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Abstract001

Integrating knowledge graphs (KGs) into the002
reasoning processes of large language models003
(LLMs) has emerged as a promising approach004
to mitigate hallucination. However, existing005
work in this area often relies on proprietary006
or extremely large models, limiting accessi-007
bility and scalability. In this study, we inves-008
tigate the capabilities of existing integration009
methods for small language models (SLMs)010
in KG-based question answering and observe011
that their performance is often constrained012
by their limited ability to traverse and reason013
over knowledge graphs. To address this lim-014
itation, we propose leveraging simple and ef-015
ficient exploration modules to handle knowl-016
edge graph traversal in place of the language017
model itself. Experiment results demonstrate018
that these lightweight modules effectively im-019
prove the performance of small language mod-020
els on knowledge graph question answering021
tasks. Our code will be available on Github.022

1 Introduction023

Large Language Models such as GPT4 (OpenAI,024

2024), Gemini (Google, 2024), Qwen (Bai et al.,025

2023) have achieved state-of-the-art performance026

across a wide range of natural language process-027

ing tasks. Despite their impressive capabilities,028

a key limitation is the lack of interpretability in029

their decision-making processes. Moreover, they030

are prone to hallucination, especially when the re-031

quired knowledge is not present in their parametric032

memory. To tackle these challenges, Think-on-033

Graph (ToG; Sun et al., 2024) treats the LLM as034

an agent that dynamically interacts with the knowl-035

edge graph to retrieve external knowledge, exem-036

plifying a LLM×KG paradigm that has garnered037

significant attention. To cast LLM as an agent, ToG038

and similar approaches typically rely on very large039

models (Xu et al., 2024; Cheng et al., 2024; Liang040

and Gu, 2025), limiting their accessibility for low-041

resource settings. Other recent efforts (Luo et al.,042

2024; He et al., 2024; Ao et al., 2025) have pro- 043

posed additional reasoning or exploration modules 044

to improve LLM-KG integration, but these meth- 045

ods require task-specific training or fine-tuning. 046

In this paper, we focus on a practical setting 047

where end users or system deployers have access 048

only to small- or medium-sized language models 049

for inference. In this context, an important question 050

arises: how effectively can these SLMs leverage 051

knowledge graphs for question answering? To ex- 052

plore this, we examine Think-on-Graph (Sun et al., 053

2024), a representative training-free framework, 054

and observe that when applied to SLMs rather 055

than LLMs, ToG underperforms and sometimes 056

even falls behind the Chain-of-Thought (CoT) base- 057

line (Wei et al., 2022). Through detailed anal- 058

ysis, we attribute this failure to the SLMs’ lim- 059

ited ability to explore and reason over knowledge 060

graphs. We argue that using lightweight passage 061

retrieval methods such as SentenceBERT and GTR 062

for exploration can substantially enhance the effec- 063

tiveness of knowledge graph traversal for SLMs. 064

We would like to point out that the novelty of 065

our work does not lie in introducing new mod- 066

els or architectures. Rather, we revisit previously 067

overlooked techniques and demonstrate their ef- 068

fectiveness in enhancing reasoning performance in 069

resource-constrained settings. 070

Our contributions can be summarized as follows: 071

• We demonstrate that the existing ToG frame- 072

work is not as effective for SLMs in KGQA. 073

• We identify the exploration stage as a key bot- 074

tleneck for SLM performance in knowledge 075

graph reasoning. 076

• We show that incorporating simple and effi- 077

cient passage retrieval modules significantly 078

improves SLMs’ ability to traverse and reason 079

over knowledge graphs. 080
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2 Traversing Knowledge Graphs with081

Small Language Models082

2.1 Preliminaries083

Think-on-Graph (Sun et al., 2024) is a framework084

for KGQA that casts a language model as an agent085

navigating a knowledge graph to perform multi-hop086

reasoning. It operates in three main stages:087

• Initialization: The model extracts topic enti-088

ties from the input question and locates them089

in the KG to form initial reasoning paths.090

• Exploration: Using beam search, the model091

iteratively expands these paths by exploring092

neighboring relations and entities. At each093

step, the LLM ranks candidates and prunes094

less relevant options, guided by the question095

context.096

• Reasoning: Once sufficient evidence is gath-097

ered, the LLM generates a final answer based098

on the maintained reasoning paths.099

This structured interaction enables interpretable100

and context-sensitive reasoning while leveraging101

the strengths of both KGs and language models.102

2.2 Exploration Modules in SLMs103

In Section 3.3, we will show that SLMs are less104

effective for KGQA due to their limitation in explo-105

ration stage. To address the weaknesses of using106

only SLM itself for exploration of KG, we exam-107

ine the use of simple, efficient retrieval models in108

Section 3.4. These models, which measure seman-109

tic similarity between text segments, have shown110

strong performance in passage retrieval tasks and111

hence are well-suited to assist SLMs in pruning112

irrelevant candidates during KG traversal. Im-113

portantly, they can be used in a zero-shot, plug-114

and-play manner, requiring no additional training115

or fine-tuning, making them well-suited for low-116

resource settings.117

Classic Retrieval Index BM25 (Robertson and118

Zaragoza, 2009) is a ranking function used in infor-119

mation retrieval that scores how well a document120

matches a query based on term frequency and how121

common the term is across all documents.122

Dense Retrieval We consider two dense retriev-123

ers: SentenceBERT (Reimers and Gurevych, 2019),124

a BERT-based model fine-tuned for producing se-125

mantically meaningful sentence embeddings, and126

Models CWQ WebQSP
Large Language Models
GPT-4.1 w/ CoT 0.505 0.765

w/ ToG 0.575 0.810
Improvement w/ ToG 0.070 0.045
Small Language Models
Qwen2-0.5b w/ CoT 0.170 0.345

w/ ToG 0.175 0.210
Gemma2-2b w/ CoT 0.185 0.465

w/ ToG 0.255 0.420
Phi-3-mini-3.8b w/ CoT 0.385 0.530

w/ ToG 0.385 0.515
Qwen2-7b w/ CoT 0.355 0.555

w/ ToG 0.395 0.630
Llama-3-8b w/ CoT 0.385 0.660

w/ ToG 0.395 0.620
Mean SLM w/ CoT 0.296 0.511

w/ ToG 0.321 0.479
Improvement w/ ToG 0.025 -0.032

Table 1: Comparison of ToG and CoT across model
sizes. While ToG substantially improves GPT-4.1, its
effectiveness does not consistently extend to SLMs.

GTR (Ni et al., 2022), a T5-based model optimized 127

for passage retrieval tasks. Both models have ap- 128

proximately 110 million parameters which is sub- 129

stantially smaller than the smallest SLM (0.5B) 130

evaluated in this work. 131

3 Experiments 132

In this section, we aim to answer the following 133

research questions: 134

• RQ1: How do SLMs perform in KGQA com- 135

pared to a larger proprietary LLM (GPT-4.1)? 136

• RQ2: Why are SLMs less effective at leverag- 137

ing KGs for question answering tasks? 138

• RQ3: How effective are SLMs when paired 139

with better-suited exploration modules? 140

3.1 Setup 141

Datasets and Metrics Following Sun et al. 142

(2024), we use Freebase (Bollacker et al., 2008) as 143

our underlying knowledge graph. We evaluate our 144

models on two benchmark datasets: ComplexWe- 145

bQuestions (CWQ; Talmor and Berant, 2018) and 146

WebQSP (Yih et al., 2016). For evaluation, we ran- 147

domly sample 200 questions from each dataset to 148

save compute, and use exact match score (EM) as 149

the primary metric. 150
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Question: What type of government is used in the country with Northern District?
With knowledge triplets retrieved by SLM

(‘Northern District’, ‘country’, ‘Israel’),
(‘Northern District’, ‘administrative_parent’, ‘Israel’)

SLM: The triplets do not provide information about the type of government used
in Israel.

With knowledge triplets retrieved by GPT4.1
(‘Northern District’, ‘country’, ‘Israel’),
(‘Northern District’, ‘administrative_parent’, ’Israel’),
(‘Israel’, ‘form_of_government’, ‘Parliamentary system’),
(‘Israel’, ‘administrative_children’, ‘Northern District’)

SLM: Based on the given knowledge triplets, the country with the Northern District
is Israel, which uses a Parliamentary system as its form of government.

Table 2: An example illustrating the limitations of an SLM when performing KG exploration on its own. When
relying solely on its retrieved triplets, the SLM fails to answer the question. However, when provided with triplets
retrieved by GPT-4.1, including the key relation, the same SLM is able to produce the correct answer.

Models CWQ WebQSP
Qwen2-0.5b CoT 0.170 0.345

w/ GPT-4.1 ToG 0.430 0.610
Gemma2-2b CoT 0.185 0.465

w/ GPT-4.1 ToG 0.430 0.690
Phi-3-mini-3.8b CoT 0.385 0.530

w/ GPT-4.1 ToG 0.520 0.745
Qwen2-7b CoT 0.355 0.555

w/ GPT-4.1 ToG 0.520 0.765
Llama-3-8b CoT 0.385 0.660

w/ GPT-4.1 ToG 0.550 0.805
Improvement w/ GPT4.1 0.194 0.212

Table 3: Performance of SLMs with GPT-4.1-assisted
exploration. With high-quality context, SLMs can offer
better improvement over the CoT baseline, highlighting
exploration as the key bottleneck in the ToG framework

Language Models We consider SLMs ranging151

in size from 0.5B to 8B parameters. The models in-152

clude Qwen2 0.5B (Yang et al., 2024), Gemma2-2b153

(Team et al., 2024), Phi-3 Mini-3.8B (Abdin et al.,154

2024), Qwen2 7b and LLaMA 3-8B (Grattafiori155

et al., 2024).156

3.2 RQ1: Think-on-Graph with LLMs and157

SLMs158

We begin by examining the effectiveness of apply-159

ing ToG to SLMs in comparison to LLMs. As160

shown in Table 1, while a giant LLM (GPT-4.1)161
1 enjoys significant boost from ToG, we observe162

1We use the GPT-4.1 snapshot released on April 14, 2025.

that SLMs equipped with ToG receive limited im- 163

provement and can perform even worse than the 164

CoT baseline. This discrepancy underscores a key 165

limitation: while ToG is effective for LLMs, its 166

effectiveness does not translate well to the lower- 167

capacity reasoning abilities of SLMs. 168

3.3 RQ2: Bottleneck of Exploration 169

Given that ToG fails to improve performance for 170

SLMs, we further investigate the underlying cause. 171

Our hypothesis is that, without effective explo- 172

ration, SLMs lack access to the necessary informa- 173

tion required to generate correct answers, resulting 174

in low EM scores. To verify this, we test an upper 175

bound where we temporarily assume the access to 176

GPT-4.1 for exploration only. That is, GPT-4.1 is 177

used to explore the knowledge graph and provide 178

context to the SLMs to reason the final outputs. We 179

first look into failure cases of SLMs and found that 180

SLMs could not answer the correct answer is due 181

to lack of proper context, as illustrated in Table 2 182
2. As shown in Table 3, with the context provided 183

by GPT-4.1, SLMs are able to reason effectively 184

and offer better improvement over the original CoT 185

baseline. 186

We further treat the exploration outputs of GPT- 187

4.1 as pseudo-ground truth and measure how 188

closely the outputs of SLMs align with them in 189

terms of cross-entropy. As shown in Figure 1, this 190

alignment increases consistently with model size, 191

2The figure contains resources from Flaticon.com
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Figure 1: Cross-entropy alignment between the explo-
ration outputs of SLMs and GPT-4.1 across different
model sizes. A lower cross-entropy value indicates a
closer alignment with GPT-4.1’s exploration decisions.
The consistent improvement with increasing model size
highlights the critical role of exploration quality as a per-
formance bottleneck for SLMs in the ToG framework.

supporting the view that exploration quality is a key192

bottleneck for SLMs within the ToG framework.193

One might ask whether the difference in perfor-194

mance between SLMs and LLMs are due to their195

abilities in adhering to the questions/answer format.196

We have ruled out this possibility by leveraging197

Constrained Decoding. Relevant details are pre-198

sented in Appendix A.199

3.4 RQ3: Passage Retrieval for Exploration200

As we have determined in Section 3.4 the core201

limitation of SLMs in the ToG framework lies202

in their inadequate performance during the explo-203

ration stage. One promising direction to address204

this is to decouple the exploration process from the205

language model itself. Instead of relying on the206

SLM to retrieve relevant knowledge paths, we ex-207

plore the use of lightweight passage retrieval mod-208

els to assist in this stage. These models are efficient,209

require no additional training, and have shown210

strong performance in passage retrieval tasks, mak-211

ing them a natural fit for supporting KG exploration.212

We present our main results in Table 4. Across213

all language models we studied, SentenceBERT214

and GTR obtain substantial improvement over both215

the original ToG and CoT for SLMs. This result216

highlights the effectiveness of leveraging passage217

retrieval models to assist SLMs during exploration.218

Interestingly, our findings contrast with those of219

Sun et al. (2024), who report that integrating pas-220

sage retrieval models leads to significant perfor-221

mance degradation when applied to LLMs instead222

of SLMs. We further discuss this in Appendix B.223

Models CWQ WebQSP
Qwen2-0.5b ToG 0.175 0.210

w/ BM25 0.130 0.285
w/ SentenceBERT 0.210 0.295
w/ GTR 0.120 0.250

Gemma2-2b ToG 0.255 0.420
w/ BM25 0.205 0.425
w/ SentenceBERT 0.250 0.590
w/ GTR 0.275 0.570

Phi-3-mini-3.8b ToG 0.225 0.515
w/ BM25 0.370 0.500
w/ SentenceBERT 0.400 0.590
w/ GTR 0.400 0.620

Qwen2-7b ToG 0.395 0.630
w/ BM25 0.360 0.550
w/ SentenceBERT 0.410 0.680
w/ GTR 0.430 0.675

Llama-3-8b ToG 0.395 0.620
w/ BM25 0.390 0.500
w/ SentenceBERT 0.445 0.690
w/ GTR 0.400 0.700

Table 4: Effectiveness of lightweight passage retrieval
methods for KG Exploration. SentenceBERT and GTR
provides strong performance gains across models, vali-
dating its effectiveness for SLM-based KGQA.

4 Conclusion 224

In this paper, we investigate the limitations of 225

SLMs in leveraging knowledge graphs for question 226

answering. We identify the core issue as the inade- 227

quacy of SLMs in the exploration stage, where they 228

often fail to retrieve accurate reasoning paths and 229

relevant knowledge. To address this, we propose 230

replacing the exploration component in ToG with 231

lightweight passage retrieval models. Experiment 232

results demonstrate that this approach not only im- 233

proves the efficiency of the reasoning process but 234

also enables SLMs to benefit more effectively from 235

knowledge graphs. 236

Limitations 237

Due to computational constraints, we do not eval- 238

uate our methods on the full CWQ and WebQSP 239

datasets. Instead, following the setting of (Sun 240

et al., 2024), we randomly sample a subset of ques- 241

tions from each dataset for evaluation. While this 242

approach may introduce greater variance in the re- 243

sults, the consistent performance trends observed 244

across different models still provide strong evi- 245

dence supporting our findings. 246
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Models CWQ WebQSP
GPT-4.1 0.575 0.810

w/ BM25 0.525 0.745
w/ SentenceBERT 0.520 0.775
w/ GTR 0.505 0.805

Table 5: The performance of GPT-4.1 equipped with
different exploration modules.

A Constrained Decoding with JSON376

Format377

To ensure that the performance gap between SLMs378

and LLMs is not simply due to formatting in-379

consistencies or output mismatches, we adopt a380

constrained decoding strategy across all models.381

Specifically, we modify the prompts to require all382

models to produce answers strictly in a predefined383

JSON format. Comparisons of original prompt and384

our modified prompt are showed in Table 6 and 7.385

By enforcing the constrained output structure,386

we ensure that all models, regardless of size, are387

evaluated under consistent conditions. We also con-388

ducted a quantitative analysis of relation cleaning389

errors before and after applying constrained decod-390

ing. Specifically, we counted how many times the391

model-generated outputs contained unparseable re-392

lation entries. As shown in Figure 2, constrained393

decoding substantially reduces relation formatting394

errors, especially for smaller models like Qwen2-395

0.5b and Qwen2-1.5b. This confirms that our con-396

strained format enforcement effectively standard-397

izes model outputs and mitigates noisy relation rep-398

resentations, allowing us to more reliably evaluate399

reasoning quality.400

After removing parsing-related noise, we further401

examined whether the adoption of constrained de-402

coding negatively impacts the LLMs’ exploration403

ability. To assess this, we computed the cross en-404

tropy (CE) between the retrieved relation paths and405

the ground-truth paths under both the original and406

constrained prompt settings.407

As shown in Figure 3, the CE values remain408

stable across models, with negligible changes be-409

fore and after applying constrained decoding. This410

result confirms that our constrained decoding strat-411

egy effectively removes parsing-related variance412

without diminishing the LLMs’ ability to explore413

and select relevant paths.414

Figure 2: Relation cleaning errors before and after
applying constrained decoding. Smaller models like
Qwen2-0.5b and Qwen2-1.5b show substantial reduc-
tions in formatting errors, indicating the effectiveness
of our constrained decoding strategy.

Figure 3: Average cross-entropy between model-
retrieved relation paths and the pseudo-ground truth,
before and after applying constrained decoding. The
minimal differences suggest that constrained decoding
does not compromise model exploration capability.

B Passage Retrieval for LLMs 415

In an ablation study conducted by Sun et al. (2024), 416

they showed that using lightweight passage re- 417

trieval models for exploration significantly reduced 418

the number of LLM calls from 2ND +D + 1 to 419

D + 1 where D, N are the numbers of iterations 420

and reasoning paths respectively. However, this ef- 421

ficiency gain came at the cost of a substantial drop 422

in EM. We reproduce the results in Table 5. In con- 423

trast, our experiments in Section 3.4 demonstrate 424

that passage retrieval models can offer the best of 425

both worlds for SLMs: not only do they improve 426

the efficiency of ToG, but they also enhance the EM 427

performance, without facing the trade-off observed 428

in the original study. The main reason for this dif- 429

ference in findings lies in the disparity between 430

LLMs and SLMs in their ability to perform KG 431

exploration. Therefore, their results complement, 432

rather than contradict our findings. 433

7



Original Extract Relation Prompt (Unconstrained)

Please retrieve 3 relations (separated by semicolon) that contribute to the question and rate their contribution on a scale
from 0 to 1 (the sum of the scores of %s relations is 1).

Q: Name the president of the country whose main spoken language was Brahui in 1980?
Topic Entity: Brahui Language
Relations: language.human_language.main_country; language.human_language.language_family; language.

human_language.iso_639_3_code; base.rosetta.languoid.parent; language.human_language.writing_system; base.
rosetta.languoid.languoid_class; language.human_language.countries_spoken_in; kg.object_profile.
prominent_type; base.rosetta.languoid.document; base.ontologies.ontology_instance.equivalent_instances; base.
rosetta.languoid.local_name; language.human_language.region

A:
1. {language.human_language.main_country (Score: 0.4))}: This relation is highly relevant as it directly relates to the

country whose president is being asked for, and the main country where Brahui language is spoken in 1980.
2. {language.human_language.countries_spoken_in (Score: 0.3)}: This relation is also relevant as it provides

information on the countries where Brahui language is spoken, which could help narrow down the search for the
president.

3. {base.rosetta.languoid.parent (Score: 0.2)}: This relation is less relevant but still provides some context on the
language family to which Brahui belongs, which could be useful in understanding the linguistic and cultural
background of the country in question.

Q:

Modified Extract Relation Prompt (Constrained Decoding)

Please retrieve 3 relations that contribute to the question and rate their contribution on a scale from 0 to 1 (the sum of
the scores of 3 relations is 1). Provide the output in JSON format.

Q: Name the president of the country whose main spoken language was Brahui in 1980?
Topic Entity: Brahui Language
Relations: language.human_language.main_country; language.human_language.language_family; language.

human_language.iso_639_3_code; base.rosetta.languoid.parent; language.human_language.writing_system; base.
rosetta.languoid.languoid_class; language.human_language.countries_spoken_in; kg.object_profile.
prominent_type; base.rosetta.languoid.document; base.ontologies.ontology_instance.equivalent_instances; base.
rosetta.languoid.local_name; language.human_language.region

A:
{

"relations": [
{

"relation": "language.human_language.main_country",
"score": 0.4,
"description": "This relation is highly relevant as it directly relates to the country whose president is being asked

for, and the main country where Brahui language is spoken in 1980."
},
{

"relation": "language.human_language.countries_spoken_in",
"score": 0.3,
"description": "This relation is also relevant as it provides information on the countries where Brahui language is

spoken, which could help narrow down the search for the president."
},
{

"relation": "base.rosetta.languoid.parent",
"score": 0.2,
"description": "This relation is less relevant but still provides some context on the language family to which

Brahui belongs, which could be useful in understanding the linguistic and cultural background of the
country in question."

}
]

}
Q:

Table 6: Comparison of original prompt and our constrained decoding version for relation pruning. The modified
prompt enforces a strict JSON structure to enable consistent and parseable outputs from SLMs.
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Original Score Entity Candidates Prompt (Unconstrained)

lease score the entities’ contribution to the question on a scale from 0 to 1 (the sum of the scores of all entities is 1).

Q: The movie featured Miley Cyrus and was produced by Tobin Armbrust?
Relation: film.producer.film
Entites: The Resident; So Undercover; Let Me In; Begin Again; The Quiet Ones; A Walk Among the Tombstones
Score: 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
The movie that matches the given criteria is "So Undercover" with Miley Cyrus and produced by Tobin Armbrust.

Therefore, the score for "So Undercover" would be 1, and the scores for all other entities would be 0.

Q: {}
Relation: {}
Entites:

Modified Score Entity Candidates Prompt (Constrained Decoding)

Please score each entity’s contribution to the question on a scale from 0 to 1 (the sum of the scores of all entities should
be 1). Provide the output in JSON format.

Q: The movie featured Miley Cyrus and was produced by Tobin Armbrust?
Relation: film.producer.film
Entities: The Resident; So Undercover; Let Me In; Begin Again; The Quiet Ones; A Walk Among the Tombstones

A: {{
"entities": [

{{"name": "The Resident", "score": 0.0}},
{{"name": "So Undercover", "score": 1.0}},
{{"name": "Let Me In", "score": 0.0}},
{{"name": "Begin Again", "score": 0.0}},
{{"name": "The Quiet Ones", "score": 0.0}},
{{"name": "A Walk Among the Tombstones", "score": 0.0}}

],
"explanation": "The movie that matches the given criteria is \"So Undercover,\" which features Miley Cyrus and was

produced by Tobin Armbrust. Therefore, the score for \"So Undercover\" is 1, and the scores for all other
entities are 0."

}}

Q: {}
Relation: {}
Entities:

Table 7: Comparison of original prompt and our constrained decoding version for entities pruning. The modified
prompt enforces a strict JSON structure to enable consistent and parseable outputs from SLMs.
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