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Abstract: Terrain elevation modeling for off-road navigation aims to accurately
estimate changes in terrain geometry in real-time and quantify the correspond-
ing uncertainties. Having precise estimations and uncertainties plays a crucial role
in planning and control algorithms to explore safe and reliable maneuver strate-
gies. However, existing approaches, such as Gaussian Processes (GPs) and neural
network-based methods, often fail to meet these needs. They are either unable to
perform in real-time due to high computational demands, underestimating sharp
geometry changes, or harming elevation accuracy when learned with uncertain-
ties. Recently, Neural Processes (NPs) have emerged as a promising approach that
integrates the Bayesian uncertainty estimation of GPs with the efficiency and flex-
ibility of neural networks. Inspired by NPs, we propose an effective NP-based
method that precisely estimates sharp elevation changes and quantifies the cor-
responding predictive uncertainty without losing elevation accuracy. Our method
leverages semantic features from LiDAR and camera sensors to improve interpola-
tion and extrapolation accuracy in unobserved regions. Also, we introduce a local
ball-query attention mechanism to effectively reduce the computational complex-
ity of global attention by 17% while preserving crucial local and spatial informa-
tion. We evaluate our method on off-road datasets having interesting geometric
features, collected from trails, deserts, and hills. Our results demonstrate superior
performance over baselines and showcase the potential of neural processes for
effective and expressive terrain modeling in complex off-road environments.
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1 Introduction

Accurate terrain elevation modeling is a long-standing problem in robotics [1, 2, 3, 4, 5, 6, 7].
Reliable ground estimations play a crucial role in determining a vehicle’s maneuvering strategies [8,
9, 10, 11] for off-road navigation. For example, negative obstacles (e.g., ditches or craters) are best
avoided, but when they must be traversed, the vehicle needs accurate elevation estimates to align
itself and plan a trajectory that negotiates the terrain safely. However, such negative obstacles are
often not visible in LiDAR and camera sensors, especially when observed from a distance due to
limited viewing angles. Instead, they appear as a ‘narrow gap’ between LiDAR rays in point clouds
or as ‘continuous ground’ in images, as illustrated in Fig. 1. This invisible nature complicates their
prediction and frequently leads to underestimation, such as misinterpreting ditches as shallower
depressions or cliffs as downhill slopes. We aim to accurately estimate the predictive distribution
of ground elevation in each cell within bird’s-eye-view (BEV) grids while addressing challenging
cases such as negative obstacles, which require extrapolation beyond direct observations.

From LiDAR observations at each timestep, ground elevations can be estimated by taking the
minimum height value in each BEV cell. However, given the sparse nature of LiDAR sensors
and their limited viewing angles, there is a crucial need to effectively interpolate and extrapolate
these observed ‘context’ points to unobserved ‘target’ points. Early research predominantly uti-
lized Gaussian Processes (GPs) [12, 13, 14, 15, 16, 17, 18, 19] and Bayesian Generalized Kernels
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(b) Ground Truth Elevation
Figure 1: (Left group) An example of LiDAR points on a ditch and its ground truth and predicted
elevations from our model. (Right) An example image from a forward-facing camera looking down-
hill. The terrain looks continuous, but there is a significant downhill slope in front of the vehicle.
(BGKs) [20, 21, 22, 23] to address this task. They provide a solid mathematical foundation for mak-
ing predictions and understanding their associated uncertainties. Nevertheless, their flexibility is
restricted due to predefined kernel functions and fixed prior distributions. Moreover, their computa-
tional demands often prevent the use of real-time applications, which are crucial for agile, high-speed
off-road autonomy.

(c) Predicted Elevation (d) Down Hill from Front Camera

More recently, deep neural network-based methods [24, 25, 2, 5, 4, 26] have emerged, exhibiting
strong learning capabilities from extensive datasets and thus better generalization across varied ter-
rain characteristics. Although some methods [24, 25] produce promising predictions on relatively
flat terrains, they often underestimate sharp geometric features and inadequately model negative
obstacles. This shortcoming leads to overly optimistic planning and control strategies, which can
potentially cause vehicle rollovers or falls from cliffs. Additionally, accurate uncertainty estimations
are essential for identifying and avoiding regions where predictions are less confident. However, we
observe that training these models to estimate uncertainty often accompanies degradation in eleva-
tion accuracy.

To overcome the limitations, we propose leveraging Neural Processes (NPs) [27, 28, 29, 30], which
learn adaptive, data-driven representations without relying on predefined kernels or fixed priors,
thereby enhancing flexibility in modeling diverse terrain features. NPs inherently provide accurate
uncertainty estimation without compromising prediction accuracy, and they exhibit strong capability
for capturing sharp changes in elevation. Also, NPs scale effectively for real-time deployment due
to their computational efficiency compared to GPs. In this paper, we aim to address the following
major challenges: 1) precisely estimating sharp elevation changes, 2) improving interpolation and
extrapolation accuracy in unobserved regions, and 3) quantifying associated uncertainty. While the
associated uncertainties are inherently learned through NP frameworks, the remaining challenges
require special attention.

Improving Inter-/Extrapolation. Analogous to existing literature [27, 28, 13, 14], ‘context points’
(i.e., estimated ground height from LiDAR) can be the sole basis for elevation prediction at any other
unobserved target point. However, they can be sparse and lack semantic information. Therefore,
context-point-only methods struggle with extrapolating context points, often failing significantly in
unobserved regions. Thus, we incorporate additional semantically informative features from both
the camera and LiDAR sensors and condition the context and target points on them. This semantic-
conditioned NP enables the prediction of reasonable elevations beyond the observed areas.

Estimation of Sharp Elevation Changes. An attention mechanism [31] is an effective solution
to preserve sharpness in predictions [28] since it promotes models to learn self-correlations among
observations. However, our observations cover regions larger than 100 m x 100 m. Thus, using global
attention requires a significant memory, which is often unfeasible for onboard computing in robots.
To address this, we propose a ball-query attention mechanism where only observations within a
local e-ball are considered for attention operations. Applying it reduces the number of floating-point
operations (FLOPS) and inference time by 17% and 36%, while preserving crucial local and spatial
information.

To preserve temporal consistency, we aggregate LiDAR points and update image features using
non-parametric Bayesian updates without requiring additional training. We validate our method on
off-road datasets collected from grassy hills in California (i.e., CA Hills), the Mojave Desert with
on- and off-trail runs (i.e., Mojave Desert), and dirt and grassy terrain with diverse negative obstacles
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Figure 2: Overview of semantic extraction from LiDAR and camera sensors. || operation denotes the
concatenation of two features. We use the Asymmetric 3D U-Net [32] and DinoV2 [33] for LiDAR
and image features. We lift the image features to 3D space using stereo depth maps and project
them onto BEV space. Image BEV features are then temporally aggregated using Bayesian updates.
Concatenated LiDAR and Image features are passed to shallow convolutional neural networks and
inpainting networks to obtain fused features.

in Ellensburg, Washington (i.e., Ellensburg). Our method outperforms existing approaches in terms
of elevation, slope, and curvature accuracy, while also providing meaningful uncertainty estimates.

To summarize, our contributions are:
* We present precise elevation estimates with associated uncertainties by introducing a novel
semantic-conditioned Neural Processes with temporal aggregation.
* We introduce a ball-query attention mechanism that effectively reduces computational de-
mands while maintaining necessary local, spatial information.
¢ We demonstrate the effectiveness of our method on varied terrain characteristics, collected
from trails, deserts, and hills.

2 Method

This section first explains the problem definition and ANPs [28] in the preliminary section, then
describes how we obtain robust and temporally-aggregated semantic features from LiDAR and cam-
eras, and finally presents semantic-conditioned NPs with ball-query attention.

2.1 Preliminary

Problem Formulation. The terrain elevation modeling task aims to predict the ground elevation
h 4 atlocation (z,y) in BEV grids. Given ego-centric LiDAR readings, {z;, y;, z; } n, We first crop
the readings with predefined ranges: z: [-51.2 m, 51.2 m] and y: [-51.2 m, 51.2 m]. The (z, y) values
of cropped LiDAR readings will be binned into each grid with a resolution of R = 0.4, resulting in
256x256 BEV grids. For each center point of grid, we estimate the ground elevation at BEV cell
(2,9) bY hay = ming, .y z, where V(2',y') € [z — &, 2+ &) x [y — &,y + £, if there are
any LiDAR hits in the cell. Our task is to predict ground truth h, ,s from given estimations fzw,ys,
LiDAR readings, and camera inputs.

Attentive Neural Processes. In this work, we adopt ANPs [28] as our base framework. Formally,
given a set of context points (X, ﬂc) = {(zi,yi), i“bi}iec from LiDAR readings and target points
X7 := {(zj,y;)}jer sampled from BEV grids, ANPs learn to predict the conditional distribution
p(Hr|X7, X, He). ANPs model the conditional distribution through a global latent variable z
sampled from aggregated context representation s and a deterministic context representation rc¢:.
Specifically, the conditional predictive distribution is given by:

p(Hr|Xr, X0, He) = / p(Hy|Xz,ro, 2)q(zlsc)dz, ()

where ¢(z|s¢) represents the variational prior inferred from the context. The permutation-invariant
encoder s, := s(X., H.) aggregates context/target points and predicts factorized Gaussian distri-
bution s,, where the latent representation z is sampled from. The latent representation encapsulates
global spatial correlations and uncertainty. A deterministic representation r¢ is obtained from a
permutation-invariant function r (X ¢, ﬂc, Xr) using global attention. The decoder then uses z and
r¢ to generate predictions for the target points from X. The encoders and a decoder are trained to
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Figure 3: Overview of our semantic-conditioned NPs with ball query attention mechanisms. With
(z,y) coordinates in BEV space, estimated ground elevation fL, and semantic features f, we pre-
dict context representation ro and global latent variable z using ball-query attention mechanisms
between context points and across context and target points. Predicted variables are passed to the
decoder with target points to predict Gaussian-factorized ground elevations.

maximize the Evidence Lower Bound (ELBO)

log p(Hr| X7, X, He) > Eq(zlsr)logp(Hr | X7, 0, 2)] — Dxi(q(z|s7)||9(zlsc)),  (2)

with randomly sampled sets of context C' and target 7" using reparameterization tricks [34].

2.2 Image and LiDAR Semantic Feature Extraction and Fusion

Feature Extraction and Fusion. Fig. 2 illustrates how we extract semantic features from LiDAR
and images and fuse them in the BEV space. We use Asymmetrical 3D U-Net [32] for LiDAR
feature extraction and DinoV2 [33] for image feature extraction. We project the features from each
modality onto the BEV space by aggregating voxel features along the z-axis or lifting image features
using camera matrices with stereo depths and then soft-splatting them onto the BEV space [35, 25].
Such projected features are then concatenated and passed to the inpainting network to get the fused
BEV features. The inpainting network consists of a deep Convolutional Neural Network (CNN)
with large receptive fields, which propagates observed features to unobserved regions. This ensures
that we generate reasonable elevation predictions in unobserved areas. However, we observe that
such inpainting results in overly smoothed elevation predictions, which lose distinctive features in
‘observed’ areas. To preserve distinctive features, we introduce an additional path using a shallow
CNN that fuses features with a limited receptive field, thereby maintaining local details. The fused
results are then added to the inpainted features, which will later be used for NPs.

Temporal Aggregation of Image BEV Features. Aggregating observations over time is essential
for consistent and precise predictions. From previous literature [24, 25], a recurrent neural network
(RNN)-based aggregation has been proposed. However, we observe several limitations to this ap-
proach. First, it requires a batch of sequences for training, which consumes a significant amount of
memory. Moreover, representing }AlLy values of observations in the features is essential for precise
elevation estimations. However, the vehicle’s elevation zee, changes over time, and aggregating in-
formation in the feature space can degrade prediction accuracy if we do not compensate for these
changes in vehicle elevation correctly. To minimize this impact, we aggregate LiDAR points instead
of features to easily compensate for zc,, and apply temporal aggregation to image features only,
as they contain more semantic and object information rather than direct geometry information. For
image BEV feature aggregation, we use a non-parametric method based on their confidence, which
does not require additional training. During lifting and projection, we find the 3D coordinates for
each image pixel, interpolate the lifted features into voxels, and project them down to the BEV
space. We count the number of lifted image pixels for each voxel and project the normalized den-
sity o € [0,1] onto the BEV space. Using normalized densities as proxies for the probabilities of
being correct, we conduct Bayesian belief updates as follows. We use image BEV features from
current and previous history, ft, f;_1 € RPXHXW ‘and their corresponding probability of being
correct, Ppg, Pi—1 € [0, 1]%*W in the probability simplex. With a uniform prior assumption and a
conditional independence assumption [36], we obtain a temporally-updated semantic features f; by

_ pefi+tpeafig Dy = PtPt—1
- ~ ’ t — =« ~ .
Pt T+ Pt—1 PiPi—1 + (1 —D¢)(1 — pi—1)

f, 3)



(a) Off;road Vehicle (b) Cls ] 'c) ojave Desert ] (d) Ellensburg "
Figure 4: (a): Off-road vehicle used for dataset collection. (b - d): Example images from each site.

For detailed derivations, please refer to the supplementary materials.
2.3 Semantic-conditioned Neural Processes for Elevation Modeling

Semantic-conditioned Neural Processes. With semantic features, a set of context points is defined
as (X¢, Hc, Fo) := {(zs, %), hi, f; }icc. Accordingly, target points are defined as (X, Fr) :=
{(z;,y;),f;}jer. NPs learn to predict the conditional distribution p(Hr|X7,Fr, X¢, Hc, Fo)
by using a global latent variable z and context representation r¢:

p(Hy X1, Fr, Xo, He, Fe) — / p(Hy[Xr, Fr.re, 2)q(zlsc ) dz, @

where s¢ = s(X¢, PAIC7 F¢),andre = r(Xc, ﬂc, Fc, X, Fr). This strategy enables the model
to infer target values not only based on the observed elevation estimates but also to utilize rich
semantics obtained from images and the entire point cloud. Semantic information provides a better
understanding of ground geometry and objects, and it improves the accuracy of interpolation and
extrapolation where we have semantics but no ground elevation estimates. Our updated ELBO is:

log p(Hr| X7, Fr, Xc,He,Fe) > By [log p(Hr X7, Fr, v, 2)]—Dxi.(q(2]s7)||a(2]sc)).

Ball Query Attention. As illustrated in Fig. 3, our approach uses context points generated from
observations that cover a 100 m x 100 m range. With our default resolution of R = 0.4 m, we can
have a maximum of 256 x 256 points for each context and target. While existing methods [28, 37]
model every relation between them using global attention mechanisms, they are often not applicable
to our case due to their high memory requirements. Instead, we propose using ball-query attention,
which significantly reduces memory and computations while preserving spatial relations within local
regions. Specifically, with given query, key, and values Q € RM>*P K,V € RV*P  we retrieve a
subset of keys and values {k;, V;},cg(q,) for each query q; in an e-ball B(q;) in the BEV space.
For keys K (q,) and values V z(q,) for each e-ball B(q;), we define scaled dot-product attention for
each query q; as follows:

Attention(q;, K5(q,), Vis(q,)) := Softmax(a] Kp(q,)/ VD) Ve(q,) € RP. (5)

In practice, we extend this equation to all queries and perform a batch operation for computational
efficiency. We apply a multihead attention mechanism [31] based on this dot-product attention. This
ball query attention is used for all three attention layers in our architecture.

3 Experiments

This section describes the experimental settings and evaluation results for three different off-road
dataset sequences. The datasets are collected using a Polaris RZR vehicle [38] (Fig. 4 (a)), which
can travel at a speed of up to 20m/s (45mph) on off-road terrains. It has three Velodyne 32-beam
LiDAR sensors, two at the front and one at the back, and is also equipped with four MultiSense
stereo cameras, mounted at the front, left, right, and back. Implementation details are included in
the supplementary materials.

3.1 Datasets

Datasets (Fig. 4 (b - d)) are collected from CA Hills that present grassy up and down hills with tall
trees, Mojave desert that has on- and off-trail regions with Joshua trees, small bushes, and rocks,
and Ellensburg that has large and small bushes with interesting negative obstacles such as ditches,
steep up/down hills, and cliffs. CA Hills and Mojave sequences are adopted from TerrainNet [25],
and the Ellensburg sequence is processed by the same protocol. Sequences are pose-corrected using
an offline SLAM algorithm [39], and sensors are synchronized to minimize their time gap. Elevation



Elevation Err. (m) | Slope Err. (%) | Curvature Err. (1/m) |

Dataset Method Total ~ Obs.  Unobs. | Total Obs. Unobs. | Total Obs. Unobs.
SGP 1.825  1.029  2.062 53 4.4 5.5 0.036 0.034  0.036
DeepGP 1.850 1.047  2.091 100 6.8 11.0 0.065 0.048  0.071

HMs + RFFs 1795 0990  2.036 5.6 43 6.0 0.039  0.035  0.040
BEVNet [24] 0.591 0.274  0.686 4.7 32 5.2 0.041  0.030  0.045
TerrainNet [25] 0.806 5.1 0.041

CA Hills Fusion [24, 25] 0.628 0.287  0.730 4.8 33 53 0.042  0.032  0.046

Ours 0.586 0.280  0.677 4.2 3.1 4.6 0.036 0.028  0.039
HMs + RFFs-TA 1.191  0.672 1934 4.8 42 58 0.036 0.034  0.039
BEVNet-TA [24] 0.570 0276  0.659 4.8 32 52 0.041  0.031  0.045
TerrainNet-TA [25] | 0.791 - - 53 - - 0.045 - -
Fusion-TA [24,25] | 0.527 0272  0.604 4.8 35 53 0.045 0.034  0.048
Ours-TA 0512 0304  0.574 4.2 33 4.5 0.038 0.031 0.041
SGP 0.733 0409  0.808 32 3.4 3.1 0.027 0.030  0.026
DeepGP 0.765 0427 0.844 72 5.7 7.6 0.050 0.042  0.053
HMs + RFFs 0.678 0.334  0.758 3.0 2.9 3.0 0.027 0.028  0.027
BEVNet [24] 0265 0.141  0.294 2.8 2.3 2.9 0.027 0.022  0.029
TerrainNet [25] 0.455 - - 3.1 - - 0.028 - -
Mojave Fusion [24, 25] 0271 0.141  0.302 2.8 2.3 3.0 0.028 0.024  0.030

Ours 0255 0.131  0.284 2.5 2.0 2.6 0.023  0.019  0.025

HMs + RFFs-TA 0452 0222 0.779 2.8 2.6 3.1 0.026 0.026  0.026

BEVNet-TA [24] 0354 0.162  0.399 3.0 2.4 32 0.030 0.025 0.031
TerrainNet-TA [25] | 0.452 - - 33 - - 0.030 - -
Fusion-TA [24,25] | 0.229 0137 0.251 3.0 2.4 3.1 0.031 0.026 0.033

Ours-TA 0.225  0.154 0242 24 21 25 0.023  0.020  0.024
SGP 1232 0.591 1.373 54 4.2 5.7 0.039 0.035 0.041
DeepGP 1.194 0.583  1.328 8.6 6.2 9.2 0.059 0.047  0.063
HMs + RFFs 1.085 0.541 1.205 53 39 5.6 0.040 0.035 0.041

BEVNet [24] 0.636 0298  0.710 57 3.8 6.1 0.049 0.036  0.053
TerrainNet [25] 0.730 - - 54 - - 0.043 - -
Fusion [24, 25] 0.697 0307  0.782 59 39 6.3 0.052 0.037  0.057

Ours 0.585 0.282  0.652 5.0 3.6 54 0.041 0.033  0.043

HMs + RFFs-TA | 0.783 0443  1.132 5.1 43 59 0.039 0.037  0.043
BEVNet-TA [24] | 0.693 0.316  0.776 5.7 4.0 6.1 0.049 0.037  0.052
TerrainNet-TA [25] | 0.746 - - 5.6 - - 0.044 - -
Fusion-TA [24,25] | 0.640 0.298 0.715 5.8 4.0 6.2 0.052  0.039  0.056
Ours-TA 0.586 0299  0.649 5.2 37 55 0.044  0.034  0.046

Table 1: Comparisons with baseline on the CA Hills, Mojave deserts, and Ellensburg sequences.

Ellensburg

ground truths are generated by aggregating 300 LiDAR scans (running at 10 Hz) with a time range
of (t — 150, t + 149) and calculating the minimum height in each BEV grid cell [25], allowing us to
have ground truth elevations even in unobserved regions at time ¢.

3.2 Experimental Setup

Evaluation Metrics. We measure mean absolute error (MAE) of 1) elevation predictions (meters),
2) their slopes (%) along with = and y axes, and 3) their curvature (1/meters). Slopes are measured
by 100 x % and 100 x 2—2. Note that the curvatures are approximated using Laplacian filtering.
We measure these metrics separately for observed and unobserved regions. Observed regions de-
note BEV cells with current LIDAR observations at each timestep ¢; otherwise, they are unobserved
regions. We expect different levels of precision for observed and unobserved regions. The models
should predict precise elevations in observed areas, while they may only predict smoother, approxi-
mate elevations in unobserved regions.

Baselines. We compare our method with Deep Gaussian Processes (DeepGPs) [40], Hilbert Maps
(HMs) with random Fourier features (RFFs) [41], Sparse Gaussian Processes (SGP) [42, 43, 44],
BEVNet [24], TerrainNet [25], and a fused approach of BEVNet and TerrainNet (i.e., Fusion). SGP
takes a representative subset of context points as inducing points to approximate the full context
points, reducing the computational complexity of GPs by applying Bayes’ rule. Considering that
our LiDAR context points for each frame can cover a 256 x 256 BEV grid, SGP offers significant
efficiency in both memory and time complexity. Note that GPs do not fit in our 80GB GPU memory,
and we exclude them from baselines. Fusion utilizes both LIDAR and image encoders and employs a
single inpainting network to predict elevation. Please refer to the supplementary materials for details
of other baselines.

3.3 Quantitative Comparisons
In-domain Comparisons. Table 1 presents comparisons with baselines on three sequences in the en-

tire, observed, and unobserved areas. Our method achieves the lowest errors on most metrics across
all sequences. Importantly, our method consistently achieves the lowest slope errors. In high-speed



Dataset | Method | Elev. (Gen. Err.) | Slope (Gen. Err.) | Curv. (Gen. Err.)

SGP 2.853 (+0.028) 9.0 (+3.7) 0.082 (+0.046)

Ellensbure | BEVNet [24] 1.251 (+0.660) 6.4 (+1.7) 0.052 (+0.011)

A Hillbs TerrainNet [25] | 1.346 (+0.540) 6.0 (+0.9) 0.043 (+0.002)

| Fusion [24,25] | 1.185 (+0.557) 6.0 (+1.2) 0.050 (+0.008)

Ours 1.113 (+0.527) 54 (+1.2) 0.044 (+0.008)

SGP 1.775 (+0.042) 44 (+1.2) 0.043 (+0.016)

Ellensbur BEVNet [24] | 0.542 (+0.277) 3.7 (+0.9) 0.037 (+0.010)
g .

~Mojave TerrainNet [25] | 0.578 (+0.123) 33 (+0.2) 0.029 (+0.001)

Fusion [24, 25] | 0.599 (+0.328) 3.6 (+0.8) 0.038 (+0.010)

Ours 0.446 (+0.191) 3.0 (+0.5) 0.028 (+0.005)

Table 2: Comparisons with baselines under two generalization scenarios: Ellensburg—CA Hills
and Ellensburg—Mojave Desert. Magenta errors are the gaps between in-domain and generalization.

off-road navigation, precisely estimating slopes is essential not only to maintain high speed on vari-
ous terrains but also to avoid crashes and rollovers. BEVNet [24] achieves the second-lowest errors
in most cases, demonstrating the effectiveness of using LiDAR points for predicting elevations. On
the other hand, the pure image-based method, TerrainNet [25], fails to achieve comparable accuracy
in most cases. This is because images provide indirect semantic information, whereas LiDAR points
provide direct supervision of ground heights. Another interesting observation is that our method
outperforms the Fusion method [24, 25] by a large margin, especially in terms of slope and curva-
ture. While both methods utilize the same modalities, Fusion even fails to outperform BEVNet [24],
proving the difficulty of fusing different modalities.

Temporally aggregating observations in our method significantly improves elevation errors in the
CA Hills and Mojave Desert sequences. However, we observe two interesting points: 1) Applying
aggregation to Ellensburg sequences does not improve much, and 2) errors on observed regions at
each time ¢ increase after aggregation. We conjecture that the first issue occurs because the vehicle’s
speed was slower in Ellensburg than in the other sequences, due to the presence of many negative
obstacles. That is, the observation space is still limited even after aggregation, failing to improve
as much as in the other sequences. Indeed, if we compare the error gain of elevation errors in un-
observed regions, the gain in Ellensburg is only 0.003, while it is 0.103 and 0.042 in CA Hills and
Mojave Deserts.

For the second issue, we conjecture that incorrect handling of observation uncertainty in LiDAR
readings may lead to a performance drop in observed regions. In LiDAR aggregation, we do not
incorporate their associated uncertainty, e.g., degradation of measurement confidence over time,
from the past observations. Instead, they have the same impact as the current observation. This
problem can be mitigated by associating it with the corresponding uncertainty, but this remains
future work.

Generalization. Generalization of methods to unseen environments is a pivotal concern for deploy-
ing robots on various sites. To demonstrate their generalization capability, we evaluate the methods
under two scenarios: from Ellensburg to the CA Hills and from Ellensburg to the Mojave Desert.
As shown in Table 2, our method exhibits the lowest errors on most metrics and scenarios. More
importantly, our method presents the lowest generalization error gaps in elevation errors (magenta-
colored errors). That is, ours achieves the best elevation accuracy and also the lowest generalization
gap among baselines. On the other hand, BEVNet [24] suffers from huge generalization errors in
most metrics.

Uncertainty. To evaluate the quality of predicted uncertainty, we modify the BEVNet training to
estimate predictive distribution by changing the loss function from Smooth-L1 to negative log-
likelihood (NLL). We report NLL and expected normalized calibration error (ENCE) [45] for com-
parisons. As shown in Table 3 (left), uncertainty training of BEVNet accompanies significant accu-
racy drops in elevation predictions on all three sequences. Furthermore, in the case of Ellensburg, we
observe very high NLL values during BEVNet training, indicating that the predicted distribution di-
verges strongly from the ground-truth elevation. On the other hand, our method achieves reasonable
NLL and ENCE values, outperforming BEVNet on Mojave and Ellensburg sequences. However,
our method fails to surpass SGP on both metrics. This is because NPs present estimated, amortized
uncertainty from learned networks, whereas SGP computes uncertainty through direct Bayesian in-
ference conditioned on observed data.



GT - Geometré Ours Variance

. BEVNet TerrainNet Fusion Sparse GP Point Cloud .
Figure 5: Qualitative comparisons on the CA Hills sequence. The predicted elevations are visual-

ized in 3D and also color-coded with a repeated pattern.

Dataset |  Method | Elev. Slope Curv. NLL, ENCE, Method | Elev. Slope Curv.
Ellensburg SGP 1853 9.0 0082  4.58 176 No Semantics 1566 9.6  0.099
CA Hille | BEVNetNLL | 1203 82 0084 16801.92 390 +LiDAR 0595 42 0.035
- His Ours 1113 54 0.044 8.46 2.20 +Image 058 4.2  0.036
Ellensburg SGP 0775 44 0043  0.61 0.4 Single 0586 42 0.036
oMoi BEVNetNLL | 0415 34 0034  2.12 0.86 +LiDAR Agg. 0513 42 0038
ojave Ours 0446 3.0  0.028 1.37 0.63 +Img. Bayes. Update | 0.512 42  0.038

Table 3: Uncertainty comparisons and ablation studies. (left): Comparisons of uncertainty pre-
diction between ours and BEVNet trained with negative log-likelihood (NLL) loss. (right): Ablation
studies of our method. Upper group: Effectiveness of each modality. Lower group: Effectiveness of
temporal aggregation types.

3.4 Qualitative Comparisons

Fig. 5 illustrates the ground truth and elevation predictions from our method and baselines. We vi-
sualize 3D elevations and their colored meshes with repeated patterns to observe height differences.
Also, we visualize the predicted uncertainty (i.e., variance) from our method with the point cloud.
As shown, our method accurately estimates narrow ditches, while other baselines fail to capture
them. Moreover, our uncertainty predictions align with the observations from the point cloud. More
qualitative examples can be found in the supplementary materials.

3.5 Ablation Studies

Effectiveness of Each Modality. The upper group of Table 3 (right) demonstrates the effectiveness
of using LiDAR and/or image modalities for elevation predictions. As reported, our method benefits
from both modalities significantly. Also, considering that SGP and our no-semantic method take the
same inputs, NPs present a more effective, flexible modeling of terrains.

Effectiveness of Aggregations. The lower group of Table 3 (right) shows the effectiveness of ag-
gregations of each modality. Using aggregated LiDAR points improves performance significantly,
while learning-based aggregation [24, 25] sometimes fails to improve, as shown in Table 1. While
adding image aggregation brings improvements in elevation predictions, it is not significant. This
is because images only provide indirect supervision to elevations, whereas LiDAR provides more
direct information.

4 Conclusion

In this paper, we demonstrate the potential of using Neural Processes for terrain elevation model-
ing in off-road environments. We utilize semantic information from LiDAR and camera sensors to
condition the context and target points in Neural Processes. Also, we effectively reduce floating-
point operations with ball-query attentions while ensuring spatially consistent and precise elevation
predictions. Our method alleviates the elevation over-smoothing tendencies of existing methods and
provides predictive uncertainty. We validated our approach on three different off-road sequences
collected from different testing sites and demonstrated that our method outperforms competing ele-
vation estimation methods.



5 Limitation

While our method demonstrates strong performance, there remain limitations for future work. First,
our temporal aggregation can be further improved by compensating for the ego vehicle’s elevation
difference and leveraging the learned aggregation module. While incorporating the ego vehicle’s
elevation into learned modules is not trivial, we believe there is room to adopt a more capable learned
aggregation module for both LiDAR and image modalities. Secondly, developing representations
with adaptive resolution is another future work. We assume a regular grid of BEV maps to predict
elevations, but Neural Processes learn continuous functions. Thus, we can adaptively sample the
elevation if we need a finer-grained resolution in a particular region, and vice versa. While this is
still possible for us, our downstream planning and control algorithms are still locked in fixed BEV
grids. Devising an advanced representation will be our future work. Additionally, as presented in
uncertainty comparisons, NPs predict uncertainty from learned networks; therefore, they must be
appropriately calibrated. Lastly, we have not validated our method beyond our desired ranges, i.e.,
-51.2 to 51.2 meters. Considering that stochastic processes often fail to extrapolate context points
to target points far from them, Neural Processes may also have such shortcomings. Identifying and
analyzing such problems will be our future work.
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A Bayesian Filtering of Image BEV Features

This section details how we temporally aggregate image BEV features using Bayesian updates. As
aforesaid in the manuscript, we lift and splat the image features at time ¢ to the BEV space and use
the normalized density of each BEV grid as the probability of being correct, p;. Then, the temporally
aggregated image features f; are obtained by

_ o ft +pe—1fi1 PtPi—1

f -~ Pt = - - ;
¢ Pt +pi-1 T pipe + (1—p¢)(1 —pi-1)

(6)

where f; denote the image features at time ¢ before aggregation, and p; indicate the aggregated
probability.

Lifting Image Features. With given image intrinsic matrix K € R3*3 and extrinsic matrix of
camera to ego vehicle’s base [R|t] € R3*4, each pixel location u, v with its stereo depth d is lifted

to the ego vehicle’s space by
x U
<y> =d (v) (K™HTRT +t. (7)
z 1

Splatting. Afterward, x,y values are truncated within predefined ranges, i.e., z: [-51.2 m, 51.2 m]
and y: [-51.2 m, 51.2 m], and binned into the BEV grid using a resolution of R = 0.4 m. For
each BEV cell, we average the lifted image features (i.e., ff 'Y} and also count the number of image
features (i.e., density o;"¥). We normalize the density using the maximum density at time ¢ to have
a probability of each cell for being correct, Py.

Temporal Aggregation of Probabilities. Probability p; is the probability of being correct (i.e.,
P(C)) for each cell with given observations f;, i.e., p; = P(C|f;). Accordingly, p;_1 = P(C|f;_,)
indicates the probability of being correct for previously aggregated features. Then, we aim to obtain
pP: = P(C|f‘t, f;,_1) = P(C|f;). Using Bayes’ rule,

f,,f,_1|C)P(C)
P(ft7 ft—l)

5 P
P(Clf, £1) = (

Under the conditional independence assumption, i.e., P(f;, f;_1|C) = P(f;|C)P(f,_1|C), we can
obtain the following:
£|C)P(E,_1|O)P(C)
P(f,,fi_1)
P(f;|=C)P(f;_1|~C)P(-C)
P(f;, ;1)

- P
P(Clf, £;1) = (

P(=C|f;, f;_1) =

. (8)

We can relate each term, P(f,|C), P(f,_1|C) to p¢, p;_1 using Bayes’ rule:
P(C|E)P(E) _ piP(E:)

O R (&
_ P(CIfi_1)P(fi—1)  pi—1P(fi1)

From Equ. (8), we can obtain

. B ﬁtP(ft) . pi_1P(fi_1) . P(C) f’tpt—1P(ft)P(ft—1)
P(C|f;, fi1) = P(C) P(C) P(f,,f,_1) - P(C)P(f, 1)

Similarly,
—P¢)(1 — pe—1)P(£;)P(f;—1)
P(—C)P(f:, f;—1)

P 1
P(=C|f, fi—1) = (
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Then, Pt = P(C|ft, ftfl) is

. P(C|f,, £,
P(C|f,,f_1) = _ PCfs,fio)
P(C|f;, f;_1) + P(=C|f;, f; 1)
lh)t?égl
P

T PPt 4 (A=p)(A=pt—1) " (9)

P(C) P(=C)

Assuming we have a uniform prior, P(C') = P(=C') = 0.5, Equ. (9) reduces to

pr =P(Clf, fi1) = - Pt (10)

Ppi—1+ (1 —pPe)(1 —pe1)’
B Related Work

B.1 Elevation Modeling

Deep learning methods [4, 25, 24, 5, 7, 26] have recently emerged as powerful alternatives for
GPs and BGKSs due to their strong capabilities in learning. TerrainNet [25] segments out semantics
on BEV space and predicts their elevations from camera sensors. Chung et al. [2] also predicts
elevations from camera sensors but in a longer range, covering around 100 mx 100 m range with
transformer-based architecture. We adopt TerrainNet [25] as one of the baselines for comparisons.
We also adopt BEVNet [24] as a baseline, which estimates traversability using LiDAR readings in
both urban scenes and off-road environments. As the authors noted in their paper, BEVNet can be
easily extended to the elevation modeling task. Additionally, we merge both methods and use a fused
model as another strong baseline.

B.2 Neural Processes

NPs are a family of meta-learning models that combine the flexibility of neural networks with the
probabilistic advantages of stochastic processes [27, 46]. NPs [28, 37, 29, 28] learn data-driven rep-
resentations without fixed kernel assumptions, enabling flexible predictions and efficient inference.
Early NP variants suffered from context aggregation bottlenecks, causing overly smooth predictions.
To address this, Attentive Neural Processes (ANPs) introduced cross-attention between context and
target points, significantly improving predictive sharpness and uncertainty modeling [28, 30]. How-
ever, incorporating semantic context and localized attention for sparse spatial data, particularly cru-
cial in robotics applications, remains relatively unexplored.

B.3 Occupancy Mapping

Our task and occupancy mapping [41, 47, 48, 49] share conceptual foundations in modeling spa-
tially continuous environments under uncertainty. Hilbert Maps (HMs) [41] approximate continu-
ous, binary occupancy based on kernel approximations such as random Fourier features. Bayesian
Hilbert Maps (BHMs) [47] extend this to learn long-term occupancy using a variational Bayesian
approach. More recent works further enhance occupancy mapping through Gaussian process field
shaping [48] and generative modeling techniques, such as diffusion-based synthesis [49]. However,
key differences remain. Occupancy mapping typically models binary 3D occupancy, with emphasis
on reconstructing observed regions or estimating traversable free space. On the other hand, our work
focuses on terrain elevation modeling, a 2.5D surface representation, which requires not only inter-
polating sparse observations but also extrapolating to unobserved areas. Thus, learning expressive
spatial priors that can capture fine-grained geometry, such as negative obstacles or sudden slopes,
is essential. Additionally, our approach necessitates learning to remove non-ground structures (e.g.,
vegetation, vehicles), a challenge not typically addressed in standard occupancy mapping.
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C Additional Experimental Setups and Results

This section provides details about the baselines and implementation, then presents additional abla-
tion studies and qualitative comparisons.

C.1 Baselines and Implementation Details

We adopt Deep Gaussian Processes (DeepGPs) [40], Hilbert Maps (HMs) with random Fourier
features (RFFs) [41], Sparse Gaussian Processes (SGP) [42, 43, 44], BEVNet [24], TerrainNet [25],
and Fusion [24, 25] as our baselines.

DeepGPs. We adopt two-layered DeepGPs with 8 hidden dimensions. We use a RBF kernel with 128
and 64 inducing points for the first and last layers. Implementations are based on the GPytorch [50]
library.

Hilbert Maps with RFFs. We adopt the offical implementation of Hilbert Maps [41] and modify
the binary classifier with a MLP-based regression. We use the number of Fourier features of 1,000
and v = 1.0.

SGP. We use a Rational Quadratic kernel with © = 0.7 and o = 10:

1 —a
kRQ(X]_,X2) = <1 + %(Xl — X2)T®_2(X1 — X2)> .

We set the maximum number of inducing points to 14,000. The above parameters are found by opti-
mizing hyperparameters to maximize the marginal log likelihood on a subset of validation samples.

BEVNet. We modify the original implementation to have a front-facing image and add an image
encoder (i.e., EfficientNet-BO [51]). The predicted image features are concatenated to the corre-
sponding LiDAR points. This is to improve the prediction accuracy on the vehicle’s front regions.
We train the model using a SmoothL1 loss function with 3 = 0.2. The model parameters are opti-
mized using the Adam optimizer [52] with a step learning rate scheduler. Note that we use the same
optimizer and learning rate scheduler across all baselines with a learning rate of 1e-3.

TerrainNet. We follow the original implementation of TerrainNet [25]. We first train the depth
completion model across all dataset sequences using the cross-entropy loss function. Then, we train
the full model using the Smooth L1 loss for elevation predictions and cross-entropy loss for depth
completion. Originally, TerrainNet was validated in the range of [-38.4 m, 38.4 m] because stereo
depth and completed depth accuracy drop significantly in long ranges. However, we adopt [-51.2 m,
51.2 m] range for fair comparisons with other baselines. The results can be improved by adopting a
shorter range for TerrainNet.

Fusion. The fused model of BEVNet and TerrainNet has an identical LiDAR encoder and inpainting
module. To incorporate internet-scale knowledge, we replace the image encoder from EfficientNet-
BO to Dino-V2 [33]. For recurrency, we aggregate LiDAR points, identical to our method, but train
ConvGRU as proposed in BEVNet [24] and TerrainNet [25]. Identical to other baselines, it is trained
with Smooth L1 loss.

Our Method. We adopt € = 2.0 meters for the ball-query attention and set the maximum number
of neighbors and the number of heads as 32 points and 4, respectively. Also, we use the hidden
dimension of 64 for both deterministic and latent paths. During training, we set the maximum context
points for each instance to 7,000, while we use the entire context points for validation. We use a batch
size of 4, and the model is trained with 4 NVIDIA A100 GPUs, 80 GB.

C.2 Ablation Studies

This section presents additional ablation studies about the effectiveness of ball query attention and
computational cost.
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Elevation Err. (m) | Slope Err. (%) | Curvature Err. (1/m) |
Method Total Obs. Unobs. | Total Obs. Unobs. | Total Obs.  Unobs. \ NLL

Global Attn. 0.619 0.279  0.720 4.2 3.1 4.6 0.035 0.028 0.038 | 4.73
BQA,e=1.0 | 0597 0.277 0.693 4.3 3.0 4.7 0.036  0.028 0.039 | 3.25
BQA,e=2.0 | 0.586 0.280 0.677 4.2 3.1 4.6 0.036  0.028 0.039 | 2.64
BQA,e=3.0 | 0.603 0.274 0.701 4.3 3.1 4.7 0.036  0.028 0.039 | 3.63

Table 4: Ablation studies on global attention (i.e., Global Attn.) and ball query attention (i.e.,
BQA) across different ¢ values.

Method ‘ Total Param.  Trainable Param. GFLOPs Memory Infer. Time (Sec.)
BEVNet [24] 31.45M 31.45M 113.55 1,372MB 0.025
TerrainNet [25] 18.57M 18.57M 241.05 1,112MB 0.053
Fusion [24, 25] 41.99M 19.93M 295.31 2,286MB 0.058
Ours - BQA 42.7TM 20.71M 434.24 13,514MB 0.161
Ours - Global Attn. 42.7TM 20.71M 521.66 60,812MB 0.252

Table 5: Analysis of computational costs for each method. GFLOPs and GPU memory are mea-
sured using the validation set of the CA Hills dataset, and the maximum GPU memory usage is
reported throughout the sequence.

Global Attention vs Ball Query Attention. We compare the ball query attention with global at-
tention and demonstrate the effectiveness of different € values in Table 4. As shown, all kinds of
attention effectively capture the slopes and curvature, while using global attention falls behind the
ball query attention. The error gap mainly comes from the errors in unobserved regions. It shows an
L1 error of 0.720, much higher than 0.677 from our best setting. This could be because the nearest
LiDAR points are much sparser in unobserved regions. Therefore, if we apply global attention, the
model loses locality in attention and is diluted by non-local information, failing to estimate eleva-
tions accurately. On the other hand, ball query attention only leverages local information and effec-
tively preserves local characteristics. Among the ball query attention results, e = 2.0 demonstrates
the lowest elevation error and negative log-likelihood (NLL). However, we observe no significant
error gaps in slopes and curvatures.
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Figure 6: An analysis of inference time for the number of context points.

Inference Time (Sec.)

Computational Cost Analysis. Table 5 reports the total number of parameters, trainable parame-
ters, floating operations, and GPU memory. TerrainNet [25] contains the fewest parameters and GPU
memory consumption, and BEVNet [24] presents the fewest floating operations. Fusion [24, 25] has
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around 40M parameters, requiring more GPU memory and FLOPS than other baselines. In our
methods, attention mechanisms require more floating operations and GPU memory. Using global at-
tention requires up to 60GB, which may not be feasible for onboard computing for off-road vehicles.
However, applying ball query attention significantly reduces GFLOPs and GPU memory consump-
tion by 17% and 78%, respectively. GPU memory usage can be further reduced by applying mixed
precision (e.g., floating point 16), and it also allows faster inference speed. Also, we further analyze
our inference time by measuring inference time based on the number of context samples. Each con-
text point covers 0.4mx0.4m area, and as shown in Fig. 6, inference time linearly increases as more
context points are used.

Sample Efficiency. We analyze the sample efficiency from two aspects: context points and training
sample efficiency. As shown in the tables (elev. error), our method maintains reasonable error rates
even with small context sample sizes, thanks to semantic feature conditioning. Additionally, our
method maintains reasonable performance with varying numbers of randomly sampled training data
points. We believe that our method is robust to sparse training samples, provided they are sampled
uniformly at random across the entire dataset. In contrast, using the first n% frames, the error more
steeply degrades, experiencing greater distributional gaps. Still, we believe our method maintains
reasonable performance, without failing drastically.

% of Observations as Context Points
Ellensburg—CA Hills | 20% 40% 60% 80% 100%

Elevation Error \1.136 1.123  1.123 1.115 1.113

Table 6: Impact of the number of context points from observations on elevation accuracy.

% of training set
CA Hills 25%  50%  75%  100%

0.679 0.604 0.599 0.586
0928 0.735 0.683 0.586

Random samples
First n% frames

Table 7: Impact of the number of training samples on elevation accuracy.

C.3 Qualitative Results.

This section makes qualitative evaluations between ours and baselines, our single-frame and
temporally-aggregated models, and different samples from varying global latent z in our method.
This section presents three different qualitative evaluations. First, we compare our predictions with
baselines. And then, we demonstrate the effectiveness of using temporal aggregation compared to
single-frame results. Lastly, we show multiple elevation predictions from varying global latent z of
our method.

Comparisons with Baselines. Fig. 7 shows our predicted results and baseline methods on all three
sequences. As shown, baselines struggle with predicting negative obstacles in most cases, while our
method successfully finds them by accurately estimating the slopes (white boxes on color-coded
images). Also, the predicted variances align with the point cloud observations.

Effectiveness of Temporal Aggregation. Fig. 8 demonstrates the effects of temporal aggregation
by comparing the predictions with single-frame predictions. As shown in geometry and color-coded
visualizations (white boxes), the temporally-aggregated model preserves fine details from previous
history and presents more accurate estimations. Also, temporal aggregation lowers the uncertainty
of previously observed regions, as shown in variance comparisons.

Different Samples from Varying Global Latent. Our method is based on latent NPs where the
decoder is conditioned on the global latent context vector z. If we sample different z from the
predicted latent distribution, we can obtain different samples, especially in unobserved or highly
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Figure 7: Qualitative comparisons on the CA Hills, Mojave Desert, and Ellensburg sequences.
The predicted elevations are visualized in 3D and also color-coded with a repeated pattern.

uncertain areas. From a planning and control perspective, this can be a significant benefit since the
planner/controller can evaluate the trajectories on multiple possible scenarios. Also, we can maintain
spatial correlation between BEV cells because they are all generated from the same global latent z,
rather than individually sampled in their own distributions. As shown in Fig. 9, we can obtain various
elevation predictions in uncertain or unobserved areas (i.e., white boxes) while preserving accurate
elevation estimations in confident and observed regions.
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Figure 8: Effectiveness of temporal aggregation in CA Hills. The predicted elevations are visual-
ized in 3D and also color-coded with a repeated pattern.
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Figure 9: Different elevation predictions across varying global latent >z samples from our
method.
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