), 1) and P{xi,...,xk}(S) = N (fH(xi,...,xk)
(S), 1) are the reward distribu-

tions of arm S inH0 andH(xi,...,Xk) respectively.

Using two above lemmas, we have,

2max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)
≥ max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E0[Rgr] + E{xi,...,xk}[Rgr]

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆T

2

(
P0(T{1,...,k} ≤ T/2) + P{xi,...,xk}(T{1,...,k} > T/2)

)
≥ max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆T

2
exp(−KL(P0|P{xi,...,xk})) (Using Pinsker’s Inequality [24])

≥ max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆T

2
exp

(
− 2∆2

k∑
j=i

E0[T{1,...,i−1,xi,...,xj}]
)

(Using lemma A.3)

≥ ∆T

2
max
1≤i≤k

exp
(
− 2∆2(

1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1]

+
4

(n− k)(n− k − 1)

k−1∑
j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) )) (Using Lemma A.2)

≥ max
1≤i≤k

1

2
(k − i∗)1/3T 2/3n1/3 exp

(
− 2T−2/3(k − i∗)2/3n2/3(

1

n− k
E0[Ti]

+
2

(n− k)(n− k − 1)
E0[Ti+1] +

4

(n− k)(n− k − 1)

k−1∑
j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) )))
(Setting ∆ := ((k − i∗)n/T )1/3)

For 1 ≤ i ≤ k − i∗ + 1, n2/3T 1/3

( n−k
k−i+1)

≤ 1 by definition of i∗; so either the maximum re-

gret is larger than 1
4T

2/3(k − i∗)1/3n1/3 exp(−8), which proves the theorem, or 1
n−kE0[Ti] +

2
(n−k)(n−k−1)E0[Ti+1] +

4
(n−k)(n−k−1)

∑k−1
j=i+2

k−j
2k E0[Tj ] ≥ 3(1/∆2). If the third term is larger

than 1/∆2, then
∑k−1

j=i+2
k−j
2k E0[Tj ] ≥ 1

16
n

(k−i∗)2/3
T 2/3n1/3 which proves the lowerbound as

n
(k−i∗)2/3

≥ (k − i∗)1/3. Therefore, the only remaining case is that either the first or second term

is ≥ 1/∆2. This means that for 1 ≤ i ≤ k − i∗ + 1, either E0[Ti] ≥ 1
4 (k − i∗)−2/3T 2/3n1/3 or

E0[Ti+1] ≥ 1
8 (n− k − 1)(k − i∗)−2/3T 2/3n1/3 ≥ 1

4 (k − i∗)−2/3T 2/3n1/3. Therefore, for at least
half of the 1 ≤ i ≤ k − i∗ + 1, E0[Ti] ≥ 1

4 (k − i∗)−2/3T 2/3n1/3, and

E0[Rgr] ≥
k−i∗+1∑
j=1

k − j

2k
E0[Tj ] ≥

1

8
(k − i∗)1/3T 2/3n1/3.

Note that since T ≥ 512k7n, we have ∆ ≤ (kn/T )1/3 ≤ 1
8k2 , so the functions with this selection

of ∆ are submodular.
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We now lower bound the regret in a different way. Let λ :=
∑k−1

j=k−i∗+1
k−i
2k E0[Ti]

T , then λ ≤ 1, and
using lemma A.2 we have that there exists a selection of (xi, . . . , xk) such that,
k∑

j=i

E0[T{1,...,i−1,xi,...,xj}]

≤ 1

n− k
E0[Ti] +

2

(n− k)(n− k − 1)
E0[Ti+1] +

4

(n− k)(n− k − 1)

k−1∑
j=i+2

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

)
≤ 4

n− k

k−1∑
j=i

k − j

2k
E0[Tj ] +

T(
n−k

k−i+1

) =
4

(n− k)
λT +

T(
n−k

k−i+1

)
So

2max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)
≥ max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E0[Rgr] + E{xi,...,xk}[Rgr]

≥ min
λ∈[0,1]

max
1≤i≤k,(xi,...,xk) ̸=(i,...,k)

λT +
∆T

2
exp

(
− 2∆2

k∑
j=i

E0[T{1,...,i−1,xi,...,xj}]
)

≥ min
λ∈[0,1]

max
1≤i≤k

λT +
∆T

2
exp

(
− 2∆2

( 4

n− k
λT +

T(
n−k

k−i+1

)))
≥ min

λ∈[0,1]
max

1≤i≤k−i∗−1
λT +

1

2
T 1/2

(
n− k

k − i+ 1

)1/2

exp
(
− 2

4λ
(

n−k
k−i+1

)
(n− k)

− 2
)

(Setting ∆ := (
(

n−k
k−i+1

)
/T )1/2)

≥ 1

2
T 1/2

(
n− k

i∗

)1/2

e−2

The last inequality holds as log(
4T 1/2( n−k

k−i+1)
3/2

(n−k)T ) ≤ 0, and the function relative to λ is convex, λ = 0

minimizes in the last inequality. Combining the two parts of the proof we have

max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)
≥ max

(1
8
(k − i∗)1/3T 2/3n1/3e−8,

1

2
T 1/2

(
n− k

i∗

)1/2

e−2
)

≥ 1

16
(k − i∗)1/3T 2/3n1/3e−8 +

1

4
T 1/2

(
n− k

i∗

)1/2

e−2

A.2 Proof of Theorem 2.3

We generalize the lowerbound distance of Theorem 2.1 by having the gap ∆i in cardinality i. For
any {x1, x2, . . . , xk} ∈

(
[n]\{1,...,k}

k

)
, define instance H0,H(x1,...,xk),H(xi+1,...,xk) with reward

functions as follows:

fH0
(S) :=

{
H|S|+k −Hk =

∑|S|
i=1

1
k+i S = {1, 2, . . . , |S|}

H|S|+k −Hk −∆|S| Otherwise

fH(x1,...,xk)
(S) :=


H|S|+k −Hk +∆|S| S = {x1, x2, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆|S| Otherwise

fH(xi+1,...,xk)
(S) :=


H|S|+k −Hk +∆|S| S = {1, . . . , i, xi+1, . . . , x|S|}
H|S|+k −Hk S = {1, 2, . . . , |S|}
H|S|+k −Hk −∆|S| Otherwise
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The KL divergance between reward distribution of two instances is similarly:

KL(P0|P{xi,...,xk}) =

k∑
j=i

2∆2
jE0[T1,...,i−1,xi,...,xj

]

Lemma A.4. For any i ≤ k here exist a sequence (xi, . . . , xk), where

k∑
j=i

∆2
jE0[T{1,...,i−1,xi,...,xj}] ≤

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2

+
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑
j=i+3

k − j

2k
∆2

jE0[Tj ] +
∆2

kT(
n−k

k−i+1

) .
Proof. For i ≤ k and a sequence (xi, ..., xk), define Q(xi,...,xk) :=

∑k
j=i ∆

2
jE0[T{1,...,i−1,xi,...,xj}].

Then we have

Q :=
∑

(xi,...,xk) ̸=(i,...,k)

Q(xi,...,xk) ≤
k−1∑
j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− 2k + i− 1)!
∆2

jE0[Tj ]+((k−i+1)!)∆2
kE0[Tk].

Then by Pigeonhole principle, the exists a sequence (xi, . . . , xk) such that

Q(xi,...,xk) ≤
Q

(n−k)!
(n−2k+i−1)!

≤
k−1∑
j=i

(n− k − j + i− 1)!(j − i+ 1)!

(n− k)!
∆2

jE0[Tj ] +
(n− 2k + i− 1)!(k − i+ 1)!

(n− k)!
∆2

kE[Tk]

≤ 1

n− k
∆2

iE0[Ti] +
1

(n− k)(n− k − 1)

k−1∑
j=i+1

(j − i)(j − i− 1)(
n−k−2
j−i−2

) ∆2
jE[Tj ] +

1(
n−k

k−i+1

)E[Tk]

≤ 1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2

+
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑
j=i+3

k − j

2k
∆2

jE0[Tj ] +
∆2

kT(
n−k

k−i+1

) .

We now assign ∆i for lower cardinalities based on the value of ∆k. If 1T ϵ′ ≤ 2∆k, For i ≤ k−1, we
assign ∆i = ϵ′i, so a greedy procedure with ϵ′ will retrieve the best set, hence fH0(S

k,ϵ′

gr ) + 1T ϵ′ ≥
fH0

({1, . . . , k}) and fH(xi,...,xk)
(Sk,ϵ′

gr )+1T ϵ′ ≥ fH(xi,...,xk)
({1, . . . , i−1, xi . . . , xk}). Otherwise,

since the gap of any set of size k and the best set is at most 2∆k for both H0 and H(xi,...,xk),

fH0
(Sk,ϵ′

gr )+1T ϵ′ ≥ H2k−Hk−∆k +2∆k = fH0
({1, . . . , k}) and fH(xi,...,xk)

(Sk,ϵ′

gr )+1T ϵ′ ≥
H2k −Hk −∆k + 2∆k ≥ fH(xi,...,xk)

({1, . . . , i− 1, xi . . . , xk}); so for i ≤ k − 1, and we assign
∆i =

∆k

k . Therefore, in both cases Rgr ≥ R(S∗), and we give a lower bound for R(S∗).

For the first part of the lower bound, we’ll assign ∆k = (k − i∗)( nT )
1/3. Now similarly to proof of

Theorem 2.1, we have
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2max
(
E0[Rgr], max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)
E{xi,...,xk}[Rgr]

)
≥ max

1≤i≤k,(xi,...,xk) ̸=(i,...,k)

∆kT

2
exp

(
− 2

k∑
j=i

∆2
jE0[T{1,...,i−1,xi,...,xj}]

)
≥ ∆kT

2
max
1≤i≤k

exp
(
− 2(

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2 +
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑
j=i+3

k − j

2k
∆2

jE0[Tj ]

+
∆2

kT(
n−k

k−i+1

) )) (Using Lemma A.4)

≥ max
1≤i≤k

1

2
(k − i∗)T 2/3n1/3 exp

(
− 2(

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1]

+
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2 +
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑
j=i+3

k − j

2k
∆2

jE0[Tj ]

+
(k − i∗)2n2/3T 1/3(

n−k
k−i+1

) ))
)

(Setting ∆k := ((k − i∗)3n/T )1/3)

For 1 ≤ i ≤ k − i∗ + 1, (k−i∗)2n2/3T 1/3

( n−k
k−i+1)

≤ k2n2/3T 1/3

( n−k
k−i+1)

≤ 1 by definition of i∗; so either the

maximum regret is larger than 1
4T

2/3(k − i∗)n1/3 exp(−10), which proves the theorem, or

1

n− k
∆2

iE0[Ti] +
2

(n− k)(n− k − 1)
∆2

i+1E0[Ti+1] +
6

(n− k)(n− k − 1)(n− k − 2)
∆2

i+2

+
12

(n− k)(n− k − 1)(n− k − 2)

k−1∑
j=i+3

k − j

2k
∆2

jE0[Tj ]∆
2
jE0[Tj ] ≥ 4

If the forth term is larger than 1, then

∆2
k

k−1∑
j=i+3

k − j

2k
E0[Tj ] ≥

k−1∑
j=i+3

k − j

2k
∆2

jE0[Tj ]

≥ (n− k)(n− k − 1)(n− k − 2)

12
≥ n3

96

So
∑k−1

j=i+3
k−j
2k E0[Tj ] ≥ n3

96
1
∆2

k
≥ 1

96 (k − i∗)n1/3T 2/3 which proves the lower bound.

Therefore, the only remaining case is that at least one of the first three terms is ≥ 1. This means
that for 1 ≤ i ≤ k − i∗ + 1, either E0[Ti] ≥ n

2∆2
i

, or E0[Ti+1] ≥ n
4∆2

i+1
(n − k − 1) ≥ n

4∆2
i+1

, or

E0[Ti+2] ≥ n
12∆2

i+2
(n− k − 1)(n− k − 2) ≥ n

12∆2
i+2

.

Therefore, for at least 1/3 of the 1 ≤ i ≤ k − i∗ + 1, E0[Ti] ≥ n
12∆2

i
. Let I be all cardinalities in

which this inequality holds(so |I| ≥ k−i∗

3 ); since
∑k−1

i=1 ∆i ≤ 2∆k, using Lemma C.1, we have

E0[Rgr] ≥
k−i∗+1∑
j=1

k − j

2k
E0[Tj ] ≥

∑
j∈I

k − j

2k

n

12∆2
j

≥ 1

288
(k − i∗)T 2/3n1/3.

For the second part of the lower bound, using ∆i ≤ 2∆k, we have

KL(P0|P{xi,...,xk}) ≤ 8∆2
k

k−1∑
j=i

E0[T1,...,i−1,xi,...,xj
]

19



, and the rest of the argument follows the proof of 2.1.

B Proof of Theorem 3.1

Proof. We use the notation l = k − i∗ to match our lowerbound, however as k − i∗ is arbitrary, it
can be used for any other choice of l as well. Define the event G :=

⋂k
i=1

⋂
a∈[n]\S(i−1)

⋂T
t=1 gi,a,t

where

gi,a,t :=

∣∣∣ ∑
s≤t:Is=S(i−1)∪{a}

(rs − f(S(i−1) ∪ {a}))
∣∣∣ ≤√

2TS(i−1)∪{a}(t) log(2knT
2)

 .

Now note that if Xs are i.i.d. sub-Gaussian random variables then

P(Gc) ≤
k∑

i=1

P
( ⋃

a∈[n]\S(i−1)

T⋃
t=1

gci,a,t

)

=

k∑
i=1

∑
S∈( [n]

i−1)

P
( ⋃

a∈[n]\S

T⋃
t=1

gci,a,t|S(i−1) = S
)
P(S(i−1) = S)

≤
k∑

i=1

∑
S∈( [n]

i−1)

∑
a∈[n]\S

P
( T⋃

t=1

gci,a,t|S(i−1) = S
)
P(S(i−1) = S)

≤
k∑

i=1

∑
S∈( [n]

i−1)

∑
a∈[n]\S

P
( T⋃

t=1

{|
t∑

s=1

Xs| ≥
√
2t log(2knT 2)}

)
P(S(i−1) = S)

≤
k∑

i=1

∑
S∈( [n]

i−1)

∑
a∈[n]\S

T∑
t=1

1

knT 2
P(S(i−1) = S) ≤ 1/T.

Let Ei be the event that the arm selected at the i-th step of the algorithm is within 2
√

2 log(2knT 2)
m of

the best possible arm at that step, i.e.

Ei =

{
max

a/∈S(i−1)
f(S(i−1) ∪ {a})− f(S(i)) ≤ 2

√
2 log(2knT 2)

m

}
.

We prove that on event G, ∪i∈[k−i∗]Ei is true.

Let a be a sub optimal arm with value more than 2
√

2 log(2knT 2)
m from the best arm in the i-th step.

That is, if a∗ := argmaxa′ f(S(i) ∪ {a′}) and ∆S(i),a := f(S(i) ∪ {a∗}) − f(S(i) ∪ {a}), then

assume that ∆S(i),a ≥ 2
√

2 log(2knT 2)
m . Then on event G and arm a being added in i-th step,

Ua(t) ≥ Ua∗(t) ≥ f(S(i) ∪ {a∗}) = f(S(i) ∪ {a}) + ∆S(i),a

which implies

Ua(t)− f(S(i) ∪ {a}) ≥ ∆S(i),a > 2

√
2 log(2knT 2)

m
.

But this implies that

µ̂S(i)∪{a} − f(S(i) ∪ {a}) >
√

2 log(2knT 2)

m

which is a contradiction of event G. Thus, on event G such an arm cannot be selected.
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As UCB in the second part of the algorithm has the regret of 65
√

T
(
n−k
k−l

)
log T + 32

15

(
n−k
k−l

)
against

S(k) which is the best size k arm containing S(k−i∗) (see [24]), on event G, it is an upper bound for
the regret against the greedy solution were the first k− i∗ steps select an ϵ-good arm, and the last i∗
steps select the best arm, so on event G the regret can be written against a set in Sk,ϵ where

1T ϵ = (k − i∗)ϵ = 2(k − i∗)

√
2 log (2knT 2)

m
.

Therefore, we upper bound the regret relative to f(Sk)+ 2(k− i∗)
√

2 log(2knT 2)
m , as by Lemma 1.1

it’s greater than 1
c (1 − e−c)f(S∗). Let Ti be the set of times where we pulled a set of cardinality i.

From the while loop condition in the algorithm, we have |Ti| ≤
∑

a/∈S(i−1) min
{

1
∆2

S(i−1),a

,m
}
≤

(n+ 1− i)m for i ≤ k − i∗. For ϵ = 2
√

2 log(2knT 2)
m , we have

E[Rgr] ≤ P[Gc]T + E[Rgr1{G}] ≤
1

T
T + E[Rgr1{G}]

≤ 1 +

k−i∗∑
i=1

∑
t∈Ti

(f(S(k)) + (k − i∗)ϵ)− f(S(i−1) ∪ {at})) +
∑
t∈Tk

(f(S(k)) + (k − i∗)ϵ)− f(St)

≤ 1 + (k − i∗)ϵT +mn(k − i∗)f(S(k)) +
∑
t∈Tk

f(S(k))− f(St)

(f(S(i−1) ∪ {at})) ≥ 0)

≤ 2T (k − i∗)

√
2 log(2knT 2)

m
+mn(k − i∗) + 65

√
T

(
n

i∗

)
+

32

15

n− k

i∗
+ 1

≤ T 2/3n1/3(k − i∗)(log(2knT 2))1/3 +
√
8T 2/3n1/3(k − i∗)(log(2knT 2))1/3

+ 65

√
T

(
n

i∗

)
+

32

15

n− k

i∗
+ 1. (Setting m = T 2/3n−2/3 log1/3(2knT 2))

C Auxiliary Lemmas

Lemma C.1. For any sequence of numbers a1, . . . , an bounded between (0, 1], If
∑

i ai ≤ C ≤ 1,
then

n∑
i=1

1

a2i
≥ n3

C2

Proof. If there exists j, k ∈ [n] such that aj < ak, then for a new sequence a′i ={
ai i /∈ {j, k}
aj+ak

2 i ∈ {j, k} we have

∑
a−2
i −

∑
a′−2
i = a−2

j + a−2
k − 2

4

(aj + ak)2

=
2 +

>2︷ ︸︸ ︷
a2ja

−2
k + a−2

j a2k +2(

>2︷ ︸︸ ︷
a−1
j ak + aja

−1
k )− 8

a2j + a2k + 2ajak
> 0

Therefore, the infimum value of
∑

a−2
i over all such sequences is when all elements are equal, and
n∑

i=1

1

a2i
≥ n

( n∑
ai

)2 ≥ n3

C2
.
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not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the assumptions for each theorem are stated, a proof sketch is provided in
the main text, and full proofs are in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes all the algorithms that are used in experiments and all the function defini-
tions that are used as inputs are clearly written.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: This paper is a theoretical work, and the experiments apply the proposed
algorithm in main text on synthetic functions which are fully defined in the main text. There
are no datasets used, and no code beyond the main algorithm implementation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain the functions used as inputs, and the synthetic noise applied to
them. There are no other setting details as this is mainly a theory paper and the experiments
are trivial.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The empirical SDs are included in the plots, although hardly visible because
of the logarithmic scale.

Guidelines:

• The answer NA means that the paper does not include experiments.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: There are no experiments that need anything more than a laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes this paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is mainly theoretical, and there are no direct social impacts.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper doesn’t pose any such risks as it is theoretical.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No assets are used in this work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: No new assets are released in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: he paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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