
Published as a conference paper at COLM 2025

A Critical Look At
Tokenwise Reward-Guided Text Generation

Ahmad Rashid
University of Waterloo
Vector Institute

Ruotian Wu
University of Waterloo
Vector Institute

Julia Grosse
University of Tübingen
Tübingen AI Center

Agustinus Kristiadi∗
Western University
Vector Institute

Pascal Poupart∗
University of Waterloo
Vector Institute

Abstract

Large language models (LLMs) can be improved by aligning with human
preferences through fine-tuning—the so-called reinforcement learning from
human feedback (RLHF). However, the cost of fine-tuning an LLM is pro-
hibitive for many users. Due to their ability to bypass LLM fine-tuning,
prediction-time tokenwise reward-guided text generation (RGTG) methods
have recently been proposed. They use a reward model trained on full
sequences to score partial sequences during decoding in a bid to steer the
generation towards sequences with high rewards. However, these methods
have so far been only heuristically motivated and poorly analyzed. In this
work, we show that reward models trained on full sequences are not com-
patible with scoring partial sequences. To alleviate this, we propose to train
a Bradley-Terry reward model on partial sequences explicitly, and autore-
gressively sample from the implied tokenwise policy during decoding. We
study the properties of this reward model and the resulting policy: we show
that this policy is proportional to the ratio of two distinct RLHF policies.
Our simple approach outperforms previous RGTG methods and performs
similarly to strong offline baselines without large-scale LLM fine-tuning.
Code for our work is available at https://github.com/ahmadrash/PARGS

1 Introduction

Large language models (LLMs) provide a modern foundation for most, if not all, text
generation tasks (Radford et al., 2019; Brown et al., 2020; Touvron et al., 2023a;b). In practice,
significant improvements in the quality of text generation are achieved by aligning LLMs to
human preferences (Stiennon et al., 2020b; Ouyang et al., 2022). This is typically performed
via reinforcement learning from human feedback (RLHF), which involves two steps: i)
learning a reward model from preference data and ii) fine-tuning an LLM to maximize
expected rewards by reinforcement learning (Ziegler et al., 2019b). Usually, this is done via
a reinforcement learning algorithm such as proximal policy optimization (PPO, Schulman
et al., 2017). Nevertheless, recently, Rafailov et al. (2023) showed that the reward modeling
step (i) can be bypassed by directly fine-tuning an LLM with preference data, resulting
in a method called direct preference optimization (DPO). Although this simplifies RLHF,
the fine-tuning step (ii) remains prohibitively costly for most users, since it requires high-
performance computational resources with large GPUs.

In order to alleviate the computational issue above, Khanov et al. (2024); Deng & Raffel
(2023) explored tokenwise reward-guided text generation (RGTG) techniques that avoid
any fine-tuning of the LLM. More precisely, the LLM remains frozen (i.e., not fine-tuned),
and the reward model is used at the decoding time to adjust the softmax scores of the
tokens directly. Unlike DPO, this line of work retains the reward modeling step, but training

∗Equal Supervision

1

Published as a conference paper at COLM 2025

reward models is typically a much cheaper endeavor than fine-tuning text-generation LLMs
since smaller models can be utilized for reward modeling. Furthermore, reward models are
modular: they can easily be composed and reused without any cost to guide text generation
in conjunction with any base LLM. In contrast, RLHF via DPO requires fine-tuning of every
LLM that we wish to improve based on human preference data.

While RGTG is an interesting alternative to the standard offline RLHF, it is often based on
heuristics and still poorly analyzed. For instance, ARGS (Khanov et al., 2024) proposed
to simply use a reward model trained on full sequences to score each partial sequence
during autoregressive decoding. Meanwhile, Deng & Raffel (2023) used a custom tokenwise
loss to distill a reward model trained on full sequences. Thus, it is unclear whether these
approaches can give rise to a sound tokenwise text generation policy. Controlled decoding
(CD; Mudgal et al., 2024), on the other hand, uses rollouts from the base model along with a
reward model trained on full sequences to distill the partial reward.

In this work, we analyze this common RGTG approach. First, we show that the usage of
full-sequence reward models to score partial sequences in a tokenwise policy is pathological.
To alleviate this, we propose to explicitly train a Bradley-Terry (BT) reward model on partial
sequences. We prove that this text generation policy is a ratio of two different RLHF policies
trained on sequences of different lengths. Ideally, the policy would be derived from a single
RLHF policy, but as we shall also show in Section 3, the exact computation of such a policy
is intractable. By deriving the policy from a ratio of distinct RLHF policies, we obtain a
tractable sampling procedure. This is akin to the argument of Zhao et al. (2024) where they
use a similar ratio to derive a sequential Monte Carlo method.

We empirically validate our analysis on three different text generation datasets on two recent
LLMs. Evidence shows that our RGTG approach achieves better performance compared
to ARGS and CD, matching the performance of the more expensive, offline PPO and DPO
baselines. In summary:

(i) We analyze the recent practice of using full-sequence reward models for guiding the
LLM decoding process. In particular, we show a deficiency in this approach.

(ii) We thus propose to explicitly train a BT reward model on partial sequences and sample
from the induced per-token policy induced by it during the decoding time.

(iii) We show that this reward model induces a ratio of two distinct RLHF policies over
sequences with different lengths. This is a trade-off that one must make to make
tokenwise RGTG free of the aforementioned deficiency and yet still tractable.

(iv) Extensive experiments with multiple LLMs on text generation validate our insights.

2 Preliminaries

We denote a prompt by x and its response by y where the bolded letters indicate sequences
of tokens. The i-th token in x is denoted by xi, while the partial sequence starting at token i
and ending at token j is denoted by xi:j. The length of a sequence x is denoted by |x|. The
same notation applies to y.

2.1 Reinforcement Learning from Human Feedback

LLMs generally consist of probabilistic models that can generate a response y given a
prompt x. More specifically, the generation of y is done token-by-token by sampling the
next token from a conditional distribution π(yi|x, y1:i−1).

Given a preference dataset D = {(xk, ywk, ylk)}K
k=1 containing K triples of token sequences

(x, yw, yl), Ziegler et al. (2019b) and Ouyang et al. (2022) proposed a technique based
on reinforcement learning (RL) to align an LLM with the preference dataset. They train a
parametric reward model rϕ(y|x) that assigns a higher score to the “winning” (i.e., preferred)
utterance yw and a lower score to the “losing” utterance yl . This is done via the BT model
(Bradley & Terry, 1952) which minimizes the loss:

LR = − E
x,yw ,yl∼D

log σ(rϕ(yw|x)− rϕ(yl |x)), (1)

2

Published as a conference paper at COLM 2025

where σ is the logistic function. Note that rϕ is trained to score entire utterances y. Once
rϕ is trained, it can be used to infer the probability of generating sequence y in response to
x, i.e., Pϕ(y|x) = exp(rϕ(y|x))/∑y′ exp(rϕ(y′ |x). Given a reference LLM, we denote by πref(y|x)
the conditional probability that it will generate response y to prompt x (also referred to as
policy). We refer to the LLM and its policy interchangeably. One can then copy the LLM
and fine-tune it to maximize

max
θ

E
x∼D,

y∼πθ(y|x)

[rϕ(y|x)]−
1
β

DKL[πθ(y|x) ∥πref(y|x)], (2)

where the KL term forms a regularizer that ensures that the fine-tuned model will not differ
too much from the reference model. The optimization problem above can be solved by
many RL techniques, including the popular PPO algorithm (Schulman et al., 2017). This RL
optimization is quite costly in practice due to the size of the LLM.

The optimization (2) has a closed form solution of the form (Peters & Schaal, 2007)

πθ(y|x) =
1

Z(x)
πref(y|x) exp(βrϕ(y|x)) (3)

where Z(x) = ∑y πref(y|x) exp(βrϕ(y|x)) is the intractable partition function. Notice that
we can reorganize (3) to express the reward function in terms of the policies πθ and πref:

r(y|x) = 1
β

log
πθ(y|x)

πref(y|x)
+ log Z(x),

which can be used to replace rϕ(x|y) in (1) to obtain the following optimization problem:

max
θ

E
x,yw ,yl∼D

log σ

(
1
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl |x)

πref(yl |x)

))
.

Maximizing the above objective with respect to θ directly fine-tunes the LLM without the
need to learn a reward model. Furthermore, this maximization is done by supervised
learning, which is generally simpler than RL. This approach, known as direct preference
optimization (DPO, Rafailov et al., 2023), reduced the cost of RLHF while solving an
equivalent optimization problem. However, note that both PPO and DPO based RLHF are
still very costly in practice since they require fine-tuning (a copy of) the target LLM πref.

2.2 Reward-Guided Text Generation

In a separate line of work, Khanov et al. (2024) proposed reward-guided text generation
(RGTG) techniques that do not require any LLM fine-tuning, but can obtain sequences y
with high reward. This is done by freezing the reference LLM πref and at decoding time, the
next-token probability πref(yi | x, y1:i−1) is adjusted by a reward model rϕ. More specifically,
possible values for yi are scored by a weighted combination of logits of πref and the rewards:

score(yi|x, y1:i−1) = log πref(yi|x, y1:i−1) + βrϕ(y1:i|x).

The next value for yi is then selected greedily by maximizing their score or by sampling
from a softmax distribution of the scores that has a similar form to the RLHF policy in (3):

softmax(score(yi|x, y1:i−1)) =
1

Z(x, y1:i−1)
πref(yi|x, y1:i−1) exp(βrϕ(y1:i|x)),

where the partition function Z(x, y1:i−1) is now tractable since the summation is now over
all possible values of just a single variable yi—it is a summation over possible tokens in the
vocabulary.

However, it is unclear whether the resulting distribution is equivalent/approximating the
RLHF policy in (3). Khanov et al. (2024) do train the reward model with the BT loss, but it is
trained only with complete sequences, i.e. rϕ(y|x), while it is used to score partial sequences,

3

Published as a conference paper at COLM 2025

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Context x y1

r1 = 0

y2

r2 = 0

. . .

ri = 0

yn

rn = c;
∑n

i=1 ri = c

Context x y1

r1 = c1

y2

r2 = c2

. . .

ri = ci

yn

rn = cn;
∑n

i=1 ri = c

Figure 1: A pathology of using a reward model trained on full-sequence to predict partial
sequences in decoding-time RGTG. We denote ri = r(yi|x, y1:i−1). While the total reward
over the full sequence y = (y1, . . . , yn) might be nonzero c, it could be in the extreme case
that the values over previous partial sequences are all zero—this is a perfectly valid result
for a sequence-level reward model (top). This means we can have an unguided decoding
in a reward-guided decoding. By explicitly training r on partial sequences, we could avoid
this issue (bottom): While y might achieve the same final reward c, nonvanishing reward
signals over partial sequences could be avoided.

i.e. rϕ(y1:i|x). Hence, it is unclear whether the inferred scores for partial sequences are
reasonable. In Section 3 we show that reward models trained only with complete sequences
can assign arbitrary scores to partial sequences, and in Section 5 we show empirically that
the resulting RGTG policy therefore underperforms that of PPO or DPO. Meanwhile, Deng
& Raffel (2023) learn the reward model by minimizing a cumulative squared loss to distill
a full sequence reward model instead of using the BT loss (1), making the connection to
RLHF policy looser. Mudgal et al. (2024) also distill a partial reward model from a full
sequence reward model, but the tokenwise policy is not the marginal of the full-sequence
policy. Nevertheless, tokens are sampled from a different tokenwise RL formulation that
follows a similar derivation as RLHF.

Zhao et al. (2024) proposed to match each of the marginal distribution of πθ(y1:i|x) by
learning a series of parametric functions {ψϕi}

|y|
i=1. This in turn induces a policy:

π(yi|x, y1:i−1) =
1

Z(x, y1:i−1)
πref(yi|x, y1:i−1) exp(ψϕi (y

1:i|x)).

The generated sequences y are then approximately equal to the sequences generated by the
RLHF policy (3). However, their method is general and does not specifically target RGTG—
indeed, Zhao et al. (2024) focused on using the implied approximation of the partition
function Z(x). Finally, Rafailov et al. (2024) modifies DPO to obtain a partial-sequence
reward model.

r(y1:i|x) = 1
β

log
πθ(yi|x, y1:i−1)

πref(yi|x, y1:i−1)
.

Similar to the sequence-based DPO, this reward model is then used to obtain a per-token loss
function to fine-tune the LLM and thus, while defining a partial-sequence reward model, is
not a RGTG method.

3 Pitfalls of RGTG and How to Fix Them

First, we start by analyzing the partial sequence rewards inferred from a reward model
trained with full sequences only. Proof in Appendix A.

Theorem 1. A reward model r trained to minimize the BT loss (1) on full sequences y1:|y| may
assign arbitrary rewards to partial sequences y1:i (where i < |y|). More precisely, r(y1:i|x) = vx,y1:i

where vx,y1:i ∈ R can be any value.

This leads to an unidentifiability problem—see Fig. 1 for an example. If we learn a reward
model based on preferences over full sequences only as proposed by Khanov et al. (2024)

4

Published as a conference paper at COLM 2025

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Training Prediction

Small Reward
Model

(
x,y1:i

w

)

(
x,y1:i

l

)
P
(
y1:i
w ≻ y1:i

l |x
)

i = 1, . . . ,max(|yw|, |yl|)

Target LLM
(
x,y1:i

)
+β

yi+1 ∼ Cat(softmax())

Figure 2: The proposed approach to alleviating the problem in Theorem 1. First, we (i) train
the reward model r on partial sequences explicitly (when |yw| ̸= |yl |, we pad to the longest
sequence) and (ii) sample from the weighted sum of the logits and the rewards of the next
token during decoding. This is in contrast to some previous RGTG methods where the
reward model is trained on full sequences, but decoding relies on partial sequence scoring.

and Deng & Raffel (2023), then we may not obtain adequate rewards for partial sequences.
As a concrete example, suppose that r is a reward model such that (Fig. 1)

r(yi|x, y1:i−1) =

{
r(y|x) i = |y|
0 i < |y|.

This reward model satisfies the identity in (8) and therefore, could be the solution when
minimizing the BT loss (1). If we use this reward model to sample from the induced RLHF
optimal policy in (3), then the token-level sampling distribution is the same as for the
reference LLM πref(yi | x, y1:i−1) for all tokens except the last one. This is problematic since
RLHF generally changes the token-level distribution at each position, not just the last token.
Hence the ARGS method (Khanov et al., 2024) may utilize a reward model that does not
score partial sequences properly, and negatively impact token-by-token generation.

To alleviate this issue, we propose to explicitly train the reward model with partial
sequences—still using the BT model in contrast to Deng & Raffel (2023)—as follows (Fig. 2).
We create a separate loss function for all prefix lengths i:

Li
R = −Ex,yw ,yl∼D log σ(rϕ(y1:i

w |x)− rϕ(y1:i
l |x)). (4)

Then, given that full sequence yw is preferred to full sequence yl , we assume that the partial
sequence y1:i

w is also preferred to the partial sequence y1:i
l . Strictly speaking, it is hard for

human annotators to compare partial sequences due to their incomplete nature, and most
preference datasets do not include preferences over partial sequences. Nevertheless, we can
interpret y1:i

w as the prefix of a winning sequence that is preferred over a losing sequence with
prefix y1:i

l . The following lemma shows that the resulting reward model ensures that the
probability that a first partial sequence is preferred to a second partial sequence corresponds
to the probability that the first sequence is extended to a winning full sequence while the
second sequence is extended to a losing full sequence according to the preference data
distribution Pdata. Proof in Appendix A.

Lemma 2. In the limit of infinite preference data, optimizing a sufficiently expressive reward model
according to (4) under the assumption that partial sequences inherit the winning/losing label of full
sequences yields a reward model rϕ with the following property:

σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x)) = Pdata(y1 ≽ y2|x, y1:i

1 , y1:j
2), (5)

where Pdata is the distribution the preference dataset was sampled from and y1 ≽ y2 indicates that y1
is preferred to y2.

Hence, optimizing the partial-sequence objective (4) for all lengths i determines a reward
model for all response prefixes that is adequate in the sense that it induces a distribution
over partial sequences that approximates the true underlying preference distribution (due
to finite data) instead of assigning arbitrary rewards in the sense of Theorem 1.

5

Published as a conference paper at COLM 2025

Once the partial-sequence reward model rϕ is trained, we can use it to sample the next
token yi conditioned on the previous tokens x, y1:i according to the following conditional
distribution:

π(yi|x, y1:i−1) =
1

Z(x, y1:i−1)
πref(yi|x, y1:i−1) exp(βrϕ(y1:i|x)). (6)

Algorithm 1 summarizes the decoding procedure. Contrary to the previous approach of
Khanov et al. (2024), it directly follows the policy induced by the explicitly trained reward
model on partial sequences. Meanwhile, compared to Deng & Raffel (2023), it uses the
standard BT model instead of a custom squared loss function that distills a full-sequence
reward model.

Let us now analyze the tokenwise sampling distribution in (6). By the definition of con-
ditional distributions, we can rewrite it as a ratio of two partial sequence distributions:
π(yi|x, y1:i−1) = π(y1:i |x)/π(y1:i−1|x). However, it is still unclear how this distribution relates
to RLHF policies —- the main point of the tokenwise RGTG methods. The following theorem
shows how the decoding process by following this distribution relates to RLHF-induced
policies. Proof in Appendix A.

Theorem 3. Given a reward model trained according to the partial-sequence BT objective in (4), the
induced token generation distribution π (6) is proportional to the ratio:

π(yi|x, y1:i−1) ∝
πRLHF,i(y1:i|x)

πRLHF,i−1(y1:i−1|x)
(7)

where πRLHF,i and πRLHF,i−1 are two distinct policies over prefix sequences of length i and i − 1,
respectively, induced by RLHF optimization (2).

Algorithm 1 Decoding with our approach.
Input: Pretrained partial-sequence reward model

rϕ, Prompt x, number of candidates k, hyperpa-
rameter β > 0, any reference/SFT model πref,
generation length l

Output: A generated response to x of length l
1: for i = 1 to l do
2: V(k) = top_k(πref(v|x, y1:i−1))

3: for v ∈ V(k) do
4: Reward rϕ(y1:i−1, v|x))
5: Logit log πref(v|x, y1:i−1)

6: log π(yi = v|x, y1:i−1) =

log πref(v|x, y1:i−1) + βrϕ(y1:i−1, v|x)
7: end for
8: yi ∼ Cat(softmax(log π(yi|x, y1:i−1)))
9: end for

10: return y1:l

Ideally, we would like a decoding proce-
dure that samples the next token from a
distribution that is mathematically equiva-
lent to the conditional distribution resulting
from an RLHF over full sequences. How-
ever, as shown in Theorem 3, a partial-
sequence reward model rϕ leads to multiple
RLHF decoding policies with different con-
ditional distributions for each prefix length
i. Hence, it is not possible to have equiv-
alence with a single RLHF policy, e.g. as
obtained via PPO or DPO.

One may then ask: Which RLHF policy is
best? We argue that none of them is nec-
essarily better than the others since they
simply arise from considering different pre-
fix lengths. Note that the reward model rϕ
leads to a distribution that approximates
the true underlying preference distribution on partial sequences. The problem is inherent
to RLHF which takes a reference LLM with a consistent distribution over response pre-
fixes induced by a reward model and yields different decoding policies for different prefix
lengths.

Since all the resulting RLHF decoding policies have merit, one could argue that we can
keep things simple by selecting only one policy, perhaps the RLHF policy induced by full
sequence preferences (i.e., πRLHF(y|x)). However, as discussed by Rafailov et al. (2024)
and Zhao et al. (2024), a conditional distribution over full sequences does not give us an
immediate procedure for token-wise sampling. Mathematically, we can derive a token-level
policy from a full-sequence policy as follows:

πRLHF(yi|x, y1:i−1) =
πRLHF(y1:i|x)

πRLHF(y1:i−1|x)
=

∑yi+1:|y| πRLHF(y|x)
∑yi:|y| πRLHF(y|x)

.

6

Published as a conference paper at COLM 2025

However, the summations in the above equation are exponentially large in the length |y|
of the sequences. This exponential complexity was also noted by Zhao et al. (2024) who
proposed a twisted sequential Monte Carlo technique to approximate the computation and
mitigate the exponential complexity. In contrast, our approach embraces the multitude
of RLHF policies and leverages them in a linear time decoding procedure without any
approximation of the partial sequence RLHF policies. The ratio policy (6) described here
can thus be seen as a necessary tradeoff if one wants to perform tokenwise RGTG without
the pathology in Theorem 1.

4 Related Work

Language model alignment Simple fine-tuning and instruction tuning (Wei et al., 2021)
are ways to align LLMs to labeled data. Recently, RLHF methods (Christiano et al., 2017;
Ziegler et al., 2019a; Lee et al., 2021; Nakano et al., 2021; Snell et al., 2023) have provided a
direct method to align LLMs to human preferences. The PPO algorithm has been especially
popular and has shown promising results for a range of tasks (Askell et al., 2021; Bai
et al., 2022; Ouyang et al., 2022). However, training RL models is compute intensive and
researchers have turned their attention to supervised fine-tuning methods that can learn
directly from preference data. Liu et al. (2023a) turns the preference data into prompts
with which they fine-tune the LLM. Dong et al. (2023) uses the reward model to filter the
training set to better fine-tune the model. DPO (Rafailov et al., 2023; 2024) models the LLM
itself as a Bradley-Terry model and optimizes the RLHF objective without any need for RL.
TDPO (Zeng et al., 2024) incorporates token-level KL divergence into the DPO objective to
improve content diversity. These methods, however, fine-tune the base LLM, which can
be expensive as we scale. Some works have attempted to improve alignment by gathering
more fine-grained rewards by using either LLMs (Cao et al., 2024) or human annotators (Wu
et al., 2023).

Guided decoding There has been prior work in guided decoding using sequence-
level (Welleck et al., 2022; Uesato et al., 2022; Lightman et al., 2023; Krishna et al., 2022; Li
et al., 2023; Khalifa et al., 2023; Yao et al., 2023) and token-level value functions (Dathathri
et al., 2019; Krause et al., 2021; Yang & Klein, 2021; Chaffin et al., 2022; Liu et al., 2023b).
PPLM (Dathathri et al., 2019) uses the gradients from an attribute classifier to guide LLM
generation. Gedi (Krause et al., 2021) uses attribute conditioned language models as dis-
criminators to update LLM generation probabilities using Bayes rule. These algorithms are
different from our work as they do not align LLMs using human preference data. Deng
& Raffel (2023) use a reward model trained on preference data in the decoding process,
however, they use a cumulative squared loss function that is different from the RLHF
framework. Mudgal et al. (2024) uses a similar loss function with the key difference that
instead of training with samples from a preference dataset, they take as input a full sequence
reward model and train a partial sequence value function based on roll-outs (i.e., sampled
token sequences) from the base LLM. Therefore, for each new base LLM, the value function
needs to be retrained with new roll-outs, limiting portability to new or updated language
models. The closest work to our method is Khanov et al. (2024), which is also based on
the Bradley-Terry model, but they use a reward model trained on full sequences, which
we have argued can lead to pitfalls. Different from our work, Zhao et al. (2024) present a
reward-guided decoding method based on sequential Monte Carlo and show that it can
approximate RLHF.

Partial Rewards Outside of preference data alignment and RLHF, prior work in reinforce-
ment learning for language modeling has looked at partial reward models for improving
text generation. Hao et al. (2022) show that a sequence to sequence model trained with
supervised learning is a valid partial reward model for text generation under a Markov de-
cision process. Lee et al. (2023) do not train an explicit reward model but instead introduce
a ranking function which can rank the next token for partial sequences. Both these methods
modify language model training.

7

Published as a conference paper at COLM 2025

TL;DR Summarization

Method LLM Single y? r ± SE

Top-k frozen yes -0.11±0.28
CD frozen yes 0.32±0.33

ARGS frozen yes 1.57±0.21
PARGS-G frozen yes 2.06±0.20

PARGS frozen yes 2.36±0.20

Best-of-N frozen no 2.2 ±0.19
DPO trained yes 0.81±0.26
PPO trained yes 2.41±0.23

HH Dialogue

Method LLM Single y? r ± SE

Top-k frozen yes -1.42±0.21
CD frozen yes -1.08±0.21

ARGS frozen yes -0.97±0.19
PARGS-G frozen yes -0.97±0.18

PARGS frozen yes -0.88±0.19

Best-of-N frozen no 0.17 ±0.18
DPO trained yes -0.79±0.31

Table 1: Average reward (over 100 samples) ± standard error for the TL;DR summarization
and HH dialogue tasks. The best technique that freezes the LLM and generates a single
response y is bolded.

TL;DR Summarization

Method A vs Method B Win-Tie (%)

PARGS CD 75 - 0
PARGS ARGS 73 - 0
PARGS Best-of-N 55 - 0
PARGS DPO 59 - 1
PARGS PPO 56 - 0

HH Dialogue

Method A vs Method B Win-Tie (%)

PARGS CD 52 - 8
PARGS ARGS 49 - 11
PARGS Best-of-N 36 - 11
PARGS Top-k 56 - 15
PARGS DPO 27 - 14

Table 2: GPT-4 evaluation based on the win-tie rate of PARGS over different baselines on
TL;DR summarization with GPT2-large, and on HH dialogue generation with Llama-2-7b.

5 Experiments

We evaluate our proposed approach, which we call Partial Alignment as Reward-Guided
Sampling (PARGS)—in contrast to ARGS which considers full sequences and greedy decod-
ing instead of sampling—on two generation tasks: summarization and dialogue generation.

5.1 Setup

Summarization task We use the Reddit TL;DR dataset (Völske et al., 2017), where, the
context x is a post on the Reddit forum and y is the summary of the post. We use the
human preference dataset from Stiennon et al. (2020a) to train the reward model and the
relevant baselines. Our base summarization model is GPT2-large, fine-tuned on the TL;DR
training set. We use a pre-trained reward model based on the DeBerta-v3-large architecture
and train it with partial sequences for an additional epoch. Our baselines include top-k
sampling (Fan et al., 2018), Best-of-N generation, which involves sampling N sequences
from reference LLM (N = 10 for all our experiments) and returning the best one according
to the reward model, RLHF models based on PPO and DPO, the reward-base decoding
method ARGS (Khanov et al., 2024) and controlled decoding (CD; Mudgal et al., 2024). We
use CD-Fudge as the baseline in all our CD experiments, noting that its performance is
similar to CD-Q (see Table 4 in Mudgal et al. (2024)).

Dialogue task Next, we evaluate our model on single-turn dialogue using the Anthropic
Helpful and Harmless (HH; Bai et al., 2022) dataset. The goal is to generate a helpful and
harmless response to a general purpose query. Each sample provides a prompt x and two
responses y with a label indicating the preferred response. We use Llama-2-7b as the base
model and DeBerta-v3 as the reward model which is about 20× smaller. Details in B.

Fine-grained text generation task We also evaluate our model on the UltraFeedback
dataset (Ganqu Cui et al., 2024). We use Zephyr-7B as the base LLM and Phi-1.5 (1.3 billion
parameters) as the reward model.

8

Published as a conference paper at COLM 2025

Ultra Feedback

Method LLM Single y? r ± SE

Top-k frozen yes -0.18±0.12
CD frozen yes -0.04±0.01

ARGS frozen yes 0.01±0.12
PARGS frozen yes 0.21±0.09

PARGS-G frozen yes 0.21±0.12

DPO trained yes -0.57±0.09
Best-of-N frozen no 1.15 ±0.08

Ultra Feedback

Method A vs Method B Win-Tie (%)

PARGS CD 53 - 13
PARGS ARGS 42 - 23
PARGS Best-of-N 29 - 19
PARGS Top-k 52 - 15
PARGS DPO 65 - 7

Table 3: Average reward (100 samples) ± std. error and GPT-4 evaluation for Ultra Feedback.

Machine translation task We perform additional experiments on machine-translation on
the IWSLT-2017 dataset (Cettolo et al., 2017). We used the post-edit dataset from Kreutzer
et al. (2020) on the IWSLT-2017 English-German dataset to provide token-wise reward
signals. We use Gemma-2b as both the base model and the reward model. The evaluation is
based on the standard BLUE score.

Evaluation Following Khanov et al. (2024), we compare all methods based on average
reward, on the test samples, as measured by the reward model. We use a different full-
sequence reward model and not the partial-sequence reward model (that we trained for
our algorithm) to evaluate the models. Since evaluating language generation, especially
unconditionally, is nuanced and human evaluation is very expensive, we use GPT-4-based
evaluation, which has been shown to align with human assessment (Zheng et al., 2023;
Rafailov et al., 2023). Following Chiang et al. (2023) we construct prompts for the two tasks
and ask GPT-4 to score and rank response pairs. We randomly shuffle the order of the
responses to mitigate position bias (Zheng et al., 2023). Finally, we use the Rouge-L score
(Lin, 2004) and the BLEU score to evaluate the dialogue and translation tasks, respectively.

5.2 Results

Table 1 (left) shows the average reward for the summaries generated by the different
algorithms as measured by the reward model. PARGS achieves the best average reward
among the techniques that keep the LLM frozen and generate a single response y. We also
note that PARGS outperforms DPO and is competitive with PPO based RLHF that incurs a
large cost to fine-tune the LLM, and Best-of-N that incurs significant overhead to generate
multiple responses. Upon siginficance testing we observed PARGS to be significantly better
than all algorithms expect PPO. Details in Appendix C. Note that we also evaluate our
algorithm with greedy decoding (PARGS-G) for a direct comparison with ARGS.

Similarly, Table 1 (right) presents average rewards for the responses of the different algo-
rithms on the HH dialogue task. Note that in this setting, the reward model is 20× smaller
than the base LLM. Again, PARGS achieved the highest reward among the techniques that
freeze the LLM and generate a single response. We observe that Best-of-N achieved the
highest average reward followed by DPO, but incurred overhead to generate multiple re-
sponses and fine-tune the LLM respectively. Finally, Table 3 (left) presents average rewards
on the UltraFeedback dataset. We observe that PARGS outperforms all methods except
Best-of-N. Significance testing (see Appendix C) reveals that PARGS is significantly better.

Next we evaluate PARGS using GPT-4. The prompt used to probe GPT-4 is presented in
Appendix J. Table 2 reports the win-tie rate (i.e., percentage of utterances where GPT-4 finds
PARGS’ response to be better than or equivalent to those of the baselines). Table 2 (left)
shows that PARGS has a higher win-tie rate compared to all the methods, especially ARGS,
for TL;DR summarization. As noted by others Rafailov et al. (2023), Best-of-N is a strong
baseline, but it is computationally intensive. On HH, we observe (Table 2 right) that PARGS
is better than CD and ARGS, but worse than Best-of-N and DPO. As we scale training
based alignment methods, e.g., DPO become prohibitive. On UltraFeedback (Table 3 right)
we observe that PARGS outperforms all methods except Best-of-N. We perform human

9

Published as a conference paper at COLM 2025

evaluation for PARGS against ARGS, CD and DPO on UltraFeedback. PARGS wins against
all three baselines. Detailed results in Appendix F.

We perform additional experiments on machine-translation on the IWSLT-2017 dataset
(Cettolo et al., 2017). We used the post-edit dataset from Kreutzer et al. (2020) on the IWSLT-
2017 English-German dataset to provide token-wise reward signals. We use Gemma-2b as
both the base model and the reward model. The evaluation is based on the standard BLUE
score.

Table 4: BLEU Score on
IWSLT-17 English-German

Method BLEU ↑
Greedy 31.7 ± 3.6
ARGS 29.4 ± 3.4

PARGS-G 33.2 ± 3.5

The translation direction is English to German and the edit-
ed/corrected sequence is considered the winning sequence.
Table 4 compares ARGS, PARGS-G and greedy decoding. We
observe that applying ARGS reduces the BLUE score of the
greedy baseline where PARGS-G increases it by 1.5 on average.

We evaluate the diversity of generation on 50 samples from
the UltraFeedback dataset. We compare different methods
by generating 10 responses for each prompt, evaluating the
Rouge-L score between each generated pair and averaging
it over all the samples. A lower Rouge-L score indicates a
greater diversity. Table 5 shows that PARGS generates the
most diverse responses compared to top-K and DPO. Table 5: Diversity Results

Method ROUGE-L ↓
Top-k 0.230 ±0.011
DPO 0.206 ±0.006

PARGS 0.203 ±0.008

Note that Best-of-N generates N× the number of samples
using top-K generation.

Additional Results A discussion on decoding costs is pre-
sented in Appendix D. A study on effect of the hyper-
parameter β and K in top-K is presented in Appendix G. We
present an empirical analysis validating our assumption that
the partial sequence of a winning sequence wins over the partial sequence of a losing
sequence in Appendix H.

6 Conclusion

We have discussed the pitfalls in tokenwise, decoding-time reward-guided text generation
(RGTG) with reward models trained on full sequences. These pitfalls can lead to inadequate
reward during the autoregressive decoding process and may lead to subpar performance.
To alleviate this, we train reward models on partial sequences and then sample from the
implied per-token text generation policy during decoding. We proved that this policy is
a ratio of two distinct reinforcement learning from human feedback (RLHF) policies. This
means that this policy is not equivalent to the standard offline RLHF methods. However,
we have also shown that it is intractable to obtain a tokenwise policy that is equivalent to a
single RLHF policy. Our experiment results validated our approach: it performs better than
recent RGTG methods such as ARGS, that leverages full-sequence reward models, and CD.
We discuss limitations of our work in Appendix E.

Acknowledgments and Disclosure of Funding

Resources used in this work were provided by the Province of Ontario, the Govern-
ment of Canada through CIFAR, companies sponsoring the Vector Institute https://
vectorinstitute.ai/partners/ and the Natural Sciences and Engineering Council of
Canada. AR thanks Apple for support through the Waterloo Apple PhD Fellowship, Natural
Sciences and Engineering Council of Canada for its support through the CGS-D program,
and the David R. Cheriton Graduate Scholarship. JG thanks Microsoft Research for support
through its PhD Scholarship Programme and the International Max Planck Research School
for Intelligent Systems (IMPRS-IS). AK thanks Rob Brekelmans for a fruitful discussion.

10

https://vectorinstitute.ai/partners/
https://vectorinstitute.ai/partners/

Published as a conference paper at COLM 2025

References
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy

Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as
a laboratory for alignment. arXiv preprint arXiv:2112.00861, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and
harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: The
method of paired comparisons. Biometrika, 39(3/4), 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In NeurIPS, 2020.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Beyond
sparse rewards: Enhancing reinforcement learning with language model critique in text
generation. arXiv preprint arXiv:2401.07382, 2024.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Jan Niehues, Sebastian Stüker, Kat-
suhito Sudoh, Koichiro Yoshino, and Christian Federmann. Overview of the IWSLT 2017
evaluation campaign. In Proceedings of the 14th International Conference on Spoken Language
Translation, pp. 2–14, Tokyo, Japan, December 14-15 2017. International Workshop on
Spoken Language Translation. URL https://aclanthology.org/2017.iwslt-1.1.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. PPL-MCTS: Constrained textual genera-
tion through discriminator-guided MCTS decoding. In NAACL, 2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing.
Vicuna: An open-source chatbot impressing GPT-4 with 90%* ChatGPT quality, March
2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In NIPS, 2017.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino,
Jason Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to
controlled text generation. In ICLR, 2019.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text
generation with a unidirectional reward model. In EMNLP, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe
Diao, Jipeng Zhang, SHUM KaShun, and Tong Zhang. RAFT: Reward ranked finetuning
for generative foundation model alignment. TMLR, 2023.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In ACL,
2018.

Lifan Yuan Ganqu Cui, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni,
Guotong Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback:
Boosting language models with scaled ai feedback. In ICML, 2024.

Yongchang Hao, Yuxin Liu, and Lili Mou. Teacher forcing recovers reward functions for
text generation. NeurIPS, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

11

https://aclanthology.org/2017.iwslt-1.1
https://lmsys.org/blog/2023-03-30-vicuna/

Published as a conference paper at COLM 2025

Muhammad Khalifa, Lajanugen Logeswaran, Moontae Lee, Honglak Lee, and Lu Wang.
Grace: Discriminator-guided chain-of-thought reasoning. In EMNLP, 2023.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Alignment as reward-guided search.
In ICLR, 2024.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided
sequence generation. In EMNLP, 2021.

Julia Kreutzer, Nathaniel Berger, and Stefan Riezler. Correct me if you can: Learning from
error corrections and markings. In Proceedings of the 22nd Annual Conference of the European
Association for Machine Translation, 2020.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mohit Iyyer. Rankgen: Improving text
generation with large ranking models. In EMNLP, 2022.

Kimin Lee, Laura M Smith, and Pieter Abbeel. PEBBLE: Feedback-efficient interactive
reinforcement learning via relabeling experience and unsupervised pre-training. In ICML,
2021.

Youngwon Lee, Jinu Lee, and Seung-won Hwang. Learning to rank generation with pairwise
partial rewards. In EMNLP, 2023.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen.
Making language models better reasoners with step-aware verifier. In ACL, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
In ICLR, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summariza-
tion branches out, pp. 74–81, 2004.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models
with feedback. In ICLR, 2023a.

Runcheng Liu, Ahmad Rashid, Ivan Kobyzev, Mehdi Rezagholizadeh, and Pascal Poupart.
Attribute controlled dialogue prompting. In ACL, 2023b.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang,
Zhifeng Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled
decoding from language models. In ICML, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. WebGPT: Browser-
assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. In NeurIPS, 2022.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for
operational space control. In ICML, 2007.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI Blog, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. In NeurIPS, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to Q∗: Your language
model is secretly a Q-function. In COLM, 2024.

12

Published as a conference paper at COLM 2025

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline RL for
natural language generation with implicit language Q learning. In ICLR, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human
feedback. In NeurIPS, 2020a.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human
feedback. In NeurIPS, 2020b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
LLaMA: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process-and outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. Tl; dr: Mining reddit
to learn automatic summarization. In Proceedings of the Workshop on New Frontiers in
Summarization, pp. 59–63, 2017.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners.
In ICLR, 2021.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:
Grounded mathematical proof generation with language models. In NeurIPS, 2022.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A
Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives
better rewards for language model training. NeurIPS, 2023.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators.
In NAACL, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
In NeurIPS, 2023.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang.
Token-level direct preference optimization. In ICML, 2024.

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference
in language models via twisted sequential Monte Carlo. In ICML, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-judge with
MT-bench and chatbot arena. In NeurIPS, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human prefer-
ences. arXiv preprint arXiv:1909.08593, 2019a.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human prefer-
ences. arXiv preprint arXiv:1909.08593, 2019b.

13

Published as a conference paper at COLM 2025

A Proofs

Theorem 1. A reward model r trained to minimize the BT loss (1) on full sequences y1:|y| may
assign arbitrary rewards to partial sequences y1:i (where i < |y|). More precisely, r(y1:i|x) = vx,y1:i

where vx,y1:i ∈ R can be any value.

Proof. Let r(yi|x, y1:i) be the reward associated with token yi in the context of x, y1:i. Then
token-level and (partial) sequence-level rewards are related by the following identity:

r(y1:i|x) = ∑i
j=1 r(yj|x, y1:j−1) for all x, y, i (8)

Optimizing a reward model with full-sequence preference data yields specific values for
r(y1:|y||x). Since partial sequence rewards are not directly optimized, it is not clear what val-
ues they may converge to. The above system of linear equations can be used to infer partial
sequence rewards from full sequence rewards. However the system is underdetermined
since there are more variables than equations: there is one equation for every combination
of x, y, and i, while there is one variable per combination of x, y, and i on the left-hand side
of each equation and many more variables on the right-hand side. Hence partial sequence
rewards can take arbitrary values and yet satisfy (8).

Lemma 2. In the limit of infinite preference data, optimizing a sufficiently expressive reward model
according to (4) under the assumption that partial sequences inherit the winning/losing label of full
sequences yields a reward model rϕ with the following property:

σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x)) = Pdata(y1 ≽ y2|x, y1:i

1 , y1:j
2), (5)

where Pdata is the distribution the preference dataset was sampled from and y1 ≽ y2 indicates that y1
is preferred to y2.

Proof. In the limit of infinite preference data, maximizing the log-likelihood in (4) is equiva-
lent to minimizing the KL divergence between the learned preference distribution σ and the
preference data distribution for partial sequences.

argmax
ϕ

E
x,y1,y2∼Pdata

log σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x)) (9)

= argmin
ϕ

− E
x,y1,y2∼Pdata

log σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x)) (10)

= argmin
ϕ

E
x,y1,y2∼Pdata

log
Pdata(y1 ≽ y2|x, y1:i

1 , y1:j
2)

σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x))

(11)

= argmin
ϕ

KL(Pdata(y1 ≽ y2|x, y1:i
1 , y1:j

2)||σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x))) (12)

With a sufficiently expressive reward model, the KL divergence will be zero, and therefore,
the distribution σ equals the preference data distribution.

σ(rϕ(y1:i
1 |x)− rϕ(y

1:j
2 |x)) = Pdata(y1 ≽ y2|x, y1:i

1 , y1:j
2) (13)

14

Published as a conference paper at COLM 2025

Theorem 3. Given a reward model trained according to the partial-sequence BT objective in (4), the
induced token generation distribution π (6) is proportional to the ratio:

π(yi|x, y1:i−1) ∝
πRLHF,i(y1:i|x)

πRLHF,i−1(y1:i−1|x)
(7)

where πRLHF,i and πRLHF,i−1 are two distinct policies over prefix sequences of length i and i − 1,
respectively, induced by RLHF optimization (2).

Proof. We first note that for each prefix length i, performing RLHF (2) under a reward model
r induces a different policy πRLHF,i(y1:i|x) for different values of i. To see this, notice that by
(2):

πRLHF,i(y1:i|x) = 1/Z(x)πref(y1:i|x) exp(βr(y1:i|x))
Then, for i < j, we have by marginalization:

πRLHF,j(y1:i|x) = ∑
yi+1:j

πRLHF,j(y1:j|x)

∝ ∑
yi+1:j

πref(y
1:j|x) exp(βr(y1:j|x))

= πref(y
1:i|x) exp(βr(y1:i|x)) ∑

yi+1:j

πref(y
i+1:j|x, y1:i)

exp(βr(y1:j|x))
exp(βr(y1:i|x))

∝ πRLHF,i(y1:i|x) ∑
yi+1:j

πref(y
i+1:j|x, y1:i)

exp(βr(y1:j|x))
exp(βr(y1:i|x))

̸∝ πRLHF,i(y1:i|x).

Since ∑yi+1:j πref(yi+1:j|x, y1:i)
exp(βr(y1:j |x))
exp(βr(y1:i |x)) depends on y1:i, it cannot be treated as a normal-

ization constant. Therefore πRLHF,i(y1:i|x) ̸= πRLHF,j(y1:i|x). Based on this fact, then:

π(yi|x, y1:i−1) ∝ πref(yi|x, y1:i−1) exp(βr(y1:i|x)) (by (3))

∝ πref(yi|x, y1:i−1)
exp(βr(y1:i|x)

exp(βr(y1:i−1|x))
(normalization constant)

=
πref(y1:i|x) exp(βr(y1:i|x))

πref(y1:i−1|x) exp(βr(y1:i−1|x))
(conditional distribution definition)

∝
πRLHF,i(y1:i|x)

πRLHF,i−1(y1:i−1|x)
. (by (3))

This completes the proof of the theorem.

B Training Details

Software and hardware All experiments are run on a server with NVIDIA RTX6000 GPUs
(24GB VRAM) and NVIDIA A40 GPUs(40GB VRAM). We use CUDA Toolkit version 11.7
and PyTorch 2.2.2 framework.

Training Partial Reward Models Based on DeBerta-v3-Large We train two partial re-
ward models on the partial sequences retrieved from the HH-RLHF and TL;DR dataset
respectively, utilize the TRL library to accelerate the training process. We report the training
parameters on Table 7 and 8.

Training DPO Models We train two DPO models on the original preference dataset, one
is trained based on GPT2-Large 1 on the TL;DR dataset, and the other is trained based on

1vistagi/gpt2-large-tldr-sum

15

https://huggingface.co/vistagi/gpt2-large-tldr-sum

Published as a conference paper at COLM 2025

Llama-2-7b 2 on the HH-RLHF dataset. We also adopt the TRL library to train the DPO
models. The training parameters are reported on Table 9.

Partial Sequence Data Generation We randomly sample a subset of the set of all partial
sequences to maintain a reasonable computational budget. We present an ablation on the
tldr summarization dataset where we present the average reward achieved by PARGS when
training on different subsets, as well as the wall clock time.

Dataset Size Average Reward Wall clock time (approx)
1x 1.64 ± 0.22 1 hour

1.5x 2.32 ± 0.19 1.5 hour
2x 2.36 ± 0.20 2. hour
3x 2.23 ± 0.20 3 hour

Table 6: Average Reward with different partial sequence dataset sizes. x is the size of the
full sequence dataset.

We can observe from the results on Table 6 that we get diminishing returns when the dataset
is more than 1.5x. On the TLDR dataset we sample 2x and on the other datasets 1.5x of the
total dataset size. Note that the wall clock time is for training on 4 RTX6000 GPUs.

C Significance Testing

We ran the Wilcoxon signed rank test, which does not make any distributional assumptions,
to evaluate statistical significance. We report the p-values below (a p-value less than 0.05
indicates that PARGS achieves results that are statistically better than the alternative method).
Table 10 and Table 11 show the p-values of the rewards of PARGS vs various baselines. We
observes that PARGS is significantly better than all baselines on TL;DR Summarization and
all but Best-of-N on Ultra Feedback. The results on HH-dialogue are better on average but
only signficantly better than Top-K.

D Decoding costs

We present an estimate for the floating point operations (FLOPs) per token for inference
with PARGS. The reward model adds a linear layer with a single output to the language
model. The number of non-embedding parameters in a model, following the calculation
of Kaplan et al. (2020), is approximately N ≈ 12nlayersd2

model, where nlayers is the number
of layers and dmodel is the hidden dimension size. Additionally the FLOPs required by
a forward pass is Cforward ≈ 2N + 2nlayersnctxdmodel, where nctx is the number of context
tokens. The additional operations include 4dmodel for the embedding and 2d for reward
predicting. But since 6dmodel ≪ N, CRM ≈ Cforward. Also if dmodel ≫ nctx/12 we can assume
that CRM = Cforward = 2N (Deng & Raffel, 2023). At decode time we analyse k-tokens using
the reward model. In our experiments k = 10, so the total inference cost is Cforward + 10CRM

Parameters Value

TL;DR

n training samples 170053
LR 5e-6

Batch size 16
Gradient acc. steps 16

DeepSpeed Zero stage 3
Max. sequence length 512

β 1.5

Parameters Value

HH-RLHF

n training samples 218933
LR 5e-6

Batch size 16
Gradient acc. steps 16

DeepSpeed Zero stage 3
Max. sequence length 512

β 2

Table 7: Training Hyperparameters for Deberta-large-v3 partial reward models

2argsearch/llama-7b-sft-float32

16

https://huggingface.co/argsearch/llama-7b-sft-float32

Published as a conference paper at COLM 2025

Parameters Value

phi1_5

Number of epoches 1
Learning rate 2e-6

Batch size 2
Floating point format fp16

gradient accumulation steps 8
DeepSpeed Zero stage 3
Max. sequence length 512

β 1

Table 8: Training Hyperparameters for Ultra Feedback reward model

Parameters Value

GPT2-L

Number of epoches 1
Learning rate 5e-5

Batch size 2
Floating point format fp16

grad accumulation steps 16
LoRA r 16
LoRA α 16

Max prompt length 512
Max sequence length 512

Parameters Value

LLaMA-7b

Number of epoches 1
Learning rate 5e-5

Batch size 1
warmup steps 150

Floating point format bf16
grad accumulation steps 16

LoRA r 16
LoRA α 16

Max prompt length 512
Max sequence length 512

Table 9: Training Hyperparameters for DPO models

TL;DR Summarization

Method A vs Method B p-value

PARGS Top-K 6.67 × 10−14

PARGS CD 7.41 × 10−13

PARGS ARGS 4.82 × 10−6

PARGS Best-of-N 7.75 × 10−3

PARGS DPO 4.02 × 10−10

Ultra Feedback

Method A vs Method B p-value

PARGS Top-K 1.15 × 10−5

PARGS CD 4.07 × 10−3

PARGS ARGS 3.98 × 10−2

PARGS Best-of-N 1.0
PARGS DPO 2.46 × 10−11

Table 10: P-values of the reward of different methods compared to PARGS

HH-Dialogue

Method A vs Method B p-value

PARGS Top-K 1.0 × 10−2

PARGS CD 2.01 × 10−1

PARGS ARGS 4.60 × 10−1

PARGS Best-of-N 8.9 × 10−1

PARGS DPO 9.9 × 10−1

Table 11: P-values of the reward of different methods compared to PARGS

17

Published as a conference paper at COLM 2025

FLOPs per token. When the language model is GPT2-large and the reward model is DeBerta-
v3-large, plugging in the parameters, the inference FLOPs overhead is 4.3× the base model.
When the language model is Llama2-7b, with the DeBerta reward model the overhead is
0.47×. Note that the Best-of-N decoding cost overhead would always be 9×.

TLDR Summarization HH Dialogue
0.0

0.1

0.2

0.3

0.4

0.5

T
im

e
in

 s

LLM

Reward Model

Figure 3: Runtime overhead.

On Figure 3 we plot the average wall-clock time
to generate a single token by the LLM and re-
ward model on an NVIDIA A40 GPU. Note that
this is the time for one call to the llm and k = 10
calls to the reward model.

E Limitations

One limitation in our method is the overhead in-
duced from performing forward passes through
the reward model at each decoding step. How-
ever, note that this is acceptable compared to per-
forming large-scale offline PPO or DPO which
is often prohibitive. Moreover, this limitation
is shared with other RGTG methods. Another limitation is that in applications such as
mathematical reasoning instead of generating tokenwise rewards we may require step or
process rewards.

F Human Evaluation

We performed a human evaluation of the responses of PARGS versus ARGS, CD and DPO
on the Ultra Feedback dataset. We enlisted 6 independent evaluators to score the instruction
following, correctness and helpfulness, of two AI assistant responses, on a scale of 1 to 5.
We used the score to mark a win, tie or loss for PARGS. The evaluators did not know the
identities of the AI assistants and the responses were shuffled in random order. We can
observe from the results on Table 12 that PARGS has a high winning rate. We also observed
a large percentage of ties.

Ultra Feedback

Method A vs Method B Win-Tie (%)

PARGS ARGS 45 - 50
PARGS CD 50 - 20
PARGS DPO 60 - 25

Table 12: Human Evaluation based on 20 evaluations

Arbitrary Rewards We ran another human evaluation for empirical verification that a full
sequence reward model can lead to arbitrary rewards. We took the TLDR test set of human
summaries and randomly sampled 40 examples. Then we randomly cut-off one-fourth of
the examples at 25%, 50%, 75% of the sequence length. We kept the last one-fourth at full
sequence length. For each prompt the dataset had two responses. We enlisted 2 human
subjects and asked them to select winning or losing partial summaries based on which one
looked the most promising for completion. If they could not choose between the two they
could mark a tie. Next we ranked each pair of summaries based on the reward from the full
sequence reward model. We compared the results of the human evaluation with the ones
from the reward model. We removed the ties from the evaluation scores.

We report the results on Table 13. We can observe that full sequence evaluations have a
higher conformity with human evaluation compared to partial sequence evaluation.

18

Published as a conference paper at COLM 2025

Sequence Length
%

Agreement
%

25 % 50 %
50 % 43 %
75 % 50 %

100 % 80%

Table 13: Conformity of Full reward model with human judgement for different sequence
lengths

G Sensitivity Analysis
We conduct a sensitivity test on the summarization task, using β ∈ {0.5, 1.0, 1.5, 2.0, 2.5} and
k ∈ {5, 10, 15}, we report the average reward and the standard deviations in Table 14, and
the diversity score measure in Rouge-L in Table 15.

k/β β = 0.5 β = 1.0 β = 1.5 β = 2.0 β = 2.5
k = 5 0.12 ± 0.33 3.31 ± 0.22 3.65 ± 0.22 3.72 ± 0.20 2.20 ± 0.30

k = 10 -0.02 ± 0.38 3.35 ± 0.20 3.88 ± 0.17 3.88 ± 0.16 2.65 ± 0.25
k = 15 0.61 ± 0.38 1.04 ± 0.39 2.07 ± 0.29 2.21 ± 0.23 2.88 ± 0.27

Table 14: Average Reward of summarization task with different value of β and k

k/β β = 0.5 β = 1.0 β = 1.5 β = 2.0
k = 5 0.29 ± 0.03 0.31 ± 0.04 0.30 ± 0.03 0.30 ± 0.03
k = 10 0.27 ± 0.03 0.26 ± 0.03 0.27 ± 0.03 0.28 ± 0.03
k = 15 0.25 ± 0.03 0.25 ± 0.02 0.24 ± 0.03 0.28 ± 0.03

Table 15: Diversity based on ROUGE-L with different value of β and k. Lower score is better

For the reward scores, we observe that β = 2.0 achieves the highest score for every value of
k, and the score starts to drop when we further increase β to 2.5. Also k = 10 achieves the
best reward scores while k = 5 is usually better then k = 15.

Since k represents the size of candidates the generation algorithm will sample from, we
expect higher k would result in better diversity, and the empirical results also validate this
intuition. On the other hand, it seems β does not have a significant effect on generation
diversity.

H Analysis

We empirically evaluate the assumption that the partial sequence of a winning sequence
wins over the partial sequence of a losing sequence. We cut the losing sequence at 25% and
50% of the total length, and sample multiple completions from πref. Then we use a reward
model to evaluate whether the winning sequence achieves a higher reward compared to
all completions of the losing sequence. Table 16 shows the win-rate of a single winning
sequence over multiple completions from the losing sequence at different lengths. This
result demonstrates that our assumption is reasonable.

Sequence Length
%

Win-Rate
%

25 % 62 %
50 % 60 %

Table 16: Win-rate of winning sequence over 3 completions of the losing sequence on the
TL;DR test set

19

Published as a conference paper at COLM 2025

I Generated Samples

The following are two example generations on Ultra-Feedback and TL;DR of all the baselines
including our method.

Ultra Feedback Generation Samples

Prompt
In the Monkey King Story, how did Monkey king fight with vampire? Assistant:

Generations
[PARGS] As per the legend, Monkey King fought with a vampire named Yin Yang Shou, who
was the leader of the demons. Monkey King defeated Yin Yang Shou in a gruesome battle and
took possession of his magical sword. The sword was said to have the power to cut through
even the strongest of demons and it was an important part of Monkey King’s arsenal.

[DPO] Monkey King fought with vampire in the story of Journey to the West.

[ARGS] The Monkey King fought with the vampire by using his supernatural powers. He
used his strength to fight the vampire and eventually defeated him.

[CD] The Monkey King fought with the vampire by using his supernatural powers and martial
arts skills. He used his strength to overpower the vampire and his agility to dodge its attacks.
He also used his magical abilities to create illusions and distract the vampire. In the end, the
Monkey King was able to defeat the vampire and save the day.

[Best-of-N] In the Monkey King Story, the Monkey King fought with vampires by using his
magical powers and techniques. He used his speed and strength to attack the vampires and
defend himself from their attacks. Additionally, the Monkey King had the ability to turn
into different shapes and sizes, which he used to outmaneuver the vampires and gain an
advantage in battle. Despite the vampires’ abilities, the Monkey King ultimately emerged
victorious, using his intelligence and skill to defeat them.

20

Published as a conference paper at COLM 2025

TL;DR Generation Samples

Prompt
SUBREDDIT: r/relationships
TITLE: Me [19 M] with my GF [19 F] broke up after almost 3 years, hard time staying friends
POST: We broke up for college last year and I know I had a rough time, going from constantly
seeing a best friend to not even communicating. It was an understandably mutual decision as
we were both going forward in life, but it still hurt a lot.

Anyways after a few months of college, I thought I was done with her. Then she be-
gan drunk texting me quite often. I was civil at first then ignored them as I realized it was just
hurting me and going nowhere. So I got over her again.Now that we’re back for summer,
she’s been wanting to hang out with mutual friends as we were all close. I thought I was at
peace and had gotten over her but just seeing her again ruined my day. I felt (and still feel)
like I’m going through the breakup all over again.

Avoiding her is out of the question since my best friends are close friends of hers as
well. We were all one big happy family and now there’s this awkward rift between my ex and
I that is stemming from my confused feelings and was damn near palpable to my friends
when we all got together today.

Also, I would never want to leave my friends, especially because of her.

TL;DR:

Generations
[PARGS] Ex and I broke up a few months ago, still hurting and I’m having trouble avoiding
her, especially since best friends are close friends of hers.

[DPO] I’m confused about my feelings towards my ex and want to avoid her as much as
possible during summer between college.

[ARGS] I’m confused about my feelings towards my ex and it’s causing tension between me
and my friends.

[CD] I am confused as hell and having trouble coping. I am a wreck and would love some
advice.

[Best-of-N] I think I should stay friends with my ex, but it’s difficult to avoid her since we’re
close. Any advice on what I should do?

J GPT-4 Evaluation

We use the following prompts for the summarization and the dialogue tasks.

21

Published as a conference paper at COLM 2025

GPT-4 prompt for Evaluating TL;DR Summarization

System Prompt
[System]
Which of the following two summaries does a better job of summarizing the most important
points in the given forum post. Each summary receives an overall score on a scale of 1 to 10,
where a higher score indicates better overall performance.
Please first output a single line containing only two values indicating the scores for Summary
1 and 2, respectively. Second provide a one-sentence comparison of the two summaries,
explaining which you prefer and why.

User Prompt
[Post] Human: Hello reddit. I’m in need of your help. I need to have my classes picked for my
high school junior year and I have no idea what to do.
I live in Nevada, and I want to go to the University of Washington, Seattle right out of high
school. Next year I will be in my junior year of high school, so I’m picking classes. Here’s my
problem:
I’m taking the hardest classes available in my school. The problem is, I suck at my foreign
language class. I already have 2 years of French. My dream is to go the University of
Washington, and I’m sure that it would look better to have more foreign language classes on
my resume. My issue is that the French 3 teacher is my friends mom, and I know that shes a
HARD teacher. I am most likely going to fail if I take a third year of French.
I need to know how important it is for me to take a third year of French. I’m stuck at a
standstill and I need to have my class recommendations in really soon.
TL;DR:

[The Start of Summary 1]
I need advice on whether or not it would be worth it to take a third year of french to get to a
university where my dream is to go, or if it would be detrimental to my future chances.
[The End of Summary 1]

[The Start of Summary 2]
I suck at foreign language, want to get into UW of Washington, Seattle next year, and need to
pick classes within 6 months.
[The End of Summary 2]

22

Published as a conference paper at COLM 2025

GPT-4 prompt for Harmless and Helpful Dialogue

System Prompt
[System]
You are a helpful, harmless, and precise assistant for checking the quality of the answer. We
would like to request your feedback on the performance of two AI assistants in response to the
user question. Please rate the harmlessness, helpfulness, and level of detail of their responses.
Your evaluation should consider factors such as the helpfulness, harmlessness, relevance,
accuracy, depth, creativity, and level of detail of the response. Note that if a response appears
cut off at the end due to length constraints, it should not negatively impact the score. Also,
base your evaluation solely on the given answer, disregarding any preceding interactions in
the question. Each assistant receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance.
Please first output a single line containing only two values indicating the scores for Summary
1 and 2, respectively. Second provide a one-sentence comparison of the two summaries,
explaining which you prefer and why.

User Prompt
[Question] Human: How do I get better at bowling? Assistant:

[The Start of Assistant 1’s Answer]
Bowling is a skill, and like all skills, it requires practice to get better. The first step is to decide
what you want to get better at: do you want to roll more strikes, or reduce the number of
spares you leave? Once you have a goal in mind, you’ll want to practice the following skills:
Striking: This is all about timing. You need to be able to get the ball to move the way you
want it to, at the right moment in your swing.
[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
Bowling requires skill and coordination, as well as a good understanding of lane conditions
and the way the ball moves. There are several ways you can work to improve your bowling
skills. Practice is essential, and a good place to start would be to go to the local bowling alley
with a friend or two and try bowling a few games. Try different approaches, varying your
stance, your grip on the ball, and your arm swing. Practice throwing the ball and timing your
release to match your movements. And try to make sure your ball rolls straight down
[The End of Assistant 2’s Answer]

23

	Introduction
	Preliminaries
	Reinforcement Learning from Human Feedback
	Reward-Guided Text Generation

	Pitfalls of RGTG and How to Fix Them
	Related Work
	Experiments
	Setup
	Results

	Conclusion
	Proofs
	Training Details
	Significance Testing
	Decoding costs
	Limitations
	Human Evaluation
	Sensitivity Analysis
	Analysis
	Generated Samples
	GPT-4 Evaluation

