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Abstract

Learning to accurately represent environmental uncertainty is crucial for
adaptive and optimal behaviors in various cognitive tasks. However, it
remains unclear how the human brain, constrained by finite cognitive re-
sources, internalise the highly structured environmental uncertainty. In this
study, we explore how these learned distributions deviate from the ground
truth, resulting in observable inconsistency in a novel structured density
estimation task. During each trial, human participants were asked to learn
and report the latent probability distribution functions underlying sequen-
tially presented independent observations. As the number of observations
increased, the reported predictive density became closer to the ground truth.
Nevertheless, we observed an intriguing inconsistency in human structure
estimation, specifically a large error in the number of reported clusters.
Such inconsistency is invariant to the scale of the distribution and persists
across stimulus modalities. We modeled uncertainty learning as approxi-
mate Bayesian inference in a nonparametric mixture prior of distributions.
Human reports were best explained under resource rationality embodied in
a decaying tendency towards model expansion. Our study offers insights
into human cognitive processes under uncertainty and lays the groundwork
for further exploration of resource-rational representations in the brain un-
der more complex tasks.

1 Introduction

We study the remarkable ability of humans to learn probabilistic distributions based on
experiences in new environments, a skill essential for good performance in a wide range of
downstream perceptual [1–4] and cognitive [5–10] tasks. This ability manifests in everyday
experiences, such as when a person learns to communicate with others of varying accents
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and personalities, or discovers new social norms in foreign cultures. More impressively,
humans can not only summarise key characteristics of new experiences but also describe
those patterns in statistical terms, such as “Most people in X country typically talk about the
weather, but some younger ones prefer to gossip instead”. These observations indicate that
humans can develop structured and probabilistic internal beliefs about their surroundings
from experiences. To distinguish humans’ internal beliefs from the modeling framework to be
introduced later, we refer to the former as an internal construct of the external environment.
We ask: how does the human mind form internal constructs from experiences?
As experiences typically arrive sequentially in real life, building a probabilistic internal
construct is an online density estimation problem. An ideal solution must be both consistent
in distribution estimation and invariant to the order of the experiences. Consistency requires
that the learned internal construct approach the true environmental uncertainty as more
data arrives, expanding in complexity when the data evidence a more complicated true
distribution. Invariance to experience order means no a priori preference for any particular
model based on the order in which experiences arrive. For instance, if the experiences
are independent samples from the same distribution, the learned distribution should not
be affected by the sample order. Computationally, these two desiderata can be achieved
by choosing an appropriate internal construct prior (ICP). Many instantiations of such
ICPs incorporate the Chinese restaurant process (CRP) [11–13]. The CRP can recruit more
resources to account for more complicated data distributions and is exchangeable so that
the order of data does not affect the internal construct. In cognitive science, the CRP has
been used to model category learning [14, 15, 6], classical conditioning [5, 16], among other
cognitive functions [17].
However, we argue that achieving estimation consistency and order invariance is intractable
given humans’ limited cognitive capacity. First, buiding a flexible internal construct requires
an “infinite capacity” [18] that is at odds with humans’ finite memory. The flexibility of
the internal construct is likely bounded under resource constraints. Second, achieving order
invariance online imposes significant cognitive demands: it requires memorizing all previous
experiences and reallocating them into potentially different clusters for every incoming new
experience. Indeed, humans do not seem to learn in an exchangeable fashion [19], which
can be captured by bounded rational inference [14, 15]. Resource constraints should thus
impact the quality of the acquired internal construct.
To investigate how humans actually acquire and represent a structured internal density
model under resource constraints, we first designed a structured density estimation task
wherein human participants observed sequentially presented samples drawn from a hidden
Gaussian mixture with 1–4 clusters. Participants were asked to report the full structure of
their internal construct (learned distribution) at the end of the trial, providing us with a
high-dimensional behavioral dataset. We found, among others, that participants reported
their internal constructs close to the true distribution, but they consistently reported more
clusters when there were in fact fewer or even a single cluster in the true distribution.
Motivated by the resource constraint argument, we propose a flexible ICP with a variable
propensity towards expansion and includes the exchangeable CRP as a special case. In addi-
tion, we fit all parameters of the ICPs to the behavior dataset by a novel density estimation
framework (DEF), which allows us to compare between ICPs and explore other inductive
biases of participants in this task by likelihood-based mode optimization and critique. Con-
sistent with our hypotheses, the proposed ICP best captures participants’ behaviors when
it does not preserve order-invariance and instead expands more economically when the in-
ternal construct is already complex. Further, fitted ICP explains the inconsistent number
of clusters in the reported constrcts as having a strong prior preference for small cluster
widths. In sum, our combined experimental and modeling contributions reveal previously
unknown human inductive biases in building internal constructs of new environments, and
open up doors for further theoretical explorations of flexible priors in learning rich structure
representations.
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Figure 1: Human behavior in a structured density estimation task. A, On each trial, human
participants needed to report the latent Gaussian mixture distribution (i.e., weight, mean,
and sd for each cluster) they learned from sequential samples. Panels B–F show the results
of Experiment 1. B, The earth-mover distance between the reported and true distributions
decreases when participants observe more samples. C, The correlation between the reported
and true distributions in the first three moments. See Fig. 6E & F for detailed illustration.
D, Mean number of reported clusters. Participants failed to learn the true probabilistic
structure, typically reporting 2–3 clusters regardless of the true cluster number. E, Overlap
ratio, which is calculated as the percentage of a cluster’s area being covered by any other
clusters averaged across all clusters in the report. Adjacent clusters did not overlap much.
F&G, Participants’ reported densities versus the true distributions on example trials of
Experiment 1 (F) and Experiment 2 (G). Error bars denote 1 sem over participants. Each
gray line in B–D is for one participant.

2 Human behavioral experiments of structured density estimation

The human experiments described below were approved by the Institutional Review Board
of School of Psychological and Cognitive Sciences at Peking University. All participants
received monetary compensation above the local minimum wage.

2.1 Experiment 1: learning visuo-spatial distributions

We designed a structured online density estimation task (Fig. 1A) to collect the internal
constructs of humans formed from experiences. On each trial, participant saw a sequence
of red dots with horizontal positions drawn i.i.d. from a Gaussian mixture with a varying
number of clusters across trials (see Appendix A.1 for the cover story and the set of distri-
butions used in each experiment). At the end of the sequence, they were asked to report
a Gaussian mixture model that could have generated the red dots, specifying the weight,
mean, and variance of each cluster through an interactive interface. As we are interested in
participants’ innate abilities to build internal constructs, we did not provide feedback.
We first validate the quality of the reported distribution. As participants (N=21)
saw more samples (70 versus 10), the earth-mover distance between the reported and true
densities decreased (Fig. 1B, F(1,20) = 83.21, p < 0.001), which is a desirable trend in density
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Figure 2: Human learning of numeric distributions. A, Participants were randomly assigned
to two groups that differed in the sd of the true distribution (scale 1x vs. 5x). B, The
reported cluster number. C, The distance between the adjacent clusters. Error bar denotes
1 sem over participants.

estimation. Figure 1C shows that the reported densities tracked the first three moments
reasonably well (all slopes significantly greater than zero, t-tests p < 0.001), although higher-
order moments were harder to estimate.
A closer examination of the reported density on each trial revealed systematic inconsis-
tencies in the learned structure. Fig. 1F shows that the reported density had more local
maxima even when the true distribution only had a single Gaussian cluster. Participants
tended to report around 3 clusters, irrespective of the number of clusters in the true distri-
bution (Fig. 1D). Moreover, with increasing observations, the reported number of clusters
increased (t(20)=11.15, p<0.001) but did not approach the ground truth. Such inconsisten-
cies in the learned number of clusters are striking and counterintuitive, especially when the
true generative distribution is as simple as a single Gaussian, in which case more evidence
actually pushed participants further away from the truth. Another notable pattern is the
small overlap between the adjacent clusters (Figure 1E), which contributes to bumpiness
even when the true distribution is as smooth as a Gaussian. Though counterintuitive, this
pattern echoes with the finding that humans use near-orthogonal (i.e., non-overlapping)
basis functions to represent learned visuo-motor distributions [8].

2.2 Experiments 2 and 3: distributions across domains and scales

To show that our findings in Experiment 1 are not specific to the selected distributions, we
conducted Experiment 2 (N=20) to collect human internal constructs induced by a broader
set of 14 representative distributions from previous studies [20–25], with the true number of
clusters ranging from 1 to 3. Results in Appendix A.2 show similar findings to Experiment
1: we found reasonably good density estimation quality, and participants preferred to report
2–3 non-overlapping clusters in their internal construct, even when the true distribution is
a Gaussian distribution.
Do our findings still hold when we change the domain of the distributions? In Experiment
3 (N=36), participants observed samples of numerical values drawn from either Gaussian
distributions or unimodal Gaussian mixtures (Fig. 2A). We divided the participants into
two groups, one group observed numbers drawn from the original scale (‘1X’), and the other
observed samples drawn from 5 times the original scale (‘5X’). After observing a sequence
of numbers, participants, unaware of the true densities, reported the location and weight of
each latent cluster. See Appendix A.3 for details.
Consistent with Experiments 1 and 2, we found that participants in both groups of Ex-
periment 3 often reported more complex structures than the ground truth (Fig. 2B). More
observations resulted in more clusters (F(1, 34) = 120.12, p < 0.001). The average reported
cluster number was higher (10 samples: 2.8±0.7; 70 samples: 4.3±1.3) than Experiment 1
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(10 samples: 2.6±0.4; 70 samples: 3.2±0.5), possibly due to differences in visuo-spatial and
numeric memory capacities. Even though the distribution scales differed by a factor as large
as five, both groups used a similar number of clusters to represent the numeric distribution
(F(1, 34)=0.05, p=0.831). The distance between adjacent clusters differed roughly fivefold
between groups, mirroring the ratio between the true scales (Fig. 2C).

Summary Through comprehensive behavioral experiments, we found that humans were
able to build internal constructs of environmental uncertainties based on online experiences,
but they could not capture the number of clusters in the true distributions. Learned clusters
also tended to be “orthogonal” to each other, creating unsmooth features not present in the
true data distribution. It is possible that these imperfections are related to human’s limited
cognitive resources, as discussed in Section 1, or specific inductive biases in an implicit ICP,
such as a small cluster width. Due to the unusual complexity of the density estimation task
and the high-dimensional human report, the detailed mechanisms are not directly obvious.
We thus resort to building a mathematical model of the reported internal constructs to
understand the factors contributing to these inconsistencies.

3 The density estimation framework

Our task explicitly queries the internal probabilistic model constructed under sequential
experiences. Mapping from these experiences to a distribution function is a challenging and
ill-posed problem. Participants need a resource-rational ICP over the space of distributions.
In addition, as experimenters, we need an appropriate noise model to define a valid likelihood
for maximum-likelihood parameter fitting. To this end, we propose the density estimation
framework (DEF) to model the experimental data; it consists of a rational component and
an aleatoric component which we detail below. An overview is shown in Fig. 3.

3.1 The rational component

The rational component performs approximate Bayesian inference given data under an ICP,
examples of which have been used extensivly in cognitive modelling [15, 16]. A rational
ICP for this task factorizes into a prior over the latent cluster assignment of the observed
dots, and a prior over the probability density function associated with each cluster. For a
sequence of T dot locations xT = [x1, . . . , xT ] ∈ RT , we denote the cluster assignments for
xt as zt = [z1, . . . , zt], and each zt ∈ N+ is the cluster number assigned to xt.
The economical ICP we propose here has its prior over zT defined recursively as

pR(zt+1 = k|zt) :=
{

ñt,k

t+αt
, k ≤ Kt

αt

t+αt
, k = Kt + 1

, αt := α0e
−rKt , ñt,k := t

nβ
t,k∑Kt

t=1 n
β
t,k

(1)

for t ∈ {1, . . . T}, where z1 = 1, nt,k :=
∑t

τ=1 1[zτ = k] is the number of clusters assigned
to cluster k at time t, and Kt :=

∑
k 1[nt,k > 0] is the number of non-empty clusters

(model size) at time t. The expansion rate αt depends on the model size; for r < 0, new
clusters are less likely to be added, which implements a form of conservative expansion.
The distortion rate β ≥ 0 controls whether the different cluster sizes nt,k are evened-out
(β < 1) or exaggerated (β > 1), a form of divisive normalization. As a special case, this
prior recovers the conventional CRP when r = 0 and β = 1, which is exchangeable and has
been a popular choice for modeling flexible online learning. In contrast, the prior (1) is in
general not exchangeable; see Appendix B.1.1 for examples. Also, the expected number of
clusters is upper bounded by

∑
t α0e

−rt < α0

1−e−r for r > 0, unlike the conventional CRP
where this expectation grows as log(t). We provide justifications for the non-exchangeability
of this prior at the end of this section.
The economical ICP assumes that each cluster is a Gaussian distribution with mean m and
variance v as cluster properties. A convenient prior for Gaussians is the normal-inverse-χ2:

pR(m, v) = N (m;µ0, v/λ0)Invχ2(v; a0, σ0), (2)
where the hyperparameters with subscript 0 follow standard definitions [15]. Given xT ,
Bayesian inference under this ICP defined by (1) and (2) yields a posterior over Gaussian
mixture parameters.
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Figure 3: Schematic of the density estimation framework (DEF) and likelihood evaluation.
We have omitted the subscripts t and k for clarity. The DEF comprises a bounded rational
component (green box) and an aleatoric component (gold box). The former infers the
cluster properties φi based on noisy perceived observations x̃T under an internal construct
prior (ICP), and the latter provides a well-defined likelihood function while maintaining
the dependencies between the cluster properties. Under the ICP defined in (1) and the
particle-based sampling algorithm in (3) and (4), the current density model either updates
an existing cluster or adds an additional cluster depending on the evidence of the incoming
observation. The evolution of the model corresponds to a single path sampled in the tree
structure shown in the left panel of the orange box. In the aleatoric component, structured
noise is added to ensure a valid likelihood function for each simulation; see Appendix B. Each
prediction yields a conditional likelihood of the reported φr in each trial, and averaging over
a large number of simulations yields the marginal likelihood. These simulations can proceed
in parallel (pink box), which can be accelerated by running on GPUs.

Following previous modeling work[15, 5], we assume humans use a single particle to approx-
imately perform the Bayesian updating. Specifically, the observations xt up to time t and
a corresponding single-particle sequence zit (an “approximate sample” from the posterior
pR(zt|xt)) define a structured density model: a mixture of Ki

t =
∑t

τ=1 1[z
i
τ > 0] clusters,

where each cluster is weighted in proportion to ni
t,k =

∑t
τ=1 1[z

i
τ = k], and has posterior
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over density given by the usual conjugate prior update formulae:

pR(mk, vk|xt, zit) = N (mk;µ
i
t,k, vk/λ

i
t,k)Invχ2(vk; a

i
t,k, σ

i
t,k), (3)

ait,k = a0 + ni
t,k, λi

t,k = λ0 + ni
t,k, µi

t,k = (λ0µ0 + ni
t,kµ̄

i
t,k)/λ

i
t,k,

σi
t,k =

1

ait,k

[
a0σ0 + ni

t,kσ̄
i
t,k +

λ0n
i
t,k

λ0 + ni
t,k

(µ0 − µ̄i
t,k)

2

]
,

where µ̄i
t,k and σ̄i

t,k are, respectively, the empirical mean and the (unadjusted) empirical
variance of the observations assigned to cluster k at time t, according to the particle zit.
Equation (3) shows that, given zit, the sufficient statistics that determine the posterior of
the k’th cluster are φi

t := [ni
t,k, µ̄

i
t,k, σ̄

i
t,k]

Ki
t

k=1, in the sense that the conditioning variables
are all functions of φi

t. So, we can equivalently write pR(mk, vk|xt, zit) = pR(mk, vk|φi
t) in

(3). We also regard φi (not the random variables m and v in (3)) as the inferred cluster
properties. When the next observation xt+1 arrives, it is assigned to a cluster according to
the one-step posterior

pR(z
i
t+1|zit, xt, xt+1) ∝ pR(z

i
t+1|zit)pR(xt+1|zt, zt+1, xt) = pR(z

i
t+1|zit)pR(xt+1|ϕi

t, zt+1) (4)

for zit+1 ∈ [1, . . . ,Ki
t + 1], where pR(xt+1|ϕi

t, zt+1 = k) is the marginal likelihood of xt+1

if assigned to cluster k, given by evaluating at xt+1 the Student’s t-density with degrees
of freedom ai, location µi

t,k and scale (σi
t,k(1 + 1/λi,k))

1/2. If zt+1 ≤ Ki
t , then the zt+1’th

component is updated by xt+1; if zt+1 = Ki
t + 1, then a new cluster is created, and the

internal construct expands. Figure 3 (green box) depicts these two possibilities step at t = 6.
If the cluster prior (1) of the rational component implements the CRP, then by exchangeabil-
ity, the true posterior over the model density is order-invariant with respect to observations.
To obtain a particle from an order-invariant posterior, one should revise the cluster assign-
ments of previous xt at every time step, but this requires memorizing xt which is cognitively
implausible. We argue then that keeping the cluster prior (1) exchangeable is unnecessary—
it forces the prior to take on a cognitively implausible property. Since (1) subsumes the
CRP, we can test whether human behaviors collected in our experiments are better fit by
an order-invariant prior.

3.2 The aleatoric component and maximum-likelihood model fitting

Note that each inferred particle φi := φi
T at t = T is a single simulation of the rational

component a participant may possess in their mind. Our (the experimenter’s) goal is to
fit the rational component to the reported cluster properties φr := [wr,µr,σr] collecting
the weights, means, and variances of the reported clusters; the reported number of clus-
ters implied by φr is denoted by Kr. The key challenges are worth emphasizing: a) the
dimensionality of the report is variable, as it depends on the number of clusters; b) the
cluster properties are unordered sets, rather than a real vector; c) the cluster assignments
zT are not observed to us as experimenters and need to be marginalized out to obtain the
marginal likelihood, which is intractable. We address the first two challenges by introducing
an aleatoric component, a structured noise model for DEF; and we deal with the last chal-
lenge by an efficient implementation of the DEF that utilizes the parallel processing power
of graphical processing units (GPUs).
Figure 3 (right panel of orange box) shows illustrates the aleatoric component. It postulates
that the participant, having inferred φi, commits to the number of clusters first, during
which they “slack” with a small probability, reporting K̂i clusters according to:

pA(K̂
i|φi) ∝

{
1, K̂ = Ki ;

ϵ, K̂i ∈ {1, . . . ,Kmax} \Ki .
(5)

where ϵ > 0 is a slack parameter, and Kmax is the maximum number of reported clusters
seen in an experiment across participants. If K̂i ̸= Ki, then the participant removes or splits
existing clusters recursively to obtain a set of slacked cluster properties φ̂i := [n̂i, µ̂i, σ̂i] =
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f(φi, K̂i) until there are K̂i clusters; Appendix B.2 presents the details of how f modifies
φi. Finally, the likelihood of the reported φr given slacked cluster properties are defined as
P (φr|φ̂i) := 0 if K̂i ̸= Kr (infinity penalty for inferring the number of cluster wrong), and

pA(φ
r|φ̂i) :=

1

|SK |
∑

π∈SK

pw(wr;π(n̂i))pµ(µ
r;π(µ̂i))pσ(σ

r;π(σ̂i)) if K̂i = Kr, (6)

where SK is the set of all permutations of K elements; pw(·; n) is a Dirichlet distribution
with concentration defined by n; pµ(·;µ) is an isotropic normal with mean µ and a variance
parameter; and pσ(·;σ) is an isotropic log-normal with mean σ and a variance parameter.
See Appendix B.2 for precise definitions of these distributions and parameters involved.
Overall, the aleatoric component the takes inferred cluster properties φi from the rational
component and assigns non-zero probabilities to all possible reported distributions through
the slack mechanism defined by (5) and the cluster modification f . The permutation-
invariant likelihood (6) regards the weight, mean, and variance vectors as independent
conditional on φ̂i, but retains the dependences between the clusters. To approximate the
marginal likelihood, we marginalize out zi and K̂i by averaging over a large number of Monte
Carlo (MC) simulations. In addition, we allow visual noise by feeding in noisy observations
x̃, where x̃t ∼ pn(x̃t|xt) := N (x̃t|xt, σv), which is also marginalized out during MC.
Altogether, the DEF estimates the likelihood of the reported φr given xT as p(φr|xT ) ≈

1

M

M∑
i=1

pA(φ
r|φ̂i=f(φi, K̂i)), K̂i ∼ pA(K̂

i|φi), φi ∼ pR(φ
i|x̃i

T ), x̃i
T ∼ pn(x̃|xT ), (7)

where M is the number of MC simulations (see Appendix B.4 for important distinction
to the number of particles). We implemented this MC estimator with a fully vectorized
approach using PyTorch [26], which enables easy parallelization on GPUs (Fig. 3, pink box).
Compared to a conventional for-loop implementation, ours yields reliable log-likelihood es-
timates with orders of magnitude acceleration. This allows us to optimize the DEF by
maximum-likelihood using any off-the-shelve optimization method, such as Nelder-Mead
[27]. Further, it also allows us to critique different behavioral models (DEFs) by model
comparison, using metrics such as Akaike Information Criterion (AIC) [28].

4 Experiments: fitting and comparing internal construct priors

We compare the following ICPs by fitting them in the DEFs that share the same class
of aleatoric component: a) our proposed economical ICP as described in Section 3.1; b)
its special case, the exchangeable CRP-GMM; and c) a baseline batch learning prior
that describes a non-sequential cluster assignment; see Appendix B.1.3 for details. We
use the Nealder-Mead optimizer to fit the DEF parameters for each participant, restarting
multiple times to avoid early convergence issues [29]. We choose a large number M for MC
simulations so that the estimator (7) produces small enough variance and bias tolerable for
the Nelder-Mead optimizer. After fitting, we compare different DEFs using a much larger
M . Details of the fitting algorithm are deferred to Appendix B.3 where we also present
additional experiments validating our overall optimization scheme.
The quality of the fitted DEFs on the three experiments are shown in Fig. 4. The economical
ICP produced significantly lower AICs than the exchangeable CRP-GMM in all three ex-
periments (Exp. 1: median AICs -2627.9 vs. -2583.1, p < 10−4; Exp. 2: -1766.7 vs. -1697.9,
p < 10−3; Exp. 3: -148.2 vs. -141.0, p < 0.01; Wilcoxon signed-rank test). We compare four
aspects of the predictions in Fig. 4: the error rate in predicting the number of clusters, the
negative log-likelihood (NLL) of the weights, and the expected normalized error in predict-
ing mean and log-variance predictions using the slacked predictions given K̂i = Kr. The
advantage of the economical ICP is not only in correctly predicting the number of clusters
but also in estimating the cluster properties. As expected, the batch ICP had much worse
AICs. Further, to test whether simpler models can explain the data better, we performed
an ablation study based on the CRP-GMM ICP (Appendix B.5.1). The ablated ICPs ne-
glect various aspects of the probabilistic structures, effectively mimicking different heuristic
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Figure 4: Quality of three ICPs on three experiments. Thick blue lines and whiskers are
means ± 1 sem over all participants (thin lines). Red crosses are medians. Asterisk (*)
indicates significance at p<0.05 by Wilcoxon signed-rank test.

strategies in forming the internal construct. None of the ablated models outperforms the
economical ICP.
Example predictions of the two sequential ICPs are shown in Fig. 5A. The DEF with the
economical ICP captures all of the behavioral patterns exhibited by participants, including
the inconsistent number of clusters, the low overlap ratio between adjacent clusters, the
moments of the reported distribution (Figs. 6 to 8), and the covariance of the reported cluster
properties (Fig. 5B-D). We found largely consistent patterns in three fitted parameters
across experiments (Fig. 5E–G). First, in line with our resource-rational motivation, the
decay rates r in (1) are greater than 0, implying that model expansion is suppressed as
αt decays when the internal construct becomes more complex. Second, participants’ prior
sd √

σ0 in (2) was 20%–35% of the true density’s sd regardless of the true scale of the
observation, with a high confidence a0 (see Appendix B.5.2). This means that each cluster
is kept narrow, requiring a new cluster to account for an observation far from existing
clusters. It explains the bumpiness in the reported internal constructs, and also suggests
that participants adaptively adjusted the cluster scale in accordance with the data scale and
modality. Further, the observation that participants reported around 3 clusters is likely the
trade-off between the opposite forces of a decaying αt and a small but confident σ0. Third,
we found the cluster distortion β in (1) to be less than 1, indicating a reduced sensitivity to
cluster size when forming the internal construct online.

5 Discussion

We studied density estimation by humans, a sophisticated capability fundamental to a va-
riety of cognitive tasks but has so far been elusive in experiments and implicitly assumed
in modeling. Through behavioral experiments, we discovered systematic inconsistencies in
humans’ internal constructs of environments (Section 2) and proposed a density estimation
framework for modeling this rich behavioral dataset (Section 3). We explained the inconsis-
tencies as a result of an economically-expanding internal construct prior (ICP) over internal
constructs and a strong preference for narrow clusters [30]. The scale-adaptive cluster prior
aligns with prior research on adaptive sensory and probability coding [31–33, 30, 34].
The density estimation framework (DEF) is a generic approach for modeling complex be-
havioral data. Thanks to the generality, one can compare other inference algorithms based
on likelihoods and can easily incorporate priors over parameters (hyperpriors). While pre-
vious work kept the trainable parameters small and/or used error-based objective functions
[15, 35, 4], our DEF can fit more parameters by maximum-likelihood, marginalizing the
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Figure 5: A, Example DEF predictions for Experiment 2 when the predicted number of
clusters agree with human reports. B–C, Detailed patterns of the reported cluster properties
in Experiment 2, which can be successfully captured by economical DEF. In each panel, the
grey heatmap denotes the distribution of responses of individual trials (collapsed across
participants). The colored dots and error bars denote average response and standard error
across participants in local data bins. The line denotes the regression line. B, the cluster sd
increased with the cluster weight. C, The cluster sd decreased with the cluster eccentricity
(distance between the cluster center and the global center). D, The cluster sd decreases with
the number of reported clusters. E-G, Upper panels show the effects of key parameters in the
economical ICP; lower panels show the parameters fit on the data of the three experiments.
More visualizations of DEF predictions appear in Figs. 6 to 8 in Appendix A

latent cluster assignments properly, thanks to our efficient implementation and hardware
acceleration. With this methodology, we showed that the economical ICP provided a closer
match to human behavior than the Chinese restaurant process (CRP) which has been used
pervasively in modeling online learning. With a decaying rate of expansion, the growth of
an economical ICP is more in line with humans’ finite memory capacity.
Our work sends important messages to the theoretical community. Dasgupta and Griffiths
[32] showed that the CRP is cognitively plausible because it can be derived from a preference
for low entropy in the cluster assignment distribution. We found that the fitted β < 1
actually increases the entropy of the prior cluster weight distribution [20, 23], suggesting
that the cluster count might be the main consumption of cognitive resources. Gershman et al.
[16] discussed in great depth on batch versus online learning, whether the model capacity
should be finite or infinite, and the hypothesis that retrospective cluster reassignment may be
possible with particle representations. We provide key experimental and modeling evidence
that humans may employ an online and yet finite (in expectation) model. However, with
only a few number of particles, the beliefs of the other possible assignments are not well
retained, so retrospective corrections may not be easily produced from these models.
In sum, the economical DEF reproduces many human patterns, not only in the loss function
optimized for (quality of capturing human structure learning), but also in the moments of
the whole distribution and the covariance structures of cluster properties. We note the large
room for improvement in predicting the cluster variance (the right column in Fig. 4), which
hints at the complexity of the task and the challenge in modeling. Our work also provides a
comprehensive likelihood-based model comparisons on human density estimation, and paves
way for future studies using high-dimensional reports in complex behavioral tasks.
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Bounded rationality in
structured density estimation:

Supplementary material

A Experimental details

A.1 Experiment 1

A.1.1 Participants

Experiment 1 recruited 21 participants (11 females, aged 18–25). All participants had
provided informed consent before the experiment.

A.1.2 Cover story

Participants were told that they were apprentice magicians in a magical world. In this world,
dangerous magic lava rocks were emitted from an unknown number of invisible volcano(es).
On each trial, they observed past landing locations of lava rocks in a specific area (on the
screen), and their job was to predict the probability density of future landing locations.
More specifically, they were asked to draw a probability density by reporting, using click-
and-drag mouse gestures, three key properties of the volcano(es), corresponding to the mean,
the weight, and the standard deviation of a Gaussian component. They were told that their
bonus payment depended on the accuracy of the reported predictive density.

A.1.3 Procedure and Design

On each trial, the landing positions of lava rocks were visualized as red dots and sequentially
presented on a black line. The number of presented rocks (i.e., sample size) had two levels:
10 or 70. Each dot was presented for 166 ms, followed by a 166 ms empty screen. The
landing positions were i.i.d. samples drawn from an unseen mixture distribution.
After observing all dots, participants needed to follow a two-stage procedure to report both
(1) the predictive density of rocks’ future landing positions, and (2) the underlying generative
model. First, they marked the location of the volcano(es) by clicking on the black line. After
marking all volcano(es), they pressed “F” to proceed to the next reporting stage. In the
second stage, they chose a volcano by clicking the volcano icon and then moved the mouse
to report the relative density of the landing position of future lava rocks emitted from this
volcano. During the report, the overall density of the rock landing position was computed
and presented in real-ime.
The true generative distribution set was composed of 24 distributions (Fig. 6A). The dis-
tributions were created by following a merge-from-four procedure. All distributions’ overall
standard deviations were about 5.3 cm. On each trial, a uniform jitter ([-5.3 cm, +5.3 cm])
was added to the mean of the true generative distribution.
Participants completed 2 (sample size levels) × 4 (true cluster number levels) × 6 (distri-
bution subtype) × 3 (number of repeats) = 144 trials in total. The experiment length was
about 105 minutes.

A.1.4 Generation of true distribution set

The set of true distributions was constructed following the steps below. First, we created
6 four-cluster Gaussian mixture distributions (bottom row in Fig. 6A) in which each com-
ponent had the same SD of 0.72cm of visual angle and equal weight. The three center-to-
center distances between their adjacent Gaussian components, denoted [d1, d2, d3] (from left
to right, measured in cm), were chosen from the set of all permutations of {3.6, 4.65, 5.7}cm.
Second, each of the 6 four-cluster Gaussian mixtures went through “merging steps”, inspired
by the proposal step in the dynamic clustering algorithms (e.g. Reverse-jump MCMC) in
statistics [36]. In each merging step, we chose two adjacent Gaussian components to merge
into one, with the post-merger new component having the same zeroth, first and second
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Figure 6: Detailed experimental design and results in Experiment 1. A, The distribution set.
B–F shows the prediction of the fitted economical DEFs compared to participants’ reports
under different conditions. B, The relative frequency of the reported cluster number. C,
The average reported cluster number. D, The overlap ratio between the reported clusters.
E, The reported moments versus the sample moments in the 10 sample-size condition, with
data (left sub-panels) contrasted with model prediction (right sub-panels). Three rows are
for mean, sd, and skewness. In each panel, the grey heatmap denotes the distribution of
responses of individual trials (collapsed across subjects). The 5 dots and error bars denote
average response and standard error across subjects in 5 local data bins. The line denotes
the regression line, with shading representing 95% confidence interval. F, The reported
moments versus the sample moments in the 70 sample-size condition

moments as the combination of the two pre-merger components. The to-be-merged adjacent
components were chosen in such a way that the post-merger Gaussian mixtures minimize KL-
divergence KL(ppre||ppost). By applying the merging step iteratively, the original four-cluster
Gaussian mixtures were transformed into three-cluster, two-cluster, and finally one-cluster
mixtures.

A.1.5 Results

See Fig. 6 for the prediction of the fitted economical DEF.

A.2 Experiment 2

Experiment 2 recruited 21 participants (13 females, aged 18–25). All participants had
provided informed consent before the experiment. One participant was excluded due to
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Table 1: The distribution set in Experiment 2
Distribution Paper Skewed or Symmetric Number of clusters Number of modes

1 [24] Symmetric 1 Unimodal
2 [24] Symmetric -* Unimodal
3 [25] Symmetric 2 Unimodal
4 [21] Skewed 2 Unimodal
5 [21] Skewed 2 Unimodal
6 [21] Skewed 2 Unimodal
7 [25] Skewed 2 Unimodal
8 [23] Skewed 2 Bimodal
9 [25] Symmetric 2 Bimodal
10 [22] Symmetric 2 Bimodal
11 [22] Symmetric 3 Trimodal
12 [20] Skewed 3 Trimodal
13 [20] Skewed 3 Trimodal
14 [20] Skewed 3 Trimodal

* This is a uniform distribution with smoothed edges.

their task performance being an outlier (measured by the earth-mover distance between the
reported predictive density and the true density, exceeding 3 standard deviations, z-score =
-3.3).
Experiment 1 uses 14 representative Gaussian mixture distributions selected from previ-
ous studies (Table 1). The distribution set can be divided into four subtypes: unimodal-
symmetric, unimodal-skewed, bimodal, and trimodal. Note that the number of modes is
not necessarily equal to the number of latent Gaussian clusters. For example, a unimodal
skewed distribution could be a mixture of two latent Gaussian clusters.
In each trial, participants observed 20 sequential samples drawn from one of the 14 distri-
butions. The standard deviations of all distributions were rescaled to 4.8 cm. Each dot was
presented for 166 ms, followed by a 166 ms empty screen interval. On each trial, a common
uniform jitter ([-3.7 cm, +3.7 cm]) was added to the means of the clusters. To balance the
skewness of the distribution in the experiment, we horizontally flipped the distribution in
half of the trials. To explore participant’s consistency in structure learning, we presented
the same sample sequence for two times in seperate trials. Participants completed a total
of 14 (distribution types) × 2 (flip or not) × 2 (number of random sequences) × 2 (number
of repeats) = 112 trials. The experiment lasted about 90 minutes.

A.2.1 Results

See Fig. 7B–D&G for the prediction of the economical model.
Experiment 2 contained repeated trials with identical stimuli. Using these trials, we show
in Fig. 7E that in repeated trials participants reported a different number of clusters just
below 50% of the time. Similarly, our model could predict with an accuracy around 0.5,
very close to the participants themselves. This shows that our model can predict human
report close to the participants themselves.
To illustrate the robustness of the model fitting procedure, we run model recovery exper-
iments. Given randomly chosen parameters for the full model, we generate 100 sets of
synthetic stimuli, reset the parameters to new random values, and then fit the parameters
on the synthetic dataset using the procedure described in the main paper. The results show
that the recovered parameters are largely consistent with the random initial values (Fig. 7F,
the average correlation between the source parameters and the fitted parameters is 0.84).

A.3 Experiment 3

Experiment 3 recruited 36 participants (21 females, aged 18–26). All participants had
provided informed consent before the experiment.
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Figure 7: Detailed experimental design and results for Experiment 2. A, The distribution
set. B-D&G shows the prediction of the fitted economical DEFs compared to participants’
reports under different conditions. B, The relative frequency of the reported cluster number.
C, The average reported cluster number. D, The overlap ratio between the reported clusters.
E, The proportion that the reported numbers of clusters are different when two trials have (1)
different distributions, (2) same distribution but different samples, or (3) same distribution
and samples. F, The quality of model recovery, measured by the correlations between the
source parameters and the fitted parameters. G, The reported moments versus the sample
moments.

In Experiment 3, participants needed to learn the distribution of numeric values and report
their belief of the distribution by entering numbers on the keyboard. On each trial, the
horizontal coordinates of lava rocks were shown one-by-one on the screen, with each coordi-
nate presenting for 1.5 seconds, followed by a 0.5-second empty screen. After observing all
coordinates, participants were required to first report the number of volcanoes. Then, they
were required to enter the location and the relative eruption frequency of each volcano.
The true distribution set was composed of 2 unimodal distributions: one is a Gaussian
distribution, and the other is a skewed Gaussian mixture with 2 wide clusters (Fig. 2A).
Participants completed 3 (distribution type) × 8 (number of repeats) = 24 trials in total.
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Figure 8: The relative frequency of the reported cluster number in Experiment 3.

A.3.1 Results

See Fig. 8 for the prediction of the economical model.

B Density estimation framework details

B.1 Rational component

The rational component should take the sequential observations xT and predict the internal
construct properties φr reported by a participant. From a computational perspective, any
simulation-based model could be used for this component, as long as it can produce an inter-
nal construct based on xT . In this work, we adopt the rationale of Bayesian inference given
a plausible generative process that could have produced the observations xT , with approx-
imations mandated by cognitive constraints. Since the behavioral report is derived from a
subjective belief of the unobserved distribution in the environment, the generative process
in the participant’s mind describes a subjective prior (or a construct) over distributions. As
such, we call this generative process an “internal construct prior” (ICP).
The ICP in our main model is inspired by the nonparametric Gaussian mixture model. A
popular instantiation of the said model is defined through a CRP prior over the cluster
assignments, and a conjugate prior over the distribution of each cluster, abbreviated as
CRP-GMM. It is appealing for our purpose because the implied generative process of xT is
sequential, similar to how participants observe the xT . To make this prior more flexible, we
extend the cluster assignment prior by introducing additional parameters in (1) to control
the expansion decay rate (r) and count distortion rate β. The effects of these two parameters
on the prior distribution of partitions are shown in Fig. 9. While the number of clusters
in the ordinary CRP grows, the decaying parameter α in our extension substantially slows
down the introduction of new clusters as the model size increases. As of the distortion rate
β, when β < 1, there is weaker rich-get-richer effect, giving more evenly distributed cluster
sizes and higher entropy in the cluster assignment distribution, while a β > 1 produces more
extreme cluster sizes and lower entropy of the cluster assignment distribution.

B.1.1 Inexchangeability of the the economical ICP

The exchangeability of a cluster assignment prior is often desirable for online data mod-
eling, because it ensures that the posterior of cluster assignment is invariant to the order
(permutation) of data. However, in this work, we are interested in a prior that governs
how humans construct a density model online. Our discussion on cognitive constraints in
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Section 1 suggests that achieving order invariance requires implausible computations, so we
propose to relax order invariance for the purpose of modeling human cognition.
Here we show by counterexamples the proposed ICP cluster assignment prior (1) is not
exchangeable. First, for the case β = 1 and r ̸= 0. consider the partition {{z1, z2}, {z3}}.
We have

P(z1 = 1, z2 = 1, z3 = 2) = P(z1 = 1)P(z2 = 1|z1 = 1)P(z3 = 2|z1 = 1, z2 = 1)

= 1
1

1 + α0e−r

α0e
−r

2 + α0e−r
,

which is not the same as the probability of a permuted but equivalent partition,
P(z3 = 1, z1 = 2, z2 = 2) = P(z3 = 1)P(z1 = 2|z3 = 1)P(z2 = 2|z3 = 1, z2 = 2)

= 1
α0

1 + α0

1

2 + α0e−r
.

Then, for the case β ̸= 1 but r = 0, consider the partition {{z1, z3, z5}, {z2, z4}}. We have

P(z1 = 1, z2 = 2, z3 = 1, z4 = 1) = 1
α0

1 + α0

2 · 1β

1β+1β

2 + α0

3 · 2β

2β+1β

3 + α0
=

3α02
β

(2β + 1)
∏3

t=1(t+ α0)
,

which is not the same as the probability of a permuted but equivalent partition,

P(z1 = 1, z3 = 1, z4 = 1, z2 = 2) = 1
1

1 + α0

2

2 + α0

α0

3 + α0
=

2α0∏3
t=1(t+ α0)

.

Therefore, the prior defined by (1) is not exchangeable in general if β ̸= 1 or r ̸= 0.

B.1.2 Sufficient statistics

For completeness, we give the explicit expressions of the sufficient statistics in (3) as

ni
t,k =

t∑
τ=1

1[ziτ = k], µ̄i
t,k =

1

ni
t,k

t∑
τ=1

1[zit = k]xt, σ̄i
t,k =

1

ni
t,k

t∑
τ=1

1[zit = k](xt − µ̄i
t,k)

2. (8)

We assume that participants maintain these sufficient statistics when building their internal
constructs, and also report them at the end of the trial, after normalizing ni to obtain the
weights. Note that, unconventionally, we denote the variance by σ.
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Figure 9: Effects of the decay rate and distortion rate β in (1) on the distribution of
partitions. Heatmaps on the top row show distributions of the number of clusters as a
function of time steps. Brighter color means higher probability. Blue solid line indicates
the mean, blue dotted lines indicate 1 standard deviation. The bottom row shows the
distribution of cluster sizes at t = 30. Yellow bar indicates median.
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B.1.3 Baseline batch ICP

As both the economical ICP in Section 3.1 and the proposed fitting algorithm (to appear in
Appendix B.3) are new, it is important to compare the economical ICP and the exchangeable
ICP, CRP-GMM, with another baseline ICP, all fit by the same algorithm. If we expect
the baseline ICP to provide a worse description of human cognition than CRP-GMM on
this task, then the proposed algorithm must be able to produce a less favorable model
comparison result for this baseline after fitting them to human data. We choose a batch
ICP as the baseline: it generates all observations as i.i.d. samples conditioned on cluster
assignments, but, unlike the CRP, the cluster assignment prior is time-invariant and is thus
exchangeable; inference over this ICP produces order-invariant posteriors. Because our task
has a strong sequential nature, we expect this batch ICP to be a worse descriptor of human
cognition for this task.
Specifically, this batch ICP pB maintains a truncated Poisson prior distribution over Kmax
submodels of mixture distributions.

pB(K) ∝
{
Poisson(K; K̄), 1 ≤ k ≤ Kmax;

0, otherwise. (9)

The K’th submodel is a Gaussian mixture of K components. Each submodel has a sym-
metric Dirichlet prior over the cluster weights, and each component has mean and variance
following the conjugate Gauassian-Inverse-χ2 distribution, as in (2). The truncated Poisson
prior is a heuristic choice; we also tried other priors, such as a Categorical distribution sup-
ported on K = 2 and K = 3, or a truncated Poisson with mean dependent on the sample
size (10 vs 70). These choices improved the AIC only insignificantly.

Inference in each submodel The following description applies to each of the Kmax
submodels. Given the observed noisy data x̃i

T , each submodel produces an inferred cluster
property φi

K , which are the sufficient statistics of the cluster property posteriors returned
by the variational-EM algorithm (see Chapter 10.2 of [37]). We now drop the superscript i
to reduce clutter, bearing in mind that all the variables are samples depending on a noisy
observation x̃i

T and a sampled Ki. This algorithm alternates between the E-step: updating
a Dirichlet posterior over the cluster weights; and the M-step updating a Gaussian-Inverse-
χ2 posterior over the cluster means and variances. It turns out that the posterior over the
cluster parameters φK depends on a set of sufficient statistics similar to (8), except that
the cluster assignments are now soft as computed by the responsibilities rt,k for each xt and
k ∈ {1, . . . ,K} during the variational E-step.
After the variational-EM procedure converges, we perform a hard cluster assignment for
each observation xt by choosing the cluster with the highest responsibility,

zt = argmax
k∈{1,...,Kmax}

rt,k.

This ensures that the cluster weights are quantized, as is the case for the particle-based
inference methods on the other two ICPs—we do not want to introduce additional effects
to the variational model due to having continuous support for cluster weights. Thus, at
the last time step t = T , the cluster weights are determined by nk =

∑T
t=1 1[zt = k]. The

cluster mean µk and variance σk still depend on the original unquantized responsibilities
and per-cluster sufficient statistics similar to (8) but with indicators 1[zt = k] replaced by
responsibilities rt,k. As a result, for each submodel with K clusters, the inferred cluster
properties are summarized by φK := [nk, µ̄k, σ̄k]

K
k=1.

Submodel selection After obtaining sufficient statistics for all K models, the batch
rational component selects the submodel with the largest marginal likelihood given the
hard cluster assignments, computed through Student’s t marginal densities as in (4), minus
a penalty of a weighted model size

KB := argmax
K∈{1,...,Kmax}

{pB(xT |φ̂K)− γK} (10)
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where γ is a trainable parameter. This penalty is consistent with how AIC penalizes model
complexity. Then, the submodel with KB clusters is selected, passing φKB to the aleatoric
component. As such, the batch-based rational component differs from the CRP-GMM in
the following ways:

1. In the batch rational component, the cluster assignments are performed by varia-
tional inference rather than a particle filter;

2. the batch rational component performs model selection that penalizes large models
after inferring multiple submodels, whereas CRP-GMM embeds the preference for
smaller models in the cluster assignment prior.

Likelihood approximation These inferred cluster properties are passed to the aleatoric
component, giving (slacked) number of cluster K̂B and the predicted φ̂B. This amounts
to a single simulation of the batch DEF. To compute the likelihood, the batch DEF still
needs to marginalize out the visual noise and the slacked K̂B in the aleatoric component.
To this end, we run a large number of simulations, each with an independent draw of noisy
observations x̃i

T , giving the predicted cluster properties φ̂i
B. The likelihood p(φr|xT ) for the

batch model is then approximated by (7).
The batch rational model and the aleatoric component combine to give the batch DEF, which
is used to benchmark the economical ICP and exchangeable ICP in the corresponding DEFs.

B.2 Aleatoric component

Here, we explain in more detail the aleatoric component described in Fig. 3. As discussed
in Section 3.2, one challenge in modeling this dataset is that the dimensionality of the
internal construct varies across trials. This requires that the model be able to produce
variable-dimensional predictions. In order to fit the DEFs by maximum-likelihood, the DEF
must place nonzero probability to all possible numbers of clusters. We thus defined the
distribution pA(K̂|K) in (5) supported on {1, . . . ,Kmax}, and restrict the maximum number
of clusters to Kmax to be the largest number of clusters ever reported by participants in
an Experiment. One can also define other slack distributions over K with decaying tails to
avoid an explicit upper bound.
If there is no slack, then the predicted cluster properties are as inferred. If the participant
slacks with probability ϵ and commits to a prediction K̂i that does not agree with the
inferred Ki from the rational component, they must modify the inferred φi so that there
are K̂i clusters. We assume that, during modification, the participant should keep the overall
distribution roughly intact. We propose the following deterministic procedure, denoted by
f(φi, K̂i), which recursively increases or decreases the number of clusters in φi until there
are K̂i left.

Removing the smallest cluster. This happens whenever φi has more clusters than K̂i.
We simply remove the cluster with the smallest weight. An alternative is the following
merging strategy: take the cluster with the smallest weight, and merge into its nearest
neighbor. The merged distribution has weight equal to the sum of the weights of the
clusters merged, and has mean and variances equal to the effective mean and variance of
the two. More precisely, for two clusters with properties [w1, µ̄1, σ̄1] and [w2, µ̄2, σ̄2] (note
that we denote the variance by σ), the merged cluster has properties

[w1 + w2, µm, σm],

where µm = w1µ̄1+w2µ̄2 and σm = w1(σ̄1+ µ̄2
1)+w2(σ̄2+ µ̄2

2)−µ2
m. Our results show that

the removal strategy produced better AIC than the merging strategy.

Splitting the largest cluster. This happens whenever φi has fewer clusters than K̂i. We
take the cluster with the largest weight and split it into two clusters. The new clusters are
centered at equal distance from and on two sides of the original cluster, and their variance
is a scaled version of the variance of the original cluster. Specifically, denote the properties
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Figure 10: Estimated log-likelihood of data for one participant given different numbers of
simulations. We show the mean and standard deviations of the estimate based on 30 runs
for each value of M .

of this cluster to be split by [w,m, σ], we set the cluster properties of the new clusters to be[w
2
, m− bσ

√
σ, sσσ

]
,
[w
2
, m+ bσ

√
σ, sσσ

]
. (11)

where bσ > 0 and 0 ≤ sσ ≤ 1 are free parameters to be optimised. We also tested a version
of this strategy where these two parameters are fixed at bσ =

√
3
2 and sσ = 1/4, but this

gave worse AIC.

Noise processes. The noise processes defined in (6) are given by

pw(w; n̂) = Dirichlet(w; c(n̂ + 1)), (12)

pµ(µ
r; µ̂) =

K̂∏
k=1

N (µr
k; µ̂k, σµ), (13)

pµ(σ
r; σ̂) =

K̂∏
k=1

logN (σr
k; σ̂k, σv). (14)

where K̂ is implied from φ̂. The addition by 1 in (12) ensures that the mode of the Dirichlet
distribution is equal to w ∝ n̂. The scaling parameter c changes the confidence. The
variances σµ and σν are free parameters.

B.3 Fitting algorithm

The MC estimator for the likelihood in (7) is unbiased. However, the corresponding log-
likelihood estimator, adopted in practice for numerical stability, is only consistent and pro-
duces a nonzero bias for a finite number of simulations M . This is due to Jensen’s inequality.
Suppose each simulation provides a log-likelihood estimate of ℓi conditioned on some latent
variables (such as ziT and K̂i). Let the true conditional likelihood be X so that eℓi ∼ X.
then the estimated marginal log-likelihood is

E

[
log
(

1

M

M∑
i=1

eℓi

)]
≤ log

(
E

[
1

M

M∑
i=1

eℓi

])
= log(E[X]) (15)

Note that E[X] is the marginal likelihood. Fortunately, this bias is downwards, meaning
that the expected MC estimate provides a lower bound on the true log-likelihood Still,
we must use a large M during training and evaluation, as this reduces the variance of the
empirical average in (15) and thus lowers the bias. We show in Fig. 10 the dependence of the
estimated log-likelihood for different numbers of simulations, using data from a randomly
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Figure 11: Log-likelihood of different DEFs in ablation studies, including the economical
and CRP-GMM DEFs.

picked participant in Experiment 3. When the model is untrained (left panel), the bias does
not completely go away even at M = 10 000, but the variance is much smaller than using
fewer M ’s. When the model is well-trained, both the bias and variance of the estimated
log-likelihood are substantially reduced (right panel). Thus, the likelihood estimates become
more reliable as the DEF fits the data better.
Thanks to the small estimation variance, we are able to fit the parameters of the DEFs
using a gradient-free optimization routine Nelder-Mead implemented in the NLOpt package
2. During training, we estimate the log-likelihood using M = 10 000 parallel simulations on
NVIDIA GTX 1080 and A100 GPUs. The latter GPU provides a likelihood estimate within
3 seconds for Experiment 2, and 5 seconds for Experiments 1 and 3. The Nelder-Mead
routine typically converges to a 0.001 relative precision on parameters within 300 iterations.
We restart Nelder-Mead 10 times with parameters found from the previous optimization,
as this avoids early convergence of Nelder-Mead. To further avoid local optima, we repeat
this whole procedure (with 10 restarts) 10 times with different random seeds. We can then
check if our algorithm has found a good solution by taking the maximum likelihood found
across the 10 repeats. If this solution is reliable, then we should observe that this maximum
is stable across the 10 restarts. We then take the best solution among the 10 random seeds
at the last repeat as the fitted DEF parameters.
Fig. 11 shows the best (among seeds) log-likelihood across 10 restarts, averaged over all
participants, for each DEF setup (see Appendix B.5.1). During the first repeat, the log-
likelihood increases and stabilizes. Because we do not keep the best log-likelihood across
the restarts, we see small fluctuations across the restarts. We see a very slow increase of
log-likelihood for some DEFs in Experiment 3, but the relative rank of different DEFs is
mostly preserved.

B.3.1 Fitting the batch DEF

For the Batch DEF, each simulation maintains Kmax submodels before the comparison in
(10). Because the cluster weights posterior can be computed during variational inference,
unlike in the CRP where we used particles, we do not need as many simulations, and so we
run M = 100 simulations of each of the Kmax submodels. The output of the Batch rational
component is then fed into the same aleatoric component for a fair comparison between the
ICPs.

B.4 Particles versus MC simulations

There is an important distinction between the number of particles and the number of MC
simulations. In this work, we assume that the participant uses a single particle for infer-
ring the cluster assignments, but this is not observed from the experimenter’s viewpoint.
The reported internal construct may be associated with one out of many possible cluster

2https://github.com/stevengj/nlopt
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assignments. As such, we run many simulations of the single-particle particle filter. The
number of MC simulations is M , and each simulation is indexed by i. Since we stick to the
single-particle assumption throughout the paper, we do not need an additional index for the
number of particles within each MC simulation.
Future work may consider multiple particles. In this case, each MC simulation will con-
tain multiple sequences of cluster assignments. Maintaining multiple cluster assignment
sequences allows re-assignment or re-weighting of the observations at each time step, achiev-
ing some retrospective correction. However, it is unknown how the participant makes a
decision on reporting the cluster properties from multiple samples, especially when the num-
ber of clusters do not agree across different particles. We thus leave multiple-particle models
for future work.

B.5 Additional modeling results

After training the DEFs, we evaluate the log-likelihood using a large number of simulations:
106 for the sequential DEFs in our main results, and 105 for the baseline batch DEF.

B.5.1 Ablation studies on DEF

Our initial experiment design used the exchangeable DEF (with a CRP-GMM rational com-
ponent) as a reference model. We explored the model space by making small modifications
to this DEF motivated by resource constraints and other heuristics. Here, we show that the
two modifications in the economical DEF, namely the Decay in expansion rate αt and Dis-
tortion in cluster count nt,k produce reliable improvements over the reference exchangeable
DEF. The DEFs resulting from other modifications either did not produce reliable improve-
ments or were insignificant compared to the reference model. All model parameters are
listed in Table 2. We introduce the modifications below.
Decay: adding a model-size dependent decay rate r, as in (1).
Distort: adding an exponential transformation to the size of the clusters, as in (1).

Fixed Splitting: when K̂i < Ki and splitting a cluster, the parameters of the splitting
are fixed with bσ =

√
3/2 and sσ = 1/4

Merge Cluster: when K̂i < Ki, instead of removing a cluster, the function f(φ, K̂) merge
the smallest cluster into the cluster with closest mean. The cluster properties of the new
component is computed by moment matching, as detailed in Appendix B.2.
Local MAP: instead of sampling the cluster assignment according to (4), take the cluster
with largest posterior probability. This is the local MAP procedure described in [15].
Constant Variance: instead of updating the variance of each cluster according to (3), the
cluster mean is fixed to the trainable parameter σ0

Fixed Mean: instead of updating the mean of each cluster according to (3), the mean is
fixed at the first observation assigned to the cluster. This checks if participants are able to
update the mean or simply remember the first observations assigned to the clusters.
Fixed Mean Confidence: instead of fitting λ0 as a parameter, we fix it at λ0 = 0.01

No Visual Noise: do not add Gaussian noise to the observations.
No Distribution Prior: when computing the per-step assignment posterior in (4), the like-
lihood is a Student’s t-distribution obtained from having a conjugate prior over the Gaussian
distribution parameters. Instead of computing this likelihood using the t-distribution, this
modification computes this likelihood by a Gaussian with mean µt,k and variance σt,k.
No Counting Prior: in (1), instead of using the nt,k maintained for each cluster, use the
average cluster size.
The results of these DEFs, averaged over participants, are shown in ??. Clearly, only Decay
and Distort produced reliable improvement on AICs compared to the CRP-GMM DEF
across all Experiments. All other modifications that deviate from a rational approximation
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of the Bayes rule (e.g. Fixed Mean, No Counting Prior, etc.) resulted in significantly worse
fit to the reported internal constructs from our participants. We also see that removing
visual noise is detrimental to the quality of the fit.
The stability of the likelihood approximated from (7) is shown in Fig. 11. All DEFs fit-
ting converged well as the number of restarts increases, except for a few worse DEFs in
Experiment 3.
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(b) Experiment 2
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(c) Experiment 3

Figure 12: Model ablation comparisons for all Experiments. Lower values are better. Error
bars are 1 sems. Blue bar indicates the reference DEF with CRP-GMM as the rational
component. Green bars indicate significant differences to the reference model (Wilcoxon
signed-rank test, p<0.05), and grey bars indicate insignificant comparison. The Proposed
(Distort + Decay) is the economical ICP.
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Figure 13: Distribution of fitted ICP parameters using data in Experiment 2.

B.5.2 Strong prior on cluster width

We found in most fitted ICPs that the prior cluster standard deviation is small (see Fig. 5
and Fig. 13), and the confidence indicated by its pseudocount a0 is much greater than zero.
This high confidence contrasts with the low pseudocount associated with the prior cluster
mean λ0. This means that participants could learn the cluster mean mostly driven by the
observations while failing to adapt to the cluster uncertainty. This contributes to the large
number of clusters seen when there is a single Gaussian in the true data distribution. We
noted that Gershman and Niv [35] also used a relatively high a0 = 10 parameter for their
task.
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