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Abstract

The k-means algorithm aims at minimizing the variance within clusters without considering
the balance of cluster sizes. Balanced k-means defines the partition as a pairing problem which
enforces the cluster sizes to be strictly balanced, but the resulting algorithm is impractically
slow O(n3). Regularized k-means addresses the problem by using a regularization term
including a balance parameter. It works reasonably well when the balance of the cluster sizes
is a mandatory requirement but does not generalize well for soft balance requirements. In
this paper, we revisit the k-means algorithm as a two-objective optimization problem with
two goals contradicting each other: to minimize the variance within clusters and to minimize
the difference in cluster sizes. The proposed algorithm implements a balance-driven variant
of k-means which initially only focuses on minimizing the variance but adds more weight
to the balance constraint in each iteration. The resulting balance degree is not determined
by a control parameter that has to be tuned, but by the point of termination which can be
precisely specified by a balance criterion.

1 Introduction

Clustering denotes the unsupervised classification of objects into groups, called clusters. Objects can be, for
example, observations, data items, feature vectors or images (Jain et al., 1999). They are classified based on
their similarity: objects within one cluster are more similar to each other than objects in different clusters
(Kovács et al., 2006). Clustering is an important topic in several areas such as statistics, pattern recognition,
machine learning and data mining (Kovács et al., 2006). Applications can be found, for example, in document
retrieval, object and character recognition and image segmentation (Althoff, 2010; Jain et al., 1999).

Since the middle of the last century, thousands of algorithms facing the clustering problem have been
published (Jain, 2010). They vary, among other things, in the way how they define the clusters or how
they measure the similarity between objects (Aggarwal, 2015). For example, hierarchical clustering leads
to a nested series of partitions, partitional clustering produces only one partition by decomposing the data
set directly into a set of disjoint clusters and fuzzy clustering uses soft assingments (Gan et al., 2007;
Jain et al., 1999; Kovács et al., 2006). Moreover, different approaches result in different types of clusters.
Probabilistic model-based algorithms rely on the assumption that the data was generated from a mixture of
distributions. Grid-based and density-based algorithms are able to detect fine-grained dense regions in the
data. Graph-based algorithms are applicable to almost every type of data by converting the data set into
a similarity graph. Representative-based algorithms rely on representatives for each cluster, which can be
created by a function of the objects belonging to that cluster or can be objects themselves. Depending on
the kind of the algorithm, the result of a clustering algorithm on the same data set can vary considerably.
(Aggarwal, 2015; Kovács et al., 2006)

One of the most popular clustering algorithms is the k-means algorithm (Jain, 2010; Wu et al., 2007). It
was first proposed by Lloyd (1982) and Forgy (1965). The aim of this clustering algorithm is to build k
disjoint clusters such that the sum of squared distances between the data points and their representatives is
minimized. The representatives, called centroids, are determined by the mean of the data points belonging to
a cluster. As a distance function the Euclidean distance is used. The number of clusters k has to be set by
the user.
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Formally, if we have a data set consisting of n data points x1, x2, . . . , xn, the task is to group these data
points into k clusters such that the sum squared error (SSE)

SSE =
k∑

j=1

∑
xi∈pj

||xi − cj ||2 (1)

is minimized, where pj denotes the set of data points assigned to the jth cluster and cj is the centroid of the
jth cluster. This problem is NP-hard even for two clusters (Costa et al., 2017). The k-means algorithm is a
heuristic for this problem.

The algorithm itself starts by a first initialization of the clusters, followed by an assignment and update
step, which are iteratively repeated until a convergence criterion is met. During the initialization, k cluster
centroids are randomly selected from all data points. In the assignment step, each data point is assigned to
the cluster whose centroid is closest. Formally, the assignment step can be written as

pj =
{

xi | arg min
j∗∈{1,...,k}

(
||xi − cj∗ ||2

)
= j

}
for all j ∈ {1, . . . , k}.

In the update step, the centroids are updated by the mean of the data points assigned to the cluster. Formally,

cj = 1
|pj |

∑
xi∈pj

xi for all j ∈ {1, . . . , k},

where |pj | denotes the number of data points assigned to the jth cluster. The assignment and update steps
are repeated until the centroids do not change anymore.

This algorithm is a heuristic not necessarily returning a global optimum (Malinen & Fränti, 2014). Nevertheless,
it returns a local optimum with respect to the SSE: the assignment step minimizes the SSE for a given set of
centroids, while the update step minimizes the SSE for a given partition (Lin et al., 2019; Malinen & Fränti,
2014). The running time of one iteration is linear in the number of data points n (Jain et al., 1999).

Among the advantages of this algorithm are its simplicity, time complexity and usability in a large area
of subjects (Jain et al., 1999; Saini & Singh, 2015). However, despite its popularity, it also involves some
drawbacks like the strong dependence on the initial choice of the cluster centroids (Fränti & Sieranoja, 2019;
Saini & Singh, 2015) or its limitation to hyperspherical shaped clusters (Althoff, 2010). Another drawback,
on which we focus in this paper, is its inability to control the number of objects contained in each cluster.
Especially in high dimensional space and if many clusters are desired, often very small clusters seem to appear
even if the data itself has a balanced distribution (Bradley et al., 2000).

In this paper, we refer to a balanced clustering as a clustering that distributes the data points evenly between
the clusters. More formally, to incorporate situations in which the number of data points n is not divisible by
the number of clusters k, a balanced clustering requires that every cluster contains either

⌊
n
k

⌋
or

⌈
n
k

⌉
data

points.

In general, balanced clustering is a two-objective optimization problem pursuing two goals that contradict
each other: on the one hand, the SSE should be minimized, and on the other hand, the difference in cluster
sizes should be minimized. If we were just interested in minimizing the SSE, we could apply an ordinary
clustering algorithm like k-means, and if we were only interested in balancing, we could simply divide the
data points randomly into clusters of the same size (Malinen & Fränti, 2014; Saini & Singh, 2015). Figure 1
demonstrates the case where minimizing the SSE with and without a balance constraint results in a different
optimal clustering result.

To optimize both aims, there exist two different approaches, hard-balanced, also called balance-constrained,
and soft-balanced, also called balance-driven, clustering. Both approaches differ in the way they assess the
two objectives. Hard-balanced clustering strictly requires cluster size balance, whereas the minimization of
the SSE serves as a secondary criterion. Soft-balanced clustering considers the balance of the cluster sizes as
an aim but not as a mandatory requirement. It intends to find a compromise between the two goals, e.g.,
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Figure 1: Balance constraints can lead to a different clustering result. There are two
balanced clusterings with different SSE values (left and middle) and one unconstrained
clustering optimized for SSE (right).

by weighting them or by using a heuristic which minimizes the SSE but indirectly creates more balanced
clusters than the standard k-means algorithm. (Lin et al., 2019; Malinen & Fränti, 2014)

There exist a lot of applications for clustering that rely on a balanced distribution of the objects, i.e., a
distribution in which every cluster contains exactly or approximately the same number of objects. Balanced
clustering can be used in the division step of divide-and-conquer algorithms to provide equal sized partitions
(Malinen & Fränti, 2014). In load balancing algorithms, balanced clustering can help to avoid unbalanced
energy consumption in networking (Han et al., 2018; Liao et al., 2013; Lin et al., 2019) or to balance the
workload of salesmen in the multiple travelling salesmen problem (Nallusamy et al., 2010). In the clustering of
documents, articles or photos or in the creation of domain specific ontologies, balanced clustering can improve
the resulting hierarchies by generating a more balanced view of the objects to facilitate the navigation and
browsing (Banerjee & Ghosh, 2006). In retail chains, balanced clustering can be used to segment customers
into equal sized groups to spend the same amount of marketing resources on each segment or to group
similar products into categories of specified sizes to match units of shelf or floor space (Banerjee & Ghosh,
2006). Cost function leading to more balanced cluster sizes was used in Fränti et al. (2022) to allow manual
investigation of the content of the diagnosis clusters.

In this paper, we propose a balanced clustering algorithm based on the k-means algorithm. Its main principle
is an increasing penalty term, which is added to the assignment function of the k-means algorithm and favours
objects to be assigned to smaller clusters. Because of the increasing penalty term, the resulting balance
degree of a clustering is not determined by a rather non-intuitive parameter, but by the point of termination
of the algorithm. In this way, the desired balance degree can be specified precisely and the algorithm can
always be continued to ensure that it does not produce a better clustering with respect to the SSE satisfying
the given balance requirement in future iterations.

The rest of the paper is organized as follows. We begin in Section 2 by summarizing the related work. In
Section 3 we present the proposed algorithm. After demonstrating its main principle on a small exemplary
data set, we focus on the magnitude of the penalty term and its computation. Further, we briefly consider its
termination criterion and time complexity. Section 6 shows the results. We compare the proposed method to
the regularized k-means algorithm by Lin et al. (2019) and the balanced k-means algorithm by Malinen &
Fränti (2014) on several data sets.

2 Balanced Clustering

We next review the existing approaches for balanced clustering. Approaches for hard-balanced clustering are
reviewed in Section 2.1 and for soft-balanced clustering in Section 2.2, respectively.

2.1 Hard-balanced Clustering

A popular approach to face this problem is to formulate the assignment step of the standard k-means
algorithm as an optimization problem satisfying balance constraints and solve it by linear programming. The
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constrained k-means algorithm proposed by Bradley et al. (2000) follows this approach and ensures clusters
of given minimum sizes by solving a minimum cost flow problem. Depending on the chosen minimum cluster
sizes, this algorithm can also be used for soft-balanced clustering. The time complexity of the assignment step
is O(k3.5n3.5), which makes the algorithm much slower than the standard k-means algorithm and reduces its
scalability especially for large data sets (Malinen & Fränti, 2014).

The balanced k-means algorithm proposed by Malinen & Fränti (2014) solves the assignment step of k-means
by the Hungarian algorithm. This reduces the time complexity of the assignment step compared to the
previous method to O(n3), but is still too slow for large data sets.

Another hard-balanced clustering algorithm formulating the assignment step of the standard k-means
algorithm as a linear programming problem is the algorithm proposed by Tang et al. (2019). They claimed
that the average time complexity of their algorithm is only O(mn1.65) to O(mn1.7) (m denotes the number
of iterations), which improves the running time remarkably compared to the above-mentioned algorithms.

An even faster algorithm was proposed by Zhu et al. (2010). This algorithm does not follow the iterative
structure of the k-means algorithm but transforms the balanced clustering problem directly into a linear
programming problem by using a heuristic function. However, this algorithm cannot keep up with the quality
of the clustering achieved by the other algorithms (Tang et al., 2019).

A further method following the linear programming approach is regularized k-means by Lin et al. (2019). It
extends the previous models by adding a balance regularization term to the objective function, that can be
adapted according to the requirements. Thus, depending on the chosen regularization term, this algorithm
can also be used for soft-balanced clustering.

Some further proposed algorithms for hard-balanced clustering follow different approaches. For example, the
neural gas clustering algorithm is adapted by Luptáková et al. (2016) to handle given cluster sizes. Conic
optimization is used by Rujeerapaiboon et al. (2019), which also allows to provide bounds on the suboptimality
of the given solution. The fuzzy c-means algorithm is applied by Chakraborty & Das (2019) before using the
resulting partial belongings and the given size constraints to finally assign the data points to the clusters.
A basic variable neighbourhood search heuristic following the less is more approach was proposed by Costa
et al. (2017). This heuristic performs a local descent method to explore neighbours, which are obtained by
swapping points from different clusters in the current optimal solution. Recently Zhou et al. (2021) proposed
a memetic algorithm combining a crossover operator to generate offspring and a responsive threshold search
alternating between two different search procedures to optimize the solution locally. A greedy randomized
adaptive search procedure combined with a strategic oscillation approach to alternate between feasible and
infeasible solutions is used by Martín-Santamaría et al. (2022).

2.2 Soft-balanced Clustering

A popular approach for the soft-balanced clustering problem is the use of a multiplicative or additive bias in
the assignment function of the standard k-means algorithm. First, Banerjee & Ghosh (2004) proposed to use
the frequency sensitive competitive learning method. Competitive units, here clusters competing for data
points, are penalized in proportion to the frequency of their winning, aiming at making all units participate.
Banerjee & Ghosh (2004) applied this method by introducing a multiplicative bias term in the objective
function of the standard k-means algorithm, which weights the distance between a data point and a centroid
depending on the number of data points already assigned to the cluster. In this way, smaller clusters are
favoured in the assignment step.

They also provided a theoretical background for their approach. The k-means algorithm implicitly assumes
that the overall distribution of the data points can be decomposed into a mixture of isotropic Gaussians
with uniform prior. Banerjee & Ghosh (2004) followed the idea to shrink the Gaussians in proportion to the
number of data points that have been assigned to them by dividing the covariance matrix of each cluster by
the number of data points assigned to it. Maximizing the log-likelihood of a data point with respect to this
framework leads to the multiplicative bias (Althoff, 2010; Banerjee & Ghosh, 2004).

A similar approach was presented by Althoff et al. (2011). They also adapted the assumption that a data
point is distributed according to a mixture of isotropic Gaussians with uniform prior. But instead of changing
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the shape of the clusters by shrinking the Gaussians, they adjusted their prior probabilities such that they
decrease exponentially in the number of data points assigned to them. Thus, the more data points a Gaussian
contains, the lower its prior probability becomes. Maximizing the log-likelihood of a data point with respect
to this framework results in an additive bias. Liu et al. (2018) complemented their work by providing the
objective function and adding a theoretical analysis with respect to convergence and bounds in terms of
bicriteria approximation.

Further algorithms use the least square linear regression method combined with a balance constraint that
aims at minimizing the variance of the cluster sizes (Han et al., 2018; Liu et al., 2017). The least square
regression error is minimized in each iteration such that the accuracy of the estimated hyperplanes, which
partition the data into clusters, improves step by step.

Li et al. (2018) proposed an algorithm following the approach of the exclusive lasso. This method models
a situation in which variables within the same group compete with each other (Zhou et al., 2010). They
computed the exclusive lasso of the cluster indicator matrix, which equals the sum of the squared cluster
sizes, and used it as a balance constraint by adding it as a bias to the objective function of the standard
k-means algorithm.

A more generalized method, that can deal with different balance structures (cardinality, variance and
density), was proposed by Gupta et al. (2018). In the assignment step of the standard k-means algorithm a
multiplicative weight is added as a bias and additionally a balancing phase is introduced after each update
step. In this phase, points are shifted from clusters with the largest weights to clusters with the lowest weights.
The weights are updated after each iteration and their computation depends on the chosen balance structure.

A completely different approach, proposed by Banerjee & Ghosh (2006), introduced a stepwise working
soft-balanced clustering algorithm, that provides, even though it is soft-balanced, some balance guarantees
in form of minimum cluster sizes. First, a representative subset of the data points is sampled from the
data, which then is clustered by an existing clustering algorithm. Since the amount of sampled points is
small compared to the size of the data set, a slightly more complex algorithm can be chosen. Afterwards,
the remaining points are distributed to the existing clusters respecting the balance constraints, and finally
refinements are made to further minimize the objective function.

Lin et al. (2022) proposed an algorithm called τ -balanced clustering. The variable τ denotes the maximal
difference between the sizes of any two clusters and can be determined by the user. By setting this variable
to one, a hard-balanced clustering algorithm is obtained. In the assignment step, a data point is assigned to
the cluster whose centroid is closest if the size restrictions are not violated. Otherwise, it replaces a data
point already assigned to the cluster if that point is farther from the centroid than the point that has to be
assigned, else the cluster with the next nearest centroid is considered. After every data point is assigned to
a cluster, the cluster centroids are updated according to the standard k-means algorithm. The algorithm
terminates when the cluster centroids converge.

3 Proposed Method

We modify the standard k-means algorithm such that it does not only consider the squared distances to the
cluster centroids, but also takes the cluster sizes into account. Our approach is to add a penalty term to the
objective function of the standard k-means algorithm, which depends on the number of data points already
assigned to a cluster. Thus, we want to create a new objective function in the shape of

SSEbal = SSE +
k∑

j=1
penalty(j). (2)

The penalty term of a cluster has to increase with the number of data points contained in that cluster. In this
way, clusters containing few data points are favoured to get more points, and clusters containing many points
are unfavoured. Thus, the clustering becomes more balanced. An easy example for a penalty term satisfying
this property is the function that just returns the size of a cluster, penalty(j) = nj , where nj denotes the
number of data points already assigned to the jth cluster. Apparently, the use of this function as the penalty
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Figure 2: Intended behaviour of a gradually increasing penalty term

term is too general because it does not take the scale between the SSE and the number of data points into
account.

If the penalty term returns constant zero, the optimization of 2 reduces to the minimization of the SSE,
hence to the same problem that the standard k-means algorithm is facing.

The addition of a penalty term to the assignment function of the standard k-means algorithm follows the
approach of (Liu et al., 2018) and (Althoff et al., 2011). The crucial point, in which we deviate from their
method, is the determination of the penalty term. An appropriate value of the penalty term is essential for
the algorithm in order to produce reasonable results, but it strongly depends on the given data set.

3.1 Increasing Penalty Term

We address this problem by introducing an increasing penalty term. The idea is to start off with a clustering
produced by the standard k-means algorithm that yields a reasonably good clustering quality in minimizing
the SSE and use a gradually increasing penalty term to shift the focus towards the balance. Figure 2 illustrates
this intended behaviour: starting from the initial situation containing two clearly separated clusters, the
penalty term increases such that first only point x1 joins the cluster on the right, afterwards points x2 and
x3, after that point x4. In this way, the balance quality increases while the clustering quality decreases. The
algorithm terminates as soon as the desired balance requirement is met.

Following this approach, we further avoid using a non-intuitive parameter that determines the trade-off
between the clustering and the balance quality like many soft-balanced clustering algorithms do (Althoff et al.,
2011; Li et al., 2018; Lin et al., 2019). Instead, the balance degree is determined by the time of termination,
for which a criterion in form of a balance requirement can be given (see Section 5.2 for different ways to
measure the balance quality). Thus, if, for example, a user wishes to reach a certain maximum difference
between the smallest and the largest cluster, the algorithm will continue until such a clustering is reached.
Therefore, this approach represents a very intuitive way for defining the trade-off between clustering and
balance performance.

Formally, we are looking for a penalty term that not only depends on the size of a cluster, but also on the
number of iterations. Therefore, we introduce the function scale, a strictly increasing function depending on
the number of iterations, and define

penalty(j, iter) = scale(iter) · nj .

As the value of the function scale becomes steadily larger with the number of iterations, the influence of the
cluster sizes increases relative to the error term SSE in each iteration. By introducing the dependency of the
penalty term on the number of iterations, the objective function also becomes dependent on the number of
iterations.
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3.2 Scaling the Penalty Term

Probably one of the easiest ways to define the function scale consists in choosing it as a classical function
like a logarithmic, linear, quadratic or exponential function. However, the problem with using one of these
functions is the uniqueness of each data set. Using an increasing penalty term does not mean that we no
longer have to be concerned about an appropriate magnitude of the penalty term.

If the penalty term is too small, it takes a very long time to reach a balanced clustering. On the other hand,
if the term becomes too large too fast, overlapping clusters are produced. This can be seen as follows: in
Figure 2, in the optimum case in one iteration the penalty term is large enough such that point x1 changes to
the smaller cluster on the right, but the term is not large enough to make the points x2, x3 and x4 change to
the cluster on the right. In the next iteration, the penalty term increases such that also the points x2 and x3
change to the cluster on the right, but still the penalty term is not large enough to make point x4 change to
the cluster on the right. In the next iteration, the penalty term further increases such that now also point
x4 changes to the cluster on the right. But if the penalty term increases too fast, for example, if points x1
and x4 can change to the cluster on the right in the same iteration for the first time, it can happen that x4
changes to the cluster on the right, but x1 does not. Then overlapping clusters have been formed.

Therefore, the size and growth of the penalty term are critical and due to the uniqueness of each data set,
one data set may require a smaller penalty term, while other data sets need larger penalties and the required
growth of the penalties can also differ.

Thus, we take a slightly more complicated approach than using a classical function, but also a more effective
approach. The main principle is that progress in producing a more balanced clustering out of an unbalanced
one happens only when a data point changes from a larger to a smaller cluster. Thus, the value of scale
should be large enough to make a data point change from a larger to a smaller cluster. At the same time, it
should not be chosen too large to preserve a good clustering quality, since a too fast increasing penalty term
tends to lead to overlapping clusters.

This seems to be a high demand for the value of scale, but indeed, during one iteration of the algorithm we
can compute the minimum value of the penalty term for the next iteration that is necessary to make at least
one data point change to a smaller cluster.

Let us start simple: we assume that we are in iteration iter in the assignment phase of data point xi and
its old cluster is denoted by jold . Then, data point xi is able to change to cluster jnew containing less data
points, njnew < njold , only if

||xi − cjnew ||2 + penalty(jnew, iter) < ||xi − cjold ||2 + penalty(jold , iter)
⇔ ||xi − cjnew ||2 − ||xi − cjold ||2 < penalty(jold , iter)− penalty(jnew, iter)
⇔ ||xi − cjnew ||2 − ||xi − cjold ||2 < scale(iter) · njold − scale(iter) · njnew

⇔ ||xi − cjnew ||2 − ||xi − cjold ||2

njold − njnew

< scale(iter).

(3)

Note that the last equivalence relies on our assumption

njnew < njold .

First, if inequality 3 holds, data point xi can change to cluster jnew. This does not imply that xi will indeed
change to cluster jnew, because there can be another cluster that leads to an even smaller cost term. However,
point xi will change its cluster.

On the other hand, if inequality 3 does not hold, data point xi will not change to cluster jnew during this
iteration. Now the left-hand side of the inequality becomes interesting: it describes the value of scale which
is at least necessary to enable the change of data point xi from cluster jold to cluster jnew. In other words, if
we choose scale(iter + 1) as this value, data point xi will be able to change to cluster jnew during the next
iteration (assuming that there are no changes in the assignments and locations of the clusters jold and jnew
until the assignment phase of xi in the next iteration). We denote this minimum value that is necessary to
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enable the change of data point xi from its old cluster jold to cluster jnew, by scale(iter , i, jnew) and define it,
based on inequality 3, as

scale(iter , i, jnew) =
{ ||xi−cjnew ||2−||xi−cjold ||2

njold −njnew
+ ε if njold > njnew

∞ otherwise,
(4)

where ε is a very small number > 0 (to account for the inequality in 3), jold denotes the old cluster of xi, and
the cluster assignments and centroid locations at the time of the assignment phase of data point xi during
iteration iter are used.

During the iteration over all data points and clusters, we save the minimum of all these values which are
larger than the current value scale(iter) and denote it by scalemin(iter), i.e.,

scalemin(iter) = min
i∈{1,...,n},

jnew∈{1,...,k}

{
scale(iter , i, jnew) | scale(iter , i, jnew) > scale(iter)

}
. (5)

We only consider values of scale(iter , i, jnew) which are larger than the current value scale(iter), used in the
penalty term in this iteration, because if scale(iter + 1), the value that will be used in the next iteration, is
smaller than the current one, it enables data points which already changed from a larger to a smaller cluster
to change back to the larger cluster again. In this case, we take a step backwards concerning our aim to
balance the cluster sizes.

The value scalemin(iter) is the minimum value that is needed for scale in the next iteration to make a data
point change from a larger to a smaller cluster, hence, it is the value we are looking for. Therefore, we require

scale(iter + 1) ≥ scalemin(iter). (6)

3.3 Increasing Penalty Factor f

Perhaps one expected an equality instead of an inequality in 6. The problem of using the equality is that the
closer we choose the value of scale(iter + 1) to the value of scalemin(iter), the less data points will change
their clusters during iteration iter + 1. In other words, if we choose scale(iter + 1) exactly as scalemin(iter), in
many iterations only one data point will change from a larger to a smaller cluster. This is not that bad if the
cluster sizes are almost balanced and there are only few data points left that have to change the clusters in
order to obtain a balanced clustering, but if the cluster sizes are far from being balanced, then the algorithm
takes a lot of iterations until a balanced clustering is reached.

On the other hand, if scale(iter + 1) is chosen much larger than scalemin(iter), a lot of data points are able to
change their clusters during the iteration iter + 1, and the probability that wrong data points are assigned to
the smaller clusters, such that overlapping clusters are produced, increases. Thus, the choice of the relation
between scale(iter + 1) and scalemin(iter) seems to be critical, and this decision indeed results in a trade-off
between the clustering quality and the running time. For now, we deal with this problem by introducing the
increasing penalty factor f and define

scale(iter + 1) = f · scalemin(iter) where f ≥ 1. (7)

3.4 Partly Remaining Fraction c

In the standard k-means algorithm, the cluster sizes do not need to be known during the assignment step of
a data point because they are not necessary for the computation of the cost of assigning a data point to a
cluster. However, if we include a penalty term as indicated in Equation 2, we have to know the cluster sizes
during the assignment of a data point.

The calculation of the cluster sizes itself is quite simple, but the crucial question is when to update the cluster
sizes. This could take place after every complete iteration of the algorithm, after the assignment phase of
every data point or before and after the assignment phase of every data point (in the sense of removing a
data point from its cluster before its assignment starts). Indeed, none of these approaches is really good, each
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Table 1: Recommended ranges and default values for the parameters used in BKM+

Parameter Recommended range Default value

c 0.15 - 0.20 0.15

f
1.01 - 1.10 Function fiter depending on the number of iterations

with fiter(1) = 1.10 and fiter(i) = 1.01 for i > 100,
linear interpolation for 1 < i ≤ 100

has its shortcomings, like producing oscillating or overlapping clusters. The most promising approach, which
we choose, is the following. A data point is removed partially from its old cluster before its assignment and
only after its new assignment it is removed completely from its old cluster and is added to its new cluster. In
this way, during the assignment of a data point, the point only partially belongs to its old cluster. To define
partially, we introduce the constant c with 0 < c < 1, which we refer to as the partly remaining fraction of a
data point.

4 Algorithm BKM+

A first version of the proposed algorithm is presented in Algorithm 1. We call it balanced k-means revisited
(BKM+).

In each iteration of the algorithm, each data point is assigned to the cluster j which minimizes the cost term
||xi − cj ||2 + pnow · nj . In this process, the data point is first partly removed from its old cluster, see function
RemovePoint, and afterwards added to its new cluster and completely removed from its old cluster, see
function AddPoint. Directly after the computation of the cost term, the variable pnext,i, corresponding
to minjnew∈{1,...,k}{scale(iter , i, jnew)}, is computed using the function PenaltyNext, which implements
Equation 4. If this number is a candidate for pnext , its value is taken. After all data points are assigned, the
penalty term pnow is set for the following iteration by multiplying pnext by the increasing penalty factor f .
Afterwards, the assignments of the data points start again. The algorithm terminates as soon as the largest
cluster is at most ∆nmax data points larger than the smallest cluster.

4.1 Optimization of Parameters c and f

The algorithm still contains two parameters which have to be determined: the partly remaining fraction c for
defining the fraction of a data point that belongs to its old cluster during its assignment, and the increasing
penalty factor f , which determines the factor by which the minimum penalty that is necessary in the next
iteration in order to make a data point change to a smaller cluster is multiplied.

For c, a value between 0.15 and 0.20 is reasonable in every situation. The choice of f is a trade-off between
the clustering quality and the running time: if the focus is on the clustering quality, f should be chosen
as 1.01 or smaller, whereas if the running time is critical, setting f to 1.05 or 1.10 is the better choice. A
compromise is to choose f as a function depending on the number of iterations. In the beginning f can be
chosen larger to ensure a fast progress of the penalty term, while in the end f should be chosen smaller to
avoid a negative influence on the clustering quality. For example, we can define a function fiter , whose value
is 1.10 in the first iteration and 1.01 starting from the 101st iteration, and between these iterations we linearly
interpolate the values. Table 1 summarizes the recommended ranges and the default values for c and f .

4.2 Application of the Standard k-means Algorithm

Until now, we applied the standard k-means algorithm in the beginning of the algorithm to obtain a clustering
as a starting point since the computation of the penalty term relies on the cluster sizes. However, this raises
the question whether it is necessary to apply the standard k-means algorithm until its termination.

9
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Algorithm 1 Balanced k-means revisited (preliminary)
Input: Data set containing n data points {x1, . . . , xn}, number of clusters k, partly remaining fraction c,

increasing penalty factor f , maximum difference in cluster sizes ∆nmax
Output: Balanced partition {p1, . . . , pk} of the data points

1: Apply the standard k-means algorithm to get an initial partition {p1, . . . , pk} and initial centroid locations
c1, . . . , ck

2: Set initial cluster sizes n1 ← |p1|, . . . , nk ← |pk|
3: Set initial values of scale to pnow ← 0 and pnext ←∞
4: Set initial values of the min and max cluster sizes to nmin ← 0 and nmax ← n
5: iter ← 0
6: while nmax − nmin ≤ ∆nmax do
7: for each xi do
8: j− ← old cluster of xi

9: RemovePoint(i, j−)
10: j+ ← arg minj∈{1,...,k}(||xi − cj ||2 + pnow · nj)
11: pnext,i ← minj∈{1,...,k} PenaltyNext(i, j−, j)
12: if pnow < pnext,i < pnext then
13: pnext ← pnext,i

14: AddPoint(i, j+, j−)
15: nmin ← minj∈{1,...,k}(nj), nmax ← maxj∈{1,...,k}(nj)
16: pnow ← f · pnext , pnext ←∞
17: iter ← iter + 1
18: return {p1, . . . , pk}

19: function RemovePoint(i, j−)
20: pj− ← pj− \ {xi}
21: cj− ← 1

|pj− |
∑

xi∈pj−
xi

22: nj− ← nj− − 1 + c

23: function AddPoint(i, j+, j−)
24: pj+ ← pj+ ∪ {xi}
25: cj+ ← 1

|pj+ |
∑

xi∈pj+
xi

26: nj+ ← nj+ + 1
27: nj− ← nj− − c

28: function PenaltyNext(i, j−, j)
29: if nj− > nj then
30: return ||xi−cj ||2−||xi−cj− ||2

nj− −nj

31: else
32: return ∞

10
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After the initialization of the cluster centroids, one iteration of the standard k-means algorithm is necessary
to assign the data points to the clusters and another iteration is necessary to compute the starting value
of scale. Since an iteration of the standard k-means algorithm corresponds to an iteration of our algorithm
setting scale = 0, in the beginning we can perform two iterations of the standard k-means algorithm by
defining scale(0) = scale(1) = 0. Afterwards we can compute the values of scale(iter) based on the values
of scalemin(iter − 1) like we defined in Equations 4, 5 and 7. There are no meaningful differences in the
clustering quality if the standard k-means algorithm is applied for only two iterations in the beginning, but
the running time is significantly faster.

4.3 Computation of the Function scale

We introduced the function scale, which returns the minimum value of the penalty term that is necessary to
make at least one data point change its cluster multiplied by the increasing penalty factor f . To compute its
value for the iteration iter + 1, we have to compute the values scale(iter , i, j) for all n · k combinations of
data points and clusters.

However, the use of the function scale does not require computing the cost of the assignment and the value
of scale(iter , i, j) for every of the n · k combinations of data points and clusters as it may look in Algorithm 1.
The information contained in these values is different, but it is not independent. One possibility to reduce
the number of calculations is to always compute scale(iter , i, j) and compare it to the value of scale(iter).
By the result of this comparison we know whether data point xi could move to cluster j and only in this case
we have to compute the cost of assigning xi to j.

4.4 Termination Criterion

In Algorithm 1 we used ∆nmax , the maximum difference in cluster sizes, as the termination criterion. Since
the desired balance degree is application dependent, we keep the termination criterion as a user input, but
in a generalized way: instead of the maximum difference in cluster sizes, an arbitrary balance criterion can
be selected, e.g., the standard deviation in cluster sizes (SDCS) or the normalized entropy (Nentro) (for an
explanation of these measures see Section 5.2).

In some situations it can be advantageous to continue running the algorithm even if the balance criterion
is already met and to return the clustering with the best clustering quality satisfying this criterion. This
approach requires saving the best clustering reached so far, but it can help to improve the clustering quality.
Especially if the data set is not well known (in the sense that the balance of the clustering producing the
minimum SSE on the data set is not approximately known), this approach prevents a resulting clustering
from being optimizable in both the clustering and the balance quality. Additionally, the current penalty term
can be kept for the next iteration if the current clustering already meets the balance criterion and its SSE is
the lowest found so far satisfying this criterion.

4.5 Time Complexity

The running time of the algorithm depends on the number of iterations and the running time per iteration.

In the first part of each iteration, the iteration over all n data points and k clusters dominates. Its complexity
is O(nk). In the second part of each iteration, the dominating operation is the iteration over the clusters
to compute the balance measure which takes O(k). If the SSE is computed or the current assignments are
saved, the time complexity for the second part increases to O(n). However, independent of computing the
SSE or saving the assignments in the second part of each iteration, the complexity of the first part dominates.
Therefore, the complexity of one iteration of the algorithm is O(nk).

The number of iterations is difficult to predict. It primarily depends on the chosen data set and termination
criterion, but also on the increasing penalty factor f . For example, to reach a balance clustering, on the data
set wine (for properties and references of the mentioned data sets see Section 5) the algorithm takes about 15
iterations setting c = 0.15 and f = 1.01, on the data set S3 it takes about 90 iterations setting c = 0.1 and f
to the function fiter , on the data set A3 it takes about 180 iterations setting c = 0.2 and f to the function
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fiter , on the data set unbalance it takes about 400 iterations setting c = 0.01 and f = 1.01, and on the data
set birch1 it takes about 600 iterations setting c = 0.15 and f to the function fiter .

5 Experimental Setup

The balanced clustering algorithms we chose for comparison are regularized k-means (RKM) proposed by
Lin et al. (2019) and balanced k-means (BKM) by Malinen & Fränti (2014). RKM is an algorithm that
can be used for both soft- and hard-balanced clustering depending on the selected balance regularization
term, while BKM is solely a hard-balanced clustering algorithm. Another method considered for comparison
was τ -balanced clustering by Lin et al. (2022). Unfortunately, the publicly available implementation was
incomplete.

For our method we use the proposed algorithm with all the mentioned optimizations. The partly remaining
fraction c is set to 0.15 and for the increasing penalty factor f the function fiter is used. The algorithm is
implemented in C++1.

The source codes of BKM2 and RKM3 are publicly available. BKM is implemented in MATLAB, while RKM
is implemented in C++. For both algorithms we used the default settings, unless specified otherwise. As a
platform, Intel Core i5-7300U 2.60GHz processor with 8GB memory was used.

In the experiments we considered the artificial data sets S1-S4, A1-A3, birch1, birch2, unbalance and dim32
(Fränti & Sieranoja, 2018; Rezaei & Fränti, 2016; Zhang et al., 1997) and the real-world data sets vowel
recognition, iris, user knowledge, wine, ionosphere, libra and multiple features from the UCI machine learning
repository (Dua & Graff, 2017; Kahraman et al., 2013). Detailed information of the data sets is shown in the
first column of Table 2. The first number under the name of a data set denotes its size, the second number
its dimension and the third number refers to the number of clusters sought in the data set.

5.1 Clustering Quality

There are many ways to assess the quality of a clustering (Rezaei & Fränti, 2016). We use the sum of squared
error function (SSE), defined in Equation 1, as an internal evaluation criterion, and the normalized mutual
information (NMI) as an external criterion (Liu et al., 2017; Strehl & Ghosh, 2002; Strehl et al., 2000). The
NMI of a labelling with k different labels and a clustering with k clusters is defined as

NMI =
∑k

h=1
∑k

l=1 nh,l · log
( n·nh,l

nh·nl

)√(∑k
h=1 nh · log( nh

n )
)(∑k

l=1 nl · log( nl

n )
) ,

where nh denotes the number of objects in class h, nl refers to the number of objects assigned to cluster l,
nh,l defines the number of objects which are in class h as well as assigned to cluster l, and n denotes the total
number of objects. A value of one means a perfect match between the labelling and the clustering, whereas a
value close to zero indicates a random partitioning (Liu et al., 2017).

5.2 Balance

A popular and intuitive approach to measure the balancing behaviour of a clustering algorithm is the standard
deviation in cluster sizes (SDCS). Let nj denote the size of the jth cluster and k the number of clusters, then
the SDCS is defined as

SDCS =

√√√√ 1
k − 1

k∑
j=1

(
nj −

n

k

)2
. (8)

1The source code of BKM+ can be found at https://cs.uef.fi/ml/software.
2The source code of BKM can be found at https://cs.uef.fi/ml/software.
3The source code of RKM can be found at https://github.com/zhu-he/regularized-k-means.
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The smaller the standard deviation becomes the better the balance. A value of zero implies a perfectly
balanced clustering (note that if n is not divisible by k, a value of zero will never be reached). (Althoff, 2010;
Banerjee & Ghosh, 2004; Banerjee & Ghosh, 2006; Chakraborty & Das, 2019; Gupta et al., 2018)

Another way to measure the balance of a clustering is to consider the entropy of the distribution of the cluster
sizes. To simplify comparisons, we again consider a normalized version of the entropy, which is formally
defined as

Nentro = − 1
log(k)

k∑
j=1

nj

n
log

(nj

n

)
. (9)

A normalized entropy of one implies a perfectly balanced clustering, while a value of zero represents an
extremely unbalanced clustering (again, the divisibility of n by k must be taken into account). (Han et al.,
2018; Liu et al., 2017; Liu et al., 2018)

In addition to these measures that give a review of the overall distribution of the cluster sizes, it can be useful
to know whether a clustering contains extremely small clusters. To check this undesirable behaviour, the
minimum cluster size can be considered. (Althoff, 2010; Banerjee & Ghosh, 2004; Banerjee & Ghosh, 2006)

6 Results

We next present the experimental results. We consider the hard-balanced version of the proposed algorithm
in Section 6.1 and the soft-balanced version in Section 6.2. The results are discussed in Section 6.3.

6.1 Hard-balanced Clustering

We start by comparing the hard-balanced version of the proposed algorithm to BKM and the hard-balanced
version of RKM. For this purpose, we set the termination criterion of the proposed method to a maximum
difference of one in the cluster sizes. BKM is a hard-balanced clustering algorithm by definition. To get a
hard-balanced version of RKM we choose the regularization term for hard-balanced clustering proposed by
the authors (Lin et al., 2019).

We run each algorithm 100 times on each data set and report the best and the mean sum squared error (SSE)
and normalized mutual information (NMI) as well as the average running time. Since the resulting clustering
depends on the initialization of the clusters and, in case of the proposed method, also on the order of the
data points in the data set, every algorithm starts with the same initial assignments and orders of the data
set. The results are shown in Table 2.

The results of all three methods are quite similar both regarding to SSE and NMI. Especially in case of
the artificial data sets, the results are almost identical, both in mean and best run. Overall, RKM leads to
slightly lower SSE values, but the difference is not significant. The main difference in performance is in the
running time, in which both RKM and BKM+ are an order of magnitude faster than BKM. For example, the
data sets birch1 and birch2 require > 12 hours by BKM whereas RKM and BKM+ requires only 1-2 minutes.
The proposed algorithm BKM+ appears to be slightly faster than RKM if clusters are more overlapping, see
data sets S1-S4.

In summary, regarding the clustering quality, on most of the data sets both RKM and BKM are superior to
BKM+. However, if the application is time-critical, the proposed algorithm provides an alternative to at
least BKM. For low dimensional data sets the proposed algorithm mostly also takes less time than RKM.
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Table 2: Results for the SSE, NMI and running time if a balanced clustering is required,
n denotes the size of the data set, d its dimension and k refers to the number of clusters
sought in the data set

Data set Algorithm SSE NMI Time (sec)(n, d, k) Best Mean Best Mean

S1 BKM 1.093 e+13 one run 0.947 one run 5346.56
(5000, 2, 15) RKM 1.089 e+13 1.089 e+13 0.948 0.948 0.18

BKM+ 1.095 e+13 1.100 e+13 0.948 0.946 0.19
S2 BKM 1.433 e+13 one run 0.919 one run 4486.51

(5000, 2, 15) RKM 1.428 e+13 1.428 e+13 0.921 0.921 0.20
BKM+ 1.435 e+13 1.449 e+13 0.922 0.918 0.17

S3 BKM 1.736 e+13 one run 0.795 one run 6890.88
(5000, 2, 15) RKM 1.734 e+13 1.734 e+13 0.797 0.796 0.23

BKM+ 1.736 e+13 1.737 e+13 0.799 0.796 0.13
S4 BKM 1.652 e+13 one run 0.729 one run 6937.59

(5000, 2, 15) RKM 1.651 e+13 1.651 e+13 0.729 0.729 0.27
BKM+ 1.651 e+13 1.652 e+13 0.732 0.730 0.14

A1 BKM 1.221 e+10 one run 0.984 one run 620.92
(3000, 2, 20) RKM 1.221 e+10 1.221 e+10 0.984 0.984 0.14

BKM+ 1.222 e+10 1.224 e+10 0.985 0.983 0.09
A2 BKM 2.037 e+10 one run 0.989 one run 2191.33

(5250, 2, 35) RKM 2.037 e+10 2.037 e+10 0.989 0.989 0.48
BKM+ 2.038 e+10 2.048 e+10 0.989 0.986 0.31

A3 BKM 2.905 e+10 one run 0.991 one run 14037.61
(7500, 2, 50) RKM 2.905 e+10 2.905 e+10 0.991 0.991 1.08

BKM+ 2.908 e+10 2.941 e+10 0.991 0.984 0.97

birch1 BKM - - - - > 12h
(100000, 2, 100) RKM 9.288 e+13 9.288 e+13 0.989 0.989 106.20

BKM+ 9.293 e+13 9.307 e+13 0.986 0.983 61.33
birch2 BKM - - - - > 12h

(100000, 2, 100) RKM 4.569 e+11 4.569 e+11 0.999 0.999 80.61
BKM+ 4.578 e+11 11.477 e+11 0.999 0.933 94.04

unbalance BKM - - - - > 12h
(6500, 2, 8) RKM 1.700 e+13 1.700 e+13 0.632 0.632 0.25

BKM+ 1.868 e+13 1.932 e+13 0.438 0.354 0.60

vowel recognition4 BKM 3.314 e+7 3.324 e+7 - - 64879.15 e−3
(871, 3, 6) RKM 3.314 e+7 3.314 e+7 - - 13.19 e−3

BKM+ 3.315 e+7 3.326 e+7 - - 6.76 e−3
iris BKM 8.137 e+1 8.137 e+1 0.777 0.777 352.85 e−3

(150, 4, 3) RKM 8.137 e+1 8.137 e+1 0.777 0.777 0.44 e−3
BKM+ 8.137 e+1 8.139 e+1 0.803 0.777 0.18 e−3

user knowledge BKM 7.023 e+1 7.114 e+1 0.441 0.298 10301.52 e−3
(403, 5, 4) RKM 7.022 e+1 7.088 e+1 0.396 0.296 3.52 e−3

BKM+ 7.021 e+1 7.083 e+1 0.413 0.320 1.78 e−3

4There were no class labels available for the data set vowel recognition.
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Table 2: Results for the SSE, NMI and running time if a balanced clustering is required,
n denotes the size of the data set, d its dimension and k refers to the number of clusters
sought in the data set

Data set Algorithm SSE NMI Time (sec)(n, d, k) Best Mean Best Mean

wine BKM 2.962 e+6 2.979 e+6 0.397 0.392 373.95 e−3
(178, 13, 3) RKM 2.962 e+6 2.962 e+6 0.397 0.397 0.54 e−3

BKM+ 2.962 e+6 2.980 e+6 0.429 0.399 0.92 e−3
dim32 BKM 2.325 e+5 2.325 e+5 1.000 1.000 18.46

(1024, 32, 16) RKM 2.325 e+5 2.325 e+5 1.000 1.000 0.03
BKM+ 2.325 e+5 2.325 e+5 1.000 1.000 0.10

ionosphere BKM 2.434 e+3 2.435 e+3 0.105 0.104 4428.93 e−3
(351, 34, 2) RKM 2.434 e+3 2.434 e+3 0.105 0.105 0.86 e−3

BKM+ 2.434 e+3 2.442 e+3 0.120 0.104 3.83 e−3
libra BKM 6.459 e+7 6.519 e+7 0.314 0.247 11189.76 e−3

(360, 90, 15) RKM 6.491 e+7 6.554 e+7 0.278 0.240 14.24 e−3
BKM+ 6.395 e+7 6.475 e+7 0.156 0.125 69.90 e−3

multiple features BKM 1.768 e+6 one run 0.750 one run 669.26
(2000, 240, 10) RKM 1.750 e+6 1.758 e+6 0.796 0.735 0.22

BKM+ 1.750 e+6 1.758 e+6 0.786 0.715 1.08

6.2 Soft-balanced Clustering

Next, we compare the soft-balanced version of the proposed algorithm to the soft-balanced version of RKM.
For the comparison of the balance we use three different balance measures, the standard deviation in cluster
sizes (SDCS), the normalized entropy (Nentro) and the minimum cluser size (for a definition of these measures
see Section 5.2).

According to the balance measure, we set the termination criterion of the proposed method as described in
Section 4.4 to a maximum value of SDCS, a minimum value of Nentro or a minimum value of the minimum
cluster size. To obtain clusterings of different balance degrees we vary these values. RKM optimizes the
balance using a regularization term including a balance parameter λ. Depending on the balance measure
that has to be optimized, the authors propose different regularization terms (Lin et al., 2019). We use
the regularization term corresponding to the chosen balance measure and vary the parameter λ. As in the
hard-balanced case, we run each algorithm 100 times with all balance settings on each data set using the
same initializations. The mean of the SSE, the balance measure and the running time were reported.

Figures 3 and 4 show the results for the data sets S2 and S4. The plots on the left side show the results as
a function of the balance measure (x-axis) and the SSE (y-axis), whereas the plots on the right side show
the results as a function of the balance measure (x-axis) and the running time (y-axis). The SSE-results of
the two methods are almost identical between RKM and BKM+ when the balance is given high emphasis
and is measured by SDCS or Nentro. RKM provides slightly better results if the balance is measured by the
minimum cluster size.

When the focus is more on the clustering quality instead of the balance quality, BKM+ is more stable and
provides better SSE-results while the results of RKM start to deteriorate. The difference in running time
becomes also significant and favours BKM+. Its running time is almost constant regardless of whether the
focus is on high clustering quality or balance quality. The processing time of RKM becomes significantly
higher when the focus is shifted towards the clustering quality.
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Figure 3: Results soft-balanced clustering for the data set S2
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Figure 4: Results soft-balanced clustering for the data set S4
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Figure 5: Results soft-balanced clustering for the data set user knowledge
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Figure 6: Results soft-balanced clustering for the data set vowel recognition
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Figure 7: Results soft-balanced clustering for the data set ionosphere
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Table 3: Results for SSE and running time for a clustering with Nentro = 0.999± 7.5 e−4,
n denotes the size of the data set, d its dimension and k refers to the number of clusters
sought in the data set

Data set Algorithm SSE Time (sec) Nentro(n, d, k)

S2 RKM 1.359 e+13 3.89 0.999565
(5000, 2, 15) BKM+ 1.331 e+13 0.26 0.999737

S4 RKM 1.594 e+13 6.76 0.998987
(5000, 2, 15) BKM+ 1.577 e+13 0.16 0.998999

vowel RKM 3.175 e+7 4.68 e−2 0.999105
(871, 3, 6) BKM+ 3.169 e+7 0.71 e−2 0.999120

user knowledge RKM 7.052 e+1 8.50 e−3 0.999183
(403, 5, 4) BKM+ 7.039 e+1 2.04 e−3 0.999031
ionosphere RKM 2.424 e+3 4.14 e−3 0.999140

(351, 34, 2) BKM+ 2.432 e+3 2.67 e−3 0.999043

The results for the three real-world data sets user knowledge, vowel recognition and ionosphere are summarized
in Figures 5, 6 and 7. The results are mostly consistent with that of the artificial data sets. When the focus
is on the balance their results are almost identical. However, when the focus shifts towards optimizing the
clustering quality, BKM+ produces better clusterings. Ionosphere is an exception where RKM provides better
results in SSE for most part of the scale. Also, the speed advantage of BKM+ almost disappears with this
data set due to its higher dimension.

Finally, the main results are summarized in Table 3 by fixing Nentro to be about 0.999. At this point, BKM+
provides slightly lower SSE-values (0.63% on average) with a faster running time (77.46% on average).

6.3 Discussion

A problem that arises when RKM is used with SDCS or Nentro is the difficulty to find an appropriate value
for the balance parameter λ since it is not possible to predict the resulting balance quality. The recommended
range of values given by the authors (Lin et al., 2019) only fits for some data sets. Most data sets require
significantly higher values for λ and then the only way to find a suitable range is by trial-and-error. Besides,
RKM tends to produce clusterings that are optimizable with respect to both the clustering and the balance
quality if λ is chosen too small.

In this sense, BKM+ is much easier to handle because the resulting balance degree does not depend on a
parameter λ, but only on the point in time at which the algorithm stops increasing the penalty term. A
clustering of a desired balance degree can easily be obtained by using the balance criterion as termination
criterion.

The experimental results also allow to draw conclusions about the beneficial application of the proposed
algorithm. First, the algorithm cannot compete with the other clustering algorithms in terms of the clustering
quality when the focus is set on balance. It is not made for this because whenever the last clusters are resolved
by shifting data points from larger to smaller clusters, there are always overlapping clusters. Therefore, it is
not advisable to use this algorithm as a hard-balanced clustering algorithm even though this is possible.

However, the proposed algorithm has its strengths when it comes to soft-balanced clustering. Especially
when the resulting clustering should match a certain balance requirement or the data set is not well-known in
terms of its balance behaviour (in the sense that its balance in the case of an optimal clustering is unknown),
this algorithm is much easier to handle than an algorithm using a balance parameter λ. Moreover, in the
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soft-balanced case, it also has the shorter running time on most data sets. Therefore, it is advisable to use
the proposed algorithm as a soft-balanced clustering algorithm, particularly when a specific balance criterion
has to be achieved or the data set is rather unknown in terms of its balance behaviour.

7 Conclusion

We presented a balanced clustering algorithm based on the k-means algorithm which can be used for both
soft-balanced and hard-balanced clustering. The main principle of the algorithm is an increasing penalty
term, that is added to the assignment function of the standard k-means algorithm. The penalty term of a
cluster is the larger the more data points a cluster contains. This way, smaller clusters are favoured when
assigning the data points.

The main difference to similar methods following the approach of an additive bias in the assignment function
of the standard k-means algorithm is the way the size of the penalty term is determined. While other
algorithms use a constant factor by which the size of a cluster is multiplied to obtain the penalty term of the
cluster (Althoff et al., 2011; Liu et al., 2018), the proposed method uses a factor that increases with each
iteration. Further, this factor is not defined by an explicit function, but is computed anew in each iteration
of the algorithm based on the current assignments and locations of the cluster centroids. We justified this
additional computational effort by the individuality of each data set.

When used as a soft-balanced clustering algorithm, a characteristic of the proposed algorithm resulting from
the increasing penalty term is the way in which the trade-off between the clustering and the balance quality
is determined. Instead of using a rather non-intuitive parameter λ like many other soft-balanced clustering
algorithms do (Althoff et al., 2011; Li et al., 2018; Lin et al., 2019), the resulting balance degree only depends
on the point of termination. Therefore, in contrast to other soft-balanced clustering algorithms, this approach
enables an explicit specification of the trade-off between clustering and balance performance.

In the experimental results, we compared the proposed method to the regularized k-means algorithm (RKM)
by Lin et al. (2019, a hard- and soft-balanced clustering algorithm) and the balanced k-means algorithm
(BKM) by Malinen & Fränti (2014, a hard-balanced clustering algorithm). When testing the hard-balanced
version of the proposed algorithm, both RKM and BKM are superior in terms of the clustering quality.
However, regarding the running time, the proposed algorithm is comparable to RKM and several orders of
magnitude faster than BKM. In the soft-balanced case, no algorithm is always superior to the other one. In
general, the proposed algorithm returns the better clusterings if the focus is primarily on optimizing the
clustering quality, and RKM returns the better clusterings if the focus is shifted towards the balance quality.
In terms of the running time, the proposed algorithm takes less time on almost all data sets.

Moreover, the already mentioned advantage of the proposed algorithm that the trade-off between the clustering
and the balance quality depends on the point of termination instead of a balance parameter λ can also be
seen in practice. When applying RKM, which is using this parameter to determine the resulting balance
degree, there is always a risk of choosing λ too small and obtaining a clustering that is still optimizable with
respect to both the balance and the clustering quality. This situation does not occur when using the proposed
algorithm, since the algorithm can always be continued to ensure that no following clustering is better than
the returned one in terms of both the clustering and the balance performance.
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