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Abstract

Reasoning large language models have achieved state-of-the-art performance in1

many fields. However, their long-form chain-of-thought reasoning creates inter-2

pretability challenges as each generated token depends on all previous ones, making3

the computation harder to decompose. We argue that analyzing reasoning traces at4

the sentence level is a promising approach to interpreting reasoning. We present5

three complementary attribution methods: (1) a black-box method measuring each6

sentence’s counterfactual importance by comparing final answers across 100 roll-7

outs conditioned on the model generating that sentence or one with a different8

meaning; (2) a white-box method of aggregating attention patterns between pairs9

of sentences, which identified “broadcasting” sentences receiving high attention10

from all future sentences via “receiver” attention heads; (3) a causal attribution11

method measuring logical connections between sentences by suppressing attention12

toward one sentence and measuring the effect on future sentences’ tokens. Each13

method provides evidence for the existence of thought anchors, reasoning steps14

that disproportionately influence the reasoning trajectory. These thought anchors15

are usually planning or backtracking sentences. We provide an open-source tool16

for visualizing our methods’ outputs (anonymous-interface.com) and present a17

case study showing converging patterns across methods, which together map the18

model’s multi-step reasoning. The consistency across methods demonstrates the19

potential of sentence-level analysis for a deeper understanding of reasoning models.20

1 Introduction21

Training large language models to reason with chain-of-thought [Reynolds and McDonell, 2021,22

Nye et al., 2021, Wei et al., 2023] has significantly advanced their capabilities [OpenAI, 2024]. The23

resulting reasoning traces have seen use in safety research [Baker et al., 2025, Shah et al., 2025], but24

there has been little work adapting interpretability methods to this paradigm (though see [Venhoff25

et al., 2025, Goodfire, 2025]). Traditional mechanistic interpretability [Olah et al., 2020, Olah,26

2022] methods often focus on a single forward pass of the model, understanding how layer-by-layer27

activations lead to a generated token [Wang et al., 2022, Hanna et al., 2023]. However, this framework28

is too fine-grained for autoregressive reasoning models, which consume their own output tokens.29

A core step in many interpretability strategies is to decompose the model into smaller parts that can be30

analyzed independently [Lindsey et al., 2025]. A natural decomposition for chain-of-thought is into31

individual sentences and how they depend on each other. Interpretations of neural network behavior32

operate at varying levels of abstraction [Geiger et al., 2021, 2025], and sentence-level explanations33

strike an intermediate abstraction depth. Compared to tokens, sentences are more coherent and often34

coincide with reasoning steps extracted by an LLM [Venhoff et al., 2025, Arcuschin et al., 2025].35

Compared to paragraphs, sentences are less likely to conflate reasoning steps and may serve as an36

effective target for linking different steps.37
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Prompt

When base-16 number 66666 is written 

in base 2, how many digits (bits) does it have?

Correct answer: 19

Plan Generation

Alternatively, maybe I can calculate the value 
of 66666₁₆ in decimal and then find out how 
many bits that number would require.

Active Computation

So, if each digit is 4 bits, then 5 digits would 
be 5 * 4 = 20 bits.

Uncertainty Management

Maybe I messed up the decimal conversion.

#47

<think>

</think>

Us: remove sentence i and resample full rollout (100x)

Prior work: remove sentence i and force answer

�� Black-box resampling

�� Receiver heads

Find heads attending to sentence i

Vertical lines: broadcasting sentences

�� Attention suppression

Mask all attention to sentence i  

Examine effect on sentence j

#8

#13

A. B. C.

Figure 1: Summary of our three methods for principled attribution to important sentences in reasoning
traces. A. An example reasoning trace with sentences labeled per our taxonomy. B. Our proposed
methods are: black-box resampling, receiver heads, and attention suppression. C. A directed acyclic
graph among sentences prepared by one of our techniques, made available open source.

Prior work has established that different sentences within reasoning traces perform distinct functions.38

Backtracking sentences (e.g., “Wait. . . ”) cause the model to revisit earlier conclusions, which boosts39

final-answer accuracy [Muennighoff et al., 2025]. Other research has distinguished sentences based40

on whether they retrieve new information or execute deduction with existing information [Venhoff41

et al., 2025]. Hence, reasoning may follow an overarching structure, where sentences can introduce42

and pursue high-level computational goals. Yet, approaches for mapping this structure remain limited.43

We propose three complementary methods for mapping the structure of reasoning traces that focus44

on what we term thought anchors: critical reasoning steps that guide the rest of the reasoning trace.45

We provide evidence for this type of anchoring based on black-box evidence from resampling and46

white-box evidence based on attention patterns.47

First, in section 3 we present a black-box method for measuring the counterfactual impact of a48

sentence on the model’s final answer and future sentences. We repeatedly resample reasoning49

traces from the start of each sentence. Based on resampling data, we can quantify the impact of50

each sentence on the likelihood of any final answer or the likelihood of producing any subsequent51

sentence. Via this resampling approach, we can additionally distinguish planning sentences that52

initiate computations leading to some answer from sentences performing computations necessary for53

the answer but which are predetermined.54

Second, in section 4 we present a white-box method for evaluating importance based on the sentences55

most attended. Our analyses reveal “receiver” heads that narrow attention toward particular past56

“broadcasting” sentences. Compared to base models, where attention is more diffuse, reasoning57

models display overall greater attentional narrowing through receiver heads, and these heads have58

an outsized impact on the model’s final answer. We develop a systematic approach to identifying59

receiver heads and show how evaluating sentences on the extent to which they are broadcast by these60

heads provides a mechanistic measure of importance.61

Third and finally, in section 5 we present a method that measures the causal dependency between62

specific pairs of sentences in a reasoning trace. For each sentence in a trace, we intervene by63

masking all attention to it from subsequent tokens. We then measure the effect of suppression64

on subsequent token logits (KL divergence) compared to those generated during the absence of65

suppression. Averaging token effects by sentence, this strategy measures each sentence’s direct causal66

effect on each subsequent sentence.67

Applying these techniques, our work suggests that analyzing reasoning through sentence-level units68

introduces new domains through which reasoning models can be understood. Our work also opens69

the door to more precise debugging of reasoning failures, identification of sources of unreliability,70

and the development of techniques to enhance the reliability of reasoning models.71
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2 Setup72

2.1 Sentence taxonomy for reasoning functions73

We categorized sentences with the framework by Venhoff et al. [2025], describing sentences’ distinct74

reasoning functions. We define eight categories (see examples and frequencies in Appendix A):75

1. Problem Setup: Parsing or rephrasing the problem76

2. Plan Generation: Stating or deciding on a plan of action, meta-reasoning77

3. Fact Retrieval: Recalling facts, formulas, problem details without computation78

4. Active Computation: Algebra, calculations, or other manipulations toward the answer79

5. Uncertainty Management: Expressing confusion, re-evaluating, including backtracking80

6. Result Consolidation: Aggregating intermediate results, summarizing, or preparing81

7. Self Checking: Verifying previous steps, checking calculations, and re-confirmations82

8. Final Answer Emission: Explicitly stating the final answer83

Each sentence in the analyzed response is assigned to one of these categories using an LLM-based84

auto-labeling approach. The prompt used to label sentence categories is provided in Appendix B.85

Some categories that rarely appear are omitted from the figures below. Probing classifiers achieve86

high accuracy in distinguishing sentences and their corresponding categories (see Appendix C).87

2.2 Model and dataset88

Our experiments use DeepSeek R1-Distill Qwen-14B [DeepSeek, 2025] with a temperature of 0.689

and a top-p of 0.95. We used the MATH dataset [Hendrycks et al., 2021], targeting 10 challenging90

questions that the model correctly solves 20-80% of the time, identified by testing the model on 1,00091

problems 10 times each. For each selected problem, we generated one correct and one incorrect92

reasoning trace, producing 20 responses. The average response is 144.2 sentences (95% CI: [116.7,93

171.8]) and 4208 tokens (95% CI: [3479, 4937]). We examine only sentences before the resampling94

method indicates the model has converged on an answer (after convergence, the model gives the same95

response in >98% of resamples). In Appendix D, we provide results using other reasoning models.96

3 Measuring counterfactual influence97

Some sentences matter more than others, but which ones matter most depends on how we define and98

measure importance. We frame sentence-level importance as a question of counterfactual influence:99

how does including or excluding a sentence affect subsequent steps and the model’s final output?100

3.1 Forced answer importance101

In earlier work, importance has often been approximated by forcing the model to give an answer102

before completing its full reasoning trace [Lanham et al., 2023a]. We tested this strategy. For each103

sentence in our examined model responses, we interrupt the model at that point and append a prompt104

inducing it to give a final answer (“Therefore, the final answer is \boxed{”). This is performed 100105

times at each sentence to generate a distribution of answers linked to each sentence position. To106

evaluate the impact of sentence i on the final answer, we measure the KL Divergence between the107

distribution before sentence i has been stated and the distribution after sentence i has been stated.108

The taxonomic categories reveal that active computation statements produce the greatest distributional109

shifts in this forced answer importance (Figure 3A). This aligns with prior findings that reasoning110

models update their beliefs throughout the trace, and suggests intermediate calculations alter the111

model’s answer responses. However, active computation steps may not provide a comprehensive112

view on importance, as they may be predetermined by upstream statements.113

3.2 Counterfactual importance114

A natural limitation of the forced-answer approach is that a sentence S may be necessary for some115

final answer, but consistently produced by the LLM late in the reasoning trace. This means that116

forced answer accuracy will be low for all sentences that occur before S, not allowing the importance117

of these earlier steps to be accurately determined.118
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A. B.

Figure 2: Accuracy over 100 rollouts at each sentence for (A) one correct and (B) one incorrect base
solution. Red dots mark significant spikes or dips. Local minima and maxima sentences are annotated
with category initials (e.g., PG = plan generation). The analyses below focus on the counterfactual
KL-divergence between sentences, but resampling accuracy is visualized here as it is more intuitive.

Consider a rollout which consists of sentences S1, S2, . . . , Si, . . . , SM and a final answer A. We use119

resampling to define a metric capturing the extent to which sentence S causes A to be incorrect.1 We120

call this metric counterfactual importance. We can motivate and define this metric with three steps:121

1. Rollout sampling. For a given sentence Si, we generate a distribution over final answers122

by generating 100 rollouts both without sentence Si (the base condition, with rollouts of123

the form S1, S2, . . . , Si−1, Ti, . . . , TN , A′
Si

), and another distribution with sentence S (the124

intervention condition, with rollouts of the form S1, S2, . . . , Si−1, Si, . . . , SM , ASi
).125

2. Naive distributional comparison. We can compute the KL Divergence between the126

final answer distributions in the two conditions, i.e., importancer := DKL[p(A
′
Si
)||p(ASi)],127

providing a scalar measure of how much sentence Si changes the answer. We call this the128

resampling importance metric.129

3. Semantic filtering. The problem with resampling importance is that in rollout resampling,130

if Ti is identical or similar to Si then we do not get much information about whether Si131

is important or not. Therefore, we write S ̸≈ T if two sentences S and T are dissimilar,132

defined as having cosine similarity less than the median value across all sentence pairs in133

our dataset, when fed into an embeddings model (see Appendix E for details). Therefore134

we can finally define the counterfactual importance by conditioning on Ti ̸≈ Si i.e.,135

importance := DKL[p(A
′
Si
|Ti ̸≈ Si)||p(ASi

)].136

Since we resample all steps after a given sentence Si, we avoid the aforementioned limitation of137

forced-answering. We also provide empirical evidence that the principled counterfactual importance138

definition in 1-3 above is useful, by comparing it to the resampling importance in Appendix G.139

Across our dataset, we find that plan generation and uncertainty management (e.g., backtracking)140

sentences consistently show higher counterfactual importance than other categories like fact retrieval141

or active computation (see Figure 3B). This supports the view that high-level organizational sentences142

anchor, organize, and steer the reasoning trajectory. We argue that this approach provides more143

informative results compared to forced answer importance and prior token- or attention-based metrics.144

3.3 Sentence-to-sentence importance145

In addition to estimating a sentence’s effect on the final answer, we extend our framework to quantify146

its causal influence on each individual future sentence. This sentence-level attribution helps uncover147

the structure of the model’s chain-of-thought: which sentences initiate subroutines, influence future148

claims, or act as attractors for subsequent steps. We estimate the counterfactual importance of149

sentence Si on a future sentence SFut. formally with:150

importance(Si → SFut.) = P(SFut. ∈≈ {Si, . . . , SM})− P(SFut. ∈≈ {Ti, . . . , TN}|Ti ̸≈ Si) (1)

1All Sj and Tk as well as A in this section are random variables, since we sample with non-zero temperature.

4
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Figure 3: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance, per the resampling method, plotted against the sentence category’s mean position in
the reasoning trace. Only the 5 most common sentence types are shown (see Appendix F).

Intuitively, on the right-hand side of Equation (1), the first term is the probability that a future151

sentence SFut. will semantically occur given that Si was present in the trace, and the second term is152

the corresponding probability when Si is resampled with a non-equivalent sentence. A positive score153

indicates that sentence Si increases the likelihood of producing SFut. (i.e., Si upregulates SFut.), while154

a negative score suggests that it suppresses or inhibits it.155

In this context SFut. semantically occurs if, when we extract the sentences and identify the best156

candidate match for SFut. using cosine similarity between sentence embeddings, it has greater than 0.8157

cosine similarity (i.e., the median value in our dataset) to that sentence. Pseudocode for estimating158

sentence-to-sentence importance and empirical values of this metric can be found in Appendix G.159

4 Attention aggregation160

We hypothesize that important sentences may receive heightened attention from downstream sentences.161

Although attention weights do not necessarily imply causal links (see Section 5), heightened attention162

is a plausible mechanism by which important sentence may exert their influence on subsequent163

sentences. We conjecture further that a high focus on important sentences may be driven by specific164

attention heads, and by tracking such heads, we may pinpoint key sentences.165

We assessed the degree different heads narrow attention toward particular sentences. First, for each166

reasoning trace, we averaged each attention head’s token-token attention weight matrix to form a167

sentence-sentence matrix, where each element is the mean across all pairs of tokens between two168

sentences. Based on each attention matrix, we computed the mean of its column below the diagonal169

to measure the extent each sentence receives attention from all downstream sentences; averaged only170

among pairs at least four sentences apart to focus on distant connections. This generates a distribution171

for each head (e.g., Figure 4A), and the extent each head generally narrows attention toward specific172

sentences can be quantified as its distribution’s kurtosis (computed for each reasoning trace, then173

averaged across traces). Plotting each head’s kurtosis reveals that some attention heads strongly174

narrow attention toward specific, possibly important, sentences in the reasoning trace (Figure 4B).175

4.1 The identification of receiver heads176

We refer to attention heads that narrow attention toward specific sentences as “receiver heads”.177

These heads are more common in later layers (Appendix H). To formally assess the existence of178

receiver heads, we tested whether some attention heads consistently operate in this role. Specifically,179

we measured the split-half reliability of heads’ kurtosis scores. We found a strong head-by-head180

correlation (r = .67) between kurtosis scores computed for half of the problems with kurtosis scores181

for the other half of problems. Thus, some attention heads consistently operate as receiver heads,182

albeit with some heterogeneity across responses in which heads narrow attention most.183
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Figure 4: A. Lines show the vertical attention scores for each sentence by the 40 different heads in
layer 36. Head 6 has been highlighted as a receiver head, and its corresponding attention weight
matrix is shown for reference. Its prominent spikes cause the distribution to have a high kurtosis. B.
Histogram of these kurtosis values across all attention heads, averaged across all reasoning traces.

Figure 5: The boxplot shows the average top-16 receiver-head score for each sentence type. The
boxes correspond to the interquartile range across different reasoning traces.

Receiver heads usually direct attention toward the same sentences. Among the 16 heads with the184

highest kurtoses, we computed the sentence-by-sentence correlation between the vertical-attention185

scores for each pair of heads; calculated separately for each reasoning trace, then averaged. This186

produced an large correlation (mean r = .60). Thus, receiver heads generally attend the same187

sentences, albeit with some heterogeneity (this correlation among randomly selected heads is r = .45).188

This convergence is consistent with the existence of sentence importance, which these heads identify.189

Attentional narrowing toward particular sentences may be a feature specifically of reasoning models190

that enhances their performance. Comparing R1-Distill-Qwen-14B (reasoning) and Qwen-14B (base)191

suggests that the reasoning model’s receiver heads will narrow attention toward singular sentences to192

a greater degree (appendix I). Furthermore, ablating receiver heads leads to a greater reduction in193

accuracy than ablating self-attention heads at random (appendix J). Altogether, these findings are194

consistent with receiver heads and thought-anchor sentences playing special roles in reasoning.195

4.2 Links to resampling importance and sentence types196

Plan generation, uncertainty management, and self checking sentences consistently receive the197

most attention via receiver heads (Figure 5), whereas active computation sentences receive minimal198

attention. Further consistent with this, sentences receiving high receiver-head attention tend to199

also exert a larger effect on downstream sentences per the resampling method (mean Spearman200

ρ = .22; 95% CI: [.17, .30]; detailed further in Appendix K). These findings are hence consistent201

with reasoning traces being structured around high-level sentences that initiate computations that may202

link high-level statements but may minimally impact the overall reasoning trajectory.203
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5 Attention suppression204

5.1 Approach205

A natural concern with examining attention weights is that they do not measure causality. Further,206

receiver heads are not necessarily suited for identifying sentences’ links to individual future sentences.207

Hence, we next focused on causal attribution for sentence-sentence dependencies. The sentence-208

sentence analyses based on resampling also examined such dependencies but had limited precision209

for mapping logical connections, as counterfactual importance represents the total effect (direct and210

indirect) of one sentence on another. The present method instead aims to isolate the direct effects211

between sentences, which we expect to permit more precise modeling of logical connections.212

We suppress all attention (all layers and heads) toward a given sentence and examine the impact213

on future sentences. The impact is defined as the KL divergence between a token’s logits and its214

baseline logits without suppression. The effect on a future sentence is calculated as the average of its215

constituent token log-KL divergences. This technique assumes (i) token logits accurately capture a216

sentence’s semantic content and (ii) suppressing attention does not problematically induce out-of-217

distribution behavior. Hence, we must validate correspondence between the attention-suppression218

measure and resampling measure, which, although less precise, does not hinge on these assumptions.219

5.2 Correlations with the resampling-based importance matrix220

The attention-suppression matrix values correlate with those of the resampling-method matrix.221

Specifically, the two matrices were positively correlated for 19 of the 20 examined reasoning traces222

(mean: Spearman ρ = .20, 95% CI: [.12, .27]). This association is stronger when considering only223

cases fewer than five sentences apart in the reasoning trace, which may better track direct rather than224

indirect effects represented by the resampling method (mean: ρ = .34 [.27, .40]). The magnitudes of225

these correlations are substantial, given that measures measure partially different aspects of causality226

and the resampling measure itself contains stochastic noise. Hence, these results give weight to the227

validity of the resampling approach, whose precision we leverage for the forthcoming case study.228

6 Case study229

The three presented techniques cover different aspects of attribution within a reasoning trace. We will230

now illustrate the utility and the complementary nature of these techniques by applying them to the231

model’s response for one problem: “When the base-16 number 6666616 is written in base 2, how232

many base-2 digits (bits) does it have?” (Figure 6) (see Appendix L for the full transcript).233

6.1 Resampling234

The model approaches this problem by first considering that 6666616 contains five base-16 digits and235

any base-16 digit can be represented with four base-2 digits. Following this logic, the CoT starts by236

pursuing the answer “20 bits”. However, this initial answer overlooks that 616 is 1102 (i.e., not 01102237

due to the leading zero), so the correct answer is actually “19 bits”. In sentence 13, the model pivots238

toward this correct answer by initiating computations to convert 6666616 to decimal and then binary.239

The resampling method (section 3) reveals this initial poor trajectory and pivot upwards (shown240

previously in Figure 2A). Specifically, from sentences 6-12, expected accuracy steadily declines, but241

sentence 13 causes counterfactual accuracy to drastically increase. The pivotal role of 13 is missed if242

one instead evaluates accuracy by forcing the model to give a response immediately, as some prior243

studies have done, which instead yields 0% accuracy for all sentences in this vicinity (Figure 2A).244

The importance of sentence 13 only emerges when examining the counterfactual resampling and thus245

accounting for how a given sentence can influence sentences downstream toward the final answer.246

6.2 Receiver heads247

The trajectory toward the final correct answer can be understood as a series of computational chunks248

(see flowchart in Figure 6). First, the model prepares a formula for converting 6666616 to decimal249

(sentences 13-19). Next, the model computes the answer to that formula, finding that 6666616 is250
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Figure 6: Case study: problem #4682 (correct). Red matrix shows the effect of suppressing one
sentence (x-axis) on a future sentence (y-axis). Darker colors indicate higher values. Bottom-left
line plot shows the average attention toward each sentence by all subsequent sentences via the top-32
receiver heads (32 attention heads with the highest kurtosis score). Flowchart summarizes the model’s
CoT with chunks defined around key sentences receiving high attention via receiver heads. Sentence
13 is emphasized as it has high counterfactual importance per the resampling method (see Figure 2A).

419,430 in decimal (sentences 20-33). The model subsequently converts that number to binary by251

putting forth another formula and solving it, floor(log2(419, 430)) + 1 = 19, to derive that the252

answer is “19 bits” (sentences 34-41). The model then notes a discrepancy with the earlier 20-bit253

solution (sentences 42-45). The model hence initiates new computations that verify that it computed254

the decimal value of 6666616 correctly (sentences 46-58) and that it computed the binary conversion255

accurately (sentences 59-62). Equipped with this increased certainty about 19-bit answer, the model256

discovers why its initial 20-bit idea was incorrect: “because leading zeros are not counted” (Sentence257

66). This overall narrative is based on our analysis of attention patterns (section 4): Receiver attention258

heads pinpoint sentences initiating computations or stating key conclusions, thereby segmenting the259

reasoning trace into seemingly meaningful chunks (Figure 6).260

6.3 Attention suppression261

Along with being organized into computational chunks, the reasoning displays a scaffold related to262

sentence-sentence dependencies (Figure 6). One piece of this structure is a self-correction pattern263

involving an incorrect proposal, a detected discrepancy, and a final resolution. Specifically, the264

model initially proposes an incorrect answer of “20 bits”, which it decides to recheck (sentence 12).265

This leads to a discrepancy with the “19 bits” answer computed via decimal conversion (sentences266

43 & 44). After rechecking its arithmetic supporting the “19 bit” answer, the model returns to267

the discrepancy (sentence 65) and then produces an explanation for why the “20 bits” answer is268

incorrect (sentence 66). This can be seen as a tentative CoT circuit, where two conclusions conflict269

to produce a discrepancy, which in turn encourages the model to resolve the discrepancy. Within270

this wide-spanning scaffold, there exist further dependencies, corresponding to verifying an earlier271

computation. Specifically, the model finishes computing the decimal value of 6666616 as 419,430272

(sentence 32), later decides to verify that decimal conversion (sentence 46), and finally confirms that273

the original value is correct (sentence 59). This can be seen as further indication of CoT circuitry.274
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We identified these linkages based on the attention-suppression matrix (section 5), which contains275

local maxima at these linkages (12 → 43, 43 → 65, 12 → 66; 32 → 46, 32 → 59). Notice that276

many of the sentences pinpointed by the attention-suppression technique overlap with the sentences277

receiving high attention from receiver heads. Adding to the receiver-head conclusions, the attention278

suppression technique shows how information flows between these key sentences that structure the279

reasoning trace.280

6.4 Open source interface281

We released an open source interface (anonymous-interface.com) for analyzing and visualizing282

reasoning traces. The reasoning trace can be visualized as an annotated directed acyclic graph using283

the importance metrics from Section 3, which may benefit interpretability and reasoning model284

debugging. We show our proof-of-concept interface in Figure 1C, where important sentences are285

represented by larger nodes and sentences that causally affect each other are connected with dashed286

gray lines. Hovering over a node lets users inspect sentence properties or compare alternative rollouts.287

7 Related work288

Reasoning advances in LLMs. Chain-of-thought reasoning [Wei et al., 2023, Nye et al., 2021,289

Reynolds and McDonell, 2021] has driven significant capabilities improvements in large language290

models. These increased reasoning capabilities introduce novel safety challenges, including potential291

unfaithfulness in the reasoning itself [Lanham et al., 2023b]. While current alignment evaluation292

methods often rely on examining reasoning traces [Baker et al., 2025, Shah et al., 2025], we cannot293

rely on the model’s reasoning being faithful to the internal reasoning[Chen et al., 2025, Turpin et al.,294

2023, Arcuschin et al., 2025], creating a need for more mechanistic analyses.295

Importance of individual steps. Many CoT sentences can be deleted or rewritten with little impact296

on task accuracy [Wang et al., 2023, Madaan and Yazdanbakhsh, 2022]. Prior attribution methods297

suggest that a subset of steps disproportionately drive the final answer: Shapley values [Gao, 2023],298

ROSCOE metrics [Golovneva et al., 2023], gradient-based scores [Wu et al., 2023], and resampling299

at fork tokens [Bigelow et al., 2024]. Complementing these, our approach provides a more principled300

framework for understanding how reasoning traces are constructed around key sentences.301

White-box analyses of reasoning. Mechanistic studies locate specialised components that propagate302

information across steps: iteration or receiver heads [Cabannes et al., 2024], small sets of heads303

necessary for CoT performance [Zheng et al., 2024], steerable activation directions for planning and304

backtracking [Venhoff et al., 2025], and deduction circuits in symbolic tasks [Brinkmann et al., 2024].305

Other work identifies phase shifts separating pre-training priors from contextual reasoning [Dutta306

et al., 2024]. These findings motivate our focus on sentence-level structure.307

8 Discussion and Limitations308

This work presents initial steps towards a principled decomposition of reasoning traces with a focus309

on identifying thought anchors: sentences with outsized importance on the model’s final response,310

specific future sentences, and downstream reasoning trajectory. We have also begun unpacking the311

attentional mechanisms associated with these important sentences. We expect that understanding312

thought anchors will be critical for interpreting reasoning models and ensuring their safety.313

We view this as preliminary work. Our analyses require refinement to fully grapple with how314

downstream sentences may be overdetermined by different trajectories in a reasoning trace or315

independent sufficient causes. Additionally, we do not formally examine the role of error correction.316

Our receiver-head analyses are confounded by a sentence’s position in the reasoning trace (see317

Appendix M). Further, our attention-suppression work is limited because it effectively requires the318

model to process out-of-distribution information.319

Nonetheless, we believe that we have demonstrated that our metrics are an advance on prior work,320

interrupting models and forcing final answers. The surprising degree of shared structure we have321

found across our three methods illustrates the potential value of future work in this area and points to322

the possibility of more powerful interpretability techniques to come.323
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A Sentence taxonomy429

Building on top of the framework presented by [Venhoff et al., 2025], we developed a taxonomy430

consisting of eight distinct sentence categories that capture reasoning functions in mathematical431

problem-solving. Each category represents a specific cognitive operation. The functions and examples432

for each category are given in Table 1. Notably, the uncertainty management category includes433

backtracking sentences.434

Table 1: Sentence taxonomy with reasoning functions in problem-solving

Category Function Examples
Problem Setup Parsing or rephrasing the problem

(e.g., initial reading)
I need to find the area of a
circle with radius 5 cm.

Plan Generation Stating or deciding on a plan of ac-
tion, meta-reasoning

I’ll solve this by applying the
area formula.

Fact Retrieval Recalling facts, formulas, problem
details without computation

The formula for the area of a
circle is A = πr2.

Active Computation Algebra, calculations, or other ma-
nipulations toward the answer

Substituting r = 5: A = π×
52 = 25π.

Uncertainty Management Expressing confusion, re-evaluating,
including backtracking

Wait, I made a mistake ear-
lier. Let me reconsider...

Result Consolidation Aggregating intermediate results,
summarizing, or preparing

So the area is 25π square cm
which is approximately...

Self Checking Verifying previous steps, checking
calculations, and re-confirmations

Let me verify: πr2 = π ×
52 = 25π. Correct.

Final Answer Emission Explicitly stating the final answer Therefore, the answer is...

The distribution of categories across our dataset as shown in Figure 7 reveals that active computation435

constitutes the largest proportion (32.7%), followed by fact retrieval (20.1%), plan generation436

(15.5%), and uncertainty management (14.0%). The sequential structure of reasoning is reflected in437

the rarity and positioning of problem setup (2.4%), which typically occurs at the beginning, and final438

answer emission (0.7%), which predominantly appears toward the end of the reasoning process.439

Figure 7: Counts and frequencies of taxonomic sentence categories in our dataset.
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B Prompt information440

We used the following prompt with OpenAI GPT-4o (April-May, 2025) to annotate each sentence:441

442

443

You are an expert in interpreting how LLMs solve math problems using444

multi-step reasoning. Your task is to analyze a chain-of-thought reasoning445

trace, broken into discrete text sentences, and label each sentence with:446

1. **function_tags**: One or more labels that describe what this sentence447

is *doing* functionally in the reasoning process.448

2. **depends_on**: A list of earlier sentence indices that this sentence449

directly depends on, e.g., uses information, results, or logic introduced450

in earlier sentences.451

452

This annotation will be used to build a dependency graph and perform causal453

analysis, so please be precise and conservative: only mark a sentence as454

dependent on another if its reasoning clearly uses a previous sentence’s455

result or idea.456

457

Function Tags:458

459

1. problem_setup: Parsing or rephrasing the problem (initial reading or460

comprehension).461

2. plan_generation: Stating or deciding on a plan of action (often462

meta-reasoning).463

3. fact_retrieval: Recalling facts, formulas, problem details (without464

immediate computation).465

4. active_computation: Performing algebra, calculations, manipulations466

toward the answer.467

5. result_consolidation: Aggregating intermediate results, summarizing,468

or preparing final answer.469

6. uncertainty_management: Expressing confusion, re-evaluating, proposing470

alternative plans (includes backtracking).471

7. final_answer_emission: Explicit statement of the final boxed answer or472

earlier sentences that contain the final answer.473

8. self_checking: Verifying previous steps, checking calculations, and474

re-confirmations.475

9. unknown: Use only if the sentence does not fit any of the above tags476

or is purely stylistic or semantic.477

478

Dependencies:479

480

For each sentence, include a list of earlier sentence indices that the481

reasoning in this sentence *uses*. For example:482

- If sentence 9 performs a computation based on a plan in sentence 4 and a483

recalled rule in sentence 5, then depends_on: [4, 5]484

- If sentence 24 plugs in a final answer to verify correctness from sentence485

23, then depends_on: [23]486

- If there’s no clear dependency use an empty list: []487

- If sentence 13 performs a computation based on information in sentence 11,488

which in turn uses information from sentence 7, then depends_on: [11, 7]489

490

Important Notes:491

- Make sure to include all dependencies for each sentence.492

- Include both long-range and short-range dependencies.493

- Do NOT forget about long-range dependencies.494

- Try to be as comprehensive as possible.495

- Make sure there is a path from earlier sentences to the final answer.496
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Output Format:497

498

Return a dictionary with one entry per sentence, where each entry has:499

- the sentence index (as the key, converted to a string),500

- a dictionary with:501

- "function_tags": list of tag strings502

- "depends_on": list of sentence indices, converted to strings503

504

Here is the expected format:505

{506

"1": {507

"function_tags": ["problem_setup"],508

"depends_on": [""]509

},510

"4": {511

"function_tags": ["plan_generation"],512

"depends_on": ["3"]513

},514

"5": {515

"function_tags": ["fact_retrieval"],516

"depends_on": []517

},518

"9": {519

"function_tags": ["active_computation"],520

"depends_on": ["4", "5"]521

},522

"24": {523

"function_tags": ["uncertainty_management"],524

"depends_on": ["23"]525

},526

"32": {527

"function_tags": ["final_answer_emission"],528

"depends_on": ["9, "30", "32"]529

},530

}531

532

Here is the math problem:533

<PROBLEM>534

535

Here is the full chain-of-thought, broken into sentences:536

<SENTENCES>537

538

Now label each sentence with function tags and dependencies.539
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C Sentence category probing540

We trained a linear classifier to identify sentence categories based on activations. We employed a541

multinomial logistic regression with L2 regularization (C = 1.0) on the residual stream activity542

from layer 47 (last layer) of R1-Distill-Qwen-14B. For evaluating accuracy, we implemented a543

group-5-fold cross-validation that ensured examples from the same problem response remained in544

either the training or testing set to prevent data leakage. We averaged the residual stream activity545

across tokens to create sentence-level representations, whose dimensions were then standardized.546

To address class imbalance in the training data, we employed balanced class weights. The model547

demonstrated strong discriminative power across all reasoning categories, achieving a macro-F1548

score of 0.71. The confusion matrix presented in Figure 8 reveals high classification accuracies for549

categories such as active computation (0.74), uncertainty management (0.79), and problem setup550

(0.83), while showing some confusion between functionally related categories.551

Figure 8: Confusion matrix showing the sentence category classification performance of a logistic
regression probe trained on activations from layer 47 of the R1-Distill-Qwen-14B model. Values
represent the proportion of examples from each true category (rows) classified as each predicted
category (columns). Diagonal elements indicate correct classifications.

D Other reasoning model552

D.1 Measuring counterfactual influence553

To assess the generalizability of our counterfactual importance findings, we replicated our resampling554

methodology on R1-Distill-Llama-8B, applying the same experimental parameters (e.g., temperature555

= 0.6 and top-p = 0.95) used for R1-Distill-Qwen-14B. We collected 100 rollouts for 10 correct and556

10 incorrect base solutions using the identical question set described in Section 2.557

The resampling accuracy trajectories for R1-Distill-Llama-8B (Figure 9) demonstrate patterns that558

are similar to those observed in R1-Distill-Qwen-14B (Figure 2). Specifically, we observe similar559

characteristic accuracy fluctuations throughout the reasoning traces, with notable spikes and dips560

occurring at sentences corresponding to critical reasoning transitions.561

Figure 10 shows that R1-Distill-Llama-8B exhibits similar sentence category effects whereby plan562

generation and uncertainty management sentences demonstrate higher counterfactual importance563

compared to active computation and fact retrieval sentences (see Figure 3 for R1-Distill-Qwen-14B).564
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A. B.

Figure 9: Accuracy over 100 rollouts at each sentence for (A) one correct and (B) one incorrect
base solution for R1-Distill-Llama-8B. Red dots mark significant spikes or dips. Local minima and
maxima sentences are annotated with category initials. Our analyses focus on the counterfactual
KL-divergence between sentences, but resampling accuracy is visualized here as it is more intuitive.

A. B.

Figure 10: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance for R1-Distill-Llama-8B, per the resampling method, plotted against the sentence
category’s mean position in the reasoning trace. Only the 5 most common sentence types are shown.

This cross-model validation supports our claim that reasoning traces are structured around high-level565

organizational sentences rather than low-level computational steps. The consistency of counterfactual566

importance patterns suggests that our sentence-level attribution framework captures fundamental567

properties of chain-of-thought reasoning that generalize beyond specific model implementations.568

D.2 Attention aggregation569

R1-Distill-Llama-8B displayed receiver-head patterns largely consistent with those of R1-Distill-570

Qwen-14B. The histogram of attention heads’ vertical-attention scores displays a right tail, indicating571

that some attention heads tend to particularly focus attention on a subset of sentences (Figure 12A).572

Interestingly, the R1-Distill-Qwen-14B receiver-heads tended to be more frequent in later layers (see573

below, Figure 17), which was not evident in R1-Distill-Llama-8B (Figure 11).574

The R1-Distill-Qwen-14B and R1-Distill-Llama-8B receiver heads displayed consistent patterns575

related to sentence types, such that plan generation, uncertainty management, and self checking576

sentences received heightened attention; although visually, the differences to fact retrieval and active577

computation may be less prominent, paired t-tests (paired with respect to a given response) showed578

that plan generation, uncertainty management, and self checking always significantly surpassed fact579

retrieval and active computation (six paired t-tests: ps ≤ .01).580

No R1-Distill-Llama-8B results are provided for the attention suppression analysis, as that method was581

principally used for the case study, and no new case study was performed for R1-Distill-Llama-8B.582
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Figure 11: The plots here show the vertical-attention score patterns associated with the R1-Distill-
Llama-8B data. A. This histogram shows the kurtosis values across all attention heads, averaged
across all reasoning traces; parallels Figure 4 based on the R1-Qwen-14B data. B. This scatterplot
shows the kurtosis of each head’s vertical-attention score, organized by layer. Figure 17 is the
R1-Distill-Qwen-14B version of this figure, which showed an upward trend into later layers that is
not evident here.

Figure 12: Based on the R1-Distill-Llama-8B data, the boxplot shows the average top-64 receiver-
head score for each sentence type. The boxes correspond to the interquartile range across different
reasoning traces. Figure 5 is the R1-Distill-Qwen-14B version of this figure; note that for the R1-
Distill-Qwen-14B figure, the top-16 heads were used. We found that for Llama 8B, examining the
top-64 heads yielded more pronounced differences, although the sentence types with the highest
scores remain the same.

E Embeddings model583

We used all-MiniLM-L6-v2 with a maximum sequence length of 256 tokens and a hidden di-584

mension of 384 as our sentence embeddings model from the sentence-transformers [Reimers585

and Gurevych, 2019] library. We picked a cosine similarity threshold of 0.8, which is the median586

similarity value between all sentence removed (i.e., original sentence) and sentence resampled pairs587

in our dataset.588

F Additional resampling results589

Figure 13 presents mean counterfactual importances across all eight taxonomic categories for R1-590

Distill-Qwen-14B, extending the main text results (Figure 3) which showed only the five most frequent591

sentence types. The expanded view includes three additional categories with lower frequencies.592

Problem setup sentences occur predominantly at trace beginnings (mean normalized position ≈ 0.1)593

with moderate-high counterfactual importance. Self checking sentences tend to occur in the second-594

half of the traces and show lower counterfactual importance. Final answer emission sentences appear595

late in traces (mean normalized position ≈ 0.9) and show the lowest counterfactual importance. The596

patterns observed in the five-category analysis remain consistent when examining the full taxonomy.597
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A. B.

Figure 13: The mean of each sentence category for (A) forced-answer importance and (B) counterfac-
tual importance for R1-Distill-Qwen-14B, per the resampling method, plotted against the sentence
category’s mean position in the reasoning trace. All sentence types are shown.

G Additional resampling details598

G.1 Counterfactual versus resampling importance599

The resampling importance metric introduced in Section 3.2 treats all resampled sentences as equally600

informative, but different sentence types may exhibit varying degrees of overdetermination during601

resampling. Overdetermination occurs when resampled sentences Ti are frequently similar to the602

original sentence Si (i.e., Ti ≈ Si), indicating that the reasoning context strongly constrains what can603

be expressed at that position. We present empirical evidence that counterfactual importance is a more604

nuanced measure by accounting for semantic divergence in resampled content.605

Some sentences are more overdetermined than others. Figure 14A shows that uncertainty management606

and plan generation sentences produce semantically different alternatives in a large proportion of607

resamples, while active computation and problem setup sentences show lower divergence rates.608

The transition matrix in Figure 14B shows how sentence categories change under resampling. For609

instance, uncertainty management and active computation sentences are usually replaced by sentences610

of the same category, whereas plan generation and fact retrieval sentences are more often resampled611

into a variety of other categories.612

A. B.

Figure 14: (A) Fraction of semantically different resampled sentences by category, showing that
uncertainty management and plan generation sentences produce more divergent alternatives when
resampled. (B) Transition probabilities between original and resampled sentence categories.
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These resampling behaviors create systematic differences between our counterfactual and resampling613

importance metrics. Figure 15 demonstrates that the relationship between the two metrics varies614

substantially across sentences and sentence categories. The counterfactual importance metric aims to615

address overdetermination by explicitly filtering for semantically different resamples, providing a616

more targeted measure of causal influence. In contrast, the resampling metric potentially overestimates617

the importance of sentences that consistently produce similar content when resampled.618

Figure 15: Comparison between counterfactual and resampling importance metrics across sentence
categories. Each point represents a single sentence and the dashed gray line is the y = x line.

However, the counterfactual importance metric can yield high-variance estimates when the number619

of semantically divergent resampled sentences is low (e.g., < 10), as the conditional probability620

estimates become less reliable with limited data. Alongside the limitations discussed in Section 8,621

this represents another constraint of our approach that future work should investigate further.622

G.2 Sentence-to-sentence importance623

Beyond measuring individual sentence importance, our framework quantifies causal dependencies624

between specific sentence pairs within reasoning traces. Figure 16 displays the sentence-to-sentence625

importance matrix for problem #2236 (incorrect) (“Each page number of a 488-page book is printed626

one time in the book. The first page is page 1 and the last page is page 488. When printing all of627

the page numbers, how many more 4’s are printed than 8’s?”), showing how individual sentences628

influence downstream reasoning steps. Below we list a few illustrative cases.629

• 12-PG → 16-PG. The planning in sentence 12 (“1. Count the number of 4’s in the units630

place across all page numbers”) raises the probability that the model produces sentence 16631

(“Starting with the 4’s.”) by 0.39. A plan statement triggers a subordinate planning step.632

• 8-FR, 9-PG, 12-PG, 14-PG → 32-UM. The uncertainty management in sentence 32 (“How-633

ever, I need to check if 440-449 is fully included.”) receives sizeable positive influence from634

several earlier sentences: 8-FR (+0.11), 9-PG (+0.06), 12-PG (+0.12), 14-PG (+0.10).635

This forms the dense horizontal band at row index 32.636

• 39-RC ̸→ 83-UM. The result consolidation in sentence 32 (“Now, summing up all the 4’s:637

- Units: 48 - Tens: 50 - Hundreds: 89. Total 4’s = 48 + 50 + 89 = 187.”) decreases the638

likelihood (i.e., inhibits) of 83-UM (“Wait, but just to be thorough, let me check the hundreds639

place for 4’s again.”) by 0.22.640

• 52-AC ̸→ 65-SC. The computation in sentence 52 (“The first four blocks 80-89, 180-189,641

280-289, 380-389 each contribute 10 eights in the tens place.”) decreases the likelihood of642

65-SC (“Let me go through each step again to make sure I didn’t make a mistake.”) by 0.16.643

• 63-AC → 64-UM, 65-SC, 69-SC, 75-SC, 83-UM, 86-SC. The computation in sentence644

63 (“So, the difference is 187 – 98 = 89.”) propagates forward, increasing the likelihood645

of 64-UM (+0.24), 65-SC (+0.17), 69-SC (+0.16), 75-SC (+0.28), 83-UM (0.23), and646

86-SC (0.16). This forms the dense vertical band originating from column index 63.647

• 64-UM → 65-SC, 69-SC, 75-SC, 83-UM, 86-SC. The uncertainty management in sentence648

64 (“Wait, that seems quite a large difference.”) further amplifies the same downstream649

block: 65-SC (+0.32), 69-SC (+0.25), 75-SC (+0.26), 83-UM (0.25), and 86-SC (0.25).650

• 83-UM → 86-SC, 90-FAE. Even very late checks matter. Sentence 83 (“Wait, but just to be651

thorough, let me check the hundreds place for 4’s again.”) increases the chance of 86-SC652

(“Correct. And for the tens place...”) by 0.43 and of the final answer in 90-FAE by 0.41.653
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Figure 16: Sentence-to-sentence importance matrix for the 32 most important sentences in problem
#2236 (incorrect), selected based on total outgoing and incoming importance. Each cell (i, j) shows
the causal importance of sentence i on sentence j, calculated as the difference in the probability
sentence j semantically occurs (> 0.8 cosine similarity) when sentence i is present versus resampled.

We provide the following pseudocode for estimating sentence-to-sentence importance:654

Input: Sentence index i, target sentence index j (where j > i), threshold t = 0.8655

Output: Importance score importance(i -> j)656

657

1. Get rollouts R_keep where sentence i was kept (resampling from i+1)658

2. Get rollouts R_remove where sentence i was removed (resampling from i)659

660

3. For each rollout r in R_keep:661

a. Extract all sentences S_r from rollout r662

b. Find best matching sentence to target sentence j:663

- Compute sentence embeddings664

- Calculate cosine similarity between each s in S_r and target j665

- Select sentence with highest similarity if similarity >= t666

c. Add to matches_keep if valid match found667

668

4. For each rollout r in R_remove:669

a. Extract all sentences S_r from rollout r670

b. Find best matching sentence to target sentence j (same process as step 3b)671

c. Add to matches_remove if valid match found672

673

5. Calculate match rates:674

match_rate_keep = |matches_keep| / |R_keep|675

match_rate_remove = |matches_remove| / |R_remove|676

677

6. Return importance(i -> j) = match_rate_keep - match_rate_remove678

H Additional receiver head information679

Receiver heads – heads receiving high kurtosis scores – are more common in late layers (Figure 17).680

Examples of receiver heads are shown in Figure 18, showing how the highest kurtosis head consis-681

tently narrows attention on particular sentences, and Figure 19, showing how there exist many heads682

that narrow attention on particular sentences.683
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Figure 17: This scatterplot shows the kurtosis of each head’s vertical-attention score, organized by
layer. There is an upward trend across layers and a strong uptick among some late-layer heads.

Figure 18: The attention weight matrices for the receiver head with the highest kurtosis score are
shown here for all twenty responses. The coloring was defined such that the darkest navy corresponds
to values surpassing 99.5th percentile value of each matrix. White is zero.
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Figure 19: The attention weight matrices for response #1591 (incorrect) are shown here for the
20 attention heads yielding the highest kurtosis score across all responses. No effort was taken to
“cherry-pick” responses showing prominent receiver head patterns; we are showing #1591 (incorrect)
because it corresponded to the alphabetically earliest problem number among the ten problems
analyzed (correct/incorrect chosen randomly). The coloring was defined such that the darkest navy
corresponds to values surpassing 99.5th percentile value of each matrix. White is zero.
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Figure 20: The navy and red lines on the left show the receiver-head scores assigned to sentences,
averaged across the 16 heads with the highest kurtoses. The green lines on the right represent the
ratio of the navy and blue lines for a given sentence rank. Sentences with high receiver head scores
receive more attention in the reasoning model compared to the base model.

I Reasoning versus base model differences in receiver heads684

Attentional narrowing toward particular sentences may be a feature specifically of reasoning models.685

We submitted the reasoning traces to a base model version of Qwen-14B and identified receiver686

heads. For both models, we sorted all sentences by their mean receiver-head score using the 16687

attention heads with the highest kurtoses. The highest percentile sentences received greater attention688

by the reasoning model - e.g., the highest-percentile sentences receive 1.8x more attention via top-16689

heads in the reasoning model compared to the base model (Figure 20). Additionally, lower percentile690

sentences receive less attention through the top-16 heads. This conclusion is somewhat tenuous, as691

no base-model difference is seen when this result is tested using R1-Distill-Llama-8B. Nonetheless,692

based on the Qwen-14B data, it appears the model has learned to narrow its attention toward particular693

sentences.694

J Effects of ablating receiver heads695

To test the causal hypothesis that the receiver heads identified in Section 4 are functionally important696

for reasoning, we performed an experiment ablating receiver heads and evaluating how this impact’s697

model accuracy. This intervention is designed to measure the direct impact of removing these heads698

on task performance and to evaluate the possibility that they may be more important than typical699

heads.700

J.1 Methodology701

We continue to use problems from the MATH dataset. We selected 32 problems where the non-ablated702

model achieves 10-90% accuracy on average. For each problem, we ran R1-Distil-Qwen-14B sixteen703

times, while allowing the model to output up to 216 (16,384) tokens. Responses that did not produce704

an answer by that point were marked as incorrect.705

We compared the effect of ablating 128 attention heads (approx. 7% of all heads), 256 heads (approx.706

13%), or 512 heads (approx. 27%). The ablation strategies were:707

1. Receiver head ablation: We ablated the top-N heads with the highest average kurtosis708

scores.709

2. Random non-receiver (control) ablation: For each layer where k receiver heads were710

ablated, we ablated k heads chosen randomly from the set of heads not selected from that711

same layer. This ensures a matched comparison with no overlap.712

Note that receiver heads are more common in late layers (see above, Figure 17). By ensuring that713

both conditions included an equal number of heads from each layer (rather than selecting 128, 256,714

or 512 heads randomly across all layers), this ensures that differences cannot be explained simply by715

differences in the layers selected.716

In the 512-head ablation condition, a majority of attention heads in some late layers were marked717

as receiver heads. For these layers, the non-receiver control condition was modified to ablate the718

corresponding number of heads with the lowest kurtosis scores to ensure a valid comparison set. For719

instance, if 60% of layer 43 heads are in the top-512, then the control condition included the 60%720

with the lowest kurtosis score, meaning that there is 20% overlap for that layer.721
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J.2 Results and Discussion722

Our experiments show that a large number of heads must be ablated to induce a significant drop in723

performance compared to the baseline level of accuracy (baseline = 64.1%, 95% CI: [56.0%, 72.1%]).724

Regardless of whether receiver heads or non-receiver heads are targeted, ablating 128 heads produces725

differences in accuracy that insignificantly differ from baseline accuracy, and ablating 256 heads still726

produces only a small drop in accuracy (Table 2).2727

Table 2: Answer accuracy on MATH problems for different self-attention-head ablation conditions.
The brackets show the 95% confidence interval for each accuracy estimate.

Heads Ablated Receiver heads Random heads
256 48.8% [39.3%, 58.3%] 52.7% [43.0%, 62.5%]
512 27.7% [17.2%, 38.2%] 37.3% [27.5%, 47.1%]

The importance of receiver heads emerges when a large number of heads are ablated. When ablating728

512 heads (over a quarter of the model’s 1920 heads), targeting receiver heads caused performance to729

fall to 28% accuracy. Removing the same number of control heads resulted in a less severe drop to730

37% accuracy. There is a significant difference between these percentages (t[31] = 2.55, p = .02),731

suggesting receiver heads are more critical for reasoning than other heads.732

As mentioned, this analysis treats responses as incorrect if they do not produce a final answer by733

16,384 tokens. If the analysis is changed to instead simply omit those responses entirely from the734

analysis, there remains a significant difference in accuracy when ablating top-512 receiver heads735

(29% accuracy) versus random non-receiver heads (39% accuracy) (t[31] = 2.66, p = .02). Hence,736

regardless of whether non-completed responses are marked as incorrect or ignored, ablating receiver737

heads is found to exert a larger impact on model accuracy than ablating random non-receiver heads.738

K Receiver head correlations with sentence-sentence resampling importance739

A sentence’s receiver-head score predicts its impact on downstream sentences per the resampling740

method. Specifically, our resampling approach (Section 3) produces a matrix describing each741

sentence’s counterfactual importance on each future sentence. Based on said matrix, we can compute742

a sentence-level measure analogous to the receiver head score by taking the average value below the743

matrix diagonal; as with the receiver head score, we omit the four entries immediately below the744

diagonal to avoid simply capturing proximal effects and focus on farther downstream impacts; we745

take the absolute value of the resampling matrix to produce an estimate of how a given sentence may746

both upregulate or downregulate future sentences.747

We correlated sentence (top-64-head) receiver scores with their resampling scores calculated here -748

correlated separately for each response - yielding a positive association (mean Spearman ρ = .22;749

95% CI: [.17, .30]). Although the correlation is nominally weak/moderate, this is a consistent trend,750

and 18 of the 20 responses tested displayed a positive association (ρ > 0). A sentence’s receiver-score751

additionally correlates with its downstream effect as computed by the attention suppression measure752

introduced in Section 5 (mean >4 below the diagonal) (mean Spearman ρ = .19; 95% CI: [.10,753

.28]). Although attention weights alone are not a causal measure, they are computationally cheap to754

examine, requiring no post hoc forward pass, unlike the other two methods. Grounded in these other755

techniques, the receiver-head scores may hence prove useful by virtue of their limited cost.756

2We are not aware of prior studies on attention head ablation for models generating long chain-of-thought
reasoning, making it difficult to establish what is a typical number of heads to ablate. Potentially, a large
number is necessary because the long reasoning traces (sometimes exceeding 10,000 tokens) provide extensive
opportunities for error correction and compensatory computation.
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L Case study transcript757

Below is a transcript of the model’s response used for the case study (Section 6). The first 74758

sentences following <think> are shown. After this point, the model converged on 100% resampling759

accuracy for all subsequent sentences.760

0. (problem_setup): Okay, so I have this problem where I need to find out how many bits761

the base-16 number 6666616 has when it’s converted to base-2.762

1. (uncertainty_management): Hmm, let’s see.763

2. (fact_retrieval): I remember that each hexadecimal digit corresponds to exactly 4 binary764

digits, or bits.765

3. (plan_generation): So, maybe I can just figure out how many hexadecimal digits there766

are and multiply by 4 to get the number of bits.767

4. (uncertainty_management): Let me check that.768

5. (fact_retrieval): First, the number given is 66666 in base 16.769

6. (active_computation): Let me count the digits: 6, 6, 6, 6, 6.770

7. (result_consolidation): That’s five digits in total.771

8. (active_computation): So, if each digit is 4 bits, then 5 digits would be 5×4=20 bits.772

9. (uncertainty_management): Wait, is that always the case?773

10. (fact_retrieval): I think so because each hex digit maps directly to 4 bits without any774

overlap or sharing.775

11. (result_consolidation): So, 6666616 would be 20 bits in binary.776

12. (uncertainty_management): But wait, I should make sure that this is correct by actually777

converting the number or at least checking if there’s any leading zero that might affect the778

bit count.779

13. (plan_generation): Alternatively, maybe I can calculate the value of 6666616 in decimal780

and then find out how many bits that number would require.781

14. (plan_generation): Let’s try that approach to cross-verify.782

15. (fact_retrieval): So, to convert 6666616 to decimal, I can expand it as follows:783

16. (fact_retrieval): Each digit represents a power of 16.784

17. (fact_retrieval): Starting from the right, the digits are 160,161,162,163,164.785

18. (fact_retrieval): So, the number is:786

19. (active_computation): 6×164+6×163+6×162+6×161+6×160787

20. (plan_generation): Let me compute each term:788

21. (fact_retrieval): First, 164 is 16×16×16×16.789

22. (active_computation): 162 is 256, so 163 is 256×16=4096, and 164 is 4096×16=65536.790

23. (active_computation): So, 6×65536=393216791

24. (active_computation): Next, 163 is 4096, so 6×4096=24576792

25. (active_computation): Then, 162 is 256, so 6×256=1536793

26. (active_computation): 161 is 16, so 6×16=96794

27. (active_computation): And 160 is 1, so 6×1=6795

28. (result_consolidation): Now, adding all these up:796

29. (active_computation): 393216+24576=417,792797

30. (active_computation): 417,792+1536=419,328798

31. (active_computation): 419,328+96=419,424799

32. (active_computation): 419,424+6=419,430800

33. (result_consolidation): So, 6666616 is equal to 419,430 in decimal.801
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34. (fact_retrieval): Now, to find out how many bits this number requires, I can use802

the formula for the number of bits needed to represent a number N in binary, which is803

floor(log2(N)) + 1.804

35. (plan_generation): So, let’s compute log2(419, 430).805

36. (uncertainty_management): Hmm, I don’t have a calculator here, but I can estimate it.806

37. (fact_retrieval): I know that 218 =262,144807

38. (fact_retrieval): 219 =524,288808

39. (result_consolidation): So, 419,430 is between 218 and 219.809

40. (result_consolidation): Therefore, log2(419, 430) is between 18 and 19.810

41. (active_computation): The floor of that would be 18, so the number of bits is 18+1=19811

bits.812

42. (uncertainty_management): Wait, but earlier I thought it would be 20 bits because it’s 5813

hex digits each being 4 bits.814

43. (result_consolidation): Now, according to this, it’s 19 bits.815

44. (uncertainty_management): There’s a discrepancy here.816

45. (uncertainty_management): I must have made a mistake somewhere.817

46. (self_checking): Wait, let me check my calculations again.818

47. (uncertainty_management): Maybe I messed up the decimal conversion.819

48. (fact_retrieval): Wait, 66666 in hex.820

49. (plan_generation): Let me convert it step by step again.821

50. (active_computation): 6×164: 6×65536=393216822

51. (active_computation): 6×163: 6×4096=24576823

52. (active_computation): 6×162: 6×256=1536824

53. (active_computation): 6×161: 6×16=96825

54. (active_computation): 6×160: 6×1=6826

55. (active_computation): Adding them up: 393216+24576=417,792827

56. (active_computation): 417,792+1536=419,328828

57. (active_computation): 419,328+96=419,424829

58. (active_computation): 419,424+6=419,430.830

59. (result_consolidation): That seems correct.831

60. (result_consolidation): So, 419,430 in decimal.832

61. (fact_retrieval): Now, let’s check 218 is 262,144, 219 is 524,288.833

62. (result_consolidation): So, 419,430 is less than 524,288, so log2(419, 430) is less834

than 19.835

63. (active_computation): So, floor(log2(419, 430)) is 18, so number of bits is 19.836

64. (uncertainty_management): But wait, when I thought about each hex digit being 4 bits,837

5 hex digits would be 20 bits.838

65. (uncertainty_management): So, why is there a difference?839

66. (plan_generation): Ah, perhaps because leading zeros are not counted.840

67. (fact_retrieval): So, when converting from hex to binary, each digit is 4 bits, but if the841

leading hex digits are such that when converted to binary, they don’t add any leading zeros842

beyond the 4 bits per digit.843

68. (uncertainty_management): Wait, but 66666 in hex is 5 digits, so 5×4=20 bits.844

69. (result_consolidation): But according to the decimal conversion, it’s 19 bits.845

70. (result_consolidation): That suggests that when converted to binary, it’s 19 bits, not846

20.847
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71. (uncertainty_management): So, which is correct?848

72. (plan_generation): Wait, perhaps when converting 6666616 to binary, it’s exactly 20 bits,849

but the leading bits are zeros, so when counting the number of bits, we don’t count leading850

zeros.851

73. (fact_retrieval): Wait, but in the problem, it’s just asking how many bits it has when852

written in base 2.853

Sentence 13 (“Alternatively, maybe I can calculate the value of 6666616 in decimal and then find out854

how many bits that number would require.”) was found to have the highest counterfactual importance855

among any sentence in the response (see Figure 2A). Five alternative possible sentences resampled856

at the sentence 13 position, marked by whether they eventually led to a correct or incorrect answer,857

are as follows:858

1. (×) Let me think. The first digit is 6, which in binary is 0110.859

2. (✓) Let me try converting the number to decimal first. . .860

3. (×) Let me try converting the first few digits to binary to see how it goes.861

4. (×) Let me think about the conversion process.862

5. (✓) Let me try converting the number step by step.863

M Sentence position effects on receiver-head scores864

A sentence’s position within the reasoning trace will tend to influence its measured receiver score.865

As a reasoning trace progresses, the number of possible broadcasted sentences will necessarily866

increase. For instance, by sentence 20, there might be only two broadcasted sentences (each receiving867

50% of attention from sentences 21-29), whereas by sentence 100, there could be ten broadcasted868

sentences (each receiving 10% of attention from sentences 101-109). As the sum of an attention869

weight row will sum to 1 (at the token level), later sentences will distribute their attention across a870

larger number of past sentences. This dilution of attention creates downward pressure on the receiver-871

head scores of later sentences. This is the case even though a receiver head score extends through all872

subsequent low-competition or high-competition periods. For example, broadcasting sentence 20 will873

face limited competition from receiving sentence 21-29 attention and high competition for sentences874

101-109, whereas broadcasting sentence 100 will exclusively face high competition, pushing its score875

downward as broadcasting-sentence position increases.876

There also exists a proximity effect on receiver-head scores that operates in the opposite direction of877

the above effect. Although broadcasted sentences are attended by all subsequent sentences to some878

degree, this will be more so the case for more recently subsequent sentences (e.g., receiving more879

attention from a sentence 10 sentences downstream than one 20 sentences downstream). For sentences880

late in the reasoning trace, the average distance to future sentences will be shorter. For example, if a881

reasoning trace contains 120 sentences, then sentence 100 will be at most 19 sentences apart from882

any given future sentence, whereas sentence 20 will be at most 99 sentences apart. To a degree, the883

analyses in the report account for proximity effects by ignoring the 4 sentences immediately proximal884

to a given sentence when calculating vertical-attention scores. However, this will not fully address885

proximity effects.886

We see no reason why the downward pressure of sentence position on receiver-head scores (attention887

dilution) will be equal in magnitude to the upward pressure of sentence position (proximity effects).888

For the preparation of the present report, we conducted exploratory analyses evaluating whether889

the above confounding factors invalidate any presented finding, and we did not find evidence that890

this is the case. Thus, rather than pursuing some technique to account for the above pressures (e.g.,891

linearly weighing attention weight matrices based on their position), we opted to only account for892

these factors in a minimal fashion by ignoring the attention among sentences just 4 sentences apart.893
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