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ABSTRACT

Recent researchers and companies have been developing large language models
(LLMs) specifically designed for particular purposes and have achieved signifi-
cant advancements in various natural language processing tasks. However, LLMs
are still prone to generating hallucinations—results that are unfaithful or incon-
sistent with the given input. As a result, the need for datasets to evaluate and
demonstrate the hallucination detection capabilities of LLMs is increasingly rec-
ognized. Nonetheless, the Korean NLP community lacks publicly available bench-
mark datasets demonstrating the faithfulness of knowledge-based information.
Furthermore, the few existing datasets that evaluate hallucination are limited in
their access to the entire dataset, restricting detailed analysis beyond simple scor-
ing, and are based on translated English knowledge. To address these challenges,
we introduce K-HALU, a Korean benchmark designed to evaluate LLMs’ halluci-
nation detection in Korean. This benchmark contains seven domains, considering
the faithfulness of statements based on knowledge documents compiled from Ko-
rean news, magazines, and books. For more strict evaluation, 40% of the dataset
is structured as multiple-answer questions, requiring models to select all possi-
ble correct answers from the given options. Our empirical results show that open-
source LLMs still struggle with hallucination detection in Korean knowledge, em-
phasizing the need for a more detailed analysis of their limitations. The K-HALU
benchmark will be made publicly available after the anonymous review period.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable advances, surpassing human capabilities
in various natural language processing (NLP) tasks (Ouyang et al., 2022; OpenAI, 2023). Recently,
compact and high-performing open-source LLMs have emerged (Touvron et al., 2023; Jiang et al.,
2023), and researchers and companies are leveraging these models to develop their own purpose-
specific systems (Kim et al., 2024; Research et al., 2024). Notably, within the Korean NLP commu-
nity, over 2,000 models were uploaded for evaluation between October 2023 and August 2024 on
the Open Ko-LLM leaderboard1, demonstrating a surge in the development of proprietary LLMs.

However, as a result of limited parameter sizes and constrained training data, open-source LLMs
continue to struggle with the problem of generating hallucinated outputs (Ji et al., 2023a; Zhang
et al., 2023; Li et al., 2023). Hallucinated outputs cannot guarantee faithfulness with the provided
data and often include unsupported or unverifiable content (Huang et al., 2023a). Hallucinations
present a significant threat to the reliability and practical applications of LLMs (Chen et al., 2024),
and LLMs with relatively fewer parameters or incomplete data are even more vulnerable to this
phenomenon (Rawte et al., 2023; Guerreiro et al., 2023).

A more pressing issue in the Korean NLP community is the lack of benchmarks to verify the po-
tential risks associated with hallucinations in these numerous proprietary LLMs. The few available
Korean datasets related to hallucinations are typically closed and used solely for leaderboard-style
scoring, limiting access to the data for detailed analysis (Park et al., 2024). Furthermore, most bench-
marks focus on parametric knowledge and linguistic nuances specific to the English-speaking world,
making them less ideal as resources for evaluating underrepresented languages (Etxaniz et al., 2024).

1https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard
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Table 1: Examples of K-HALU benchmark according to the instruction type for selecting halluci-
nated statements and faithful statements. This table has been translated from Korean into English
for the convenience of non-Korean speakers. (Refer to the Korean version in Appendix H).

### Hallucinated statements selection type — Society Domain ###
#Publish Date: January 11, 2021
#Document: The Korean Association for Public Administration was established in 1956 ... Red tape is a symbol
of bureaucratic formalism.
#Instruction: Select the hallucinated statements that differ from or are unsupported in relation to the content
of the given document. Note that there can be multiple hallucinated statements.
#1: Professor Park Soon-ae is working to expand women’s participation in the public sector.
#2: Professor Park Soon-ae went to the United States to pursue a Ph.D. while raising two children.
#3: Professor Park Soon-ae declares an intention to reform the bureaucratic field in the 3G era.
#4: Professor Park Soon-ae points out that administrative convenience is an issue in Korea.
#5: Professor Park Soon-ae states that civil servants prefer maintaining regulations over deregulation.
#Answers: [2, 3]

### Faithful statements selection type — International Domain ###
#Publish Date: August 19, 2015
#Document: Google is launching a new ’Android One’ smartphone in six African countries ... It is one of the
major projects being pursued.
#Instruction: Select the faithful statements that correspond to the information identifiable from the given doc-
ument. Note that there may be multiple correct statements.
#1: Google is selling the ‘Hot 2’ model in six North American countries, including the Canada and Mexico.
#2: The price of the newly launched model is under 100 dollars.
#3: Google is launching a new ‘iPhone One’ smartphone in six African countries.
#4: The ‘Hot 2’ model, produced by Infinix, features a 10-inch touchscreen and a 5GHz quad-core processor.
#5: A satellite internet service project is underway in Kampala, the capital of Uganda.
#Answers: [2]

In particular, English hallucination benchmark datasets are challenging to apply to the Korean lan-
guage caused by linguistic and socio-cultural differences (Hendrycks et al., 2021; Seo et al., 2024).
The absence of publicly available Korean hallucination benchmarks restricts the ability to evaluate
the reliability of LLMs thoroughly, hinders the continuous accumulation of findings needed for im-
provement, and makes it challenging to capture the robustness of LLMs in detecting hallucinations.

To overcome these limitations, we introduce the multiple-answer Korean hallucination benchmark
for large language models (K-HALU). K-HALU consists of 2,170 test samples, each including a
textual document, a publish date, an instruction, and statements. The textual documents are sourced
from seven knowledge domains—Culture, Economy, History, International, Medical, Society, and
Technology—from Korean news, magazines, and books. As described in Table 1, LLMs should
select the appropriate statements in a multiple-choice format, considering the given textual document
and publish date. Unique to K-HALU is the multiple-answer question setup, which requires LLMs
to identify all possible correct answers. This approach ensures a more rigorous evaluation of model
reliability and assesses the models’ ability to recognize multiple simultaneous hallucinations. Also,
K-HALU includes statements considering the publish date, allowing us to determine whether LLMs
maintain temporal consistency in faithfulness.

We evaluate open-source multilingual LLMs frequently used in the Korean NLP community, such as
Llama2 (Touvron et al., 2023), Llama3 (AI@Meta, 2024), Mistral (Jiang et al., 2023), and Korean-
centric models such as KULLM3 (Kim et al., 2024) and ExaOne (Research et al., 2024). Addi-
tionally, we test closed API models with high performance and usability, including GPT-3.5 Turbo
(Ouyang et al., 2022), GPT-4 Turbo, and GPT-4 omni (OpenAI, 2023). The results reveal that open-
source LLMs exhibit low accuracy, with less than 35% in our evaluations, and perform particularly
poorly—under 15%—on instruction types designed to differentiate hallucinated statements. Com-
pared to API models such as GPT-3.5 and beyond, open-source models present a performance gap
exceeding 27%, showing greater weakness to hallucination as the number of answers increases.

2 RELATED WORK

Hallucination in NLP With the prominent advancements of LLMs and their applicability to vari-
ous tasks, the importance of research on hallucinations in NLP has increased significantly. Maynez
et al. (2020) highlighted issues of faithfulness and factuality in abstractive summarization, while
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Korean textual knowledge source

{“publish date”: 20240128,
“document”: Samsung Research … ,
“statements”: Galaxy S21… 

{“subject”: “A”,
“predicate“: “release”,
“object”: “B”}, … } 

[Hallucinated Statements] X 5
[Faithful Statements] X 5

Automatic Dataset Creation 

Reason why? 
{Rational Evidence #1 .. #10}

Rationalization

Ensemble Verification

#1 Meta evaluator LLM
#2 Meta evaluator LLM
#3 Meta evaluator LLM

Human

K-HALU Benchmark

Figure 1: Overview of K-HALU benchmark construction pipeline.

Raunak et al. (2021) pointed out similar concerns in neural machine translation, emphasizing that
language model-based natural language generation can lead to hallucinations. Since then, research
focusing on hallucinations in natural language generation tasks has become more prominent (Zhao
et al., 2020; Shuster et al., 2021; Liu et al., 2021; Fabbri et al., 2022; Zhang et al., 2022). Following
the emergence of outstanding generative LLMs (Ouyang et al., 2022), the definition and scope of
hallucinations in NLP have been discussed in greater detail (Ji et al., 2023a; Huang et al., 2023a;
Zhang et al., 2023). Ji et al. (2023a) categorized hallucinated outputs into two types: intrinsic hal-
lucinations, which result from conflicts with the source content, and extrinsic hallucinations, which
include information that cannot be verified by the source content. They focus on the contributors
to hallucinations and explore task-centric mitigation strategies. Huang et al. (2023a) explored the
causes and solutions to hallucinations based on faithfulness and factuality, while Zhang et al. (2023)
classified hallucinations arising from conflicts between input, context, and factual knowledge with
the model’s generated output. Subsequent studies have actively explored hallucination detection
(Huang et al., 2023b; Manakul et al., 2023; Jiang et al., 2024; Chen et al., 2024) and mitigation
strategies (Maheshwari et al., 2023; Chuang et al., 2023; Ji et al., 2023b; Choubey et al., 2023).

Several English hallucination benchmarks have been developed to evaluate language models in var-
ious tasks. These include Fever (Thorne et al., 2018), which evaluates factual consistency against
textual sources, QAGS (Wang et al., 2020), which measures factual inconsistencies in summaries,
SummEval (Fabbri et al., 2021), which assesses the quality of summaries between human evalua-
tors and models, FaithDial (Dziri et al., 2022), a dialogue-focused dataset for evaluating response
faithfulness, HaluEval (Li et al., 2023), which determines faithful hallucination presence in model-
generated samples, and FELM (Zhao et al., 2024), which measures hallucination across multiple
domains. However, research that provides specific insights into hallucinations in the Korean lan-
guage is still lacking, and there is a significant shortage of publicly available benchmark datasets
that could serve as the foundation for hallucination studies in Korean.

Korean Benchmark Benchmarks serve as essential tools for the quantitative assessment of the
strengths and weaknesses of LLMs, offering critical insights into the future direction of NLP re-
search and development (Zellers et al., 2019; Son et al., 2024a). Existing Korean benchmarks have
evaluated models based on linguistic skills or language understanding (Park et al., 2022), and tasks
involving universal reasoning were often translated for applicability to other languages (Conneau
et al., 2018; Ham et al., 2020; Ponti et al., 2020; Seo et al., 2022; Park et al., 2024). However, the
need for native knowledge derived from textual sources written in Korean, beyond simple machine
translation, has increasingly been recognized within the Korean NLP community for more precise
performance measurement and knowledge verification (Son et al., 2024a; Seo et al., 2024). Tasks in
benchmarks such as KorNLI & KorSTS (Ham et al., 2020), Korean-CommonGEN (Seo et al., 2022),
and Ko-H5 (Park et al., 2024) are based on reasoning and have been constructed by translating ex-
isting datasets. KoBBQ (Jin et al., 2024) addresses biases using partial translations specific to the
Korean cultural context. Meanwhile, benchmarks such as HAE-RAE (Son et al., 2024b), KMMLU
(Son et al., 2024a), and KoCommonGEN v2 (Seo et al., 2024) have been developed using Korean
textual sources and human annotators. However, these benchmarks do not evaluate hallucinations in
Korean. Ko-TruthfulQA (Lin et al., 2022; Park et al., 2024), which partially addresses elements of
hallucination, is a closed dataset, and even the latest Open Ko-LLM leaderboard, which could verify
reliability, does not provide access to the datasets. Thus, we propose a new Korean hallucination
benchmark K-HALU and plan to release the dataset and evaluation code to the public entirely.
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Table 2: Number of K-HALU Benchmark examples according to knowledge domain, instruction
type, and multiple-answer questions.

K-HALU Benchmark Culture Economy History Internation Medical Society Technology Total

- # examples 300 299 300 329 325 317 300 2,170

Instruction type
- # hallucination select 150 150 150 165 162 158 150 1,085
- # fact select 150 150 150 164 162 159 150 1,085

Multiple-answers
- # single-answer 180 179 180 197 196 190 180 1,302
- # two-answers 90 90 90 100 98 95 90 653
- # three-answers 30 30 30 32 31 32 30 215

3 K-HALU BENCHMARK

K-HALU is a hallucination detection benchmark composed of 2,170 multiple-choice tasks, where
there can be more than one correct answer. As shown in Table 2, the seven domains are sourced from
Korean textual knowledge and include Culture, Economy, History, International, Medical, Society,
and Technology. The Culture domain covers topics related to entertainment, literature, and films;
the Economy addresses issues such as administration, corporations, real estate, and the market;
History contains Korean, world, and East Asian history; International deals with diplomacy, global
corporations, and foreign affairs; Medical focuses on medical knowledge, pharmaceutical research,
and health tips; Society covers education, North Korea, self-development, and interest conflicts; and
Technology includes patents, research papers, and IT services as the textual sources.

Each domain contains an average of 310 examples, and each example consists of the following
components: “id,” “document,” “publish date,” “instruction,” “five statements,” and “labels.” All
documents include the publish date. The statements are categorized as either hallucinated or faithful,
and the proportion of these categories varies depending on the instruction type and the number of
correct answers.

3.1 TASK DEFINITION

The objective of the K-HALU task is for LLMs to use the provided document and publish date as
source knowledge to discriminate the faithfulness of the given statements and detect hallucinations.
K-HALU employs a multiple-answer question evaluation format, allowing for more than one correct
answer. LLMs are required to select all possible correct statements based on the given instruction’s
question type. Given that the instruction demands ”all possible correct answers,” even a single in-
correct selection by the LLM will result in an incorrect response, reflecting the strict nature of this
evaluation. For example, if a question has three correct answers, selecting only two is marked incor-
rect, as all correct answers must be selected for it to be considered a correct response (the order of
the selected answers is not taken into account during scoring).

3.2 DATASET CREATION

Source Dataset We utilized the publicly available Knowledge Graph-to-Text dataset from AI-
Hub, an integrated AI platform operated by the Korean National Information Society Agency (NIA),
as our textual source2. This dataset consists of textual documents, including news articles, magazine
articles, and books, describing faithful relationships in the form of statements. Each statement is
tagged as subject, predicate, and object, forming a triples-context pair. Each document contains one
or more triples-context pairs, amounting to a total of 300,178 samples, each of which has processed
human labeling and data refinement. Among these samples, 89.8% are news articles, 4.9% are mag-
azine articles, and 5.3% are sourced from books. The textual documents are divided into seven
knowledge domains: Culture, Economy, History, International, Medical, Society, and Technology,
with all domains—except for History—containing over 40,000 samples. Each sample includes one
or more human-annotated statements that describe the corresponding textual document, and each
statement is labeled with tags for subject, object, and predicate.

2https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=
100&aihubDataSe=data&dataSetSn=71728
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To construct the five answer options, we extracted documents from each domain (except for History)
that contain at least five human-annotated statements. Since the History domain had a relatively
smaller number of source data samples, we extracted documents that included at least two human-
annotated statements. From each domain, we selected an average of 310 documents as the final
textual sources, excluding those with statements that referenced content not mentioned in the text.

Hallucinated Statement To create hallucinated statements that violate faithfulness, we leveraged
the human-annotated statements, tagging labels, and published dates from the extracted documents
as a basis for modification. Using GPT-4 omni (gpt-4o-2024-05-13) (OpenAI, 2023), we
transformed the human-annotated statements into factually incorrect or unfaithful statements by
altering (subject, predicate, object) labels, misrepresenting event dates based on the publish date,
or including unverifiable content. We generated five hallucinated statements per document. For the
History domain, we added hallucinated statements that were directly generated without referencing
human-annotated statements.

Faithful Statement To prevent overfitting or unintended cheating from model training on the orig-
inal dataset, we avoid using the human-annotated statements literally as faithful statements. Instead,
we employed GPT-4 omni to either modify the existing human-annotated statements or generate
faithful statements with high inferential quality that did not overlap with the originals. This process
involved expressing tags at a higher conceptual level or paraphrasing while maintaining the same
context. The faithful statements generated included higher-level reasoning, such as inferring event
dates based on the publication date or combining information from multiple sentences. As with the
hallucinated statements, we generated five faithful statements per document.

Instruction and Multiple Answers We created instruction types that evenly required selecting
hallucinated or faithful statements for each domain. We adjusted the number of hallucinated and
faithful statements for each sample, considering the proportion of multiple-answer questions. These
proportions were based on MultiSpanQA (Li et al., 2022), where the distribution of answer spans is
58%/35%/7%, and CLEAN (Luo et al., 2024), which uses 46% of question-answer pairs as multi-
answer instances. We set the distribution of the multiple-answer question with one correct answer
at 60%, two correct answers at 30%, and three correct answers at 10%, ensuring that more than two
answers comprised 40% of the dataset. For example, if the ith test example’s instruction requires
selecting faithful statements and the label has two correct answers, two of the five statements are
faithful, and three are hallucinations. To minimize bias from differences in token counts between
options, we selected the final candidate options by choosing statements closest to the average length
of the ten generated statements.

The final dataset comprises 2,170 examples constructed through the aforementioned process. The
instruction types are divided into two categories based on the type of statements required, and the
distribution of correct answers (1, 2, or 3) follows a 6:3:1 ratio with varying proportions of halluci-
nated and faithful statements across the five options.

3.3 QUALITY CONTROL

We implemented two mechanisms within the dataset generation pipeline to enhance the quality of
automatic creation: (1) rationalization and (2) ensemble verification.

Rationalization As illustrated in Figure 1, GPT-4 omni was instructed to provide the evidence for
each statement generated by the generation of hallucinated and faithful statements. This approach
aims to enhance the model’s reasoning capabilities during the automatic execution of statements,
ensuring that it consistently produces high-quality outputs by utilizing the rationale it established as
contextual knowledge (Lei et al., 2016; Wang et al., 2023; Schimanski et al., 2024). Moreover, the
generated rationale serves as a valuable resource for assisting both the meta-evaluator and human
annotator in verifying the correctness of the outputs during the ensemble verification process.

Ensemble Verification To further improve the quality of the final dataset samples, we con-
ducted cross-validation by ensemble three top-performing models as meta-evaluators (Dutschmann
et al., 2023; Manakul et al., 2023; Gilardi et al., 2023). The selected models included GPT-4
(gpt-4-06-13), which demonstrates state-of-the-art performance in both benchmark tasks and
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Table 3: Ensemble verification results for quality control across domains in the final dataset. The
quality acceptance rate represents the proportion of examples in the dataset that received a verifica-
tion score of 1. Underline indicates the lowest quality scores

Quality acceptance rate Culture Economy History International Medical Society Technology Average

GPT-4 (gpt-4-06-13) 99.54% 99.59% 98.94% 99.54% 99.35% 99.08% 99.72% 99.39%
ChatGPT-4 (chatgpt-4o-latest) 99.54% 99.63% 99.31% 99.49% 99.03% 99.08% 99.45% 99.36%
GPT-4 omni (gpt-4o-2024-08-06) 99.45% 99.45% 99.22% 99.54% 99.22% 98.99% 99.59% 99.35%

hand-engineered tasks (OpenAI, 2023), ChatGPT-4 (chatgpt-4o-latest), intended for evalu-
ation, and GPT-4 omni (gpt-4o-2024-08-06), OpenAI’s most advanced flagship model3.

Table 3 presents the results of the quality evaluation conducted by the meta-evaluators on the five
hallucinated or faithful statements generated for each of the 2,170 test examples, alongside the ra-
tionalized evidence provided for each statement. The verification score was binary: a score of 1 was
given if both the statement and the rationalized evidence were valid, and 0 if either was problematic.
The evaluation results show that even the lowest-scoring domain, History, achieved a high-quality
level, with 98.94% of its hallucinated statements deemed valid. Among the low-quality statements,
68% were flagged by two or more models, and 21% were flagged by all three models.

We employed three human annotators, all native Korean speakers, and graduates of four-year uni-
versities located in Seoul, Republic of Korea. The annotators reviewed 158 test examples flagged
by at least one model as containing low-quality statements. They performed binary classification
to determine whether revisions were necessary. A statement was considered for direct revision if
two or more annotators agreed on the need for revision. As a result of the human evaluation, 137
test examples flagged as low-quality by the LLM meta-evaluators were found to reflect instances
where the models either misinterpreted instructions or hallucinated during the evaluation process.
For 21 test examples, at least two human annotators agreed that revisions were necessary. These
problematic statements were subsequently revised by one of the authors, a native Korean speaker
and Ph.D. candidate. Krippendorff’s alpha for inter-annotator reliability was 0.923 among the three
meta-evaluators and 0.828 among the three human annotators, indicating high and moderate inter-
annotator agreement, respectively (Krippendorff, 2011).

4 EXPERIMENTS

We describe the baseline models and evaluation methods used in our experiments. Based on this
setup, we analyze the performance of LLMs in the K-HALU benchmark.

4.1 SETUP

Models To ensure a broad representation of the LLMs employed in our experiments, we
select models that have demonstrated strong performance within the open-source Korean
NLP community and have been widely used as baselines in subsequent research or indus-
tries. We conduct experiments across three different model types: (1) open-source multilin-
gual LLMs, including Llama2 (meta-llama/Llama-2-7b-chat-hf) (Touvron et al., 2023),
Llama3 (meta-llama/Meta-Llama-3-8B-Instruct) (AI@Meta, 2024), and Mistral-
Nemo (mistralai/Mistral-Nemo-Instruct-2407) (Jiang et al., 2023; MistralAI,
2024), (2) Korean-centric LLMs, such as KULLM3 (nlpai-lab/KULLM3) (Kim et al.,
2024), which has been solely fine-tuned with limited instruction tuning dataset, and ExaOne
(LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) (Research et al., 2024), which have under-
gone pre-training and instruction-tuning on broader dataset. These five open-source LLMs are ca-
pable of generating high-quality outputs based on the provided instructions with long-form docu-
ments and calculating log probabilities for our K-HALU evaluation framework. However, closed
APIs, including GPT-3.5 Turbo (gpt-3.5-turbo-0125) (Ouyang et al., 2022), GPT-4 Turbo
(gpt-4-turbo-2024-04-09), and GPT-4 omni (gpt-4o-2024-08-16) (OpenAI, 2023) do
not provide access to log probabilities. As a result, evaluation for closed API models is limited to
directly generating the indices of the statement choices.

3https://platform.openai.com/docs/models
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Log Probabilities We adopt multiple choice and log probabilities-based performance measure-
ment as the default approach to ensure stability in performance reproduction and minimize unin-
tended interference in evaluating hallucination detection capabilities. To evaluate the multiple-choice
in K-HALU, we compute the conditional probabilities of sequence generation, leveraging the auto-
regressive of LLMs (Gao et al., 2024). For each statement (choice) x and its input source S, the
sequence generation probability P (x) is calculated as follows:

P (x) =
1

|x|

|x|∑
i=1

logP(xi|S : x<i) (1)

Here, P (x) represents the token probability computed by the model, with “:” indicating sequence
concatenation. The input source content S consists of the instruction I , the textual document t, and
the publish date d, which can be expressed as S = [I:t:d].

For each of the 5 choices, the cumulative log probabilities of tokens are calculated independently by
concatenating the input source S with each choice x. Finally, the Top-N answers, corresponding
to the number of correct answers for the task, are selected based on their probabilities. This ap-
proach minimizes unintended interference from other choices and mitigates score distortion caused
by differences in choice length and structure, maintaining stability in performance reproduction.

Exact Match To enable LLMs to provide judgments directly, we set up the task to have the models
generate binary outputs (“0” or “1”) indicating the validity of each choice and evaluate them using
exact match. We incorporate a post-processing step to minimize errors caused by unnecessary special
characters or slight variations in format during the generation process. e.g., “[1, 1, 0, 0, 0]”.

LLM-as-a-Judge We use an LLM-as-a-Judge style prompt (See Table 13) to assign scores for
hallucination detection results, enabling the LLM to evaluate the quality and accuracy of generated
text (Liu et al., 2023; Chiang & Lee, 2023; Zheng et al., 2024). LLMs are tasked with directly
generating faithful or hallucinated statements based on the given instructions. These outputs tend
to be descriptive, which increases the potential for errors when evaluated using an exact match. To
mitigate this issue, we utilize GPT-4 omni (gpt-4o-2024-08-06) as an evaluator to classify the
validity of the generated statements as binary values (0 for invalid, 1 for valid).

4.2 RESULTS

Baseline Accuracy Figure 2 presents the performance of baseline models on the K-HALU test
set. Open-source LLMs exhibit an overall low performance, with an average accuracy of 29.05%.
ExaOne achieves the highest accuracy at 32.95%, while Llama2 shows the lowest performance at
24.75%. Given that the model sizes of the open-source LLMs used in the experiment range between
7B and 13B, the relatively newer models, ExaOne and Mistral-Nemo, demonstrate better perfor-
mance. Although KULLM3 is a Korean-specific LLM, it demonstrates limited improvement in de-
tecting hallucinations in Korean, likely attributable to the tuning processes constrained by a limited
dataset. In comparison, open-source LLMs demonstrate a substantial performance gap of 27.91%
when compared to the average performance of 56.96% achieved by closed API LLMs4, excluding
GPT-4 omni, which is directly involved in dataset creation. These results highlight the vulnerabil-
ity of open-source LLMs to hallucinations compared to their commercial counterparts. Proprietary
LLMs exhibit inherent weaknesses in hallucination detection, stemming from constrained resources
and incomplete tuning strategies. Even state-of-the-art closed API models, whether directly or in-
directly involved in the dataset creation process, demonstrate suboptimal performance in detecting
hallucinations in Korean, indicating a clear need for further enhancement.

Domain Analysis Table 4 compares the baseline performance across the seven domains. Among
the open-source LLMs, the highest average accuracy of 31.8% is observed in the Culture domain,
while the lowest performance is seen in the Society domain, with an average accuracy of 27.06%.
In contrast, closed API models show the highest average performance in the Technology domain

4Closed API LLMs are analyzed and compared with open-source LLMs using the exact match measurement
as the default setup, given the restrictions on accessing log probabilities.
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Figure 2: Baseline accuracy of models on the K-HALU test set. Open-source LLMs show lower
accuracy, with ExaOne performing the best among them, while GPT-4 omni achieves the highest
overall performance in comparison to other models.

Table 4: Model performance across seven knowledge domains, with accuracy evaluated using log
probabilities. Bold indicates the domain where each model achieved the highest performance, while
underline represents the domain where each model recorded the lowest performance.

Models Culture Economy History International Medical Society Technology

Llama2 (Touvron et al., 2023) 0.2800 0.2642 0.2533 0.2219 0.2185 0.2177 0.2833
Llama3 (AI@Meta, 2024) 0.3200 0.2843 0.2733 0.3100 0.2923 0.2618 0.2733
KULLM3 (Kim et al., 2024) 0.3333 0.2876 0.2833 0.2736 0.2862 0.2744 0.2667
ExaOne (Research et al., 2024) 0.3367 0.3077 0.3033 0.3526 0.3385 0.3186 0.3467
Mistral-Nemo (MistralAI, 2024) 0.3200 0.3110 0.2933 0.3100 0.3077 0.2808 0.2867
GPT-3.5 Turbo (Ouyang et al., 2022) 0.3800 0.4013 0.3533 0.4316 0.4154 0.4164 0.4300
GPT-4 Turbo (OpenAI, 2023) 0.7667 0.7157 0.6967 0.7325 0.7384 0.7476 0.7433
GPT-4 omni (OpenAI, 2023) 0.7867 0.7659 0.7633 0.7994 0.7938 0.7950 0.8000

at 65.77%, and the lowest in the History domain at 60.44%. ExaOne exhibits similar performance
variations to GPT-3.5, while the remaining open-source LLMs show comparable trends in their
strengths and weaknesses across the domains. However, the overall performance variation across
domains is not pronounced for any models. This suggests that the general-purpose models used
in the experiment are relatively unaffected by domain-specific knowledge gaps or biases toward
particular knowledge domains.

Multiple Answers Table 5 presents the baseline performance according to the number of correct
answers across each domain. Open-source LLMs achieve the highest average accuracy of 31.67%
for single-answer types while showing the lowest performance of 24.63% for questions requiring
two correct answers. Models that perform well on single-answer types also tend to exhibit higher
performance on more than two-answer types. Notably, there is a sharp decline in performance when
inferring a single-answer in the Technology domain, two in the Society domain, and three in the
History domain. These results suggest that the textual sources in the Society and History domains,
which involve complex events, may have confused hallucination detection. Additionally, ExaOne’s
approximately 10% outperforming over other models in the Technology domain for single-answer
questions suggests that the lack of training on technology-related knowledge written in Korean likely
influenced the results. On the other hand, closed API models demonstrate a marked increase in per-
formance on more than two-answer types. This outcome appears to indicate that these models recog-
nized the correlation between answer candidates during the generative evaluation process or that the
marginal differences among candidates in the hallucination or faithful sets resulted in higher scores
when selecting multiple answers, regardless of the ranking of generation probabilities. This result
supports the effectiveness of post-hoc sampling methods, such as the one proposed by Manakul et al.
(2023), in mitigating hallucinations for closed API models.

Instruction Types Table 6 compares the performance based on whether the instruction type in-
volves selecting hallucinated or faithful statements. All models, except GPT-3.5 Turbo, perform bet-
ter when selecting faithful statements. Open-source LLMs exhibit a significant performance gap be-
tween the two question types, averaging 33.18%. In contrast, the closed API models show a marginal
performance difference, averaging only 2.06%. These results indicate that open-source multilingual
and Korean-centric LLMs still struggle to detect hallucinated outputs, raising concerns that their
instruction tuning seems biased towards selecting faithful statements. Moreover, as the number of
correct answers increases, performance on question types that require selecting hallucinated state-
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Table 5: Model performance across seven domains based on the number of multiple answers with
accuracy evaluated using log probabilities. (1/2/3) indicates the model’s performance according to
the number of labels. Bold: highest, underline: lowest performance.

Models Culture (1/2/3) Economy (1/2/3) History (1/2/3) International (1/2/3) Medical (1/2/3) Society (1/2/3) Technology (1/2/3) Total (1/2/3)

Llama2 0.32 / 0.20 / 0.30 0.30 / 0.21 / 0.23 0.29 / 0.21 / 0.13 0.28 / 0.15 / 0.09 0.26 / 0.15 / 0.19 0.26 / 0.13 / 0.22 0.28 / 0.30 / 0.23 0.28 / 0.19 / 0.20
Llama3 0.36 / 0.26 / 0.30 0.32 / 0.22 / 0.23 0.32 / 0.23 / 0.23 0.33 / 0.28 / 0.31 0.31 / 0.26 / 0.32 0.31 / 0.18 / 0.25 0.29 / 0.23 / 0.27 0.32 / 0.24 / 0.26
KULLM3 0.38 / 0.26 / 0.30 0.31 / 0.27 / 0.20 0.33 / 0.24 / 0.10 0.29 / 0.24 / 0.25 0.30 / 0.25 / 0.32 0.35 / 0.13 / 0.25 0.26 / 0.26 / 0.33 0.32 / 0.23 / 0.25
ExaOne 0.35 / 0.30 / 0.37 0.30 / 0.32 / 0.30 0.35 / 0.27 / 0.13 0.33 / 0.37 / 0.44 0.31 / 0.36 / 0.45 0.37 / 0.22 / 0.31 0.38 / 0.31 / 0.27 0.34 / 0.31 / 0.33
Mistral 0.35 / 0.27 / 0.30 0.34 / 0.27 / 0.30 0.34 / 0.24 / 0.17 0.32 / 0.27 / 0.38 0.31 / 0.30 / 0.35 0.33 / 0.19 / 0.25 0.27 / 0.30 / 0.33 0.32 / 0.26 / 0.30
GPT-3.5 0.20 / 0.69 / 0.53 0.30 / 0.56 / 0.53 0.26 / 0.58 / 0.23 0.30 / 0.63 / 0.59 0.25 / 0.69 / 0.58 0.27 / 0.62 / 0.69 0.27 / 0.64 / 0.73 0.27 / 0.63 / 0.56
GPT-4 0.62 / 0.97 / 1.0 0.59 / 0.87 / 1.0 0.57 / 0.87 / 0.90 0.62 / 0.88 / 0.97 0.61 / 0.92 / 0.97 0.65 / 0.88 / 0.91 0.62 / 0.94 / 0.90 0.61 / 0.90 / 0.95
GPT-4o 0.66 / 0.98 / 1.0 0.66 / 0.89 / 1.0 0.64 / 0.93 / 0.97 0.69 / 0.96 / 1.0 0.67 / 0.98 / 0.97 0.70 / 0.93 / 0.97 0.69 / 0.97 / 0.97 0.67 / 0.95 / 0.98

Table 6: Model performance in hallucination and fact selection types across the number of multiple
answers with accuracy evaluated using log probabilities. H Selection refers to the hallucination
selection type and F Selection refers to the fact selection type. A number in () represents the number
of labels, and Avg. denotes the average score for each type. Bold: highest performance.

Models H Selection (1) F Selection (1) H Selection (2) F Selection (2) H Selection (3) F Selection (3) H Avg. F Avg.

Llama2 0.1656 0.4015 0.0736 0.3089 0.0373 0.3611 0.1253 0.3696
Llama3 0.1825 0.4554 0.0859 0.3884 0.0280 0.4815 0.1382 0.4378
KULLM3 0.1656 0.4723 0.0644 0.4006 0.0186 0.4815 0.1207 0.4516
ExaOne 0.1488 0.5338 0.0644 0.5505 0.0467 0.6019 0.1134 0.5456
Mistral 0.1626 0.4815 0.0767 0.4465 0.0467 0.5463 0.1253 0.4774
GPT-3.5 0.3098 0.2215 0.5920 0.6697 0.4860 0.6296 0.4120 0.3972
GPT-4 0.6043 0.6231 0.8834 0.9266 0.9626 0.9352 0.7235 0.7456
GPT-4o 0.6288 0.7185 0.9479 0.9480 0.9813 0.9815 0.7594 0.8138

ments drops sharply. However, performance on faithful statement selection tends to improve. As
discussed in Multiple Answers, this is considered to result from the smaller differences among can-
didates within the faithful set, whereas the larger dissimilarities within the hallucinated set arise
from the model’s inability to accurately identify hallucinations.

Few-shot and CoT To address open-source LLMs’ low hallucination detection capabilities, we
apply few-shot samples and Chain-of-Thought (CoT) reasoning (Wei et al., 2022) to evaluate per-
formance improvements. We create three samples containing multiple-answer types to measure few-
shot accuracy. These samples are constructed based on the results from Table 6, with two selecting
hallucinated statements and one selecting faithful statements. Additionally, we incorporate CoT rea-
soning steps, guiding the models to choose appropriate statements and rationalize their choices based
on the provided documents and publication dates according to the instruction type. Appendix G il-
lustrates the design of the CoT prompts.

Table 7 compares the performance of the baseline models with the results after applying few-shot
and CoT. Llama2 and ExaOne exhibit a slight decrease in performance, while Llama3, KULLM3,
and Mistral-Nemo show modest gains within 2%. These findings align with the results of HaluEval
(Li et al., 2023), suggesting that few-shot sampling and CoT reasoning steps are not sufficient as
fundamental solutions for improving hallucination detection.

Exact Match and LLM-as-a-Judge Table 8 presents the results of applying evaluation meth-
ods where models generate answers directly based on the prompt’s instruction and context. When
using exact match to evaluate performance, it becomes more challenging for models to achieve
high accuracy compared to multiple choice accuracy. This is because exact match heavily relies on
instruction-following abilities, which amplifies performance differences among models. Addition-
ally, the influence of instruction-following appears to have a greater impact on performance in 3-shot
or CoT settings compared to other evaluation methods.

To mitigate potential distortions caused by descriptive outputs in exact match evaluations, we em-
ploy the LLM-as-a-Judge evaluation method. Baseline open-source LLMs show significantly low
performance as they struggle to generate answer choices that align with the given instructions. Inter-
estingly, KULLM3 performs better in the LLM-as-a-Judge evaluation compared to other methods.
ExaOne and Mistral-NEMO demonstrate generally higher performance across the multiple choice,
exact match, and LLM-as-a-Judge evaluations. Similar to multiple choice and log-probability-based
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Table 7: Model performance by # shots and CoT with accuracy evaluated using log probabilities.
Models Zero-shot 3-shot 3-shot + CoT

Llama2 (Touvron et al., 2023) 0.2475 0.2410 0.2429
Llama3 (AI@Meta, 2024) 0.2880 0.2880 0.2926
KULLM3 (Kim et al., 2024) 0.2862 0.3018 0.2959
ExaOne (Research et al., 2024) 0.3295 0.2922 0.2991
Mistral-Nemo (MistralAI, 2024) 0.3014 0.3060 0.3115

Table 8: Performance comparison of models using Exact Match and LLM-as-a-Judge.

Models Exact Match LLM-as-a-Judge

Zero-shot 3-shot 3-shot + CoT Zero-shot 3-shot 3-shot + CoT

Llama2 (Touvron et al., 2023) 0.0106 0.0051 0.0060 0.0101 0.0115 0.0189
Llama3 (AI@Meta, 2024) 0.1203 0.2396 0.1760 0.0484 0.0203 0.0212

KULLM3 (Kim et al., 2024) 0.0194 0.0083 0.0070 0.1134 0.1005 0.0797
ExaOne (Research et al., 2024) 0.0484 0.1885 0.1839 0.0922 0.1276 0.1023

Mistral-NEMO (MistralAI, 2024) 0.1240 0.2668 0.2770 0.0995 0.1138 0.1106

evaluations, applying 3-shot or CoT reasoning results in partial performance improvements. How-
ever, consistent performance enhancement is not observed across all settings.

These results highlight the challenges open-source LLMs face in directly solving K-HALU’s hal-
lucination detection tasks through generative outputs or CoT prompting. This implies the need for
further research to improve model capabilities in hallucination detection tasks effectively.

Qualitative Analysis We qualitatively analyze cases where six or more models from the eight
baselines select incorrect answers for a given example in each domain. Incorrect examples are cat-
egorized based on the rational evidence for faithfulness or hallucination in the answer options. We
focus on the incorrect answer choices commonly identified across multiple models to summarize
representative examples of hallucinations within the K-HALU benchmark.

Figure 3 contains notes from our review of these incorrect examples across domains. Errors related
to misrepresenting the publish date and knowledge conflicts are common and frequently occurring
issues across the models. For instance, “Hwang Gwang-su passed away in September 2021” is a fac
statement based on the sentence “Hwang Gwang-su passed away this September” in the document
dated November 13, 2021. The models fail to correctly infer the current year from the publish date,
generating incorrect answers. In another example, models produce incorrect outputs for a faithful
statement about ‘NAVER’s intelligent search robot announced in September 2000,’ as they incor-
rectly believe the phrase “intelligent search robot” inappropriate. Likewise, when the document
mentions ‘the largest project in history,’ models generate incorrect answers, arguing that this does
not align with their prior knowledge. Also, models frequently produce domain-specific errors when
trained on inaccurate knowledge of specific entities. For example, documents mentioning “President
Syngman Rhee” consistently lead to incorrect answers across multiple models.

5 CONCLUSION

We propose the K-HALU benchmark, designed to evaluate hallucinations in Korean. K-HALU eval-
uates hallucination detection by verifying faithfulness using Korean knowledge-based textual docu-
ments drawn from seven different domains. The benchmark introduces a strict evaluation framework
that includes multiple-answer questions, requiring models to select all possible correct answers. This
approach enables us to quantify the hallucination detection capabilities of LLMs, providing deeper
insight into their ability to discern faithfulness. Our analysis demonstrates that open-source LLMs
are still struggle to hallucinations and that there remains a significant performance gap compared to
closed API models. In future work, we aim to focus on enhancing datasets and models to mitigate
hallucination in Korean, building on the insights gained from this research. As K-HALU will be
publicly accessible, we hope it offers the Korean NLP community the opportunity to freely evaluate
and improve the hallucination performance of their locally developed LLMs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Amos Azaria and Tom Mitchell. The internal state of an llm knows when it’s lying. In Findings of
the Association for Computational Linguistics: EMNLP 2023, pp. 967–976, 2023.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. INSIDE:
LLMs’ internal states retain the power of hallucination detection. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=Zj12nzlQbz.

Cheng-Han Chiang and Hung-Yi Lee. Can large language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15607–15631, 2023.

Prafulla Kumar Choubey, Alex Fabbri, Jesse Vig, Chien-Sheng Wu, Wenhao Liu, and Nazneen Ra-
jani. Cape: Contrastive parameter ensembling for reducing hallucination in abstractive summa-
rization. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 10755–
10773, 2023.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. In The Twelfth
International Conference on Learning Representations, 2023.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
2475–2485, 2018.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding
space. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 16124–16170, 2023.

Thomas-Martin Dutschmann, Lennart Kinzel, Antonius Ter Laak, and Knut Baumann. Large-scale
evaluation of k-fold cross-validation ensembles for uncertainty estimation. Journal of Chemin-
formatics, 15(1):49, 2023.

Nouha Dziri, Ehsan Kamalloo, Sivan Milton, Osmar R Zaiane, Mo Yu, Edoardo M Ponti, and Siva
Reddy. Faithdial: A faithful benchmark for information-seeking dialogue. Transactions of the
Association for Computational Linguistics, 10:1473–1490, 2022.

Julen Etxaniz, Oscar Sainz, Naiara Miguel, Itziar Aldabe, German Rigau, Eneko Agirre, Aitor
Ormazabal, Mikel Artetxe, and Aitor Soroa. Latxa: An open language model and evaluation
suite for Basque. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 14952–14972, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.799. URL https://aclanthology.org/2024.
acl-long.799.
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Colombo, and André F. T. Martins. Hallucinations in large multilingual translation mod-
els. Transactions of the Association for Computational Linguistics, 11:1500–1517, 2023. doi:
10.1162/tacl a 00615. URL https://aclanthology.org/2023.tacl-1.85.

Jiyeon Ham, Yo Joong Choe, Kyubyong Park, Ilji Choi, and Hyungjoon Soh. Kornli and korsts: New
benchmark datasets for korean natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 422–430, 2020.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023a.

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu,
and Lei Ma. Look before you leap: An exploratory study of uncertainty measurement for large
language models. arXiv preprint arXiv:2307.10236, 2023b.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023a.

Ziwei Ji, Zihan Liu, Nayeon Lee, Tiezheng Yu, Bryan Wilie, Min Zeng, and Pascale Fung. Rho:
Reducing hallucination in open-domain dialogues with knowledge grounding. In Findings of the
Association for Computational Linguistics: ACL 2023, pp. 4504–4522, 2023b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023. URL https://mistral.ai/news/
announcing-mistral-7b/.

Che Jiang, Biqing Qi, Xiangyu Hong, Dayuan Fu, Yang Cheng, Fandong Meng, Mo Yu, Bowen
Zhou, and Jie Zhou. On large language models’ hallucination with regard to known facts. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 1041–1053,
2024.

Jiho Jin, Jiseon Kim, Nayeon Lee, Haneul Yoo, Alice Oh, and Hwaran Lee. Kobbq: Korean bias
benchmark for question answering. Transactions of the Association for Computational Linguis-
tics, 12:507–524, 2024.

Jeongwook Kim, Taemin Lee, Yoonna Jang, Hyeonseok Moon, Suhyune Son, Seungyoon Lee, and
Dongjun Kim. Kullm3: Korea university large language model 3. https://github.com/
nlpai-lab/kullm, 2024.

12

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://aclanthology.org/2023.tacl-1.85
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://github.com/nlpai-lab/kullm
https://github.com/nlpai-lab/kullm


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Klaus Krippendorff. Computing krippendorff’s alpha-reliability. 2011. URL https:
//citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
de8e2c7b7992028cf035f8d907635de871ed627d.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 107–117, 2016.

Haonan Li, Martin Tomko, Maria Vasardani, and Timothy Baldwin. Multispanqa: A dataset for
multi-span question answering. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1250–1260, 2022.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-
scale hallucination evaluation benchmark for large language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 6449–6464, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3214–3252, 2022.

Tianyu Liu, Xin Zheng, Baobao Chang, and Zhifang Sui. Towards faithfulness in open domain
table-to-text generation from an entity-centric view. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 13415–13423, 2021.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 2511–2522, 2023. URL https:
//aclanthology.org/2023.emnlp-main.153/.

Zhiyi Luo, Yingying Zhang, Shuyun Luo, Ying Zhao, and Wentao Lyu. A dataset of open-domain
question answering with multiple-span answers. arXiv preprint arXiv:2402.09923, 2024.

Himanshu Maheshwari, Sumit Shekhar, Apoorv Saxena, and Niyati Chhaya. Open-world factually
consistent question generation. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 2390–2404, 2023.

Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box halluci-
nation detection for generative large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 9004–9017, 2023.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 1906–1919, 2020.

MistralAI. Mistral nemo model card. 2024. URL https://huggingface.co/mistralai/
Mistral-Nemo-Base-2407/blob/main/README.md.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. In Proceedings of the 6th BlackboxNLP Workshop: Analyzing
and Interpreting Neural Networks for NLP, pp. 16–30, 2023.

nostalgebraist. Interpreting gpt: the logit lens, 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow in-
structions with human feedback. Advances in Neural Information Processing Systems, 35:27730–
27744, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

13

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=de8e2c7b7992028cf035f8d907635de871ed627d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=de8e2c7b7992028cf035f8d907635de871ed627d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=de8e2c7b7992028cf035f8d907635de871ed627d
https://aclanthology.org/2023.emnlp-main.153/
https://aclanthology.org/2023.emnlp-main.153/
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407/blob/main/README.md
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407/blob/main/README.md
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chanjun Park, Hyeonwoo Kim, Dahyun Kim, SeongHwan Cho, Sanghoon Kim, Sukyung Lee,
Yungi Kim, and Hwalsuk Lee. Open Ko-LLM leaderboard: Evaluating large language models
in Korean with Ko-h5 benchmark. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 3220–3234, Bangkok, Thailand, August 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.acl-long.177. URL https://aclanthology.
org/2024.acl-long.177.

Sungjoon Park, Jihyung Moon, Sungdong Kim, Won Ik Cho, Ji Yoon Han, Jangwon Park, Chisung
Song, Junseong Kim, Youngsook Song, Taehwan Oh, et al. Klue: Korean language understanding
evaluation. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2022.
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A QUALITATIVE DETAILS

Figure 3 shows the analysis of hallucination error types frequently occurring in eight baselines across
each domain.

Figure 3: A review note for incorrect answers from baseline models.

B F1 SCORE

Table 9 presents the F1 score, precision, and recall metrics for evaluating model performance. These
metrics are calculated using a macro-average approach, which considers the multiple correct answer
distribution (6:3:1) and the uniform label distribution across the dataset. Accuracy requires selecting
all correct answers to receive a score, meaning partially correct responses are treated as entirely
incorrect. In contrast, the F1 score accommodates partial correctness, resulting in improved overall
performance for the models.

Open-source LLMs, such as LLAMA, KULLM3, and ExaOne, tend to predict only a subset of
the correct answers, prioritizing those with higher log probabilities. This behavior leads to higher
precision compared to recall, as these models adopt a more conservative strategy in their predictions.
On the other hand, closed API LLMs, including GPT-3.5, GPT-4, and GPT-4 omni, generate answers
more flexibly, often producing a greater number of options than the predefined correct answers. This
results in higher recall than precision, as these models aim to capture all possible correct answers
but occasionally overpredict.

C EXTENDING K-HALU TO MULTILINGUAL

Setup We conduct multilingual experiments using English (a high-resource language) and Malay
(a low-resource language) to provide insights into the adaptability of the K-HALU benchmark across
languages. K-HALU’s hallucination detection criteria and settings for multiple-answer questions
are designed to be language-independent, making the evaluation framework adaptable to different
languages.
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Table 9: Performance of LLMs on K-HALU evaluated by Accuracy, F1, Precision, and Recall.
Model Accuracy F1 Precision Recall
Llama2 (Touvron et al., 2023) 0.2475 0.3939 0.4152 0.3979
Llama3 (AI@Meta, 2024) 0.2880 0.4332 0.4503 0.4356
KULLM3 (Kim et al., 2024) 0.2862 0.4156 0.4323 0.4174
ExaOne (Research et al., 2024) 0.3295 0.4770 0.5117 0.4760
Mistral-NEMO (MistralAI, 2024) 0.3014 0.4393 0.4530 0.4417
GPT-3.5 Turbo (Ouyang et al., 2022) 0.4046 0.7237 0.6476 0.8260
GPT-4 Turbo (OpenAI, 2023) 0.7346 0.8538 0.8211 0.8899
GPT-4 omni (OpenAI, 2023) 0.7866 0.8732 0.8552 0.8924

Table 10: Performance of Models on K-HALU (English and Malay Versions).
Models Accuracy F1 Precision Recall

K-HALU (English ver.)
Llama2 (Touvron et al., 2023) 0.2757 0.4124 0.4261 0.4131
Llama3 (AI@Meta, 2024) 0.2727 0.4012 0.4139 0.4038
KULLM3 (Kim et al., 2024) 0.2846 0.4082 0.4235 0.4091
ExaOne (Research et al., 2024) 0.2638 0.4079 0.4288 0.4106
Mistral-Nemo (MistralAI, 2024) 0.2906 0.4354 0.4496 0.4364

K-HALU (Malay ver.)
Llama2 (Touvron et al., 2023) 0.2620 0.4317 0.4393 0.4314
Llama3 (AI@Meta, 2024) 0.2715 0.4443 0.4528 0.4452
KULLM3 (Kim et al., 2024) 0.2600 0.4268 0.4373 0.4274
ExaOne (Research et al., 2024) 0.2505 0.4171 0.4297 0.4189
Mistral-Nemo (MistralAI, 2024) 0.2772 0.4491 0.4591 0.4476

To set up K-HALU for multilingual evaluation, we translate 2,170 samples into English and Malay
using the ChatGPT-4 (chatgpt-4o-latest) API. During the translation process, prompts are
carefully crafted to minimize changes in hallucination-related content or linguistic nuances that
could alter faithfulness (See Table 11). To ensure the quality of translated samples, we implement an
LLM-as-a-Judge evaluation script using the GPT-4 omni (gpt-4o-2024-08-06) API to verify
whether the translations preserved the original labels. Low-quality samples that failed this binary
classification check are filtered out (See Table 12). As a result, 671 English samples and 523 Malay
samples remain, indicating that only approximately 27.51% of the samples retain their validity after
translation.

Results Table 10 presents the results of hallucination detection evaluation performed on the K-
HALU benchmark using translations of the Korean textual documents and statements into English
and Malay. The results indicate that LLMs continue to struggle with hallucination detection, even
when K-HALU is evaluated in different languages. The Korean version of K-HALU achieves ap-
proximately 2.7% higher performance compared to the translated versions, highlighting the influ-
ence of language-specific embedded knowledge on hallucination detection performance.

To achieve optimal evaluation outcomes, it is essential to reconstruct reliable knowledge documents
and faithful statements based on the original source in each language. Each language’s cultural
context and linguistic nuances require adjustments to hallucination detection methods and multiple-
answer question approaches to ensure accuracy and relevance.

D LENS OBSERVATION

We employ two-lens observation methods to examine how each layer of LLM calculates the next
token probability for both hallucinated and faithful statements.
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Table 11: Prompt for translating K-HALU to English and Malay. This table demonstrates the in-
struction and system setup for translation tasks.

### Translation Task Prompt — Korean to English ###
##System:
You are a human annotator and a Korean-English translator.
Your task is to translate the provided Korean text into English without altering its meaning or structure.
##Instruction:
The text consists of “id”, “document”, “date”, “instruction”, statements“1”, “2”, “3”, “4”, “5”, and “label”.
Your task is to:
- Translate the “document”, “instruction”, and statements (“1”, “2”, “3”, “4”, “5”) from Korean to English.
##Requirements:
- Ensure no changes are made beyond accurate translation.
- Maintain the structure of the original text in your translation.
- **Generate the result in the form of a JSON dictionary identical to the Output Format.**
##Output Format:
{“id”:“{id}”,“document”:“{translated document}”,“date”:“{date}”,
“instruction”:“{translated instruction}”,
“1”:“{translated statement 1}”,“2”:“{translated statement 2}”,
“3”:“{translated statement 3}”,“4”:“{translated statement 4}”,
“5”:“{translated statement 5}”,“label”: “{label}”}
##Input Format:

### Translation Task Prompt — Korean to Malay ###
##System:
You are a human annotator and a Korean-Malay translator.
Your task is to translate the provided Korean text into Malay without altering its meaning or structure.
##Instruction:
The text consists of “id”, “document”, “date”, “instruction”, statements “1”, “2”, “3”, “4”, “5”, and “label”.
Your task is to:
- Translate the “document”, “instruction”, and statements (“1”, “2”, “3”, “4”, “5”) from Korean to Malay.
##Requirements:
- Ensure no changes are made beyond accurate translation.
- Maintain the structure of the original text in your translation.
- **Generate the result in the form of a JSON dictionary identical to the Output Format.**
##Output Format:
{“id”:“{id}”,“document”:“{translated document}”,“date”:“{date}”,
“instruction”:“{translated instruction}”,
“1”:“{translated statement 1}”,“2”:“{translated statement 2}”,
“3”:“{translated statement 3}”,“4”:“{translated statement 4}”,
“5”:“{translated statement 5}”,“label”: “{label}”}
##Input Format:

Logit Lens (nostalgebraist, 2020) maps the model’s representation space to the vocabulary space
for each token, leveraging the residual stream for this process. This method enables us to observe
how the model’s final output evolves according to token and layer positions. It is widely used for
interpreting the internal representations of Transformer-based language models (Dar et al., 2023;
Hanna et al., 2024).

Tuned Lens (Belrose et al., 2023) addresses some limitations of the Logit Lens, such as its diffi-
culty in dealing with inconsistent readiness for final decoding across different positions. The Tuned
Lens improves upon the Logit Lens by aligning intermediate layer outputs more closely with final
predictions, facilitating the capture of more abstract and semantic information (Nanda et al., 2023;
Jiang et al., 2024).

The selection of positions for measuring token-wise changes in hidden states across layers through
lens observation depends on the experimental objectives (Azaria & Mitchell, 2023; Chen et al.,
2024). In our analysis, we focus on the final token of the output to assess the model’s judgment and
the potential occurrence of hallucinations in response to the input.

Results To further analyze the results from Instruction Types, we track the model’s internal state
during next-token prediction using lens observation. Figure 4 illustrates the probability shift across
each layer for Llama2, according to hallucinated and faithful statements. Under the Logit Lens
(nostalgebraist, 2020), slight probability fluctuations are detected in the early layers, with a gradual
increase starting from the middle layer (15th), and a sharp rise of approximately 40% near the final
layer. For instructions that differentiate hallucinated statements, there is a slightly higher probability
than for instructions that differentiate faithful statements up until the final layer, where the model
becomes more confident about faithful statements. Under the Tuned Lens (Belrose et al., 2023), sig-
nificant probability fluctuations are detected in the early layers, followed by another notable increase
around the 15th layer. After this point, little to no probability shifts are observed. Similar to the Logit
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Table 12: Prompt for evaluating translation quality and hallucination label correctness. This table
outlines the system and task instructions for assessment.

### Translation Evaluation Prompt — English Label Verification ###
##System:
You are a professional annotator tasked with evaluating the quality of translations in a dataset and ensuring the
correctness of hallucination-related labels. Your role is to strictly assess whether the provided “label” aligns
with the corresponding “document” and “instruction.”
##Task:
Evaluate the following JSON object for its correctness based on the criteria below:
1. Label Validity: Verify if the provided “label” correctly reflects the instruction of each statement compared
to the “document” and “instruction.”
##Requirements:
- Do not provide explanations or justifications for your scores.
- Only output the score, e.g., 1 or 0.
##Scoring:
- Assign 1 point if the “label” is valid.
- Assign 0 points if the “label” is invalid.
##Example Input:
{

“id”: “001”,
“document”: “The National Assembly is the legislative body of South Korea.”,
“date”: “2024-11-01”,
“instruction”: “Identify which statements are factually consistent with the document.”,
“1”: “The National Assembly is located in Seoul.”,
“2”: “It has 300 members elected by the public.”,
“3”: “The Assembly also oversees the judiciary.”,
“4”: “It was established in 1948.”,
“5”: “The President of South Korea is a member of the National Assembly.”,
“label”: [1,2,4]

}
##Example Output:
1
##Input to Evaluate:

### Translation Evaluation Prompt — Malay Label Verification ###
##System:
You are a professional annotator tasked with evaluating the quality of Malay translations in a dataset and
ensuring the correctness of hallucination-related labels. Your role is to strictly assess whether the provided
“label” aligns with the corresponding “document” and “instruction.”
##Task:
Evaluate the following JSON object for its correctness based on the criteria below:
1. Label Validity: Verify if the provided “label” correctly reflects the instruction of each statement compared
to the “document” and “instruction.”
##Requirements:
- Do not provide explanations or justifications for your scores.
- Only output the score, e.g., 1 or 0.
##Scoring:
- Assign 1 point if the “label” is valid.
- Assign 0 points if the “label” is invalid.
##Example Input:
{

“id”: “001”,
“document”: “Majlis Perundangan Kebangsaan adalah badan perundangan Korea Selatan.”,
“date”: “2024-11-01”,
“instruction”: “Kenal pasti pernyataan yang konsisten dengan fakta dalam dokumen.”,
“1”: “Majlis Perundangan Kebangsaan terletak di Seoul.”,
“2”: “Ia mempunyai 300 ahli yang dipilih oleh rakyat.”,
“3”: “Majlis ini juga menyelia badan kehakiman.”,
“4”: “Ia ditubuhkan pada tahun 1948.”,
“5”: “Presiden Korea Selatan adalah ahli Majlis Perundangan Kebangsaan.”,
“label”: [1,2,4]

}
##Example Output:
1
##Input to Evaluate:

Lens results, the model shows greater confidence in differentiating faithful statements compared to
hallucinated ones as it approaches the final layer.

These findings suggest that open-source LLMs exhibit stronger certainty for faithful statements in
their final layer outputs, contributing to the performance gap when handling instructions that differ-
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Figure 4: Token probability shift of Llama2 on the K-HALU under Logit and Tuned Lens. true/halu
indicates that the instruction used selects faithful/hallucinated statements. answer/wrong refers to
cases where the correct/incorrect option is chosen according to the instruction.

entiate hallucinated statements. The probability shift near the final layer reaffirms the importance
of this stage in hallucination detection, as highlighted by Jiang et al. (2024) and Chen et al. (2024),
and serves as a key factor explaining the performance difference observed in Table 6. Moreover,
the Logit and Tuned Lens observations show that the internal token probabilities do not exhibit sig-
nificant differences when instructions involve correct and incorrect statements. This indicates that
the Llama2 model struggles to accurately assess hallucinated statements, which explains its notably
poor performance in our previous experiments.

E LICENSE

K-HALU uses an AI Open dataset provided by AI-HUB (referred to as ”AI Data”), which was devel-
oped as part of the ”Intelligent Information Industry Infrastructure Construction” project supported
by the Ministry of Science and ICT and the National Information Society Agency of Korea (NIA).
Below are the key guidelines for its use:

All rights to the AI Data, including the data, AI application models, source code for data authoring
tools, and manuals, belong to the performing and participating institutions involved in the construc-
tion of the data and the NIA.

The AI Data was created to advance AI technologies, products, and services. It can be used for
commercial and non-commercial research and development purposes across various fields, including
intelligent products and services, chatbots, and more.

Any use of AI Data must be acknowledged as a result of the NIA’s projects. This attribution must
also apply to derivative works.

F LLM-AS-A-JUDGE STYLE PROMPT

Table 13 presents the prompt used for the LLM-as-a-Judge evaluation.

G CHAIN OF THOUGHT (COT) PROMPT

Table 14 presents the CoT prompt used for evaluating log probabilities, Table 15 for evaluating
Exact matches, and Table 16 for the LLM-as-a-Judge evaluation method.

H K-HALU EXAMPLE

Figure 5, 6, 7, 8, 9, 10, and 11 illustrate examples of the original Korean texts from the K-HALU
dataset for each domain.
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Table 13: Prompt for evaluating LLMs’ prediction quality and hallucination label correctness. This
table outlines the system and task instructions for assessment.

### Prediction Evaluation Prompt — Label Verification ###
##System:
You are a professional annotator tasked with evaluating the quality of predictions in a dataset and ensuring the
correctness of hallucination-related labels.
##Task:
Evaluate the following JSON object for its correctness based on the criteria below:
1. Prediction Validity: Verify if the provided “preds” correctly reflects the instruction of each statement com-
pared to the “document” and “instruction.”
##Requirements:
- Do not provide explanations or justifications for your scores.
- Only output the score, e.g., 1 or 0.
##Scoring:
- Assign 1 point if the “preds” is valid.
- Assign 0 points if the “preds” is invalid.
##Example Input:
{
“id”: “001”,
“document”: “The National Assembly is the legislative body of South Korea.”,
“date”: 2024-11-01
“instruction”: “Identify which statements are factually consistent with the document”,
“choices”: [

“1. The National Assembly is located in Seoul.”,
“2. It has 300 members elected by the public.”,
“3. The Assembly also oversees the judiciary.”,
“4. It was established in 1948.”,
“5. The President of South Korea is a member of the National Assembly.”

],
“gold”: [

“1. The National Assembly is located in Seoul.”,
“2. It has 300 members elected by the public.”,
“4. It was established in 1948.”

],
“preds”: [

“1. The National Assembly is located in Seoul.”,
“2. It has 300 members elected by the public.”

]
}
##Example Output:
0
##Input to Evaluate:
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Table 14: CoT reasoning prompt used for hallucination detection tasks evaluated using log probabil-
ities. Each example illustrates the evaluation process, where statements are analyzed for consistency
with the given document and classified as hallucinated or faithful.

### CoT Reasoning Prompt — Hallucination Detection (Log probabilities) ###
##Example 1:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
output: {LIST OF CORRECT STATEMENTS}
##Example 2:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
output: {LIST OF CORRECT STATEMENTS}
##Example 3:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL}
output: {LIST OF CORRECT STATEMENTS}
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Table 15: CoT reasoning prompt used for hallucination detection tasks evaluated using exact match.
Each example illustrates the evaluation process, where statements are analyzed for consistency with
the given document and classified as hallucinated or faithful.

### CoT Reasoning Prompt — Hallucination Detection (Exact Match) ###
##Example 1:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
output: {[BINARY VECTOR OF 5 ELEMENTS]}
##Example 2:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
output: {[BINARY VECTOR OF 5 ELEMENTS]}
##Example 3:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
output: {[BINARY VECTOR OF 5 ELEMENTS]}
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Table 16: CoT reasoning prompt used for hallucination detection tasks evaluated using LLM-as-a-
Judge. Each example illustrates the evaluation process, where statements are analyzed for consis-
tency with the given document and classified as hallucinated or faithful.

### CoT Reasoning Prompt — Hallucination Detection (LLM-as-a-Judge) ###
##Example 1:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
output: {LIST OF CORRECT STATEMENTS}
##Example 2:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
output: {LIST OF CORRECT STATEMENTS}
##Example 3:
date: {INPUT DATE}
document: {INPUT DOCUMENT}
instruction: {INPUT INSTRUCTION}
choice:
1. {#1 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
2. {#2 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
3. {#3 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
4. {#4 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
5. {#5 INPUT STATEMENT}
analysis: {REASON WHY} conclusion: {HALLUCINATED OR FAITHFUL} → {0 ∨ 1}
output: {LIST OF CORRECT STATEMENTS}
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Figure 5: An example of K-HALU in Culture domain
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Figure 6: An example of K-HALU in Economy domain
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Figure 7: An example of K-HALU in History domain

Figure 8: An example of K-HALU in International domain

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 9: An example of K-HALU in Medical domain
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Figure 10: An example of K-HALU in Society domain
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Figure 11: An example of K-HALU in Technology domain
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