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ABSTRACT

Recent advances show that large language models (LLMs) generalize strong per-
formance across different natural language benchmarks. However, the large
size of LLMs makes training and inference expensive and impractical to run in
resource-limited settings. This paper introduces a new approach called fine-tuning
stacks of language models (FSLM), which involves stacking small language mod-
els (SLM) as an alternative to LLMs. By fine-tuning each SLM to perform a
specific task, this approach breaks down high level reasoning into multiple lower-
level steps that specific SLMs are responsible for. As a result, FSLM allows for
lower training and inference costs, and also improves model interpretability as
each SLM communicates with the subsequent one through natural language. By
evaluating FSLM on common natural language benchmarks, this paper highlights
promising early results toward generalizable performance using FSLM as a cost-
effective alternative to LLMs.

1 INTRODUCTION

Since the publication of the transformer paper Vaswani et al. (2017), a considerable amount of
research devoted to large language models (LLMs) has shown that LLMs are capable of generalizing
well on natural language benchmarks and that new emergent properties appear as LLMs increase in
scale. Devlin et al. (2019); Wei et al. (2022). LLMs seem to follow some empirical scaling laws,
where larger datasets, compute and model size contribute to improvements in model performance.
Kaplan et al. (2020)

As language models and datasets increase in size, a growing need emerges to identify methods to run
language models in resource-limited settings where large amounts of compute are inaccessible. In
fact, multiple methods have been documented and researched in recent years to make LLM training
or inference more computationally efficient. One such method is fine-tuning: given a pre-trained
model, fine-tuning that model for specific tasks can cause that model to score better on benchmarked
tasks downstream. Brown et al. (2020) Furthermore, more efficient methods of fine-tuning such as
LoRA and QLoRA also show that adding a trainable adapter to LLMs whose weights are frozen
also allows for faster fine-tuning while showing strong signs of solid model performance. Hu et al.
(2021); Dettmers et al. (2023)

Additionally, recent work indicates that small language models (SLM), such as Microsoft’s Phi-3,
can still achieve decent performance on natural language benchmarks. This finding is important, as
it suggest that small language models, which are a few orders of magnitude smaller than state-of-
the-art LLMs, can still achieve solid performance on various benchmarks. Abdin et al. (2024)

This paper aims to build on both the fine-tuning and small language model directions, in order to
identify methods that allow for cost-effective training and inference in resource-limited settings. As
a result, this paper proposes a new model framework called Fine-tuning Stacks of Language Mod-
els (FSLM) - or ”stacking” - which involves chaining multiple specialized small language models
together such that the framework’s input and output resemble those of performant language models.

FSLM takes loose inspiration from the human brain, where different components specialize in dif-
ferent tasks. For small language models, because each SLM has limited capabilities due to its small
size, FLSM aims to fine-tune each SLM to specialize in a specific task. As a result, the motivat-
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ing question becomes: how small can the SLMs be, such that the fine-tuned stack of SLMs is still
capable of generalizing on various natural language benchmarks?

Our work challenges the lower-bound for SLM size by evaluating an FSLM stack of four Pythia
models of 160 million parameters each. Biderman et al. (2023) By fine-tuning this FSLM stack
on the Alpaca dataset, and benchmarking FSLM and models of similar size, this paper shows that
FSLM stacks show promise as lightweight alternatives to heavier LLMs.

Thus, this paper’s contributions can be summarized as:

• Proposing the FSLM stack as a lightweight framework to evaluate small language models
in resource-limited settings.

• Introducing model distillation to fine-tune SLMs in order to minimize the need for human
supervision or labeling.

• Identifying early signs of FSLM generalizability by comparing FSLM of Pythia-160M
models with Pythia and Flan models of comparable sizes

• Documenting model explainability by looking at the intermediary outputs between SLMs
in the FSLM stack.

2 RELATED WORK

2.1 MODEL FINE-TUNING

In recent years, researchers have shown that pre-training a language model in a self-supervised
fashion, followed by fine-tuning that same model to a variety of tasks, improves model perfor-
mance downstream on natural language benchmarks. OpenAI’s GPT is a notable example of fine-
tuning a pre-trained model. Brown et al. (2020) Because fine-tuning entire models is expensive,
researchers have developed different methods to minimize computational cost while still achieving
similar model performance.

Hu et al. (2021) introduced Low-Rank Adaptation (LoRA) as a fine-tuning approach. LoRA
freezes the weights of the original pre-trained model, and adds an ”adapter” component, located
between the original model output and the actual text output. Instead of the adapter being a fully
connected layer, the adapter uses matrix factorization to generate low-rank matrix multiplications
that approximate the fully connected equivalent. Low-rank matrix multiplication, however, is less
computationally expensive than running inference on a fully connected layer. Hu et al. (2021) then
show that LoRA can maintain or even improve model performance. Dettmers et al. (2023) devel-
oped QLoRA, which performs quantization to further improve LoRA. Both QLoRA and LoRA are
considered to be Parameter-Efficient Fine-Tuning (PEFT) methods, a group of methods that aim
to increase the efficiency of fine-tuning models. Xu et al. (2023)

2.2 MODEL COMPRESSION

Model compression techniques aim to either shrink a given model’s size, or to train a smaller model
to learn from a larger one.

For instance, quantization reduces the precision of the model weights, thus decreasing the overall
size of the model. Even though the model loses precision, if quantization is implemented correctly,
the model should maintain a similar level of performance while experiencing a speedup for training
and inference. Jacob et al. (2017)

Model pruning removes weights whose values are close to zero, thus eliminating weights that may
not be contributing to the model’s main inference. Cheng et al. (2024)

Model distillation is another method of interest: using a teacher-student architecture, a smaller
”student” model learns from a larger ”teacher” model that should be already well-trained. As a
result, the teacher model distills its internal knowledge to the student model, by providing the student
model inputs and outputs to learn from during this training process. Hinton et al. (2015); Sanh et al.
(2020)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHOD

Figure 1: A visual representation of the FSLM stack.

3.1 FSLM METHOD OVERVIEW

The FSLM framework consists of four small language models (SLM) that each specialize in a spe-
cific task, as shown in Fig. 1. A human user would supply a prompt to the FSLM framework, and
the FSLM framework responds with a textual output. Internally, the SLMs look for specific textual
elements from either the user’s input or another SLM’s output. As a result, each individual SLM
is compensating for its limited capabilities by instead specializing in a specific task. As a result,
the overall framework follows an information flow where textual information is slowly processed
towards the intended model output.

3.2 CHOICE OF MODELS

We use the Pythia 160M GPT-NeoX architecture from the Pythia suite, as Pythia allows for ease of
future scalability as we can evaluate on different model sizes. Biderman et al. (2023) Pythia also
integrates well with LM-eval, which we use to evaluate FSLM on natural language benchmarks.
Gao et al. (2024)

3.3 CHOICE OF DATASET

We use the Alpaca dataset to train FSLM in an instruction-tuning manner. Taori et al. (2023) Alpaca
contains 52,000 self-instruct generated instructions covering a wide array of applications. As of this
writing, we selected a subsample of 5,000 instructions to fine-tune FSLM.
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3.4 TRAINING DATA GENERATION

In order to properly distill the intermediary texts between SLMs, we use the Llama 3.2 (3B) model
to generate texts, a recent addition to the Llama family of LLMs. Touvron et al. (2023)

3.5 FINE-TUNING

We use HuggingFace’s PEFT implementation to run LoRA for fine-tuning.

4 EXPERIMENTS

4.1 NATURAL LANGUAGE BENCHMARKS

We use Eleuther AI’s LM-Evaluation Harness to run natural language tasks from TinyBenchmarks.
Gao et al. (2024); Polo et al. (2024)

Model tinyArc tinyMMLU
FSLM (4x Pythia-160M) 0.3349 0.3208
Pythia-160M (no adapter) 0.3213 0.3014
Pythia-1B (no adapter) 0.2945 0.2720
Flan-T5-Base (250M) (no adapter) 0.2781 0.3615
Flan-T5-Large (780M) (no adapter) 0.4209 0.4415

Table 1: Natural language benchmark results. All tasks are zero-shot, accuracy is the scoring metric.
All Pythia models are taken from step 130,000.

From Table 1, we observe that our FSLM stack (following fine-tuning) performs better than non-
adapter 160M and 1B Pythia models on tinyArc and tinyMMLU. This shows that fine-tuning spe-
cialized models in a ”stack” does not worsen overall model performance compared to vanilla Pythia
models of comparable size - rather, FSLM actually observes an increase in performance relative to
Pythia models.

Even though our FSLM implementation performs better than Google’s Flan-T5-Base on tinyArc,
Flan-T5-Base’s performance on tinyMMLU is higher than FSLM’s. Notably, Flan-T5-Large out-
performs FSLM on both tasks by a noticeable margin. While FSLM on Pythia-160M shows en-
couraging early signs, it’s possible that Flan-T5 models may exhibit superior performance due to
their pre-training or fine-tuning processes. Chung et al. (2022) As a result, it becomes relevant to
use different pre-trained models for FSLM and to run fine-tuning on different datasets as future
experiments to implement.

4.2 QUALITATIVE ANALYSIS FOR MODEL INTERPRETABILITY

Our FSLM implementation with four Pythia-160M is capable of simple question and answering in
a coherent manner, as shown in Table 2. Since our FSLM framework (approximately 640M param-
eters, or around 1.4 GB) is sufficiently small to run on most mobile phones or personal computers,
the coherence and natural-sounding response further show promise that FSLM can run in resource-
limited settings and exhibit human-like responses.

The intermediary outputs of SLMs within FSLM is of particular interest, because these responses
allow us to directly evaluate model interpretability. Accordingly, we observe in Table 2 that the
intermediary SLM outputs match very strongly with each pre-defined task, at least from the per-
spective of a human observer. While this shows that LoRA fine-tuning for FSLM is cost-effective,
these intermediate SLM responses also serve as a checkpoint to flag potential mistakes or halluci-
nations. Because each SLM is specialized for a specific task, we expect the scope of the responses
for each SLM to be somewhat bounded. As a result, if we detect that one of the responses seems
wrong, it may be sufficient to only re-tune that single SLM, instead of the whole FSLM stack. In
addition to promoting model explainability, this design would also minimize compute costs needed
to fix overall model performance throughout model deployment.
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Section Text
User input What are ways to stay healthy?
Instruction Find a healthy diet.
Search term ”How to keep your body healthy”
Explanation
(the ”context”)

The most important thing to re-
member is to keep your body
healthy. If you don’t, your body
will be damaged and you’ll be un-
able to perform the essential tasks
of daily living.

Final output Healthy eating is a key compo-
nent of maintaining a healthy
lifestyle.

Table 2: Sample breakdown of the intermediary texts generated by FSLM.

However, throughout our model development process, we observed that FSLM responses can vary
from one inference call to the next. As a result, future work should investigate optimal model
temperature and top-k and top-p values in order to ensure repeatability and minimize high variances
in model responses.

5 CONCLUSION AND DISCUSSION

The objective of this paper was to evaluate whether FSLM, a stack of task-specific SLMs, can per-
form well on natural language benchmarks and also exhibit natural-sounding text responses. By
running natural language benchmarks, we determined that there were promising signs showing that
FSLM’s Pythia models perform on par with vanilla Pythia models of comparable sizes, suggesting
that stacking fine-tuned specialized models can lead to accurate models at small scales. Addition-
ally, by observing the full response of a sample model output, we determined that the final output
was coherent and natural-sounding, and that the intermediary outputs were also highly aligned to
each SLM’s intended task. Additionally, FSLM’s modular design could allow for easy model de-
bugging and replacement of faulty SLMs. These results demonstrate encouraging signs that stacks
of highly specialized small language models can perform as well as equivalent models of the same
size, making FSLM architectures a potential area of interest for resource-limited compute settings.

One main limitation concerns the limited scope for natural language benchmark evaluations. Be-
cause FSLM is a new implementation, we needed to write additional code to integrate it with existing
lm-eval tasks, which initially limited the scope of tasks we could run as of this writing. Conse-
quently, future work should increase the number of natural language benchmarks, and also evaluate
model perplexity for token generation, and rouge scores for model summarization. Furthermore,
surveys with human observers interacting with FSLM would be beneficial, as we would be able to
quantitatively assess the quality and helpfulness of human-to-model interactions.

Another limiting factor is the fine-tuning scope. Future work should try different fine-tuning datasets
and determine to what extent dataset quality influences model performance downstream. On a sim-
ilar topic, model pre-training should also be documented, as shown by the flan-T5 models’ superior
performances. Future work should investigate fine-tuning SLMs across different architectures that
underwent different pre-training processes.

6 REPRODUCIBILITY STATEMENT

All the code used in this paper is accessible publicly on GitHub. The code is written in Jupyter
Notebooks, which makes it easy for researchers to run and reproduce these results. Due to the
double-blind submission, the Github link is not displayed here, though the codebase is available
upon request.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
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