Thought Anchors: Which LLM
Reasoning Steps Matter?

Paul C. Bogdan'* Uzay Macar’* Neel Nanda® Arthur Conmy*
MATS MATS

Abstract

Current frontier large-language models rely on reasoning to achieve state-of-the-
art performance. Many existing interpretability methods are limited in this area,
as standard methods have been designed to study single forward passes of a
model rather than the multi-token computational steps that unfold during reasoning.
We argue that analyzing reasoning traces at the sentence level is a promising
approach to understanding reasoning processes. We introduce a black-box method
that measures each sentence’s counterfactual importance by repeatedly sampling
replacement sentences from the model, filtering for semantically different ones, and
continuing the chain of thought from that point onwards to quantify the sentence’s
impact on the distribution of final answers. We discover that certain sentences can
have an outsized impact on the trajectory of the reasoning trace and final answer. We
term these sentences thought anchors. These are generally planning or uncertainty
management sentences, and specialized attention heads consistently attend from
subsequent sentences to thought anchors. We further show that examining sentence-
sentence causal links within a reasoning trace gives insight into a model’s behavior.
Such information can be used to predict a problem’s difficulty and the extent
different question domains involve sequential or diffuse reasoning. As a proof-of-
concept, we demonstrate that our techniques together provide a practical toolkit
for analyzing reasoning models by conducting a detailed case study of how the
model solves a difficult math problem, finding that our techniques yield a consistent
picture of the reasoning trace’s structure. We provide an open-source tool (thought+
anchors.com) for visualizing the outputs of our methods on further problems. The
convergence across our methods shows the potential of sentence-level analysis for
a deeper understanding of reasoning models.

1 Introduction

Training large language models to reason with chain-of-thought [Reynolds and McDonell, 2021} Nye
et al., 2021}, [Wei et al.,|2023] has led to significant advances in capabilities [[OpenAl, 2024]. The
resulting reasoning traces are regularly used in safety research [Baker et al.,[2025| [Shah et al., 2025]],
but there has been little work adapting interpretability methods to this new paradigm (though see
[Venhoff et al.,[2025| |Goodfire, [2025]]). Traditional mechanistic interpretability [|Olah et al., {2020,
Olah, 2022|] methods often focus on a single forward pass of the model: understanding layer-by-layer
activations and how these translate into a final output [Wang et al., |2022| [Heimersheim and Janiak,
2023|,|Hanna et al., 2023]]. However, this framework is too fine-grained for autoregressive reasoning
models, which consume their own output tokens.

A core step in many interpretability strategies is to decompose the model into smaller parts that can be
analyzed independently [Lindsey et al.,|2025]]. A natural decomposition for chain-of-thought is into

quual contribution (author order determined by coinflip)
*Equal senior cauthor contribution (author order determined by coinflip)
*Correspondence to: Paul C. Bogdan <paulcbogdan @ gmail.com>, Uzay Macar <uzaymacar @ gmail.com>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://www.thought-anchors.com
https://www.thought-anchors.com

. Prompt Correct answer: 19 *0\
When base-16 number_ 6_666(? is written 1. Black-box resampling e
in base 2, how many digits (bits) does it have? \
4> Prior work: remove sentence i and force answer Y
<think>
2 Us: remove sentence i and resample full rollout (100x) \
\
Active Computation #8
So, if each digit is 4 bits, then 5 digits would 2. Receiver heads

be 5 * 4 = 20 bits.

\
|
Find heads attending to sentence i ?
Plan Generation #13 1 Vertical lines: broadcasting sentences |
Alternatively, maybe | can calculate the value ®
of 666666 in decimal and then find out how) . /’
many bits that number would require. 3. Attention suppression L)
& Mask all attention to sentence i /
Uncertainty Management #47 @
—> Examine effect on sentence j /
Maybe | messed up the decimal conversion. @
) _ @' ~ " ¢@® importance(i)
</think> - importance(i - j)

Figure 1: Summary of our methods for principled attribution to important sentences in reasoning
traces. A. An example reasoning trace with sentences labeled per our taxonomy. B. Our proposed
methods are: black-box resampling, receiver heads, and attention suppression. C. A directed acyclic
graph among sentences prepared by one of our techniques, made available open source.

individual sentences and how they depend on each other. Interpretations of neural network behavior
operate at varying levels of abstraction [Geiger et al.,|[2021},|2025], and sentence-level explanations
strike an intermediate abstraction depth. Compared to tokens, sentences are more coherent and often
coincide with reasoning steps extracted by an LLM [Venhoff et al., [2025| |Arcuschin et al.| 2025].
Compared to paragraphs, sentences are less likely to conflate reasoning steps and may serve as an
effective target for linking different steps.

Prior work has established that CoT contains reasoning steps performing distinct functions. Back-
tracking sentences (e.g., “Wait... ”) cause the model to revisit earlier conclusions, which boosts
answer accuracy [Muennighoff et al., [2025]]. Other research has distinguished sentences based on
whether they retrieve new information or execute deduction with existing information [[Venhoff
et al.,[2025[. Hence, reasoning may follow an overarching structure, where computational goals are
generated, revised, and pursued. Yet, approaches for mapping this high-level structure are limited.

We propose that reasoning traces can be understood through thought anchors: critical reasoning
steps that guide the trajectory of reasoning. We provide evidence for this type of anchoring based
on black-box evidence from resampling and white-box evidence based on attention patterns. By
measuring the causal dependencies between sentences via a masking approach, we further show how
a CoTs wider computational structure can be interpreted. These measures go beyond just reading a
CoT’s text, providing a principled foundation for interpretability that sidesteps disputes about the
“faithfulness” of CoT text [Turpin et al.,|2023| Korbak et al.,[2025].

Section 2]and Section [3]introduce a black-box method for measuring the counterfactual impact of a
sentence on the model’s final answer and future sentences. We repeatedly resample reasoning traces
from the start of each sentence. Based on resampling data, we can quantify the counterfactual impact
of each sentence on the likelihood of any final answer. Additionally, we can distinguish planning
sentences that initiate computations leading to some answer from sentences performing computations
necessary for the answer but which are predetermined. Section] adds a white-box method for
evaluating importance based on the sentences most attended. Our analyses reveal “receiver” heads
that narrow attention toward particular past “broadcasting” sentences. This provides a mechanistic
measure of importance, whose findings converge with our resampling technique.

Section [5] and Section [6] present a method mapping the wider structure of the reasoning the causal
dependencies between pairs of CoT sentences. For each sentence in a trace, we intervene by masking
all attention to it from subsequent tokens or simply removing the sentence entirely. We then measure
the effect on subsequent token logits (KL divergence) compared to those generated without masking.
Averaging token effects by sentence, this strategy measures each sentence’s direct causal effect on
each subsequent sentence.

Applying these techniques, our work suggests that analyzing reasoning through sentence-level units
introduces new domains through which reasoning models can be understood. Our work also opens
the door to more precise debugging of reasoning failures, identification of sources of unreliability,
and the development of techniques to enhance the reliability of reasoning models.

2 Quantifying sentence importance

Some sentences matter more than others, but which ones matter most depends on how we define and
measure importance. We frame sentence-level importance as a question of counterfactual influence:
how does including or excluding a sentence affect subsequent steps and the model’s final output?

2.1 Model and dataset

Our analyses of sentence importance are based on the DeepSeek R1-Distill Qwen-14B model (48
layers) [[DeepSeekl [2025]]. We used a temperature of 0.6 and a top-p value of 0.95. We focus on the
MATH dataset [Hendrycks et al., 2021]]. Our analysis hinges on variability in final responses, so we
target 20 challenging but doable questions that are correctly solved 25-75% of the time, identified by
testing on 1,000 problems 10 times each. For each selected problem, we generated one correct and
one incorrect reasoning trace, producing 40 responses. The average response is 144.2 sentences (95%
CI: [116.7, 171.8]) and 4208 tokens (95% CI: [3479, 4937]). We focus only on sentences before the
model has converged on an answer (i.e., after which it gives the same response in >98% of resamples).
In Appendix B} we provide results from applying our techniques to the R1-Distill-Llama-8B model.

2.2 Forced answer importance

Earlier work has measured sentence importance by forcing a model to answer before completing its
reasoning trace [Lanham et al., 2023a]]. We compared our approach to this existing technique: For
each sentence in a CoT, we interrupt the model and append text, inducing a final output (‘‘Therefore,
the final answer is \boxed{”). This is done 100 times at each sentence position.

2.3 Importance via resampling

A limitation of the forced-answer approach is that a sentence .S may be necessary for some final
answer but is consistently produced by the LLM late in the reasoning trace (e.g., a reliable arithmetic
statement). This means that forced answer accuracy will be low for all sentences before .S, precluding
earlier step importance from being assessed.

Our approach evaluates importance by examining how a sentence may guide downstream sentences.
Consider a rollout consisting of sentences S7, So, ..., S;, ..., Sy and a final answer A. We can use
resampling to capture the extent sentence S influences A. Specifically, for a given sentence S;, we
generate a distribution over final answers by generating 100 rollouts both without sentence .S; (the base
condition, with rollouts of the form Sy, S, ...,S5;_1,T;,...,Tn, A’Si), and another distribution with
sentence S; (the intervention condition, with rollouts of the form Sy, Sa, ..., S;-1, 54, ..., Sum, As,).
To assess the utility of resampling, we first conducted a brief case study.

2.4 Case study

We first investigate the efficacy of our sentence importance technique by applying it to one problem:
“When the base-16 number 666661¢ is written in base 2, how many base-2 digits (bits) does it have?”
(MATH Problem 4682; see Appendix [C.] for the CoT transcript). The resampling data shows
that from sentences 6-12, expected accuracy steadily declines, but sentence 13 causes accuracy to
drastically increase (indicated by the navy and red circles in Figure ZJJA).

The large accuracy fluctuation motivates inspection of this part of the CoT. The model initially
considers that 666661¢ contains five base-16 digits, and any base-16 digit can be represented with
four base-2 digits. Thus, the model considers the answer: 20 bits. However, this overlooks that 614
is 1104 rather than 01104 due to the leading zero. Interestingly, Sentence 12 mentions “checking if
there’s any leading zero that might affect the bit count,” yet Sentence 12 lowers the expected accuracy.
The uplift comes from Sentence 13, where the model decides to “calculate the value of 6666614 in

A. Sentence resampling B. Token resampling C. Paragraph resampling

1.0 ’UM”— 1.0 1.0
08 “WNNMW s s &M
0.6 ' |

9
9 0.6 061 |
I
p=}
&3 0.4 0.4 0.4

0.2 0.2 0.2

0.0 0.0 0.0

0 20 40 60 80 100 0 200 400 600 800 1000 0 20 40 60
Sentence index Token index Paragraph index

Figure 2: Accuracy over 100 rollouts at each (left) token, (middle) sentence, or (right) paragraph.
Navy and red circles border the most importance sentence (Sentence 13) and are plotted in each graph
as a reference. For the token graph, resampling was only done on the first 1,000 tokens of the CoT.

decimal” (see resample alternatives in Appendix [C.2). Downstream reasoning computes the decimal
value of 66666, and converts it to binary to arrive at the correct answer: 19 bits. The pivotal role of
Sentence 13 is instead missed if one examines forced-accuracy importance (Figure 2JA). This case
study provides initial evidence that our resampling-based strategy identifies key moments in a CoT,
where impactful plans are set or modified.

Further analyses show the efficacy of specifically examining sentences. The sentence-level resampling
data mirrors the patterns seen resampling tokens but at a fraction of the cost (Figure ZB). Resampling
paragraphs leads to meaningfully less resolution (Figure [JIC). Although future work may benefit from
defining reasoning steps at adaptive scales, the current results suggest that considering sentences
provides high resolution while being cheaper than tokens.

3 Consistent patterns in sentence importance

3.1 Sentence taxonomy

To more systematically test whether reasoning is characterized by key sentences with outsized impacts,
we organized sentences into different categories and measured their causal impacts. We adopted the
framework by [Venhoff et al.|[2025]], which describes distinct reasoning functions within a reasoning
trace. We define eight categories (see examples and frequencies in Appendix [D):

. Problem Setup: Parsing or rephrasing the problem

. Plan Generation: Stating or deciding on a plan of action, meta-reasoning

. Fact Retrieval: Recalling facts, formulas, problem details without computation

. Active Computation: Algebra, calculations, or other manipulations toward the answer

. Uncertainty Management: Expressing confusion, re-evaluating, including backtracking
Result Consolidation: Aggregating intermediate results, summarizing, or preparing

. Self Checking: Verifying previous steps, checking calculations, and re-confirmations

. Final Answer Emission: Explicitly stating the final answer

XN AW~

Each sentence in the analyzed response is assigned to one of these categories using an LLM-based
auto-labeling approach (detailed in Appendix [E). Categories that rarely appear are omitted from the
figures below. Residual-stream probes accurately distinguish categories (see Appendix [F).

3.2 Counterfactual importance

We additionally formalize our approach to quantifying importance in a manner that can be applied to
any problem, including ones with any number of possible outcomes. We present two measures:

1. Resampling importance. We can compute the KL Divergence between the final answer
distributions in the two conditions, i.e., importance, := Dxy [p(A%,)||[p(As,)], providing
a scalar measure of how much sentence S; changes the answer. We call this resampling
importance. We include € = 10~ to avoid division by zero, but the below conclusions
remain consistent if instead performed using additive smoothing (o« = 0.5 or 1.0).

A. Sentence category effect B. Sentence category effect
3.5 0.45
3
3.0 ® c 040 @
) ©
£ 5
© 25 a 0.35
§- -g +
2.0 © 0.30
S g
g 15 £ o025
g ¢
0.20
1.0 ‘ + ‘ 3 PN
© 0.15
0.5 '
0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6
Normalized position in trace (0-1) Normalized position in trace (0-1)
@ Active Computation Fact Retrieval #1 Plan Generation # Result Consolidation %1 Uncertainty Management

Figure 3: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance, per the resampling method, plotted against the sentence category’s mean position in
the reasoning trace. Only the 5 most common sentence types are shown (see Appendix [H.

2. Counterfactual importance. The problem with resampling importance is that if 7; is
identical or similar to .S; then we do not get much information about whether S; is important
or not. Therefore, we write S % T if two sentences .S and 7' are dissimilar, defined as
having embeddings with a cosine similarity less than the median value across all sentence
pairs in our dataset (see Appendix [G]for details). Therefore, we can define counterfactual
importance by conditioning on T; % Sj; i.e., importance := Dy [p(A%, |T; % S;)||[p(As,)].

Because we resample all steps after a given sentence S;, we avoid the aforementioned limitation of
forced-answering. We also provide empirical evidence that the principled counterfactual importance
definition in 1-3 above is useful, by comparing it to the resampling importance in Appendix[[} As a
comparison, we also evaluate forced answer importance based on this KL divergence strategy.

3.3 Results

Plan generation and uncertainty management (e.g., backtracking) sentences consistently show
higher counterfactual importance than other categories like fact retrieval or active computation (see
Figure[3B). This supports the view that high-level organizational sentences anchor, organize, and steer
the reasoning trajectory. These findings deviate from the analysis of forced answer importance, which
instead implicates active computation as producing the greatest distributional shifts (Figure[3]A). The
forced-answer approach entirely neglects the importance of planning that influences other sentences,
which we argue is more meaningful for understanding the trajectory of a reasoning trace.

4 The mechanistic roots of importance

We hypothesize that important sentences may receive heightened attention from downstream sentences.
Although attention weights do not necessarily imply causal links (see Section 5)), heightened attention
is a plausible mechanism by which important sentences influence subsequent sentences. We conjecture
further that a high focus on important sentences may be driven by specific attention heads, and by
tracking such heads, we may pinpoint key sentences.

We assessed the degree different heads narrow attention toward particular sentences. First, for each
reasoning trace, we averaged each attention head’s token-token attention weight matrix to form a
sentence-sentence matrix, where each element is the mean across all pairs of tokens between two
sentences. Based on each attention matrix, we computed the mean of its columns below the diagonal
to measure the extent each sentence receives attention from all downstream sentences; averaged
only among pairs at least four sentences apart to focus on distant connections. This generates a
distribution for each head (e.g., Figure[d]A), and the extent each head narrows attention toward specific
sentences can be quantified as its distribution’s kurtosis (computed for each reasoning trace, then

A. x10-3 Layer 36 attention heads B. Histogram of attention head
77 o vertical score kurtoses

o | ;
o 67 2 Head 6 Head 6 1
O . . 80
@ 54 so !‘ | matrix vertical
IS s i, scores 60 -
€ 1=
3 100 S
© S 401
©
=
E 20 A

0 J

0 10 20 30 40
Sentence position Kurtosis

Figure 4: A. Lines show the vertical attention scores for each sentence by the 40 different heads in
layer 36. Head 6 has been highlighted as a receiver head, and its corresponding attention weight
matrix is shown for reference. Its prominent spikes cause the distribution to have a high kurtosis. B.
Histogram of these kurtosis values across all attention heads, median across all reasoning traces.

averaged across traces). Plotting each head’s kurtosis reveals that some attention heads strongly
narrow attention toward specific, possibly important, sentences in the reasoning trace (Figure [4B).

4.1 The identification of receiver heads

We refer to attention heads that narrow attention toward specific sentences as “receiver heads”. These
heads are more common in later layers (Appendix [J)). To formally assess the existence of receiver
heads, we tested whether some attention heads consistently operate in this role by measuring the
split-half reliability of heads’ kurtosis scores. We found a strong head-by-head correlation (r = .84)
between kurtosis scores computed for half of the problems with kurtosis scores for the other half
of problems. Thus, some attention heads consistently operate as receiver heads, albeit with some
heterogeneity across responses in which heads narrow attention most.

Receiver heads usually direct attention toward the same sentences. Among the 16 heads with the
highest kurtoses, we computed the sentence-by-sentence correlation between the vertical-attention
scores for each pair of heads; calculated separately for each reasoning trace, then averaged. This
produced an large correlation (mean r =.56). Thus, receiver heads generally attend the same sentences
(for reference, the average correlation among any heads is r = .35). This convergence across receiver
heads is consistent with the existence of sentence importance, which these heads identify.

Attentional narrowing toward particular sentences may be a feature specifically of reasoning models
that enhances their performance. Comparing R1-Distill-Qwen-14B (reasoning) and Qwen-14B (base)
suggests that the reasoning model’s receiver heads will narrow attention toward singular sentences to
a greater degree (Appendix [K). Furthermore, ablating receiver heads leads to a greater reduction in
accuracy than ablating self-attention heads at random (Appendix [[J). Altogether, these findings are
consistent with receiver heads and thought-anchor sentences playing special roles in reasoning.

4.2 Links to counterfactual importance and sentence types

Plan generation and uncertainty management sentences consistently receive the most attention via
receiver heads (Figure[5), whereas active computation sentences receive relatively minimal attention
(ts > 4.0, ps < .001 per paired t-tests comparing the mean receiver-head score for the former two versus
the later two categories). These findings demonstrate a parallel between the receiver head findings
here and the earlier results on the sentence types yielding the highest counterfactual importance.

o x10~3 Receiver-head scores by sentence category

S 0.4

w0

®

o 0.34 o

<

o o)

9 0.2

g 8

E O-l 1 ;

: —_— ==

GJ 0.0 T T T T T

= Plan Fact Active Uncertainty Result
Generation : Computation Mgmt. Consolidation

Figure 5: The boxplot shows the average top-32 receiver-head score for each sentence type. The
boxes correspond to the interquartile range across different reasoning traces.

5 Sentence-sentence causal links

5.1 Approach

We next focused on how key sentences influence specific subsequent sentences. We used a sentence-
masking strategy, suppressing all attention (all heads) to a given sentence and examining how this
impacts future sentences, measured using the KL divergence between token logits with or without
masking. The overall effect on a future sentence is the average of its token log-KL divergences. We
normalize this score by subtracting the latter sentence’s average causal effect from all prior sentences.
Suppressing attention is mostly equivalent to omitting a sentence from a CoT, only differing in
positional embeddings; computing the causal graph as so can be done with LLM APIs that return
logits without exposing attention. Appendix [M]provides pseudocode for generating the causal graph.

Our masking approach assumes (i) token logits capture a sentence’s semantic content and (ii)
masking sentences does not problematically induce out-of-distribution behavior. We evaluated these
assumptions by correlating the sentence-sentence scores with those from an alternative strategy
based on our counterfactual resampling method, which assesses how resampling .S; with T; (S % T))
influences the likelihood of S; appearing. This measure positively correlates with the scores from the
masking- & logits-based strategy (detailed further in appendix [N), suggesting that logits indeed track
semantics despite simulating out-of-distribution behavior. We continue with the sentence-masking
approach because it requires ~100x less compute than resampling, increasing scalability.

5.2 Case study

We begin with a small-scale investigation to provide intuition for our sentence-sentence measure and
motivate more systematic tests. We continue our initial case study (Section[2.4), but here, we focus on
three local maxima in the sentence-masking graph (Figure[6), which align closely with the sentences
implicated as important by receiver-heads (see further details on the case study in Appendix [C.3):

* (Sentences: 12 — 43) After suggesting the answer “20 bits”, the model decides to begin
verifying it (Sentence 12). Verification leads to a different solution, “19 bits” (Sentence 43).
Between these key sentences, most of the intermediate text is performing arithmetic.

* (Sentences: 44 — 65) Noticing the discrepancy (Sentence 44), the model decides to check
its calculations. It finds that they are correct, and the discrepancy remains (Sentence 65).

* (Sentences: 12 — 66) The model realizes that its initial suspicion about leading zeroes
(Sentence 12) is justified and states that this is the reason for the discrepancy (Sentence 66).

These connections point to an interpretable scaffold reflecting computations on the pursuit of interme-
diate results, the execution of self-correction subroutines, and the synthesis of prior statements.

“How many bits are in the base-16 number 66666,
when written in binary?”

0 4
[12] Decide to verify initial solution (20 bits)
101
20 i
" [32] Decimal computation complete
S ' (66666,5) = 419,430
pr "
‘o 301 H !
o i
[oX i
ot ¥ 143 & 44] Identify 19 vs.
c 401 11(12, 43) i / 20 bits error
] -.:::::::::_ W
qc) EI - < [46] Restart decimal
v o | i L, computation
EE Confirm decimal
i computation
60 1 H e e R R Return to 19
i vs. 20 bits error
F |} <= [66] Explain
, i prior 20 bits
701 - solution

0 10 20 30 40 50 60 70
Sentence position

Figure 6: For the correct-answer CoT of Problem #4682, the matrix shows the effect of masking one
sentence (x-axis) on a future sentence’s logits (y-axis). Darker colors indicate higher values.

5.3 Open source interface

We released an open source interface (thought-anchors.com) for visualizing reasoning traces and
comparing alternative rollouts. We show our proof-of-concept interface in Figure[T[C, where important
sentences are represented by larger nodes and causal connections between sentences are shown with
dashed gray lines. The tool aims to benefit interpretability and unwanted behavior debugging.

6 Systematic differences in sentence-sentence relationships

The case study demonstrates that pivotal moments within a CoT — e.g., where a conclusion is posed,
where a decision is made about the next steps to answering a question, or where a discrepancy with
earlier information is identified — are sensitive to historic information in the CoT and/or exert impacts
far downstream. We next investigated how causal graphs may shed light on questions about reasoning
in LLMs generally. Specifically, we ask: How many examining sentence-sentence links shed light on
model confidence during reasoning? Relatedly, why do some problem domains like mathematics
display stronger uplift in reasoning compared to non-reasoning models?

We hypothesize that strong linkages between nearby sentences reflect a coherent logical flow and
well-formed plan, so each sentence causes the next, whereas distant linkages reflect uncertainty and
backtracking. Despite occasional long-range connections, we further hypothesize that successful
mathematical CoTs are specifically characterized by strong close links between sequential sentences,
whereby planning statements sharply structure the CoT. Domains related to mathematics may uniquely
lend themselves to such firmly-structured reasoning, whereas CoTs for other topics (e.g., history or
biology) may solve problems principally by scanning a wide latent space in a less structured fashion.

6.1 Methods

We pivoted to analyzing MMLU problems [Hendrycks et al.|[2020], so that we could contrast problem
domains. We also switched to Qwen3-30b-a3b, so that we could leverage a serverless LLM provider
that outputs token logits, which allowed scaling up our analysis to thousands of CoTs. We ran
Qwen3-30b-a3b in non-reasoning mode on all 15,638 MMLU questions to identify challenging

https://www.thought-anchors.com

problems where non-reasoning accuracy is under 50% (per answer logits). This corresponds to 3,651
problems, and for 2,492 of these questions, the model answers correctly when using reasoning at
least once across ten passes. We computed each correct CoT’s causal graph (Msentences = 90.1).

We compared graphs on the strength of their causal links at different distances between sentences.
We specifically computed the mean attention-suppression effect at distance k for each graph (m x m
sentences) for all k < 7. This corresponds to the mean of a matrix’s k-th subdiagonal. We consider
subdiagonals only up to 7 to reduce noise by ensuring that the mean is computed among an adequate

number of elements (e.g., the m-th subdiagonal would be just the single bottom-leftmost element).

6.2 Results

The distance of causal effects tracks question difficulty. Computing correlations within-subject,
we find that questions with high average accuracy elicit CoTs with stronger close-range links and
weaker long-range links (Figure[7A). In addition, subjects where average accuracy is high overall
tend to produce CoTs with stronger close links (r = .44, p < .001; Figure [7B) and weaker long
links (r = —.54,p < .001 Figure[7[C). The strongest levels of accuracy were seen in problems
requiring mathematical thinking (e.g., mathematics & physics). As hypothesized, these areas also
yielded CoTs with stronger close-range connections and weaker long-range connections (two-sample
t-test |¢t|s > 10, ps < .001; Figure). Although these analyses do not model plan generation and
uncertainty management (thought anchors) sentences directly, the present findings speak to their
potential structural roles and overall shed light on the nature of successful reasoning.

Within-Subject Correlation with Reasoning Accuracy © Math, Physics, & Logic °
0.4 5 161 o Life Sciences
(4 154 © Humanities/Social
= £ 727 == Trend (r=.44,p<.001) o
- 0.24 o 1.4 e ©
i) 2
® G 131 o °
- v © o 8 e_—-
E 001----------2-3AE R\ et e e 12 o PR Lo
S ° ° e o ° 8
[] i —_—m @
c c Ml o 5§ B ® 0, coeo
8 —-0.21 © - o 00 e ©
s ’ Math, Physics, & Logic g 1.0 1 ®
Life Sciences 0.9
- . g [©]
Humanities/Social
=0.44, \ \ \]] \]]] y T T T T T T
1 s 10 15 20 25 30 35 40 45 50 40% 50% 60% 70% 80% 90% 100%
Distance k Reasoning Accuracy
] Close-range (k=1 o0r2 Long-range (k = 16-64
0.050 ° ge () g-range ()
o o o
=
$ 0.0451 2.0 8 0.12
= o, ° % g
) S~ =
0.040 1 ~< o] 5 0.10 °
@ [~.o00 ©° o g ©° L 8 8 °
2 © e o o v o
o 0.0351 1) = 0.08
© o S~ o] © 8
; S~ I5) @ g
& 0.030 S~ 8 10 0.06 8
=] (&) O\\\\ ° c
% 0.0254 © Math, Physics, & Logic % © ° \‘O S 0.04
[} O Life Sciences] ° Y
= 0.020{ © Humanities/Social ® o 0.02
== Trend (r=-.54,p<.001) Q@ °
0.015 T T T T T T T 0.0 0.00
40% 50% 60% 70% 80% 90% 100% Math, Life Humanities/ Math, Life Humanities/
. Physics, Sciences Social Physics, Sciences Social
Reasoning Accuracy & Logic & Logic

Figure 7: A. For each distance k, we computed the correlation between a question’s average k-
distance causal effect in one CoT and the question’s mean reasoning accuracy across ten CoTs. B.
& C. Scatterplot shows each subject’s average close-range (k = 1-2) and long-range (k = 16-64)
was plotted against its average reasoning accuracy. D. Box-plots showing the spread of average
close-range and long-range causal effects for different question domains; each point represents one
CoT, and black circles represent means.

7 Related work

Reasoning advances and unfaithfulness in LLMs. CoT reasoning, optimized using reinforcement
learning, has driven major capabilities improvements in large language models [Wei et al., [2023| Nye
et al.,[2021} |Reynolds and McDonell, [2021]].

This reasoning paradigm introduces novel safety challenges. Experiments inducing unfaithful
reasoning have led some to raise concerns about the interpretability of CoT text [Lanham et al.| 2023b
Chen et al.} 2025], although others have argued that CoT text generally is a meaningful representation,
particularly for difficult tasks [Korbak et al.,[2025]]. By showing how sentence types, categorized
based on their text, differ in their resampling and receiver-head importance, our findings endorse the
meaningfulness and interpretability of CoT text.

Importance of individual steps. A variety of prior techniques that can be used for CoT interpretabil-
ity have been developed, and these likewise have suggested that a subset of steps disproportionately
drive the final answer — e.g., findings based on Shapley values [Gao} [2023[], ROSCOE metrics
[Golovneva et al., 2023]], gradient-based scores [Wu et al., [2023]], and resampling at fork tokens
[Bigelow et al., [2024]]. Complementing these, our approach provides a more principled framework
for understanding how reasoning traces are constructed around key sentences.

8 Discussion and Limitations

This work presents initial steps towards a principled decomposition of reasoning traces with a focus
on identifying thought anchors: sentences with outsized importance on the model’s final response,
specific future sentences, and downstream reasoning trajectory. We have also begun unpacking the
attentional mechanisms associated with these important sentences. We expect that understanding
thought anchors will be critical for interpreting reasoning models and ensuring their safety.

While some research raises valid concerns that CoT text can be unfaithful to the model’s underlying
computation [Lanham et al.l 2023b| |Chen et al., 2025]], our results show CoT text is mechanis-
tically relevant and interpretable. For example, sentences categorized as plan generation and
uncertainty management consistently exhibit higher counterfactual importance in our resampling
analyses and receive more focused attention from receiver heads. This demonstrates a link between
what a sentence says and its functional role in the computation, and this type of correspondence
supports arguments on the value of CoT legibility [Korbak et al.| 2025]].

A limitation of our resampling approach is its computational cost. We resampled 100 times per
sentence to achieve fairly precise estimates (in terms of final-answer accuracy, 95% CI corresponds
to at worst 10%), which was sufficient to identify pivotal moments in the case study (Figure).
However, for analyses focusing on aggregate patterns across many CoTs, fewer resamples for any
one CoT may suffice. Future work could develop adaptive resampling strategies that allocate the
computational budget to pivotal moments in the trace, maximizing precision while minimizing cost.

We view this as preliminary work. Our analyses require refinement to fully grapple with how
downstream sentences may be overdetermined by different trajectories in a reasoning trace or
independent sufficient causes. Additionally, we do not formally examine the role of error correction.
Our receiver-head analyses are confounded by a sentence’s position in the reasoning trace (see
Appendix [C.4). Further, our attention-suppression work is limited because it effectively requires the
model to process out-of-distribution information.

Despite these limitations, we believe that we have demonstrated that our metrics are an advance on
prior work, interrupting models and forcing final answers. The surprising degree of shared structure
we have found across our three methods illustrates the potential value of future work in this area and
points to the possibility of more powerful interpretability techniques to come.

Author Contributions

Both first authors, Paul C. Bogdan and Uzay Macar, contributed to the research, engineering, and
writing of the paper. Neel Nanda was the main supervisor and provided feedback and guidance
throughout the project. Arthur Conmy proposed the black-box resampling method for measuring the
importance of sentences and also provided feedback and guidance throughout the project.

10

Acknowledgments

This work was conducted as part of the ML Alignment & Theory Scholars (MATS) Program. We
would like to thank Ivan Arcuschin, Constantin Venhoff, and Samuel Marks for helpful discussions
and feedback. We particularly thank Stefan Heimersheim for his valuable feedback and insightful
suggestions, including ideas for experimental approaches that helped strengthen our analysis and
contributed to the clarity of our presentation. We also thank members of Neel Nanda’s MATS stream
for engaging in brain-storming sessions, thoughtful questions during our presentations, and ongoing
discussions that helped shape our approach.

References

Ivan Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and
Arthur Conmy. Chain-of-thought reasoning in the wild is not always faithful, 2025. URL
https://arxiv.org/abs/2503.08679.

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y. Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the
risks of promoting obfuscation, 2025. URL https://arxiv.org/abs/2503.11926,

Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text
generation, 2024. URL https://arxiv.org/abs/2412.07961,

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan
Leike, Jared Kaplan, and Ethan Perez. Reasoning models don’t always say what they think, 2025.

DeepSeek. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948,

Leo Gao. Shapley value attribution in chain of thought, 2023. https://www.lesswrong.com/
posts/FX5JmftqL2j6K8dn4/shapley-value-attribution-in-chain-of-thought,

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks, 2021. URL https://arxiv.org/abs/2106.02997.

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,
Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal
abstraction: A theoretical foundation for mechanistic interpretability, 2025. URL https://arxiv.
org/abs/2301.04709.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning,
2023. URL https://arxiv.org/abs/2212.07919,

Goodfire. Under the hood of a reasoning model. https://www.goodfire.ai/blog/
under-the-hood-of-a-reasoning-model, 2025. Accessed: May 15, 2025.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https://arxiv.
org/abs/2305.00586.

Stefan Heimersheim and Jett Janiak. A circuit for python docstrings in a 4-layer attention-
only transformer, 2023. https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
a-circuit-for-python-docstrings-in-a-4-layer-attention-only.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

11

https://arxiv.org/abs/2503.08679
https://arxiv.org/abs/2503.11926
https://arxiv.org/abs/2412.07961
https://arxiv.org/abs/2501.12948
https://www.lesswrong.com/posts/FX5JmftqL2j6K8dn4/shapley-value-attribution-in-chain-of-thought
https://www.lesswrong.com/posts/FX5JmftqL2j6K8dn4/shapley-value-attribution-in-chain-of-thought
https://arxiv.org/abs/2106.02997
https://arxiv.org/abs/2301.04709
https://arxiv.org/abs/2301.04709
https://arxiv.org/abs/2212.07919
https://www.goodfire.ai/blog/under-the-hood-of-a-reasoning-model
https://www.goodfire.ai/blog/under-the-hood-of-a-reasoning-model
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://arxiv.org/abs/2103.03874

Tomek Korbak, Mikita Balesni, Elizabeth Barnes, Yoshua Bengio, Joe Benton, Joseph Bloom, Mark
Chen, Alan Cooney, Allan Dafoe, Anca Dragan, et al. Chain of thought monitorability: A new and
fragile opportunity for ai safety. arXiv preprint arXiv:2507.11473, 2025.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilé Lukosiate, Karina
Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson, Sam
McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Timothy
Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan Brauner,
Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought reasoning,
2023a. URL https://arxiv.org/abs/2307.13702.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in
chain-of-thought reasoning. arXiv preprint arXiv:2307.13702, 2023b.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.pub/
2025/attribution-graphs/biology.html.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2021.

Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable bases. https:
//www.transformer-circuits.pub/2022/mech-interp-essay, 2022.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.

OpenAl. ol: Introducing our first reasoning model. https://openai.com/01/, 2024. Accessed:
2025-05-15.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm, 2021.

Rohin Shah, Alex Irpan, Alexander Matt Turner, Anna Wang, Arthur Conmy, David Lindner, Jonah
Brown-Cohen, Lewis Ho, Neel Nanda, Raluca Ada Popa, Rishub Jain, Rory Greig, Samuel Albanie,
Scott Emmons, Sebastian Farquhar, Sébastien Krier, Senthooran Rajamanoharan, Sophie Bridgers,
Tobi [jitoye, Tom Everitt, Victoria Krakovna, Vikrant Varma, Vladimir Mikulik, Zachary Kenton,
Dave Orr, Shane Legg, Noah Goodman, Allan Dafoe, Four Flynn, and Anca Dragan. An approach
to technical agi safety and security, 2025. URL https://arxiv.org/abs/2504.01849.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting, 2023. URL
https://arxiv.org/abs/2305.04388.

Constantin Venhoff, Ivan Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. In Workshop on Reasoning and
Planning for Large Language Models, 2025.

12

https://arxiv.org/abs/2307.13702
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2501.19393
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://openai.com/o1/
https://arxiv.org/abs/2504.01849
https://arxiv.org/abs/2305.04388

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022. URL

https://arxiv.org/abs/2211.00593

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903,

Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju. Analyzing
chain-of-thought prompting in large language models via gradient-based feature attributions, 2023.
URL https://arxiv.org/abs/2307.13339,

13

https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2307.13339

A Evaluating importance (KL) while smoothing

The identified link between sentence’s category and its forced-answer or counterfactual importances
were also measured while smoothing the final-answer distribution associated with each sentence.
Smoothing was performed when computing the KL divergence between the two distribution and
constitutes replacing the € = 10~ term (originally used to avoid division by zero) with o = 1.0
(Laplace smoothing) or o« = 0.5 (smoothing with Jeffrey’s prior).

Let p(A%,) and p(As,) be the empirical distributions over a set of K possible final answers, .A, derived
from N rollouts (e.g., N = 100). Let Cs (a) and Css, (a) be the observed counts for a specific answer
a € Ain the intervention and base conditions, respectively, such that » 4 C§. (a) = N. Additive
smoothing with a parameter « is applied to derive smoothed probabilities, p,, and q,, from these
counts: . (a) + Co.(a) + o
S S;
Pl =N Ra M =N Ra
The smoothed KL divergence, Dg; , is then computed using these non-zero probabilities:

Dg [p(A%)||p(As,)] = > pala) log (pa(a))

acA Qo (a)

This method replaces the use of a small € floor. The smoothing parameters used are o = 1.0 (Laplace
smoothing) and « = 0.5 (Jeffreys prior).

With either level of smoothing, the same patterns linking importance and sentence category emerge
as initially reported without smoothing (Figure3)). Specifically, active computation sentences yield
higher forced answer importance than plan generation and uncertainty management, but the reverse
is true when examining counterfactual importance based on the resampling method (Figure 8.

B Generalizing to an alternative reasoning model

B.1 Measuring counterfactual influence

To assess the generalizability of our counterfactual importance findings, we replicated our resampling
methodology on R1-Distill-Llama-8B, applying the same experimental parameters (e.g., temperature
= 0.6 and top-p = 0.95) used for R1-Distill-Qwen-14B. We collected 100 rollouts for 20 correct and
20 incorrect base solutions using the identical question set described in Section 2]

The resampling accuracy trajectories for R1-Distill-Llama-8B (Figure[9) demonstrate patterns that
are similar to those observed in R1-Distill-Qwen-14B (Figure [2). Specifically, we observe similar
characteristic accuracy fluctuations throughout the reasoning traces, with notable spikes and dips
occurring at sentences corresponding to critical reasoning transitions.

Figure|10[shows that R1-Distill-Llama-8B exhibits similar sentence category effects whereby plan
generation and uncertainty management sentences demonstrate higher counterfactual importance
compared to active computation and fact retrieval sentences (see Figure [3|for R1-Distill-Qwen-14B).

This cross-model validation supports our claim that reasoning traces are structured around high-level
organizational sentences rather than low-level computational steps. The consistency of counterfactual
importance patterns suggests that our sentence-level attribution framework captures fundamental
properties of chain-of-thought reasoning that generalize beyond specific model implementations.

B.2 Attention aggregation

R1-Distill-Llama-8B displayed receiver-head patterns largely consistent with those of R1-Distill-
Qwen-14B. The histogram of attention heads’ vertical-attention scores displays a right tail, indicating
that some attention heads tend to particularly focus attention on a subset of sentences (Figure [I2JA).
Interestingly, the R1-Distill-Qwen-14B receiver-heads tended to be more frequent in later layers (see
below, Figure ['1;9[), which was not evident in R1-Distill-Llama-8B (Figure E])

The R1-Distill-Qwen-14B and R1-Distill-Llama-8B receiver heads displayed consistent patterns
related to sentence types, such that plan generation, uncertainty management, and self checking

14

A. Laplace smoothing (a = 1.0)

Sentence category effect Sentence category effect
—~ 0.040
0.250 2
—_ ~ 0.035
g 0.225 3
= e
¢ 0.030
§ 0.200 g . {
0.025
£ o175 3 .
[® = 2
g 0150 g 0020
o 2 0015
T 0125 é '
o
5 0.100 —l— g 0010
S L 2
0.075 ‘ 8 0.005
0.20 0.25 0.30 0.35 0.40 0.45 0.20 0.25 0.30 0.35 0.40 0.45
Normalized position in trace (0-1) Normalized position in trace (0-1)
B. Smoothing with Jeffreys prior (a = 1.0)
Sentence category effect Sentence category effect
0.30 ;_I:
= : é’ 0.06
4 . g
g 025 £ o005 ®
c o
© o
5 020 @ £ 004
a - | *
E 7% 2
? o015 g 003
4 t
S]
@ % € 0.02 It
0.10 3
o
0.20 0.25 0.30 0.35 0.40 0.45 0.20 0.25 0.30 0.35 0.40 0.45
Normalized position in trace (0-1) Normalized position in trace (0-1)
41 Plan Generation Fact Retrieval @ Active Computation ¢ Uncertainty Management 4 Result Consolidation

Figure 8: This is a variant of Figure 3| now performed with smoothing. Smoothing was performed
using either (A) o = 1.0, Laplace smoothing, or (B) a = 0.5, Jeffreys prior.

A. Problem 330: Sentence accuracy by position B. Problem 6998: Sentence accuracy by position
(R1-Distill-Llama-8B) (R1-Distill-Llama-8B)
1.00 ‘::‘“ - sonare Peasoon i gy Resampling
"um Ssc s M pg Forced answer
> 0.75 5
o i
5 0.50
1S
Q
< 025
—e— Resampling
D001 H VadSmaseind Thab [Forced answer
0 20 40 60 80 100 0 20 40 60 80 100
Sentence index Sentence index

Figure 9: Accuracy over 100 rollouts at each sentence for (A) one correct and (B) one incorrect
base solution for R1-Distill-Llama-8B. Red dots mark significant spikes or dips. Local minima and
maxima sentences are annotated with category initials. Our analyses focus on the counterfactual
KL-divergence between sentences, but resampling accuracy is visualized here as it is more intuitive.

15

A. Sentence category effect B. Sentence category effect
(R1-Distill-Llama-8B) (R1-Distill-Llama-8B)
1.2
4.5 o
s {
g 40 ® £ 10
5 g
g 35 g 0.8
14 =
£ 3.0 3 0
- o 06
g 25 .g @&
b 20 4 € 04
: + 3
o
1.5 0.2
0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6
Normalized position in trace (0-1) Normalized position in trace (0-1)
@ Active Computation Fact Retrieval 4 Plan Generation + Result Consolidation % Uncertainty Management

Figure 10: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance for R1-Distill-Llama-8B, per the resampling method, plotted against the sentence
category’s mean position in the reasoning trace. Only the 5 most common sentence types are shown.

sentences received heightened attention; although visually, the differences to fact retrieval and active
computation may be less prominent, paired t-tests (paired with respect to a given response) showed
that plan generation and uncertainty management always significantly surpassed fact retrieval and
active computation (four paired t-tests: ps < .01).

No R1-Distill-Llama-8B results are provided for the attention suppression analysis, as that method was
principally used for the case study, and no new case study was performed for R1-Distill-Llama-8B.

A. Histogram of attention head B, Kurtosis of each attention head's
vertical score kurtoses vertical score
50 A 50 4
40 4 40 -
£ 301 3 30+
3 o
S] £
© 20+ 2 20+ :
ﬁ] g = Nu
] TEANTHIH EELUSAITH
10 s FTHTHH L BT HTEHHT
TH U BEB R LTI R L
0 o
0 10 20 30 40 0 5 10 15 20 25 30
Kurtosis Layer

Figure 11: The plots here show the vertical-attention score patterns associated with the R1-Distill-
Llama-8B data. A. This histogram shows the kurtosis values across all attention heads, median
across all reasoning traces; parallels Figure] based on the R1-Qwen-14B data. B. This scatterplot
shows the kurtosis of each head’s vertical-attention score, organized by layer. Figure [I9]is the
R1-Distill-Qwen-14B version of this figure, which showed an upward trend into later layers that is
not evident here.

C Case study details

C.1 Case study transcript

Below is a transcript of the model’s response used for the case study (Section [5.2). The first 74
sentences following <think> are shown. After this point, the model converged on 100% resampling
accuracy for all subsequent sentences.

0. (problem_setup): Okay, so I have this problem where I need to find out how many bits
the base-16 number 66666, has when it’s converted to base-2.

16

g x10-3 Receiver-head scores by sentence category

(9]

» e}

®

o 0.21 ©

7 o

]) 8 o

2 o) o o

2 0.14 6

0]_)

= —— i ==

©

2 0.0 T . . T r

= Plan Active Uncertainty Result
Generation Computation Mgmt. Consolidation

Figure 12: Based on the R1-Distill-Llama-8B data, the boxplot shows the average top-64 receiver-
head score for each sentence type. The boxes correspond to the interquartile range across different
reasoning traces. Figure [3]is the R1-Distill-Qwen-14B version of this figure; note that for the R1-
Distill-Qwen-14B figure, the top-16 heads were used. We found that for Llama 8B, examining the
top-64 heads yielded more pronounced differences, although the sentence types with the highest
scores remain the same.

1. (uncertainty_management): Hmm, let’s see.

O 0 39 N L B~

11.
12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

. (fact_retrieval): [remember that each hexadecimal digit corresponds to exactly 4 binary

digits, or bits.

. (plan_generation): So, maybe I can just figure out how many hexadecimal digits there

are and multiply by 4 to get the number of bits.

. (uncertainty_management): Let me check that.

. (fact_retrieval): First, the number given is 66666 in base 16.

. (active_computation): Let me count the digits: 6, 6, 6, 6, 6.

. (result_consolidation): That’s five digits in total.

. (active_computation): So, if each digit is 4 bits, then 5 digits would be 5x4=20 bits.
. (uncertainty_management): Wait, is that always the case?

10.

(fact_retrieval): I think so because each hex digit maps directly to 4 bits without any
overlap or sharing.

(result_consolidation): So, 66666, would be 20 bits in binary.

(uncertainty_management): But wait, I should make sure that this is correct by actually
converting the number or at least checking if there’s any leading zero that might affect the
bit count.

(plan_generation): Alternatively, maybe I can calculate the value of 66666;4 in decimal
and then find out how many bits that number would require.

(plan_generation): Let’s try that approach to cross-verify.

(fact_retrieval): So, to convert 666664 to decimal, I can expand it as follows:
(fact_retrieval): Each digit represents a power of 16.

(fact_retrieval): Starting from the right, the digits are 16°,16',162,163,16.
(fact_retrieval): So, the number is:

(active_computation): 6x16*+6x163+6x162+6x16'+6x16"
(plan_generation): Let me compute each term:

(fact_retrieval): First, 164 is 16x16x16x16.

(active_computation): 162 is 256, so 163 is 256x16=4096, and 16* is 4096x16=65536.
(active_computation): So, 6x65536=393216

(active_computation): Next, 163 is 4096, so 6x4096=24576
(active_computation): Then, 162 is 256, so 6x256=1536

17

26.
217.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.

42.

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.

(active_computation): 16 is 16, so 6x16=96
(active_computation): And 16° is 1, so 6x1=6
(result_consolidation): Now, adding all these up:
(active_computation): 393216+24576=417,792
(active_computation): 417,792+1536=419,328
(active_computation): 419,328+96=419,424
(active_computation): 419,424+6=419,430
(result_consolidation): So, 666664 is equal to 419,430 in decimal.

(fact_retrieval): Now, to find out how many bits this number requires, I can use
the formula for the number of bits needed to represent a number N in binary, which is
floor(loga(N)) + 1.

(plan_generation): So, let’s compute logs(419, 430).

(uncertainty_management): Hmm, I don’t have a calculator here, but I can estimate it.
(fact_retrieval): I know that 2'® =262,144

(fact_retrieval): 219 =524,288

(result_consolidation): So, 419,430 is between 2'® and 219.
(result_consolidation): Therefore, logs(419,430) is between 18 and 19.

(active_computation): The floor of that would be 18, so the number of bits is 18+1=19
bits.

(uncertainty_management): Wait, but earlier I thought it would be 20 bits because it’s 5
hex digits each being 4 bits.

(result_consolidation): Now, according to this, it’s 19 bits.
(uncertainty_management): There’s a discrepancy here.
(uncertainty_management): I must have made a mistake somewhere.
(self_checking): Wait, let me check my calculations again.
(uncertainty_management): Maybe I messed up the decimal conversion.
(fact_retrieval): Wait, 66666 in hex.

(plan_generation): Let me convert it step by step again.
(active_computation): 6x16%: 6x65536=393216
(active_computation): 6x163: 6x4096=24576
(active_computation): 6x162: 6x256=1536
(active_computation): 6x16': 6x16=96

(active_computation): 6x16°: 6x1=6

(active_computation): Adding them up: 393216424576=417,792
(active_computation): 417,792+1536=419,328
(active_computation): 419,328+96=419,424
(active_computation): 419,424+6=419,430.
(result_consolidation): That seems correct.
(result_consolidation): So, 419,430 in decimal.
(fact_retrieval): Now, let’s check 218 is 262,144, 219 is 524,288.

(result_consolidation): So, 419,430 is less than 524,288, so log2(419,430) is less
than 19.

(active_computation): So, floor(loga(419,430)) is 18, so number of bits is 19.

(uncertainty_management): But wait, when I thought about each hex digit being 4 bits,
5 hex digits would be 20 bits.

18

65. (uncertainty_management): So, why is there a difference?
66. (plan_generation): Ah, perhaps because leading zeros are not counted.

67. (fact_retrieval): So, when converting from hex to binary, each digit is 4 bits, but if the
leading hex digits are such that when converted to binary, they don’t add any leading zeros
beyond the 4 bits per digit.

68. (uncertainty_management): Wait, but 66666 in hex is 5 digits, so 5x4=20 bits.
69. (result_consolidation): But according to the decimal conversion, it’s 19 bits.

70. (result_consolidation): That suggests that when converted to binary, it’s 19 bits, not
20.

71. (uncertainty_management): So, which is correct?

72. (plan_generation): Wait, perhaps when converting 66666, to binary, it’s exactly 20 bits,
but the leading bits are zeros, so when counting the number of bits, we don’t count leading
ZEeros.

73. (fact_retrieval): Wait, but in the problem, it’s just asking how many bits it has when
written in base 2.

C.2 Case study: Sentence 13 alternatives

Sentence 13 (“Alternatively, maybe I can calculate the value of 666661¢ in decimal and then find out
how many bits that number would require.”) was found to have the highest counterfactual importance
among any sentence in the response (see Figure [2JA). Five alternative possible sentences resampled
at the sentence 13 position, marked by whether they eventually led to a correct or incorrect answer,
are as follows:

1. (x) Let me think. The first digit is 6, which in binary is 0110.

2. (V') Let me try converting the number to decimal first. ..

3. (x) Let me try converting the first few digits to binary to see how it goes.
4. (x) Let me think about the conversion process.

5. (V') Let me try converting the number step by step.

C.3 Receiver head and sentence-sentence case study findings

The presented techniques cover different aspects of attribution within a reasoning trace. Building on
the case-study conclusions from our resampling approach (section[2.4), we study the model’s CoT
here by focusing on receiver heads and sentence-sentence links (Figure (see above, Appendix [C]
for the full transcript).

C.3.1 Receiver heads

The trajectory toward the final correct answer can be understood as a series of computational chunks
(see flowchart in Figure[T3). First, the model prepares a formula for converting 666666 to decimal
(sentences 13-19). Next, the model computes the answer to that formula, finding that 66666, is
419,430 in decimal (sentences 20-33). The model subsequently converts that number to binary by
putting forth another formula and solving it, floor(log2(419,430)) + 1 = 19, to derive that the
answer is “19 bits” (sentences 34-41). The model then notes a discrepancy with the earlier 20-bit
solution (sentences 42-45). The model hence initiates new computations that verify that it computed
the decimal value of 666661¢ correctly (sentences 46-58) and that it computed the binary conversion
accurately (sentences 59-62). Equipped with this increased certainty about 19-bit answer, the model
discovers why its initial 20-bit idea was incorrect: “because leading zeros are not counted” (Sentence
66). This overall narrative is based on our analysis of attention patterns (section[d): Receiver attention
heads pinpoint sentences initiating computations or stating key conclusions, thereby segmenting the
reasoning trace into seemingly meaningful chunks (Figure[T3).

19

“How many bits are in the base-16 number 66666, when written in binary?”
Causal dependencies between sentences Chain-of-thought chunks

[0-3]: Prepareinitial approach

[12] Decide to verify initial solution (20 bits)

101 [4-12]: Pursue hexadecimal - binary heuristic (20 bits answer)

20 [12] “But wait, | should make sure this is correct”
[32] Decimal computation complete

g (66666,;) = 419,430 [13-19]: Prepare to compute the decimal value
S j [13]“Maybe | can calculate the value of 66666, in decimal and then find out
S 304 y how many bits that number would require.”
o
%
g) [43 & 44] Identify 19 vs
S 40 (12, 43) 20 bits error [20-33]: Compute decimal value
=
S . . <— [46] Restart decimal [32] “419,424+6=41¢
[} = computation

504

Confirm decimal [34-41]: Convert decimalto binary (19 bits answer)
H computation
60 L oy 2 Return to 19
- 122) - 1 vs. 20 bits error
L _________ <— [66] Explain — - -
70 (12, 66) b prior 20 bits [42-45]: Notice discrepancy with 20 bits answer
- solution
[43] “Now, according to this, it's 19 bits.”
0 10 20 30 40 50 60 70 [44] “T!

Sentence position

[46-59]: Recheck decimal conversion

@ x1073 Sentences (eceiving high narrow attention
S8 1461
- [20]1 [59-62]: Recheck binary conversion
c 6 | v [~64] [59] “That seems correct.”
2 [~42]f \
4
E)) [63-66]: Explain 19 vs. 20 bits discrepancy
g : Y :
g (= e — -
< 0 10 20 30 40 50 60

Sentence position [66] “Ah, perhaps because leading zeros are not counted.”

Figure 13: Case study: problem #4682 (correct). Red matrix shows the effect of suppressing one
sentence (x-axis) on a future sentence (y-axis). Darker colors indicate higher values. Bottom-left
line plot shows the average attention toward each sentence by all subsequent sentences via the top-32
receiver heads (32 attention heads with the highest kurtosis score). Flowchart summarizes the model’s
CoT with chunks defined around key sentences receiving high attention via receiver heads. Sentence
13 is emphasized as it has high counterfactual importance per the resampling method (see Figure[2A).

C.3.2 Attention suppression

Along with being organized into computational chunks, the reasoning displays a scaffold related to
sentence-sentence dependencies (Figure[I3). One piece of this structure is a self-correction pattern
involving an incorrect proposal, a detected discrepancy, and a final resolution. Specifically, the
model initially proposes an incorrect answer of “20 bits”, which it decides to recheck (sentence 12).
This leads to a discrepancy with the “19 bits” answer computed via decimal conversion (sentences
43 & 44). After rechecking its arithmetic supporting the “19 bit” answer, the model returns to
the discrepancy (sentence 65) and then produces an explanation for why the “20 bits” answer is
incorrect (sentence 66). This can be seen as a tentative CoT circuit, where two conclusions conflict
to produce a discrepancy, which in turn encourages the model to resolve the discrepancy. Within
this wide-spanning scaffold, there exist further dependencies, corresponding to verifying an earlier
computation. Specifically, the model finishes computing the decimal value of 6666616 as 419,430
(sentence 32), later decides to verify that decimal conversion (sentence 46), and finally confirms that
the original value is correct (sentence 59). This can be seen as further indication of CoT circuitry.

We identified these linkages based on the attention-suppression matrix (section [3), which contains
local maxima at these linkages (12 — 43, 43 — 65, 12 — 66; 32 — 46, 32 — 59). Notice that
many of the sentences pinpointed by the attention-suppression technique overlap with the sentences
receiving high attention from receiver heads. Adding to the receiver-head conclusions, the attention
suppression technique shows how information flows between these key sentences that structure the
reasoning trace.

C.4 Sentence position effects on receiver-head scores

A sentence’s position within the reasoning trace will tend to influence its measured receiver score.

20

As a reasoning trace progresses, the number of possible broadcasted sentences will necessarily
increase. For instance, by sentence 20, there might be only two broadcasted sentences (each receiving
50% of attention from sentences 21-29), whereas by sentence 100, there could be ten broadcasted
sentences (each receiving 10% of attention from sentences 101-109). As the sum of an attention
weight row will sum to 1 (at the token level), later sentences will distribute their attention across a
larger number of past sentences. This dilution of attention creates downward pressure on the receiver-
head scores of later sentences. This is the case even though a receiver head score extends through all
subsequent low-competition or high-competition periods. For example, broadcasting sentence 20 will
face limited competition from receiving sentence 21-29 attention and high competition for sentences
101-109, whereas broadcasting sentence 100 will exclusively face high competition, pushing its score
downward as broadcasting-sentence position increases.

There also exists a proximity effect on receiver-head scores that operates in the opposite direction of
the above effect. Although broadcasted sentences are attended by all subsequent sentences to some
degree, this will be more so the case for more recently subsequent sentences (e.g., receiving more
attention from a sentence 10 sentences downstream than one 20 sentences downstream). For sentences
late in the reasoning trace, the average distance to future sentences will be shorter. For example, if a
reasoning trace contains 120 sentences, then sentence 100 will be at most 19 sentences apart from
any given future sentence, whereas sentence 20 will be at most 99 sentences apart. To a degree, the
analyses in the report account for proximity effects by ignoring the 4 sentences immediately proximal
to a given sentence when calculating vertical-attention scores. However, this will not fully address
proximity effects.

We see no reason why the downward pressure of sentence position on receiver-head scores (attention
dilution) will be equal in magnitude to the upward pressure of sentence position (proximity effects).

For the preparation of the present report, we conducted exploratory analyses evaluating whether
the above confounding factors invalidate any presented finding, and we did not find evidence that
this is the case. Thus, rather than pursuing some technique to account for the above pressures (e.g.,
linearly weighing attention weight matrices based on their position), we opted to only account for
these factors in a minimal fashion by ignoring the attention among sentences just 4 sentences apart.

D Sentence taxonomy

Building on top of the framework presented by [Venhoff et al.| 2025]], we developed a taxonomy
consisting of eight distinct sentence categories that capture reasoning functions in mathematical
problem-solving. Each category represents a specific cognitive operation. The functions and examples
for each category are given in Table[I] Notably, the uncertainty management category includes
backtracking sentences.

The distribution of categories across our dataset as shown in Figure[T4]reveals that active computation
constitutes the largest proportion (32.7%), followed by fact retrieval (20.1%), plan generation
(15.5%), and uncertainty management (14.0%). The sequential structure of reasoning is reflected in
the rarity and positioning of problem setup (2.4%), which typically occurs at the beginning, and final
answer emission (0.7%), which predominantly appears toward the end of the reasoning process.

21

Table 1: Sentence taxonomy with reasoning functions in problem-solving

Category

Function

Examples

Problem Setup

Parsing or rephrasing the problem
(e.g., initial reading)

I need to find the area of a
circle with radius 5 cm.

Plan Generation

Stating or deciding on a plan of ac-
tion, meta-reasoning

I’ll solve this by applying the
area formula.

Fact Retrieval

Recalling facts, formulas, problem
details without computation

The formula for the area of a
circle is A = 7r2.

Active Computation

Algebra, calculations, or other ma-
nipulations toward the answer

Substitutingr = 5: A = wx
52 = 257.

Uncertainty Management

Expressing confusion, re-evaluating,
including backtracking

Wait, I made a mistake ear-
lier. Let me reconsider..

Result Consolidation

Aggregating intermediate results,
summarizing, or preparing

So the area is 25 square cm
which is approximately...

Self Checking

Verifying previous steps, checking
calculations, and re-confirmations

Let me verify: mr? =

52 = 25m. Correct.

T X

Final Answer Emission

Explicitly stating the final answer

Therefore, the answer is...

700

600

500

400

Count

300

200

100

Active
Computation

Distribution of sentence categories

Result
Consolidation

Plan
Generation

Uncertainty
Mgmt.

Self Problem
Checking

Final Answer

Setup Emission

Figure 14: Counts and frequencies of taxonomic sentence categories in our dataset.

E Prompt information

We used the following prompt with OpenAl GPT-40 (April-May, 2025) to annotate each sentence:

You are an expert in interpreting how LLMs solve math problems using

multi-step reasoning.

Your task is to analyze a chain-of-thought reasoning

trace, broken into discrete text sentences, and label each sentence with:

1. *xfunction_tagsx*x*:

2. x*xxdepends_on*x*:

One or more labels that describe what this sentence
is *doing* functionally in the reasoning process.

A list of earlier sentence indices that this sentence

directly depends on, e.g., uses information, results, or logic introduced

in earlier sentences.

This annotation will be used to build a dependency graph and perform causal

analysis, so please be precise and conservative:

22

only mark a sentence as

dependent on another if its reasoning clearly uses a previous sentence’s
result or idea.

Function Tags:

1. problem_setup: Parsing or rephrasing the problem (initial reading or
comprehension) .

2. plan_generation: Stating or deciding on a plan of action (often
meta-reasoning).

3. fact_retrieval: Recalling facts, formulas, problem details (without
immediate computation) .

4. active_computation: Performing algebra, calculations, manipulations
toward the answer.

5. result_consolidation: Aggregating intermediate results, summarizing,
or preparing final answer.

6. uncertainty_management: Expressing confusion, re-evaluating, proposing
alternative plans (includes backtracking).

7. final_answer_emission: Explicit statement of the final boxed answer or
earlier sentences that contain the final answer.

8. self_checking: Verifying previous steps, checking calculations, and
re-confirmations.

9. unknown: Use only if the sentence does not fit any of the above tags
or is purely stylistic or semantic.

Dependencies:

For each sentence, include a list of earlier sentence indices that the
reasoning in this sentence *uses*. For example:

- If sentence 9 performs a computation based on a plan in sentence 4 and a
recalled rule in sentence 5, then depends_on: [4, 5]

- If sentence 24 plugs in a final answer to verify correctness from sentence
23, then depends_on: [23]

- If there’s no clear dependency use an empty list: []

- If sentence 13 performs a computation based on information in sentence 11,
which in turn uses information from sentence 7, then depends_on: [11, 7]

Important Notes:

- Make sure to include all dependencies for each sentence.

- Include both long-range and short-range dependencies.

- Do NOT forget about long-range dependencies.

- Try to be as comprehensive as possible.

- Make sure there is a path from earlier sentences to the final answer.
Output Format:

Return a dictionary with one entry per sentence, where each entry has:
- the sentence index (as the key, converted to a string),
- a dictionary with:

- "function_tags": 1list of tag strings

- "depends_on": 1list of sentence indices, converted to strings

Here is the expected format:

{
lllll: {
"function_tags": ["problem_setup"],
"depends_on": [""]
},
n Il: {
"function_tags": ["plan_generation"],

"depends_on": ["3"]

23

}

n Il: {
"function_tags": ["fact_retrieval'],
"depends_on": []

}’

n Il: {
"function_tags": ["active_computation"],
"depends_on" . [||4n R ||5||]

},

n 4": {
"function_tags": ["uncertainty_management"],
"depends_on": ["23"]

}’

||32|’: {
"function_tags": ["final_ answer_emission"],
"depends_on": ["9, "30", "32"]

}’

3

Here is the math problem:
<PROBLEM>

Here is the full chain-of-thought, broken into sentences:
<SENTENCES>

Now label each sentence with function tags and dependencies.

F Sentence category probing

We trained a linear classifier to identify sentence categories based on activations. We employed a
multinomial logistic regression with L2 regularization (C' = 1.0) on the residual stream activity
from layer 47 (last layer) of R1-Distill-Qwen-14B. For evaluating accuracy, we implemented a
group-5-fold cross-validation that ensured examples from the same problem response remained in
either the training or testing set to prevent data leakage. We averaged the residual stream activity
across tokens to create sentence-level representations, whose dimensions were then standardized.
To address class imbalance in the training data, we employed balanced class weights. The model
demonstrated strong discriminative power across all reasoning categories, achieving a macro-F1
score of 0.71. The confusion matrix presented in Figure [I5]reveals high classification accuracies for
categories such as active computation (0.74), uncertainty management (0.79), and problem setup
(0.83), while showing some confusion between functionally related categories.

24

Sentence category classification from layer 47 activations

0.9
Active
Computation 0.74 0.08 0.04 0.01 0.07 0.05 0.01 0.00
0.8
0.13 0.67 0.05 0.05 0.03 0.03 0.04 0.00
0.7

Plan
Generation” 9:09 0.13 n 0.08 0.03 0.02 0.05 0.00 06

>
—
o Uncertainty
8 Mgmt. 0.01 0.03 0.08 0.79 0.01 0.07 0.00 0.00 0.5
Pt
S
ot CReSU't— 0.16 0.03 0.00 0.03 0.63 0.13 0.01 0.00 0.4
S onsol.
=
0.06 0.04 0.02 0.09 0.10 n 0.00 0.01 03
Problem 0.2
S - 0.06 0.06 0.02 0.02 0.02 0.00 0.83 0.00
etup
Final A 0.1
inal Answer
Emission” 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.85
Active ‘ Plan Uncertainty Result ‘ Problem Final Answer 00
Computation Generation Mgmt. Consol. Setup Emission

Predicted category

Figure 15: Confusion matrix showing the sentence category classification performance of a logistic
regression probe trained on activations from layer 47 of the R1-Distill-Qwen-14B model. Values
represent the proportion of examples from each true category (rows) classified as each predicted
category (columns). Diagonal elements indicate correct classifications.

G Embeddings model

We used all-MiniLM-L6-v2 with a maximum sequence length of 256 tokens and a hidden di-
mension of 384 as our sentence embeddings model from the sentence-transformers
and Gurevych| [2019] library. We picked a cosine similarity threshold of 0.8, which is the median
similarity value between all sentence removed (i.e., original sentence) and sentence resampled pairs
in our dataset.

H Additional resampling results

Figure [I6] presents mean counterfactual importances across all eight taxonomic categories for R1-
Distill-Qwen-14B, extending the main text results (Figure[3) which showed only the five most frequent
sentence types. The expanded view includes three additional categories with lower frequencies.
Problem setup sentences occur predominantly at trace beginnings (mean normalized position ~ 0.1)
with moderate-high counterfactual importance. Self checking sentences tend to occur in the second-
half of the traces and show lower counterfactual importance. Final answer emission sentences appear
late in traces (mean normalized position ~ 0.9) and show the lowest counterfactual importance. The
patterns observed in the five-category analysis remain consistent when examining the full taxonomy.

I Counterfactual versus resampling importance

The resampling importance metric introduced in Section[2.3] treats all resampled sentences as equally
informative, but different sentence types may exhibit varying degrees of overdetermination during
resampling. Overdetermination occurs when resampled sentences 7T; are frequently similar to the
original sentence S; (i.e., T; = S;), indicating that the reasoning context strongly constrains what can
be expressed at that position. We present empirical evidence that counterfactual importance is a more
nuanced measure by accounting for semantic divergence in resampled content.

25

A. Sentence category effect B . Sentence category effect

0.3 +

0.2

. * 4

0.1 +
0 i 0.0

Forced importance
N
Counterfactual importance

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized position in trace (0-1) Normalized position in trace (0-1)
@ Active Computation 4+ Final Answer Emission 4 Problem Setup Self Checking
Fact Retrieval @ Plan Generation & Result Consolidation “#® Uncertainty Management

Figure 16: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance for R1-Distill-Qwen-14B, per the resampling method, plotted against the sentence
category’s mean position in the reasoning trace. All sentence types are shown.

Some sentences are more overdetermined than others. Figure[T7|A shows that uncertainty management
and plan generation sentences produce semantically different alternatives in a large proportion of
resamples, while active computation and problem setup sentences show lower divergence rates.

The transition matrix in Figure[I7B shows how sentence categories change under resampling. For
instance, uncertainty management and active computation sentences are usually replaced by sentences
of the same category, whereas plan generation and fact retrieval sentences are more often resampled
into a variety of other categories.

A_ Fraction of semantically different resampled sentences B . Resampling transition probabilities between sentence categories
0.7
0.6
017 0.30 0.08 0.15 0.06 0.04 0.20 0.01
Plan Generation
{ . > Geners 014 004 | 027 | 030 005 006 013 001 05
5
S Uncertainty
{ . E Mgmt 0.04 0.04 0.03 0.55 0.06 0.20 0.02 0.07 04
©
o ult
013 0.06 0.02 0.11 L 0.14 0.05 0.19
Result Consol £ 030 03
I

0.05 0.03 0.11 0.14 0.01 0.01 0.00
0.1

0.06 0.01 0.00 0.11 0.12 0.18 0.00 0.53

Problem Setup

Final Answer
Emission

~ 0.29 0.08 0.01 0.05 0.11 0.34 0.04 0.08
Active Computation 02

Final Answer Emission
Plan Uncertainty Result Problem Final Answer
Generation Mgmt. ~ Consol Setup Emission

Comp

To category

Figure 17: (A) Fraction of semantically different resampled sentences by category, showing that
uncertainty management and plan generation sentences produce more divergent alternatives when
resampled. (B) Transition probabilities between original and resampled sentence categories.

These resampling behaviors create systematic differences between our counterfactual and resampling
importance metrics. Figure [I8 demonstrates that the relationship between the two metrics varies
substantially across sentences and sentence categories. The counterfactual importance metric aims to
address overdetermination by explicitly filtering for semantically different resamples, providing a
more targeted measure of causal influence. In contrast, the resampling metric potentially overestimates
the importance of sentences that consistently produce similar content when resampled.

26

Kurtosis of each attention head's
vertical score

60 -

40 A

Kurtosis

Layer

Figure 19: This scatterplot shows the kurtosis of each head’s vertical-attention score, organized by
layer. There is an upward trend across layers and a strong uptick among some late-layer heads.

Counterfactual vs. resampling importance by category

Active Computation Plan Generation Uncertainty Management
1.0 1.0 1.0 o 1.0 P
0.8 0.8 0.8 0.8 'jf
0.6 L 0.6 0.6 0.6

& t. 0.4 0.4]

Counterfactual (KL)
o
=

- - . PAT 0.4 .
02730 B7 " o s © 02 RIER S s 0.21 3% "
00 BF Wt & " V¥ . 0.0 0.0 B e ‘L o . 00 B & A&
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
Resampling (KL) Resampling (KL) Resampling (KL) Resampling (KL)

Figure 18: Comparison between counterfactual and resampling importance metrics across sentence
categories. Each point represents a single sentence and the dashed gray line is the y = z line.

However, the counterfactual importance metric can yield high-variance estimates when the number
of semantically divergent resampled sentences is low (e.g., < 10), as the conditional probability
estimates become less reliable with limited data. Alongside the limitations discussed in Section 8]
this represents another constraint of our approach that future work should investigate further.

J Additional receiver head information

Receiver heads — heads receiving high kurtosis scores — are more common in late layers (Figure[T9).
Examples of receiver heads are shown in Figure 20 showing how the highest kurtosis head consis-
tently narrows attention on particular sentences, and Figure 2] showing how there exist many heads
that narrow attention on particular sentences.

K Reasoning versus base model differences in receiver heads

Attentional narrowing toward particular sentences may be a feature specifically of reasoning models.
We submitted the reasoning traces to a base model version of Qwen-14B and identified receiver
heads. For both models, we sorted all sentences by their mean receiver-head score using the 16
attention heads with the highest kurtoses. The highest percentile sentences received greater attention
by the reasoning model - e.g., the highest-percentile sentences receive 1.8x more attention via top-16
heads in the reasoning model compared to the base model (Figure[22). Additionally, lower percentile
sentences receive less attention through the top-16 heads. This conclusion is somewhat tenuous, as
no base-model difference is seen when this result is tested using R1-Distill-Llama-8B. Nonetheless,
based on the Qwen-14B data, it appears the model has learned to narrow its attention toward particular
sentences.

27

All responses for layer: 42, head: 33

c ;g1591 (incorrect) 0#1591 (correct) ag2189 (incorrect) 0#2189 (correct)
5 -
i~ d
R LN n,
& S04 im 0 My i
) ™ 11y 25 A h
O lhil s] v
2 100 N 100 'y
g RN JLRHH 1
= | LA : |
@ f — " 150 + — ! 50 L
wn 0 50 100 0 50 100 150 0 25 50
c g2236 (incorrect) 0#2236 (correct) g2238 (incorrect)
° 7
% —'-! 254,
a 10 A 'I'i | 4
S [A 01 1y
g 20! re 75
= 1
n 0 25 50 0 10 20 0 25 50 75
c 0#330 (incorrect) #330 (correct) g3448 (incorrect)
14; _hg] I :N \
2 201 l"l;. i 50 ?P"h_ 254 ‘x"-.l
@ 1004 | ™
g ! 1 10 4 L B i gl 50 A | | I
9 1504 1§ 100 A {161 | I 1' .
@ s i . AL S 75 4
0 0 50100150 0 10 0 50 100 0 25 50 75
c #4164 (incorrect) #4164 (correct) #4682 (incorrect) #4682 (correct)
S 04 04, 0, 01
2 5] N " N H».
o h 50 || 504y 254! B
3 50 A “1! iy . ! E"n i I
1], i RN i
é 75 4 | |.:_‘v 100 | » 100 - n 50_| ':5
ng 100 1 L 150 A ; . '}'!I | i i h
n 0 255075100 0 50 100150 0 50 100 0 25 50
c #6596 (incorrect) #6596 (correct) #6998 (incorrect) #6998 (correct)
s 04 0, 0 0,
i N M 25 M, . N
S 50 My 50 , 504 I £
o H | I, 754 iy, 50 - B
% 100 - REN 100 \T 00 [[]m
£ ‘ il 1007 R 75 1 1A
n 0 50 100 0 50 100 0 255075100 0 25 50 7
Sentence position Sentence position Sentence position Sentence position

Figure 20: The attention weight matrices for the receiver head with the highest kurtosis score are
shown here for twenty of the forty responses (selected arbitrarily as the first twenty we processed).
The coloring was defined such that the darkest navy corresponds to values surpassing 99.5th percentile
value of each matrix. White is zero.

28

Attention weights for problem: #1591 (incorrect)

Layer: 42, Head: 19

c Layer: 42, Head: 33 Layer: 14, Head: 35

o 0 _P\ T 0

k] N Ty \F

8 504 i 50 4 i 504 ">

8 P.'L \'\\

< 100 A I HEE 100 A 100 A

[7] | AL P,

- Y \ N

< |44 it RN >

i 0 50 100 0 50 100 0 50 100

c Layer: 42, Head: 29 Layer: 43, Head: 21 Layer: 39, Head: 39

o 0 p 09 0.,

g g h B \'\

a 509 i 509 w, 50 N

Q A . 1

g 1004 |y 100 N, 100 A N

] { I LN

5 . . '

@ 0 50 100 0 50 100 0 50 100

c Layer: 45, Head: 0 Layer: 40, Head: 20 Layer: 36, Head: 6

S 09, 0~ 0 1

.g \.\ i I |

& 509 1 501 4} 50 I

o by i

£ 100 + . 100 4 N 100 (47

2 \\‘ !)!.‘ !l)

(] T T T —t T —t

i 0 50 100 0 50 100 0 50 100

c Layer: 34, Head: 17 Layer: 44, Head: 31 Layer: 43, Head: 35

o 0 'ﬂb 04, 0.

= P N

3 > n 1

2 50 A 50 9 i, 50 |+

@ & N it ‘

2 1004 Y, 100 B 100 |

9 Y i N I %

c LN .

@ 0 50 100 0 50 100 0 50 100

c Layer: 36, Head: 28 Layer: 45, Head: 1 Layer: 42, Head: 24

S 0 T 0, 01

= ™ N b,

[1 i .\ ‘ N

8 50 il 501 7 a 504

o t N ! F

£ 100 1 100 4 100 A | E

*GEJ i TN i i LoD

@ 0 50 100 0 50 100 0 50 100
Sentence position Sentence position Sentence position

Layer: 36, Head: 25

50 A

100 A

i i
0 50 100

a

Layer: 44, Head: 33

50 A

100 A

Tl
0 50 100

Layer: 44, Head: 35

50 A

100 A

0

b
50 -

100 A

0

50 100

oI_ayer: 41, Head: 2

i

B
'
|

I
50 100

Layer: 45, Head: 28

50 A

100 4

0

50 100

Sentence position

Figure 21: The attention weight matrices for response #1591 (incorrect) are shown here for the
20 attention heads yielding the highest kurtosis score across all responses. No effort was taken to
“cherry-pick” responses showing prominent receiver head patterns; we are showing #1591 (incorrect)
because it corresponded to the alphabetically earliest problem number among the ten problems
analyzed (correct/incorrect chosen randomly). The coloring was defined such that the darkest navy
corresponds to values surpassing 99.5th percentile value of each matrix. White is zero.

Top-16
rec-head score

1

x1073 73)?
—— R1 Qwen 14B 3
—— Base Qwen 14B >
3
<)
: ; . : % 0.5+ . . :
0 500 1000 1500 o 0 500 1000 1500

Sentence rank, sorted by receiver-head score

Figure 22: The navy and red lines on the left show the receiver-head scores assigned to sentences,
averaged across the 16 heads with the highest kurtoses. The green lines on the right represent the
ratio of the navy and blue lines for a given sentence rank. Sentences with high receiver head scores
receive more attention in the reasoning model compared to the base model.

29

L Effects of ablating receiver heads

To test the causal hypothesis that the receiver heads identified in Section @ are functionally important
for reasoning, we performed an experiment ablating receiver heads and evaluating how this impact’s
model accuracy. This intervention is designed to measure the direct impact of removing these heads
on task performance and to evaluate the possibility that they may be more important than typical
heads.

L.1 Methodology

We continue to use problems from the MATH dataset. We selected 32 problems where the non-ablated
model achieves 10-90% accuracy on average. For each problem, we ran R1-Distil-Qwen-14B sixteen
times, while allowing the model to output up to 2'6 (16,384) tokens. Responses that did not produce
an answer by that point were marked as incorrect.

We compared the effect of ablating 128 attention heads (approx. 7% of all heads), 256 heads (approx.
13%), or 512 heads (approx. 27%). The ablation strategies were:

1. Receiver head ablation: We ablated the top-N heads with the highest average kurtosis
scores.

2. Random non-receiver (control) ablation: For each layer where k receiver heads were
ablated, we ablated k heads chosen randomly from the set of heads not selected from that
same layer. This ensures a matched comparison with no overlap.

Note that receiver heads are more common in late layers (see above, Figure[I9). By ensuring that
both conditions included an equal number of heads from each layer (rather than selecting 128, 256,
or 512 heads randomly across all layers), this ensures that differences cannot be explained simply by
differences in the layers selected.

In the 512-head ablation condition, a majority of attention heads in some late layers were marked
as receiver heads. For these layers, the non-receiver control condition was modified to ablate the
corresponding number of heads with the lowest kurtosis scores to ensure a valid comparison set. For
instance, if 60% of layer 43 heads are in the top-512, then the control condition included the 60%
with the lowest kurtosis score, meaning that there is 20% overlap for that layer.

L.2 Results and Discussion

Our experiments show that a large number of heads must be ablated to induce a significant drop in
performance compared to the baseline level of accuracy (baseline = 64.1%, 95% CI: [56.0%, 72.1%]).
Regardless of whether receiver heads or non-receiver heads are targeted, ablating 128 heads produces
differences in accuracy that insignificantly differ from baseline accuracy, and ablating 256 heads still
produces only a small drop in accuracy (Table E]

Table 2: Answer accuracy on MATH problems for different self-attention-head ablation conditions.
The brackets show the 95% confidence interval for each accuracy estimate.

Heads Ablated Receiver heads Random heads
256 48.8% [39.3%, 58.3%] 52.7% [43.0%, 62.5%)]
512 27.7% [17.2%, 382%] 37.3% [27.5%, 47.1%]

The importance of receiver heads emerges when a large number of heads are ablated. When ablating
512 heads (over a quarter of the model’s 1920 heads), targeting receiver heads caused performance to
fall to 28% accuracy. Removing the same number of control heads resulted in a less severe drop to
37% accuracy. There is a significant difference between these percentages (t[31] = 2.55,p = .02),
suggesting receiver heads are more critical for reasoning than other heads.

'We are not aware of prior studies on attention head ablation for models generating long chain-of-thought
reasoning, making it difficult to establish what is a typical number of heads to ablate. Potentially, a large
number is necessary because the long reasoning traces (sometimes exceeding 10,000 tokens) provide extensive
opportunities for error correction and compensatory computation.

30

As mentioned, this analysis treats responses as incorrect if they do not produce a final answer by
16,384 tokens. If the analysis is changed to instead simply omit those responses entirely from the
analysis, there remains a significant difference in accuracy when ablating top-512 receiver heads
(29% accuracy) versus random non-receiver heads (39% accuracy) (¢[31] = 2.66, p = .02). Hence,
regardless of whether non-completed responses are marked as incorrect or ignored, ablating receiver
heads is found to exert a larger impact on model accuracy than ablating random non-receiver heads.

M KL causal graph pseudocode

This pseudocode outlines the procedure for computing a sentence-to-sentence causal graph for a
given chain-of-thought (CoT). The algorithm works by systematically masking each source sentence
and measuring the resulting change in the model’s predictions (logits) for all subsequent target
sentences. The sentence—sentence impact is quantified as the average log-KL divergence across a
target sentence’s tokens, which is then normalized against the average impact from all prior sentences.
This last normalization step effectively accounts for differences in target sentences’ average entropy,
which may vary widely and can hamper studying differences between target sentences.

Masking can be performed either by suppressing attention toward the source sentence or omitting the
sentence entirely; the former preserves positional embedding information, while the latter may be
computationally cheaper and easier to implement (e.g., with serverless providers). If masking is done
by omitting sentence ¢ from the CoT, rather than suppressing attention toward sentence ¢, this will
impact sentence j’s token positions across the CoT and masked CoT, which should be accounted for.

[H] GetCausalMatrix(CoT, Model) [1] Initialize CAUSAL_MATRIX € RM*M . (o M =
number of sentences in CoT LOGITS_BASE ¢ FORWARD_PASS(CoT,Model) shape: (to-
kens, vocabulary) ¢ = 0 to M — 1 source sentence CoTmaskea < MASK_SOURCE(CoT,)
LOGITS_MASKED < FORWARD_PASS(CoT asked; Model) j = i + 1 to M — 1 target sentence
TOKENS_J < SENTENCE_TOKENS(COT pasked, j) TOTAL_KL < 0 each k¥ € TOKENS_J KL <
KLDIVERGENCE(LOGITS_BASE[k], LOGITS_MASKED[k]) TOTAL_KL < TOTAL_KL + log(KL)
CAUSAL_MATRIX[i, j] < TOTAL_KL/|TOKENS_J| Normalize each target column by the mean
over prior sources j = 0to M — 1 u + MEAN(CAUSAL_MATRIX[0: j, j]) CAUSAL_MATRIX[0:
j, 7] < CAUSAL_MATRIX[0: j, j] — 4 CAUSAL_MATRIX

[H] KLDivergence(LOGITS_P, LOGITS_Q) [1] logp + LOGITS_P — LOG_SUM_EXP(LOGITS_P)
log-softmax logq < LOGITS_Q — LOG_SUM_EXP(LOGITS_Q) p «+ exp(logp) KL < 0 each
vocabulary index v KL « KL + p[v] - (log p[v] — log g[v]) KL

N Sentence-to-sentence counterfactual importance

We extend our counterfactual resampling framework (section[3.1)) to quantify each sentence’s influence
on each future sentence. Further below, we describe how this measure’s values for sentence-sentence
links correlate with the values generated via our section [5| method, masking sentences and measuring
the impact on later sentences’ logits.

We estimate the counterfactual importance of sentence S; on a future sentence S™ formally with:

importance(S; — S™) = P(S™ €4 {S;,...,Su}) — P(S™ ex {Ty,..., TN HT; 2 S;) (1)

Intuitively, on the right-hand side of Equation (), the first term is the probability that a future
sentence ST will semantically occur given that S; was present in the trace, and the second term is
the corresponding probability when S; is resampled with a non-equivalent sentence. A positive score
indicates that sentence S; increases the likelihood of producing S™ (i.e., S; upregulates ST"), while
a negative score suggests that it suppresses or inhibits it.

In this context ST semantically occurs if, when we extract the sentences and identify the best
candidate match for ST using cosine similarity between sentence embeddings, it has greater than 0.8
cosine similarity (i.e., the median value in our dataset) to that sentence. Pseudocode for estimating
sentence-to-sentence importance and empirical values of this metric can be found in Appendix

31

Beyond measuring individual sentence importance, our framework quantifies causal dependencies
between specific sentence pairs within reasoning traces. Figure 23] displays the sentence-to-sentence
importance matrix for problem #2236 (incorrect) (“Each page number of a 488-page book is printed
one time in the book. The first page is page 1 and the last page is page 488. When printing all of
the page numbers, how many more 4’s are printed than 8’s?”), showing how individual sentences
influence downstream reasoning steps. Below we list a few illustrative cases.

* 12-PG — 16-PG. The planning in sentence 12 (“I. Count the number of 4’s in the units
place across all page numbers”) raises the probability that the model produces sentence 16
(“Starting with the 4’s.”) by 0.39. A plan statement triggers a subordinate planning step.

* 8-FR, 9-PG, 12-PG, 14-PG — 32-UM. The uncertainty management in sentence 32 (“How-
ever, I need to check if 440-449 is fully included.”) receives sizeable positive influence from
several earlier sentences: 8-FR (+0.11), 9-PG (+0.06), 12-PG (40.12), 14-PG (+0.10).
This forms the dense horizontal band at row index 32.

* 39-RC 4 83-UM. The result consolidation in sentence 32 (“Now, summing up all the 4’s:
- Units: 48 - Tens: 50 - Hundreds: 89. Total 4’s = 48 + 50 + 89 = 187.”) decreases the
likelihood (i.e., inhibits) of 83-UM (“Wait, but just to be thorough, let me check the hundreds
place for 4’s again.”) by 0.22.

* 52-AC 4 65-SC. The computation in sentence 52 (“The first four blocks 80-89, 180-189,
280-289, 380-389 each contribute 10 eights in the tens place.”) decreases the likelihood of
65-SC (“Let me go through each step again to make sure I didn’t make a mistake.”) by 0.16.

* 63-AC — 64-UM, 65-SC, 69-SC, 75-SC, 83-UM, 86-SC. The computation in sentence
63 (“So, the difference is 187 — 98 = 89.”) propagates forward, increasing the likelihood
of 64-UM (+0.24), 65-SC (4-0.17), 69-SC (+0.16), 75-SC (+0.28), 83-UM (0.23), and
86-SC (0.16). This forms the dense vertical band originating from column index 63.

* 64-UM — 65-SC, 69-SC, 75-SC, 83-UM, 86-SC. The uncertainty management in sentence
64 (“Wait, that seems quite a large difference.”) further amplifies the same downstream
block: 65-SC (+0.32), 69-SC (+0.25), 75-SC (40.26), 83-UM (0.25), and 86-SC (0.25).

* 83-UM — 86-SC, 90-FAE. Even very late checks matter. Sentence 83 (“Wait, but just to be
thorough, let me check the hundreds place for 4’s again.”) increases the chance of 86-SC
(“Correct. And for the tens place...”) by 0.43 and of the final answer in 90-FAE by 0.41.

Problem 2236: sentence-to-sentence importance matrix

9-PG 0.4
12-PG
1P B
16-PG
17-PG 0.3
21AC .
23-AC-
24-AC 0.2
—~ 28-AC
S 32.uM 0.1
Q
£ 37ac
D2 397Rc- 0.0
@
o
46-AC _
@ 0.1
51-AC
52-AC
58-RC —0.2
63-AC
64-UM ™
-0.3
-0.4

16-PG
17-PG
21-AC
24-AC
7-AC
9-R(
46-AC
51-AC
52-AC

58-R(

fecl

w

Cc

=
63-AC _
64-UM *

83-UM Il

23-AC
90-FAE

mm

28-AC
32-UM

Source step (i)

Figure 23: Sentence-to-sentence importance matrix for the 32 most important sentences in problem
#2236 (incorrect), selected based on total outgoing and incoming importance. Each cell (7, j) shows
the causal importance of sentence ¢ on sentence j, calculated as the difference in the probability
sentence j semantically occurs (> 0.8 cosine similarity) when sentence ¢ is present versus resampled.

32

We provide the following pseudocode for estimating sentence-to-sentence importance:

Input: Sentence index i, target sentence index j (where j > i), threshold t = 0.8
Output: Importance score importance(i -> j)

1. Get rollouts R_keep where sentence i was kept (resampling from i+1)
2. Get rollouts R_remove where sentence i was removed (resampling from i)

3. For each rollout r in R_keep:
a. Extract all sentences S_r from rollout r
b. Find best matching sentence to target sentence j:
- Compute sentence embeddings
- Calculate cosine similarity between each s in S_r and target j
- Select sentence with highest similarity if similarity >=t
c. Add to matches_keep if valid match found

4. For each rollout r in R_remove:
a. Extract all sentences S_r from rollout r
b. Find best matching sentence to target sentence j (same process as step 3b)
c. Add to matches_remove if valid match found

5. Calculate match rates:
match_rate_keep = |matches_keep| / |R_keepl
match_rate_remove = |matches_remove| / |R_remove]|

6. Return importance(i -> j) = match_rate_keep - match_rate_remove

N.1 Correlations with the resampling-based importance matrix

The attention-suppression matrix values correlate with those of the resampling-method matrix.
Specifically, the two matrices were positively correlated for 90% of reasoning traces (mean r = .20,
95% CI: [.12, .27]). This association is stronger when considering only cases fewer than five sentences
apart in the reasoning trace, which may better track direct rather than indirect effects represented by
the resampling method (mean r = .34 [.27, .40]). The magnitudes of these correlations are substantial,
given that the two measures capture partially different aspects of causality and the resampling measure
itself contains stochastic noise. Hence, these results give weight to the validity of the resampling
approach, whose precision we leverage for the forthcoming case study.

33

	Introduction
	Quantifying sentence importance
	Model and dataset
	Forced answer importance
	Importance via resampling
	Case study

	Consistent patterns in sentence importance
	Sentence taxonomy
	Counterfactual importance
	Results

	The mechanistic roots of importance
	The identification of receiver heads
	Links to counterfactual importance and sentence types

	Sentence-sentence causal links
	Approach
	Case study
	Open source interface

	Systematic differences in sentence-sentence relationships
	Methods
	Results

	Related work
	Discussion and Limitations
	Evaluating importance (KL) while smoothing
	Generalizing to an alternative reasoning model
	Measuring counterfactual influence
	Attention aggregation

	Case study details
	Case study transcript
	Case study: Sentence 13 alternatives
	Receiver head and sentence-sentence case study findings
	Receiver heads
	Attention suppression

	Sentence position effects on receiver-head scores

	Sentence taxonomy
	Prompt information
	Sentence category probing
	Embeddings model
	Additional resampling results
	Counterfactual versus resampling importance
	Additional receiver head information
	Reasoning versus base model differences in receiver heads
	Effects of ablating receiver heads
	Methodology
	Results and Discussion

	KL causal graph pseudocode
	Sentence-to-sentence counterfactual importance
	Correlations with the resampling-based importance matrix

