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Abstract

This paper presents a high-level overview of the challenges facing the application of
reinforcement learning (RL) to power system control. As power systems evolve with
increasing complexity and uncertainty, RL offers promising approaches for adaptive
control. Building on the framework of Dulac-Arnold et al. (2021), we explore how
power systems embody and expand on these challenges. We also introduce two ad-
ditional challenges that arise from the power systems domain: (1) learning policies
over multi-timescale action spaces, and (2) fostering effective collaboration between
RL agents and human operators. By outlining these challenges for the power systems
domain, this work aims to enable future research and collaborative efforts between the
power systems and RL communities.

1 Introduction

The widespread adoption of renewable and distributed energy resources challenges current modeling
and control tools in power systems (Pfenninger et al., 2014; Lopion et al., 2018). Reliable, scalable,
and economical control of the grid with these new energy resources is growing in complexity, un-
certainty, and volatility (Chen et al., 2022). With these rising challenges come new opportunities to
develop paradigms and algorithms for a more sustainable future.

To enable stable decarbonization of the power grid, traditional operating paradigms and control
strategies need to be rethought (Ilic & Jaddivada, 2022). The current control framework for power
systems control is strictly hierarchical, with clear spatiotemporal boundaries between different con-
trol hierarchies. However, the increasing penetration of untraditional resources has challenged the
adequacy of conventional control methods inter- and intra-hierarchies (Farrokhabadi et al., 2020).
Thus, control strategies derived from the traditional control perspective may result in suboptimal
and, in extreme cases, unstable power grid operation (Cardell & Ilic, 2004; Keyhani & Chatterjee,
2012). Moreover, the use of legacy controllers is one reason for the increasing need for opera-
tional reserves, which are often emissions-producing generation. Consequently, operators keep the
penetration of these untraditional resources below a certain limit (Yang et al., 2020b).

Reinforcement learning (RL) is a potential candidate to address emerging challenges in power sys-
tem control (Sutton & Barto, 2018; Chen et al., 2022; Bertozzi et al., 2024; Yu et al., 2024). Due
to the flexibility of RL, it has been successfully applied to several complex control systems where
classical approaches have failed or performed suboptimally (Luo et al., 2022; Degrave et al., 2022).
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A large body of work has proposed various forms of RL for a diverse range of applications in power
systems (Li & Yu, 2020; Chen et al., 2022; Yu et al., 2024). Although previous RL and machine
learning methods have shown promising attributes in power system modeling and control, they have
not yet been adopted by industry leaders (Chatzivasileiadis et al., 2022; Chen et al., 2022; Bertozzi
et al., 2024; Yu et al., 2024).

Previous review articles have considered the application of RL to specific problem settings in power
system control, such as in Chen et al. (2022) and Zhang et al. (2020), or on a specific design principle
such as safety in RL (Yu et al., 2024). In contrast, this paper focuses on how the challenges proposed
by Dulac-Arnold et al. (2021) apply to power systems. We hope that this framing will enable new
areas of collaboration and research while targeting key areas in which RL is currently deficient for
power system control.

2 Background

This section reviews RL and power grid control. Our goal is to provide familiarity with the ideas
and jargon in both fields to contextualize the discussion in Section 3.

2.1 Reinforcement Learning

The dynamics of the RL problem setting is most often described as a Markov decision process
(MDP) (Sutton & Barto, 2018), where an agent (in our case a control algorithm) interacts with
an environment (the power grid). Given a state s ∈ S ⊂ Rn and an action a ∈ A ⊂ Rb, the
environment transitions to a new state s′ ∈ S according to the transition probabilities P : S ×
A × S → [0,∞)1. A reward is received for each transition according to the (human-designed)
reward function r : S × A → R. The goal of an RL agent is to maximize the sum of cumulative
(discounted) rewards, that is, the discounted return Gt = E[

∑T
i=t γ

i−tri] with discount γ ∈ [0, 1)2

and (potentially infinite) horizon T ∈ [t,∞] (the time that the agent acts in the environment). The
agent learns a policy µ : S × A → [0,∞)1 that describes the probability distribution of actions for
a given state. The agent samples an action from this distribution for every state.

2.2 Power System Control

The power grid is an interconnected set of electronic devices that can generate, transfer, distribute,
and consume power. To effectively control and effect the dynamics of a power system, the control
surface is decomposed into several axes (Schweppe & Mitter, 1972; Palizban & Kauhaniemi, 2015):
modes of operation, the temporal horizon of decisions, physical hierarchies, and functionalities. In
this section, we provide an overview of these axes.

• Modes of operation: During the operation of the power grid, due to various uncontrollable
events, the dynamics of the system can demand radically different plans of action (Schweppe &
Wildes, 1970). These events (or contingencies) include exogenous disturbances to the generation-
consumption equilibrium and the failure of any component of the grid. Examples of exogenous
disturbances include weather events that affect generation output, cyber-security events, and nor-
mal or sudden changes in electricity consumption. Examples of component failures include the
loss of a generation unit or transmission line. Instead of designing a controller that manages all
possible conditions, the specification of four discrete modes (normal, preventative, emergency,
and restorative) allows controllers to be designed for specific needs (Schweppe & Mitter, 1972).

• Temporal Horizons for Decision Making: Several temporal horizons for decision making nat-
urally emerge from the system. The temporal horizons can range from microseconds to minutes,
hours, or even days and weeks, depending on the specific problem being addressed (Hatziargyriou

1 When considering discrete states and actions, the distributions will be probability mass functions as opposed to proba-
bility distribution functions described here.

2The discount can be 1 if the horizon of the control problem is finite.
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et al., 2021). At the smallest horizon of microseconds are the controllers responsible for maintain-
ing operational stability in view of ultra-fast dynamic phenomena referred to as electromagnetic
transients. At longer horizons, up to hours, is set-point dispatch for power generation derived from
the optimal power flow problem (Wood et al., 2013; Ela et al., 2010).

• Size of grid: Although power grids of any kind have decompositions analogous to those discussed
this far, the size and purpose of a grid can change physical dynamics and thus the available control
mechanisms, responsibilities, fail-safes, and interactions with an operator (Olivares et al., 2014;
Farrokhabadi et al., 2020). At the largest size, there are synchronous interconnections, such as the
Western Interconnection, spanning large areas, often across political borders. Within each inter-
connection, there could be several regional operators responsible for various sections of the grid.
For example, the Alberta Electric System Operator (AESO) is responsible for centralized market-
based dispatch and real-time reliability responsibilities of the Alberta Interconnected Electric Sys-
tem. At the smallest scale are microgrids, a cluster of electricity demand and generation resources
at medium to low voltage levels. By definition, a microgrid can operate in synchronous (i.e., the
frequencies are matched with the larger grid) or islanded (i.e., the grid is operated independently
of the main grid) modes (Farrokhabadi et al., 2020).

• Layers of Control: Traditionally, the control framework is separated into three strict layers. The
decomposition of these layers (or levels) is primarily done based on the temporal characteristics
of various controls (Schweppe & Mitter, 1972). At the fastest level, the Primary control happens
closest to the device, e.g., autonomous regulation of a local generation output. Higher control
layers pertain to managing optimal device set-points for improved economics, restoration of volt-
age and frequency to their nominal values, as well as coordinated operation of interconnected
sub-grids for enhanced reliability and economics. Specific control functionalities belong to each
control layer depending on the extent of their impact on the system and their temporal horizon.
Without loss of generality, some examples of such functionalities that may benefit from an RL-
based control are provided below (Chen et al., 2022):

– Frequency regulation refers to the control actions necessary to maintain the system frequency
within acceptable operational limits. Conventionally, this is done by balancing power genera-
tion and demand, primarily through regulating the intake fuel of traditional generators.

– Voltage Control is the maintenance of voltages across the network within an acceptable interval.
This is important to maintain the health of the electrical system equipment as well as the stability
of power flow in the system. Conventional voltage regulators include synchronous generators,
tap-changing transformers (devices that can change the ratio of voltages across their input and
output), and capacitor banks.

– Energy management covers a broad range of constrained optimization applications to enhance
the stability, reliability, sustainability, and economics of energy delivery. This can be at the
device level, for example, minimizing the total cost of charging an electric vehicle, or at the
system level, e.g., optimal coordination of multiple energy resources for a reduced carbon foot-
print (Chen et al., 2022).

3 Challenges

In this section, we outline how the challenges presented by Dulac-Arnold et al. (2021) apply to the
power system control problems described above.

3.1 Main Challenges

1) Being able to learn on live systems from limited samples: In power systems control, it is
unlikely that an RL agent will be deployed to learn online without prior training. First, there are
stringent requirements for the safety and reliability of the power supply, resulting in considerably
conservative control implementation practices. Second, simulation models are relatively pervasive
in the power system domain and can be leveraged for training RL agents. Although the challenge
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of learning from limited samples is reduced by the use of such simulators, the challenge is not
fully overcome. High-fidelity simulators may be slow to generate enough data for data-hungry RL
algorithms. In this context, sample-efficient RL algorithms are of high importance, specifically for
control functionalities with high execution rates such as those belonging to the primary control layer.
There have been several directions to address this challenge, including: physics-informed RL (Cao
et al., 2024; Du et al., 2022; Hossain et al., 2023; Li et al., 2024; She et al., 2024; Wang et al.,
2024; Wu et al., 2025), reward shaping (Lu et al., 2023), and model-based RL (Hossain et al., 2024).
Another interpretation of this challenge is to overcome the sim-to-real gap (Peng et al., 2018; Zhao
et al., 2020), which has been underexplored in the power system control literature.

2) System Delays: Delays can occur in all control hierarchies and in both sensing and acting mech-
anisms. Telemetry delays can occur when there are communication delays or unreported device
faults. This can cause old observational data or default values to be displayed instead of the real
values. Computational bottlenecks due to outdated infrastructure can also cause communication de-
lays. Operational constraints can also delay when a decision made by an RL agent is fully realized.
For example, a generator or power plant can take hours to meet a power set-point due to physical
limitations or organizational inertia (Schweppe & Mitter, 1972). Delays in sensing and acting can
also be caused by physical limitations of a device. For example, tap-change transformers will take
several seconds to react to a command partially due to the physical mechanism. Finally, there could
be operational conditions for which the causal effects of control actions or disturbances can take a
significant amount of time to manifest in sensor observations. For example, certain control actions
may trigger inter-area oscillations that would take a significant amount of time to grow and manifest
in the system.

3) Learning and acting in high-dimensional state and action spaces: The development of new
sensor devices and emerging smart electronics has spurred a new generation of data-driven ap-
proaches to power system control (Bertozzi et al., 2024). Although new sensors and devices with
more complex control mechanisms mean greater flexibility in control, RL faces uphill battles in
learning policies from large state and action spaces (Dulac-Arnold et al., 2021), but may be bet-
ter suited than currently deployed control systems. In particular, the action spaces of many power
system control functionalities are hybrid discrete-continuous with many dimensions (Chen et al.,
2022). For instance, in voltage control, an RL agent might need to select discrete control modes
(e.g., switching capacitor banks or inverter modes), while simultaneously adjusting continuous con-
trol parameters (e.g., power outputs of inverter-based distributed energy resources). The different
devices may also be controlled on different timescales. Only a small number of studies have applied
RL to hybrid action spaces in power systems (Yang et al., 2020a; Gao et al., 2022), and more work
is needed to improve RL in hybrid action settings.

4) Reasoning about system constraints that should never or rarely be violated: Ensuring the
reliability, stability, and general health of the system is critical to approaching a power system control
problem. The power grid is responsible for continually delivering energy to consumers. This could
cause rolling, or, in worst-case scenarios, total power supply interruptions (Pourbeik et al., 2006;
Chen et al., 2022; Chatzivasileiadis et al., 2022; Yu et al., 2024). There are many types of safety
constraints in power systems. In frequency regulation, the frequency is indirectly controlled through
the power generation of each generator. The agent’s actions are explicitly constrained through the
minimum and maximum bounds around the generator’s power output, while the agent cannot explore
frequencies outside nominal values (making frequencies implicitly constrained) (Gu et al., 2022; Yu
et al., 2024). On the other hand, in voltage control, the main instantaneous constraint is often to
ensure the voltage is within a reasonable range (that is, an instantaneous implicit constraint), while
other cumulative costs associated with certain actions are included in the reward function (Gu et al.,
2022; Yu et al., 2024). We recommend the work of Yu et al. (2024) for a detailed review of safe RL
in power systems (including frequency regulation, voltage control, and energy management), and
Gu et al. (2022) for an in-depth discussion of safe RL in general.

5) Partially observability, non-stationary, and stochasticity: An emerging concern in power sys-
tem control is the increasing stochasticity of untraditional energy sources. The stochasticity of
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renewable devices can cause major voltage disturbances (Sun et al., 2019). In addition to the chal-
lenges of new devices, power systems are constantly changing. In normal operation of the power
grid, the topology is changing due to operational decisions, line faults, or long-term planning. These
topology changes can be overcome through the inclusion of topology as a state variable into value
functions and policies, or through transfer learning. Finally, it is unlikely that the state space avail-
able to an agent is Markov even when there are no sensor delays (Challenge 2) or topology changes.

6) Learning from multiobjective or poorly specified reward functions: When applying RL to
different areas of power system control, considerable effort should go into developing a reward
function. The objective function of a controller is dictated by several axes in power system control.
Chen et al. (2022) discusses some of the main features of the reward function for several control
problems in power systems (voltage control, frequency regulation, and energy management), and
below we discuss some of the other axes to consider. These sources are not comprehensive.

• Multiple objectives: RL agents at every level, mode, and control horizon will have to balance
many objectives when learning a policy. This is especially true for the optimal power flow (OPF)
problem, where the objective can include economic concerns, minimizing power loss, maximizing
power quality, environmental impacts, and many more (Frank et al., 2012). In frequency regulation
at the secondary level (automatic generation control (AGC)), the reward can simply discourage
the amount of required change in area generation (referred to as area control error) by giving a
negative reward whenever this value goes beyond a fixed limit (Imthias Ahamed et al., 2002) or
including the cost of power generation and keeping frequencies within the nominal range (Li &
Yu, 2020).

• Different modes of operation: As discussed in Section 2, there are multiple modes in which
the grid operates depending on the state of the grid. In the different modes, the reward function
could be radically different. For example, in preventive or emergency mode, the economic and
environmental objectives will likely be ignored in favor of ensuring the stability and health of the
system (Schweppe & Mitter, 1972; Palizban & Kauhaniemi, 2015; Frank et al., 2012). Recovering
from blackout also requires a different set of objectives (Wu et al., 2024).

• Multiple objectives when straddling different control hierarchies: Although traditional control
approaches have only taken responsibility in a single layer, more flexible approaches, such as RL,
may allow a controller to implement better policies by straddling multiple hierarchies. Building a
reward function that balances the different responsibilities is challenging (Chaturvedi et al., 2024).
We believe that this is an underexplored but impactful research area in power system control.

• Operator influence and shaping: One key factor in power systems (and any critical infrastructure
or utilities project) is incorporating operator influence into the agent’s behavior. Operators can
apply reward shaping to guide the agent towards desirable behavior (Ibrahim et al., 2024). The
main challenge is not only to numerically describe the operator’s requirements but also to design
the reward function so that it does not cause unintended behavior (Knox et al., 2023).

7) Being able to provide actions quickly, especially for systems requiring low latencies: In many
of the control problems in power systems, decisions occurring at the secondary and tertiary control
levels happen at relatively long temporal horizons (i.e., multiple seconds to hours). As discussed
in Section 2.2, there are problems that require microsecond-level precision at the primary level. In
some cases, a deep RL agent may not be fast enough to handle such a control frequency, but there
may be opportunities to use RL or other ML techniques to tune classic controllers that operate at the
required speeds (Bevrani & Shokoohi, 2013; Chaturvedi et al., 2024).

8) Training offline from the fixed logs of an external behavior policy: Offline RL has been
applied to several areas and problem settings within power system control (Chen et al., 2022) but it
is often presented as a solution to another of the above challenges, not as a particular challenge that
needs to be overcome. For example, offline RL has been used to learn safe policies (Yu et al., 2024)
following expert trajectories with the incorporation of imitation learning in frequency regulation
(Lesage-Landry & Callaway, 2022). Another example is to learn a surrogate model and warm
start policies in emergency voltage control (Hossain et al., 2024). Although there have been other
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uses of offline RL in power systems (Chen et al., 2022; Yu et al., 2024), these approaches often
use simulators to generate data. In the future, we expect this challenge to become more prevalent
in relation to Challenge 1 (the sim-to-real gap) and a growing ecosystem of open simulators and
datasets as data-driven research becomes more prevalent in power system control problems (Wiese
et al., 2019; Zheng et al., 2022; Lara et al., 2024).

9) Providing system operators with explainable policies: This is a key challenge in the deploy-
ment of RL agents in a real-world power system. Due to the major consequences of mismanagement
of the grid, operators are ultimately responsible for the decisions that are made. For any new au-
tonomous system, either the dynamics of the controller should be so well analyzed that they will
never produce surprising output (e.g., a droop controller for frequency regulation), or the operators
are able to monitor the controller’s decisions and intervene when necessary. Automatic generation
control is an example of the latter, in that operators monitor the decisions made by the controller and
make adjustments and interventions as necessary (Bevrani & Hiyama, 2011). Considerable effort
needs to go into designing explainability approaches for RL agents in power system control, but also
in studying their usefulness and reliability with operators.

3.2 New Emerging Challenges in Power System control

Although the set of challenges developed by Dulac-Arnold et al. (2021) is robust for many real-world
problems, the unique nature of the way the power grid is organized, constructed, and controlled
causes unique problems. In this section, we describe two additional challenges.

10) Action spaces with different temporal horizons of use: This challenge is partially covered
under challenge 3 as there are control problems that have different action frequencies. For example,
in voltage control, the activation of OLTCs, capacitor banks, and voltage regulators must be slowly
controlled due to physical constraints and minimization of wear and tear on the physical device
(Maschinenfabrik Reinhausen GmbH, n.d.; Chen et al., 2022). Devices that can be controlled on
faster time scales include distributed energy resources based on inverters (such as a photovoltaic
cell, wind turbine, or battery) can have their voltages controlled nearly instantaneously (Chen et al.,
2022). Some approaches that can tackle a problem with actions that have different execution lengths
have been studied in the power system control setting (Yang et al., 2020a; Liu & Wu, 2021), but
more work is required. Separating this challenge from the discrete-continuous issues in challenge 3
can provide a new set of research directions for foundational research.

11) Collaboration with operators: Although briefly discussed in challenges 5, 6, and 9, mecha-
nisms for operator-agent collaboration is a broader topic. As pointed out in challenges 5 and 6, there
are some collaborations that are best expressed as rewards or new features, but there is no clear dis-
tinction between the two, especially for those who are not experts in RL. There may even be more
avenues of collaboration (Bicho et al., 2011; Pilarski et al., 2013; 2019; Retzlaff et al., 2024).

4 Future Perspectives

This work provides a high-level overview of the challenges encountered when applying RL to power
system control. The organization followed the challenges proposed by Dulac-Arnold et al. (2021),
which was able to cover a wide range of problems in applying RL to the power grid. In addition to
Dulac-Arnold et al. (2021)’s challenges, there are two additional challenges that require investigation
in power system control. The main limitation of this work is the lack of detail on techniques used
when applying RL to power systems, instead focusing on areas where RL will face hurdles. In
the future, we will add more detail around the literature applying RL to power systems through
the above lens, developing an overview of how each challenge has been addressed in the current
literature, enabling researchers to more easily deploy new RL techniques.
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