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Abstract

Pre-trained language models (PLMs) show im-001
pressive performance in various downstream002
NLP tasks. However, pre-training large lan-003
guage models demands substantial memory and004
training compute. Furthermore, due to the sub-005
stantial resources required, many PLM weights006
are confidential. Consequently, users are com-007
pelled to share their data with model owners for008
fine-tuning specific tasks. To overcome the lim-009
itations, we introduce Plug-in External Mem-010
ory Adaptation (PEMA), a Parameter-Efficient011
Fine-Tuning (PEFT) method, enabling PLM012
fine-tuning without requiring access to all the013
weights. PEMA integrates with context rep-014
resentations from test data during inference015
to perform downstream tasks. It uses external016
memory to store PLM-generated context rep-017
resentations mapped with target tokens. Our018
method utilizes LoRA-based weight matrices019
in the PLM’s final layer to enhance efficiency.020
Our approach also includes Gradual Unrolling,021
a novel interpolation strategy to improve gen-022
eration quality. We validate PEMA’s effective-023
ness through experiments on syntactic and real024
datasets for machine translation and style trans-025
fer. Our findings show that PEMA outperforms026
other PEFT approaches in memory and latency027
efficiency for training, and also excels in main-028
taining sentence meaning and generating appro-029
priate language and styles.030

1 Introduction031

Pre-trained language models (PLMs) are widely032

used in downstream NLP tasks (Devlin et al.,033

2019a). Recent developments in large language034

models have shown remarkable performance in035

zero-shot and few-shot learning scenarios (Brown036

et al., 2020; Hendy et al., 2023; OpenAI, 2023b;037

Anil et al., 2023; Chowdhery et al., 2022). How-038

ever, fine-tuning is still required to optimize the039

performance of the NLP tasks such as machine040

translation (Üstün and Cooper Stickland, 2022;041

(a) Problems for fine-tuning proprietary PLMs

(b) PEMA training phase

(c) PEMA inference phase

Figure 1: A motivation for PEMA. (a) The data own-
ers who want to fine-tune PLMs encounter a problem
when the PLM owner refuses to share all the weights
of the PLM. (b) In the PEMA training phase, the data
owner takes a CR from the PLM owner by providing a
context prompt. They subsequently train their PEMA
model with their dataset. (c) At inference, the data owner
takes a CR for test data from the PLM owner. Using
Gradual Unrolling (GU), they generate the next-token
by interpolating between PEMA and PLM next-token
probabilities.

Huang et al., 2020; Ding et al., 2022). The most 042

straightforward approach to fine-tuning is full fine- 043

tuning (Raffel et al., 2020; Qiu et al., 2020), which 044

involves fine-tuning all parameters in a PLM. Yet, 045

this approach requires substantial resources regard- 046

ing memory and training compute (Iyer et al., 2022; 047

Zhang et al., 2022; Touvron et al., 2023). To over- 048

come this limitation, researchers have proposed 049

Parameter-Efficient Fine-Tuning (PEFT) methods 050
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to fine-tune a full model efficiently. Adapter tun-051

ing (Pfeiffer et al., 2021; He et al., 2021; Houlsby052

et al., 2019) utilizes small, additional parameters053

known as adapters inserted between layers within054

a PLM. On the other hand, LoRA (Hu et al., 2022)055

uses trainable low-rank matrices that incrementally056

update the pre-trained weights. These fine-tuning057

methods require access to all the weights of PLMs.058

However, proprietary PLMs such as Chat-059

GPT (OpenAI, 2022), Bard (Pichai, 2023), and060

Claude (AnthropicAI, 2023) are confidential.061

Hence, the owners of these PLMs do not reveal062

all the model weights. Consequently, data owners063

possessing their datasets and wishing to fine-tune064

proprietary PLMs for specific downstream tasks065

must provide their datasets to the PLM owners for066

fine-tuning (OpenAI, 2023a). However, this pro-067

cess can be challenging due to the confidential na-068

ture of the datasets, which may involve privacy con-069

cerns (Guinney and Saez-Rodriguez, 2018). Fig-070

ure 1a shows problems for fine-tuning proprietary071

PLMs. To overcome this situation, (Xiao et al.,072

2023) proposes the offsite-tuning approach that073

uses one-third of the middle layers of a PLM, re-074

ferred to as the emulator. Nevertheless, this ap-075

proach still needs a large parameter size, and com-076

pressing the full model into an emulator requires a077

computationally intensive distillation process.078

To address the challenges mentioned above, we079

introduce a novel PEFT method named Plug-in080

External Memory Adaptation (PEMA) designed081

for efficient fine-tuning of proprietary PLMs in082

machine translation tasks. PEMA utilizes LoRA-083

based weight matrices designed for learning down-084

stream tasks with accessible features provided by085

OpenAI API (OpenAI, 2022) and minimal part of086

PLM’s weight (language model head).087

In the training phase, the data owner begins the088

process by providing a prompt with initial input089

to the PLM owner, which includes an instruction090

and a source sentence from a parallel corpus. The091

PLM owner receives this initial input to generate a092

context representation and predict the next-token.093

Then, it iteratively processes subsequent inputs con-094

taining the predicted next-tokens. This approach095

avoids the need for the full dataset from the data096

owner. Throughout this process, the data owner097

builds an external memory comprised of context098

representations and corresponding desired target099

tokens. They train PEMA by reconstructing the100

stored context representations and predicting target101

tokens based on these representations. Figure 1b102

shows the training phase process of PEMA. 103

During the inference phase, the data owner uses 104

a prompt to request a context representation for 105

test data from the PLM owner. The PLM owner 106

then outputs a context representation and a next- 107

token probability given the prompt. PEMA also 108

outputs a next-token probability based on a con- 109

text representation. These probabilities are interpo- 110

lated to compute a final next-token probability. We 111

propose Gradual Unrolling (GU ), an interpolation 112

strategy that initially emphasizes PEMA’s distri- 113

bution, gradually shifts to the PLM’s context-based 114

predictions as the sentence progresses. Figure 1c 115

illustrates the inference phase process of PEMA. 116

We evaluate PEMA by comparing it with other 117

PEFT methods. PEMA shows better resource ef- 118

ficiency, consuming less GPU memory and run- 119

ning faster. Additionally, PEMA outperforms other 120

baselines in translating English sentences into Ger- 121

man and paraphrasing informal sentences into for- 122

mal ones while preserving the original meaning. 123

Lastly, we conduct ablation studies to assess the ef- 124

fectiveness of each component of PEMA. PEMA 125

is publicly available for further exploration into 126

offsite-tunable efficient fine-tuning.1 127

2 Related Work 128

2.1 Parameter-Efficient Fine-Tuning 129

Parameter-Efficient Fine-Tuning aims to fine-tune 130

PLMs to address resource constraints in memory 131

and training compute. (Iyer et al., 2022; Zhang 132

et al., 2022; Touvron et al., 2023). Several ap- 133

proaches have been proposed to overcome this lim- 134

itation. Adapter tuning (Pfeiffer et al., 2021; He 135

et al., 2021; Houlsby et al., 2019) inserts small 136

parameters, known as adapters, between layers 137

within a PLM. Prefix and Prompt tuning (Li and 138

Liang, 2021; Liu et al., 2021; Lester et al., 2021) 139

incorporate additional trainable prefix tokens to a 140

PLM’s input or hidden layers. Low-Rank Adap- 141

tation (LoRA) (Hu et al., 2022) uses trainable 142

low-rank matrices, denoted as B and A, that in- 143

crementally update PLM weights. B and A are 144

reduced to a low-rank r. This adaptation can be 145

mathematically represented as transitioning from 146

h = W0x to h = W0x + ∆Wx = W0x + BAx, 147

where W0 ∈ Rk×d, B ∈ Rk×r, and A ∈ Rr×d. 148

UniPELT (Mao et al., 2022) combines multiple 149

PEFT methods, using a gating mechanism to acti- 150

vate the most suitable components for given data or 151

1The Github repository link will be provided after review.
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tasks. We propose a novel adaptation method that152

leverages LoRA parameters and is offsite-tunable.153

2.2 k-Nearest Neighbors Language Model154

The k-Nearest Neighbors Language Model (kNN-155

LM) estimates the next-token distribution by in-156

terpolating the output distributions from a pre-157

trained language model (PLM ), and an external158

memory (PkNN ) (Khandelwal et al., 2020). The159

memory is used to perform a kNN search and to160

integrate out-of-domain data, thereby enabling a161

single language model to be adaptive across var-162

ious domains. Given a context represented as a163

sequence of tokens ci = (w1, ..., wi−1), the kNN-164

LM utilizes a pre-trained language model f(·) to165

generate a context representation f(ci). This rep-166

resentation is then paired with the desired target167

token yi to create the external memory (referred168

to as a datastore in (Khandelwal et al., 2020))169

{(f(ci), yi)|(ci, yi) ∈ E} from the training dataset170

E . The next-token distribution from the external171

memory, PkNN , is computed using a k-nearest172

neighborhood approach with the squared L2 dis-173

tance. The final next-token distribution is then ob-174

tained by interpolating between PkNN and PLM as:175

P (yi|ci) = λPkNN (yi|ci) + (1− λ)PLM (yi|ci).176

We adapt the concept of external memory and177

interpolation of different next-token distributions178

to PEMA. Instead of employing a kNN-based ap-179

proach, we employ a neural network-based model180

that directly learns to estimate the next-token,181

which is more effective in mitigating overfitting182

to the training data. Additionally, we use the Grad-183

ual Unrolling interpolation strategy to enhance the184

quality of interpolation. The kNN-LM method re-185

lies on kNN for external memory search to adapt186

the language model to diverse domains. However, it187

is well known that the non-parametric model kNN188

can potentially overfit. Therefore, it often requires189

a large amount of training data. To address this, we190

introduce a parametric approach within PEMA to191

improve its performance on downstream tasks. This192

approach is better suited for limited training data193

scenarios. It involves replacing the existing kNN194

with a parametric model in PEMA, thus enabling195

effective adaptation to various domains in terms of196

performance.197

3 Plug-in External Memory Adaptation198

This section describes Plug-in External Memory199

Adaptation (PEMA), which aims to fine-tune a200

pre-trained language model without requiring a full 201

model during training. PEMA is integrated into 202

the language model during inference to facilitate 203

downstream NLP tasks. It uses external memory 204

to build a context representation f(ci), mapped 205

with the desired target token yi. Using the exter- 206

nal memory, we train PEMA in two phases. The 207

first phase involves reconstruction training to re- 208

construct f(ci) with BrctA, resulting in the output 209

of a reconstruction loss. Subsequently, the joint 210

retraining phase focuses on generating the next- 211

token probability PPEMA that predicts target token 212

yi given Af(ci) with Bpd. Simultaneously, it uses 213

pre-trained Brct to retain the original feature f(ci). 214

During the inference stage, the next-token probabil- 215

ities from both the pre-trained generative language 216

model PLM and PEMA PPEMA are interpolated 217

to generate the next-token. Figure 2 shows the struc- 218

ture of PEMA. 219

3.1 Building an External Memory 220

The first step of PEMA is to build an external mem- 221

ory. The output f(ci) represents a context represen- 222

tation obtained from the final layer’s feed-forward 223

network output of a pre-trained language model. 224

For the i-th token training example in external 225

memory (ci, yi) ∈ E , a paired representation is 226

created by defining an input prompt c1 and a cor- 227

responding target token sequence. Predicted to- 228

ken sequences are generated by sequentially ex- 229

tending the input prompt. 1 Initially, the input 230

prompt c1 is fed into the pre-trained language 231

model, resulting in the predicted next-token ŵ1 232

and 2 the corresponding context representation 233

f(c1). 3 Including ŵ1 in the input prompt ex- 234

tends it to the next context c2 = {c1, ŵ1}, sub- 235

sequently producing the next predicted token ŵ2 236

and its context representation f(c2). This iterative 237

process yields a sequence of context representa- 238

tions (f(c1), f(c2), ..., f(ct = {c1, ŵ1, ..., ŵt−1}) 239

for training, with each context ci corresponding to 240

the i-th position in the token sequence and t denot- 241

ing the total number of tokens in a token sequence 242

of one sentence training example. 243

We map the context representation f(ci) ∈ 244

R1×d, where d is the size of the context repre- 245

sentation with the target token yi, resulting in the 246

pair (f(ci), yi). The external memory (f(C), Y ) 247

is formed by collecting all such context and token 248

pairs constructed from the training set E as below: 249

(f(C), Y ) = {(f(ci), yi)|(ci, yi) ∈ E} (1) 250
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Figure 2: An illustration of PEMA. The areas of the PLM owner and the data owner are separated by the blue
horizontal line. The data owner can train and infer using only the PLM’s LM head. PEMA builds an external
memory from the training context with an instruction [Inst] given to a PLM. The PLM outputs the representation
f(ci) and predicts the next-token distribution PLM (ŵi). The representation f(ci) is then aligned with its target
yi. In the training phase, PEMA uses external memory for two tasks: preserving the original representation via
reconstruction training with Brct and generating a target token probability distribution using Bpd. For inference, the
model inputs a test data representation to generate two probability distributions: PLM (ŵi) and PPEMA(ŵi). These
are then interpolated using Gradual Unrolling to obtain the final token distribution.

3.2 PEMA Adaptation Model251

We incorporate LoRA (Hu et al., 2022), a low-rank252

parameterization adaptation known for its effective-253

ness in various adaptation tasks, into PEMA for254

adapting to multiple text generation tasks.255

The PEMA consists of three weight matrices:256

A ∈ Rr×d, Brct ∈ Rd×r, and Bpd ∈ Rd×r where257

d is the size of the context representation and r258

is a rank-size that r < d. Given Af(ci) where259

f(ci) ∈ R1×d, Brct is used to reconstruct the con-260

text representation input f(ci), with the goal of261

approximating hrcti ≈ f(ci), Additionally, Bpd262

is used to produce a representation hpdi that max-263

imizes target token prediction when fed into the264

frozen weight of a language model head (LM head)265

Whd ∈ Rv×d where v is the vocabulary size that266

outputs the predicted next-token ŵi.267

hrcti = ∆Wrctf(ci) = Brctf(ci)

hpdi = ∆Wpdf(ci) = Bpdf(ci)

PPEMA(ŵi|ci) = softmax(Whdhpdi)

(2)268

3.3 Model Training269

The training process consists of two distinct phases:270

initial reconstruction training to preserve the gen-271

eral knowledge within the context representation of 272

PLM and subsequent joint retraining, encompass- 273

ing both the reconstruction of context representa- 274

tions and the prediction of next-tokens. 275

Initial Reconstruction Training. First, we train 276

the decoder Brct by reconstructing the i-th original 277

context representation of the n-th sentence training 278

example f(ci)
n. We use a mean-square error loss 279

between original input f(ci)n and the output hnrcti 280

as below: 281

Lrct =
1

|E|

|E|∑
n=1

tn∑
i=1

(f(ci)
n − hnrcti)

2 (3) 282

where tn is the number of tokens in a token se- 283

quence of n-th sentence training example and |E| 284

is the size of the training dataset. 285

Joint Retraining After completing the initial re- 286

construction training, we proceed to the joint re- 287

training phase, using the pre-trained Brct and ran- 288

domly initialized A. Our first objective is to acquire 289

a representation hnpdi that is optimized for predict- 290

ing the target token yni . We utilize a cross-entropy 291

loss based on the softmax function of the output of 292
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Whdh
n
pdi

given the target token yni as below:293

Lpd = − 1

|E|

|E|∑
n=1

tn∑
i=1

yni logPPEMA(y
n
i |Whdh

n
pdi

) (4)294

The second objective is to reconstruct the input con-295

text representation xi using the randomly initial-296

ized A and pre-trained Brct with the reconstruction297

loss function as depicted in Equation 3. The recon-298

struction loss intends to retain the general knowl-299

edge obtained from the pre-trained language model300

while maximizing the target token prediction. We301

introduce a parameter κ that can be fine-tuned to302

adjust the emphasis on the objectives as below:303

Ltotal = κLrct + (1− κ)Lpd (5)304

3.4 Model Inference305

To generate the next-token ŵ, we exclude Brct and306

use Bpd and A. The PLM receives the input con-307

text x from the test dataset, and generates f(x),308

which serves as input for two pathways. One path-309

way uses PEMA’s A and Bpd to create hpd for310

x. Subsequently, it is passed through Whd to pro-311

duce a distribution of the next-token PPEMA(ŵ|x).312

The other pathway directly feeds r into Whd to313

produce the next-token distribution PLM (ŵ|x). Fi-314

nally, these two distributions are blended using a315

tuned parameter λ to produce the final distribution316

of tokens for the desired task as below:317

P (ŵ|x) = λPPEMA(ŵ|x) + (1− λ)PLM (ŵ|x) (6)318

4 Gradual Unrolling Interpolation319

Given that an adaptation model trained with only a320

limited number of parameters may lack the context-321

awareness and language-generation capabilities of322

pre-trained language models, it is more effective323

to use the adaptation model to guide the genera-324

tion of tokens of the desired task at the beginning325

of the sentence, and rely on a pre-trained language326

model to provide context for the rest of the sentence.327

To achieve this, we suggest the Gradual Unrolling328

strategy, which aims for strong PPEMA(ŵ|x) in-329

terpolation at the beginning of generation and grad-330

ually decreases the interpolation. As the sentence331

progresses, the pre-trained language model increas-332

ingly contributes to providing the necessary con-333

text, as shown in Figure 3.334

In the context of sentence generation, we de-335

fine SL as the input sentence length, excluding336

instruction and user-defined variables λmax. λ rep-337

resents the proportion of the adaptation model’s338

Figure 3: The intuition of Gradual Unrolling. Given
the input sentence (Black), the interpolation percent-
age of the adaptation model (Blue) decreases gradually
while that of the language model (Red) increases as the
sentence is being generated. This strategy ensures that
the adaptation model generates tokens trained for the
desired task at the beginning of the sentence, and the
language model provides the necessary context in the
remaining part of the sentence.

interpolation (0 ≤ λ ≤ 1). We also have the de- 339

pendent variables of the current step (CS) and 340

the step size (SS). The step size is computed as 341

SS = λmax/SL, and CS is initialized to λmax 342

at the start of sentence generation. At each token 343

generation step, CS decreases by SS until the end 344

of the sentence (i.e., CScur = CSpast−SS where 345

CSpast is the latest token’s CS variable). Then, we 346

calculate the current interpolation proportion λcur 347

(i.e., λ at Equation 6) as λcur = CS2
cur. 348

5 Experiments 349

This section describes the experiments and re- 350

sults to show both the computational efficiency 351

and performance in downstream tasks of PEMA. 352

First, we perform an experiment on the compu- 353

tational efficiency of PEMA. Subsequently, we 354

evaluate PEMA across two downstream tasks: the 355

WMT22 EN→DE machine translation task (Kocmi 356

et al., 2022) and the GYAFC formal style transfer 357

task (Rao and Tetreault, 2018). Lastly, we conduct 358

an ablation study to show the gradual improvement 359

by incorporating each idea of PEMA. 360

5.1 Computational Efficiency 361

To evaluate the computational efficiency of PEMA, 362

we conduct a comparison of different fine-tuning 363

methods based on their resource utilization dur- 364

ing both training and inference. We follow the ap- 365

proach of previous work (Pope et al., 2023) that 366
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employs a fixed size of input tensors. We use in-367

put tensors with the size [1, 10], equivalent to se-368

quences of 10 tokens with OPT-IML-MAX-1.3B.369

The resource utilization metrics encompass training370

memory consumption, training latency, inference371

memory consumption, inference latency, and float-372

ing point operations per token.373

The evaluation involves several steps. First,374

we clear the CUDA cache to compute the mem-375

ory and ensure no background GPU processes.376

GPU memory utilization is determined using377

the memory_summary function provided by Py-378

torch (Paszke et al., 2019). We calculate the time379

difference before inputting the data into the model380

and after obtaining the output. For training latency,381

we consider the time encompassing the entire back-382

propagation process. To ensure the accuracy of la-383

tency, we compute the mean and variance based on384

ten trials of inputs for each fine-tuning method. We385

conducted a comparative analysis with the offsite-386

tuning baseline approach, Offsite-Tuning (Xiao387

et al., 2023). Offsite-Tuning involves knowledge388

distillation (OT Emulator) and downstream task389

training using the OT Emulator (OT Plug-in). Sub-390

sequently, it utilizes the OT Plug-in to interact with391

the PLM during the inference phase.392

As shown in Table 1, PEMA demonstrates the393

efficiency by utilizing one-tenth of the training394

memory consumption compared to LoRA. In ad-395

dition, PEMA shows the fastest training latency396

among all the methods. This is because PEMA397

uses external memory to store context representa-398

tions and does not require access to a pre-trained399

language model during the training phase, as il-400

lustrated in Figure 2. These results highlight the401

significance of PEMA’s reduced training memory402

consumption and improved training latency, mak-403

ing it an appealing choice for efficient natural lan-404

guage generation tasks.405

5.2 Performance of Downstream Tasks406

We present a comprehensive analysis of the per-407

formance of PEMA and baseline models on two408

downstream tasks: the WMT22 (EN→DE) transla-409

tion task and the GYAFC task involving Family &410

Relationships and Entertainment & Music.411

For the machine translation task, we use the412

EN→DE news-commentary dataset to address the413

limitation noted in (Brown et al., 2020), where414

translations into English tend to be stronger than415

those from English due to training set biases. We416

evaluate our model using the latest test set provided417

Method Tr-MC Tr-Lat Inf-MC Inf-Lat FLOPs

FT 20,082 250.4±140.6 5,021 17.1±1.0 2.41e9
FT-top2 7,355 70.3±108.6 5,021 17.3±1.3 2.41e9
kNN-LM None 20.3±567.2 5,021 37.5±1.4 FT+6.29e6
LoRA 5,056 21.6±0.4 5,031 20.5±1.5 FT+4.19e6
UniPELT 5,138 30.3±0.1 5,047 21.3±0.6 FT+1.49e7
OT Emulator 11,713 88.4±309.4 None None FT+8.03e8
OT Plug-in 5,267 59.6±107.8 5,269 21.3±0.1 FT+4.82e8
PEMA 478 18.5±1.0 5,043 18.2±0.5 FT+4.19e6

Table 1: Comparison of various training and inference re-
source utilization methods with OPT-IML-MAX-1.3B.
We evaluate memory consumption (MC) and latency
(Lat) for training (Tr) and inference (Inf), as well as
FLOPs per token, using 10-token length sequences.
Memory size is measured in megabytes, and latency
is measured in milliseconds. PEMA stands out by us-
ing only one-tenth of the training memory utilized by
LoRA. Furthermore, PEMA demonstrates the fastest
training latency among the methods.

by (Hendy et al., 2023). 418

For the formality style transfer task, we use the 419

GYAFC dataset (Rao and Tetreault, 2018), which 420

consists of a parallel training set of informal and 421

formal sentences. The test set comprises four refer- 422

ence sentences paired with one informal sentence. 423

In this task, our objective is to transfer the style of 424

informal sentences into formal ones. 425

We use three pre-trained language models: 426

OPT-IML-MAX-1.3B, LLaMA-7B, and OPT-IML- 427

MAX-30B (Iyer et al., 2022; Touvron et al., 2023). 428

We compare PEMA with the following methods: 429

Full fine-tuning (FT) updates all pre-trained 430

model parameters, including weights and biases. 431

Fine-tuning top-2 (FT-Top2) updates the last two 432

layers while the remaining layers are frozen. 433

k-Nearest Neighbors Language Model (kNN- 434

LM) (Khandelwal et al., 2020) uses kNN search 435

within an external memory to derive a next-token 436

distribution PkNN , which is then interpolated with 437

PLM to produce an adapted next-token distribution. 438

LoRA (Hu et al., 2022) uses two additional train- 439

able matrices. We apply LoRA at the last layer out- 440

put projection matrices in the self-attention module. 441

UniPELT (Mao et al., 2022) is a state-of-the- 442

art PEFT method that combines Adapter tun- 443

ing (Houlsby et al., 2019), Prefix tuning (Li and 444

Liang, 2021), and LoRA (Hu et al., 2022) with a 445

gating mechanism to select the optimal approaches. 446

We apply UniPELT at the last layer. 447

Offsite-Tuning (Xiao et al., 2023) is an offsite- 448

tunable method that uses a distilled PLM emulator 449

with an adapter, which includes multiple copies at 450
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Model
WMT22 (EN→DE) GYAFC (F&R) GYAFC (E&M)

Tr-MC (MB) sBLEU PPL COMET sBLEU PPL FormImp sBLEU PPL FormImp

OPT-1.3B None 9.55 51.30 57.24 55.00 18.98 11.05 53.98 20.89 10.67
OPT-1.3B (FT) 20,082 10.15 40.83 61.44 29.17 24.82 52.28 31.50 27.99 46.82
OPT-1.3B (FT-Top2) 7,355 3.57 51.36 38.35 21.60 24.33 59.00 23.94 27.07 51.52
OPT-1.3B (kNN-LM) None 8.07 91.37 41.75 56.69 20.87 16.26 54.74 23.15 14.46
OPT-1.3B (LoRA) 5,025 4.28 61.25 39.32 20.98 19.07 45.71 15.57 19.71 46.32
OPT-1.3B (UniPELT) 5,138 9.15 47.09 56.30 51.38 44.43 52.22 46.67 22.08 53.31
OPT-1.3B (Offsite-Tuning) 5,267 7.65 36.91 52.85 59.01 20.70 24.82 57.01 23.25 23.76
OPT-1.3B (PEMA) 478 12.87 42.62 64.16 64.82 23.15 41.90 61.24 24.28 36.28

LLaMA-7B None 2.78 78.49 39.49 20.18 34.53 42.81 24.14 37.33 44.81
LLaMA-7B (kNN-LM) None 0.07 85.09 38.53 1.72 41.50 55.13 1.94 46.31 68.61
LLaMA-7B (LoRA) 13,237 11.46 51.36 67.48 52.67 22.42 72.23 52.15 24.74 71.28
LLaMA-7B (UniPELT) 13,810 9.13 46.62 56.31 59.81 22.95 71.69 58.07 25.35 68.33
LLaMA-7B (PEMA) 996 14.50 54.26 70.31 63.99 23.19 61.40 60.88 26.00 60.94

OPT-30B None 18.22 45.81 77.41 60.41 20.04 29.33 57.60 21.97 23.88
OPT-30B (kNN-LM) None 16.65 74.06 62.98 61.02 20.86 29.80 58.58 22.75 23.39
OPT-30B (LoRA) 58,083 8.26 46.97 69.41 61.39 22.00 73.10 59.76 23.97 68.29
OPT-30B (UniPELT) 59,028 15.57 47.34 73.42 64.54 21.72 47.14 56.86 23.77 34.08
OPT-30B (PEMA) 1,909 19.22 46.62 79.21 70.84 22.04 52.35 65.43 25.53 44.63

Table 2: Comparison of various models across different tasks. The evaluated tasks include WMT22 (EN→DE)
translation and GYAFC Family & Relationships (F&R) and GYAFC Entertainment & Music (E&M) style transfer.
The models considered for evaluation are OPT-IML-MAX-1.3B, LLaMA-7B, and OPT-IML-MAX-30B, each with
specific adaptations and configurations.

the PLM’s beginning and end. We use four adapter451

layers for training and inference.452

We use widely used evaluation metrics to assess453

the performance of PEMA as follows:454

Sacre-Bleu (sBLEU) (Post, 2018) is a commonly455

used metric to calculate the n-gram accuracy be-456

tween the source and target sentences. It evalu-457

ates how well the generated sentence preserves the458

meaning of the reference and captures target do-459

main distribution. Higher scores are better.460

Perplexity (PPL) (Jelinek et al., 1977) is to as-461

sess the fluency of generated sentences. We use462

pre-trained GPT-2 large (Radford et al., 2019)463

to calculate the exponential of the negative log-464

likelihood of a current token given the previous465

context. Lower scores are better.466

COMET (Rei et al., 2020) is a neural network-467

based metric for assessing machine translation qual-468

ity. It shows a positive correlation with human judg-469

ments. We utilize the default, pre-trained COMET470

model2 for the WMT22. Higher scores are better.471

Formality Improvement (FormImp) measure for-472

mality improvement based on XFORMAL (Bri-473

akou et al., 2021a). To measure the formality score474

of a sentence, we train a BERT-Large (Devlin et al.,475

2019b) on an external formality dataset consist-476

ing of 4K human-annotated examples (Pavlick and477

Tetreault, 2016). We compute the formality score478

for each formal reference sentence (FR), informal479

2https://github.com/Unbabel/COMET

input sentence (II), and generated sentence (G). 480

Then, we measure the relative distance using the 481

formula: G
FR−II × 100. We employ this metric for 482

the GYAFC task. Higher scores are better. 483

5.2.1 Results 484

For the WMT22 (EN→DE) translation task, we 485

evaluated sBLEU, PPL, and COMET metrics. As 486

Table 2 shows, PEMA outperforms baselines in 487

sBLEU and COMET. Offsite-Tuninig, LoRA, and 488

UniPELT perform slightly better than a naive pre- 489

trained language model and PEMA in terms of 490

PPL. However, they require more memory con- 491

sumption for training than PEMA. Finally, PEMA 492

generates more appropriate translated sentences 493

than other baselines for sBLEU with relatively 494

small memory consumption. 495

For the GYAFC style transfer task, we evalu- 496

ated sBLEU, PPL, and Formality Improvement 497

(FormImp) metrics. As Table 2 shows, PEMA con- 498

sistently achieves favorable performance. PEMA 499

shows the highest sBLEU scores, effectively main- 500

taining meaning preservation across different do- 501

mains and models. PEMA performs slightly better 502

than a naive pre-trained language model and is com- 503

parable to other baselines in terms of FormImp. Fur- 504

thermore, we observe a trade-off between sBLEU 505

and formality. These findings support previous ob- 506

servations in the same formality style transfer task 507

with multilingual formality (Briakou et al., 2021b). 508
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WMT22 (EN→DE) sBLEU PPL COMET

OPT-30B 18.22 45.81 77.41
OPT-30B+Bpd 18.74 48.05 77.76
OPT-30B+Bpd+GU 19.17 48.60 78.57
OPT-30B+Bpd+GU+Brct (PEMA) 19.22 46.62 79.21

GYAFC (F&R) sBLEU PPL FormImp

OPT-30B 60.41 20.04 29.33
OPT-30B+Bpd 70.00 20.38 47.38
OPT-30B+Bpd+GU 70.29 16.95 51.24
OPT-30B+Bpd+GU+Brct (PEMA) 70.84 22.04 52.35

GYAFC (E&M) sBLEU PPL FormImp

OPT-30B 57.60 21.97 23.88
OPT-30B+Bpd 64.37 26.76 38.80
OPT-30B+Bpd+GU 64.82 25.62 42.61
OPT-30B+Bpd+GU+Brct (PEMA) 65.43 25.53 44.63

Table 3: Ablation results of PEMA over our proposed
approaches. The techniques include a token prediction
decoder (Bpd), Gradual Unrolling (GU ), and a recon-
struction decoder (Brct). We use OPT-IML-MAX-30B
as a baseline. Implementing all techniques together en-
hances overall performance.

λ/λmax 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

With GU 47.45 46.61 46.62 46.18 46.12 46.03 45.85 45.89 45.84
Without GU 54.29 51.87 50.22 49.70 49.45 48.09 47.76 47.67 47.52

Table 4: Impact of Gradual Unrolling (GU ) on perplex-
ity across different λ/λmax values. Using GU consis-
tently outperforms the approach without GU for all
λ/λmax values, ranging from 0.1 to 0.9.

5.3 Ablation Study509

To assess the effectiveness of PEMA, we conduct510

ablation studies to demonstrate the incremental im-511

provement achieved by incorporating each com-512

ponent of PEMA. We utilize a token prediction513

decoder (Bpd) to predict the target token based514

on the context representation obtained from the515

pre-trained language model. As shown in Table 3,516

the token prediction decoder enhances task perfor-517

mance. Building on this, we incorporated Gradual518

Unrolling (GU ) and the Reconstruction Decoder519

(Brct) to further improve performance. The inclu-520

sion of these three methods yields the highest per-521

formance gains, as shown in the results.522

Interpolation Parameter (λmax) We propose the523

Gradual Unrolling (GU) interpolation strategy,524

where PEMA initially guides the generation of a525

new task and subsequently leverages the language526

model for contextual completion of sentences. Ta-527

ble 3 shows the effectiveness of GU in enhancing528

performance by enabling the language model to529

provide context completion. We further compare530

with and without GU by adjusting the λmax hy-531

perparameter in the WMT22 task. As shown in532

Figure 4, with GU maintains better performance533

Figure 4: Performance variations on the WMT22 task
with interpolation values λmax (left) and κ (right). For
λmax, using Gradual Unrolling (GU ) prevents perfor-
mance degradation and enhances results, unlike without
GU , where performance drops sharply. With κ when
λmax is set at 0.7, combining reconstruction loss with
next-token prediction loss improves performance over
excluding reconstruction loss (red dotted line), as indi-
cated by better results when κ is above zero.

stability at higher λmax values while achieving no- 534

ticeable performance improvement over without 535

GU . We also report details on the impact of in- 536

corporating λmax in Figure 5 in the appendix. Ad- 537

ditionally, we conduct an experiment to measure 538

perplexity. Table 4 shows that GU consistently out- 539

performs across λ/λmax values from 0.1 to 0.9. 540

Interpolation Parameter (κ) We investigate the 541

effectiveness of the reconstruction decoder, which 542

reconstructs the original vector f(ci). Table 3 and 543

Figure 4 demonstrate that incorporating the recon- 544

struction decoder improves performance across de- 545

sired tasks, demonstrating its efficacy in enhancing 546

generation quality. We also report details on the im- 547

pact of incorporating κ in Figure 6 in the appendix. 548

6 Conclusion 549

In this paper, we present PEMA, a novel parameter- 550

efficient fine-tuning approach for language mod- 551

els. Unlike existing PEFT methods, PEMA utilizes 552

minimal pre-trained model parameters during train- 553

ing, making it an efficient and adaptable method 554

for offsite-tuning. PEMA includes a token predic- 555

tion decoder, Gradual Unrolling, and a reconstruc- 556

tion decoder to improve model performance. Our 557

comprehensive evaluations on translation and style 558

transfer tasks demonstrate PEMA’s effectiveness 559

in generating text that more closely follows target 560

domain distributions. Additionally, PEMA proves 561

its computational efficiency by utilizing minimal 562

training memory and achieving faster training la- 563

tency with a syntactic dataset. Overall, PEMA of- 564

fers efficient fine-tuning and presents a promising 565

direction for an offsite-tunable PEFT approach in 566

downstream NLP tasks. 567
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Limitations568

PEMA introduces a novel Parameter-Efficient569

Fine-Tuning (PEFT) method for privacy-preserving570

offsite-tuning. However, this process requires data571

owners to share predicted next-tokens with PLM572

owners during inference, which raises potential pri-573

vacy concerns. These concerns necessitate further574

investigation of effective mitigation strategies.575

Additionally, sharing the Whd weight between576

PLM owners and data owners poses challenges re-577

lated to model privacy. In our experiments, we used578

open-source PLMs due to the confidentiality issues579

associated with proprietary PLMs. Our future work580

will explore enabling data owners to generate a581

new Language Model (LM) head using a shared582

tokenizer from the PLM owner, enhancing privacy583

between the PLM and the data owner.584

Finally, through PEMA, data and PLM owners585

can fine-tune efficiently and effectively with mini-586

mal communication. However, the way data own-587

ers use PEMA could unintentionally lead to data588

leakage issues. Subsequent research will explore589

solutions to address this challenge.590

While our research has been focused on machine591

translation tasks, it can be applied to various NLP592

tasks depending on the initial input. Consequently,593

future studies will investigate the application of our594

method across a range of NLP tasks.595

Ethics Statement596

The results of our research are based on existing597

studies, and all generation models and datasets used598

are publicly available and used for their intended599

use with no ethical concerns.600
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A Performance on Different Rank Sizes 848

Model WMT22 GYAFC GYAFC
(EN→DE) (F&R) (E&M)

OPT-1.3B (LoRAr=8) 3.25 23.13 18.41
OPT-1.3B (LoRAr=512) 4.28 20.98 15.57
OPT-1.3B (PEMAr=8) 11.75 56.29 54.22
OPT-1.3B (PEMAr=512) 12.87 64.82 61.24

LLaMA-7B (LoRAr=8) 10.92 14.80 12.69
LLaMA-7B (LoRAr=512) 11.46 52.67 52.15
LLaMA-7B (PEMAr=8) 3.88 48.88 45.73
LLaMA-7B (PEMAr=512) 14.50 63.99 60.88

OPT-30B (LoRAr=8) 16.05 61.28 59.48
OPT-30B (LoRAr=512) 16.03 61.39 59.76
OPT-30B (PEMAr=8) 18.33 62.87 60.12
OPT-30B (PEMAr=512) 19.22 70.84 65.43

Table 5: Experiment on LoRA and PEMA on mean-
ing preservation (sBLEU) across rank variations (r =
{8, 512}). The result shows PEMA consistently outper-
forms LoRA on sBLEU and COMET.

LoRA (Hu et al., 2022) states performance re- 849

mains comparable with a small rank size. However, 850

AdaLoRA (Zhang et al., 2023) finds a large rank 851

size in the last layer of PLMs is needed for better 852

performance. Performance evaluation on PEMA 853

and baseline PEFT methods is conducted at the last 854

layer of PLMs. For this reason, we set r = 512 855

for LoRA and PEMA to minimize the effect on 856

performance with rank size. However, LoRA uses 857

a rank size between 1 to 64 for their experiment. As 858

PEMA is a LoRA-based PEFT method, we com- 859

pared the performance on meaning preservation 860

using the rank size employed in LoRA (8) and the 861

rank size used in our experiment (512). As Table 5 862

shows, a larger rank size generally achieves favor- 863

able performance. In the case of LoRA, using a 864

rank size of 512 outperforms 8 in 6 out of 9 cases. 865

PEMA with a rank size of 512 performs better than 866

PEMA with a rank size of 8 at all tasks. 867

B Measuring Informal Language Patterns 868

The GYAFC dataset for style transfer includes com- 869

mon informal input patterns that are frequently oc- 870

cur. To analyze the amount of mitigation, we cate- 871

gorize these patterns into four types. The four infor- 872

mal patterns are as follows. Slang abbreviations 873

11

https://slang.net/
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2022.emnlp-main.540
https://doi.org/10.18653/v1/2022.emnlp-main.540
https://doi.org/10.18653/v1/2022.emnlp-main.540
https://doi.org/10.18653/v1/2022.emnlp-main.540
https://doi.org/10.18653/v1/2022.emnlp-main.540
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY


Informal Formal Naive kNN-LM LoRA UniPELT Offsite-Tuning PEMA
Input Reference OPT-30B

Family & Relationships

Slang Abbreviation 525 307.75 346 339 356 322 361 289
All Capital 68 0 61 60 8 5 65 3
Redundant Word 39 2 1 1 2 0 17 3
Non-Capital Start 636 1.5 16 2 1 1 2 0

Entertainment & Music

Slang Abbreviation 651 485.75 541 538 530 534 529 463
All Capital 36 0 31 34 9 9 37 0
Redundant Word 49 17.75 5 5 7 3 16 32
Non-Capital Start 655 7 24 2 0 1 3 0

Table 6: Count of informal patterns for each generated formal sentence. The result shows that PEMA performs
better in mitigating informal patterns than baseline approaches. Lower is better.

are informal short forms of words or phrases (e.g.,874

"LOL"-"laughing out loud"). To identify the pres-875

ence of slang words, we check how many words876

from the predicted target sentence are present in877

the slang dictionary from (Productions, 2023). All878

capital is a pattern in which all characters in a879

generated word are capitalized (e.g., "FUNNY").880

We calculate how many generated words are all881

capitalized. Redundant word occurs when two882

consecutive words are the same. For example, "I883

lie lie lie and then I lie some more." has two redun-884

dant words. Non-capital start is counted when a885

sentence does not start with a capital letter (e.g., "i886

only want points").887

Table 6 shows the count of each informal pattern888

in generated sentences for both the baseline and889

PEMA. We also show an informal pattern count890

on informal input and formal reference. There are891

four reference sentences for each example in the892

test set. We show the average count for each pat-893

tern using the formal reference. It shows PEMA is894

good at mitigating slang abbreviation, all capital,895

and non-capital start compared to other baseline896

approaches. Interestingly, PEMA outperforms for-897

mal references in mitigating slang abbreviations898

and non-capital start.899

C Dataset900

C.1 Data Statistic901

Table 7 shows data statistics of GYAFC and902

WMT22. For WMT22, we use a news-commentary903

v16 (EN→DE) for training. The test set for GYAFC904

has four references, while WMT22 has one refer-905

ence for each test input.906

Dataset Train Valid Test Length of E

GYAFC (F&R) 51,967 2,788 1,332 691,531
GYAFC (E&M) 52,595 2,877 1,416 695,465
WMT22 388,482 2,203 1,984 20,983,482

Table 7: Data statistic of GYAFC and WMT22 with
length of external memory E .

Task Example

WMT22 English: In better shape, but not alone.
German: In besserer Verfassung, aber nicht allein.

GYAFC Informal: I’d say it is punk though.
Formal: However, I do believe it to be punk.

Table 8: Example of parallel dataset GYAFC and
WMT22.

C.2 Dataset Examples 907

Table 8 demonstrates examples of parallel datasets 908

of GYAFC and WMT22. 909

C.3 Prompts 910

Table 9 presents prompt input used for evalua- 911

tion. WMT22 and GYAFC have two placeholders. 912

This includes [English Input] and [Informal Input]. 913

[Generated Output] is a predicted output sentence 914

generated by PLMs. 915

[English Input] represents the English input sen- 916

tence in WMT22. [Informal Input] is the informal 917

input sentence in GYAFC. An example of the par- 918

allel data input can be found in Table 8. 919

C.4 Post-processing 920

We use three decoder-based pre-trained language 921

models for evaluation: OPT-IML-MAX-1.3B, 922

LLaMA-7B, and OPT-IML-MAX-30B. These 923
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Task Prompt

WMT22 Translate this from English to German:
[English Input]
German: [Generated Output]

GYAFC Convert the following informal sentence into a formal sentence:
Informal: [Informal Input]
Formal: [Generated Output]

Table 9: Prompt used for evaluation. [ ] represents the
placeholder.

Model Common hallucination patterns

OPT I’m not sure . . .
I 50% ...
Convert the following informal sentence . . .
Translate this from English to German: . . .
I. . . .
. . . .. . . .

LLaMA Informal: . . .
### . . .
Comment: . . .
\\[ . . .
\begin ...
Answer: . . .

Table 10: Common hallucination patterns after generat-
ing a predicted sentence.

models are capable of generating tokens contin-924

uously. This characteristic makes decoder-based925

language models generate beyond the predicted926

sentences, typically called hallucinations. We find927

common hallucination patterns in each pre-trained928

language model. We post-process hallucinations929

generated after the predicted sentence for evalua-930

tion. Table 10 shows common hallucination pat-931

terns that are removed.932

D Implementation Details933

We use three RTX 8000 GPUs with 48GB GDDR6934

memory for our experiment. For OPT-IML-MAX-935

1.3B, we use full precision (FP32) for training and936

inference. For LLaMA-7B and OPT-IML-MAX-937

30B, we use half-precision (FP16) and distribute938

the model across three GPUs using the Hugging-939

Face Accelerate library. The hyperparameters for940

PEMA and the baselines are in Table 11. The best941

hyperparameter is selected using a grid search.942

E Examples of Generated Outputs943

The generated formal outputs of GYAFC are shown944

in Table 13 and Table 12. In WMT22, the German945

output generated is presented in Table 14. It shows946

PEMA understands the meaning of abbreviated947

PEMA

Random seed 123
Batch size 40,960
Adam lr 1e-03
Adam (β1, β2) (0.9, 0.999)
Adam eps 1e-08
Number of rank 512
Optimal λmax 0.7 to 0.9

Offsite-Tuning

Random seed 42
Batch size 18
Emulator size 1

3 of PLM
Adam lr 1e-04
Adam (β1, β2) (0.9, 0.999)
Adam eps 1e-08

LoRA

Random seed 123
Batch size 10 to 30
Adam lr 1e-03
Adam (β1, β2) (0.9, 0.999)
Adam eps 1e-08
Number of rank 512
LoRA α 1
Merge weight FALSE

kNN-LM

Random seed 1
Number of centroids learn 4,096
Quantized vector size 64
Number of clusters to query 32
Distance function L2 Distance

UniPELT

Random seed 123
Batch size 10 to 30
Adam lr 1e-03
Adam (β1, β2) (0.9, 0.999)
Adam eps 1e-08
Prefix gate True
Prefix length 10
Prefix mid dimension 512
LoRA gate True
Number of rank 10
LoRA α 16
Adapter gate True
Adapter down sample Dhid/2

Used PEFT methods
Adapter

Prefix tuning
LoRA

Table 11: Hyper-parameter setup of each baseline
method. We select the batch size between 10 to 30.
Dhid represent hidden size of a model.

format (e.g., translating "5’4" to "5 feet 4 inches"), 948

or removing the informal word (e.g., "flirt" which 949

typically refers to playful or teasing behavior). Mit- 950
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Figure 5: Performance variation for each interpolation
value λmax in the WMT22 task. With both Gradual Un-
rolling (GU ) (blue) and without GU (red), there is a
decline in performance at a specific point of λmax. How-
ever, when utilizing GU , the model is not only robust
to performance degradation but also gains performance
improvement.

Figure 6: Impact of mixing ratio values between recon-
struction loss and predicting the next-token loss in the
WMT22 task. When κ is 0, it means excluding recon-
struction loss (red dashed line). We fix the λmax value
as 0.7. The graphs show that combining reconstruction
loss and predicting the next-token loss is superior to
excluding reconstruction loss.

igating common informal patterns such as all capi-951

tal words (e.g., "PINK FLOYD" to "Pink Floyd")952

while preserving the meaning of input (e.g., "Wir"953

means "We" in German).954

F Difference Between PEMA and LoRA955

at Whd956

Applying LoRA to Whd ∈ Rv×d, a larger set of957

parameters is required due to the difference in in-958

put and output sizes (d and v). Conversely, PEMA959

operates more efficiently, utilizing computation re-960

sources by receiving an input of size d and yielding961

an output of the same size. For instance, OPT-1.3B962

has d = 2, 048 and v = 50, 272.963

G Impact on Interpolation λ and κ964

In the WMT22 task, we observe performance vari-965

ation with different interpolation values, λmax in966

Figure 5. Additionally, we investigate the impact967

of the mixing ratio values between reconstruction968

loss and predicting the next-token loss in Figure 6.969

H Licensing Information 970

Models OPT is licensed under the MIT License. 971

The LLaMA is licensed under the GNU General 972

Public License (GPL) version 3. 973

Fine-tuning Methods kNN-LM, LoRA, and 974

Offsite-Tuning are licensed under the MIT License. 975

UniPELT is licensed under the Creative Commons 976

Attribution-NonCommercial (CC-BY-NC) license. 977

Dataset GYAFC is based on the Yahoo Answers 978

corpus (L6 - Yahoo! Answers Comprehensive 979

Questions and Answers version 1.0) (Yahoo, 2007), 980

and is designated for research purposes. Access to 981

the GYAFC dataset requires prior access to Yahoo 982

Answers corpus. WMT22 is freely available for 983

research purposes for academic and educational 984

activities. 985
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Input he is probably wondering if your interested in him at all....flirt back!! sBLEU

Reference 1 He is likely wondering if you are interested in him at all; Flirt back with him.
2 He probably wants to know if you’re interested in him.
3 He is probably wondering if you are interested in him at all, so flirt back.
4 He is probably wondering if you are interested in him at all. Flirt back.

Output PEMA He is probably wondering if you are interested in him at all. 100.0
LoRA He is probably wondering if you are interested in him at all. If you are interested, flirt back. 66.78
kNN-LM It is most likely that he is wondering if you are interested in him at all....flirt back!! 42.60
UniPELT He is probably wondering if your interested in him at all....flirt back! 50.82
Offsite-Tuning He probably is wondering if you are interested in him at all. Flirt back!! 72.98
Naïve OPT-30B In informal situations he is probably wondering if your interested in him at all. 46.03

Input I don’t know!...I just want the points...lol

Reference 1 I only want points.
2 I do not know. I merely want the points.
3 I do not know; I just want the points.
4 I do not know, I only want the points.

Output PEMA I do not know, but I just want the points. 73.49
LoRA I don’t know!... I just want the points. I am not sure what I am doing. 25.31
kNN-LM I don’t know!...I just want the points...lol 34.90
UniPELT I don’t know!...I just want the points...lol 34.90
Offsite-Tuning - 0.00
Naïve OPT-30B I don’t know!...I just want the points...lol 34.90

Input No way im 5‘4 and he‘s 6‘2

Reference 1 No, I am 5ft 4inches and he is 6ft and 2inches.
2 No way, I am only 5’4" and he is 6’2".
3 Not at all. I am five feet four inches tall and he is 6 feet 2 inches tall. ‘
4 No chance, I am five feet four inches tall and he is six feet two inches tall.

Output PEMA No way, I am 5 feet 4 inches tall and he is 6 feet 2 inches tall. 74.44
LoRA No way, I am 5’4 and he is 6’2. 51.52
kNN-LM No way, I am 5’4 and he is 6’2 50.05
UniPELT No way, I am 5’4 and he is 6’2 50.05
Offsite-Tuning No way im 5’4 and he’s 6’2. 7.78
Naïve OPT-30B No way, I am 5‘4 and he is 6‘2 45.72

Table 12: Examples of generated formal output of GYAFC (Family & Relationships) for given informal input. One
interesting example is PEMA can understand the meaning of abbreviated height descriptions like "5’4" and "6’2".
And rewrite them into more formal forms "5 feet 4 inches" and "6 feet 2 inches".
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Input I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won... sBLEU

Reference 1 While I respect that Tyra Banks is branching out into television hosting, Oprah Winfrey is the better example.
2 I respect the hostess Tyra Banks, but I prefer Oprah.
3 I admire Tyra Banks for trying to become a tv show host. However, Oprah is clearly the best hostess.
4 I respect that Tyra Banks is trying out show hosting, but I think that Oprah won.

Output PEMA I respect that Tyra Banks is trying to show hosting..but the big O [aka Oprah Winfrey] won. 35.56
LoRA I respect that tyra banks is trying show hosting, but the big O won. 24.32
kNN-LM I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won. 12.02
UniPELT I respect that tyra banks is trying show hosting..but the big O won... 13.40
Offsite-Tuning I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won... 10.90
Naïve OPT-30B In informal: I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won... 9.56

Input Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!!

Reference 1 I am not sure what is going to happen but I am sure it will be good.
2 I’m not sure what is going to happen, I’m sure it will be good.
3 I am not sure what will happen, but I am sure it will be good. Oh, yes.
4 I am not sure what will happen, however, I am sure that it will be good.

Output PEMA I am not sure what is going to happen, but I am sure it will be good and OH YEAH!!!!!!! 61.11
LoRA Not sure what’s going to happen, but I am sure it will be good and OH YEAH!!!!!!!. 43.05
kNN-LM Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!! 20.22
UniPELT Not sure what’s going to happen, but 16.74
Offsite-Tuning Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!! 20.22
Naïve OPT-30B Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!! 20.22

Input Journey, PINK FLOYD, The POLICE, The EAGLES & RUSH... omg!

Reference 1 Journey, Pink Floyd, The Police, The Eagles, and Rush - oh my!
2 I like Journey, Pink Floyd, The Police, The Eagles, and Rush.
3 Oh goodness, Journey, Pink Floyd, The Police, the Eagles, and Rush!
4 Journey, Pink Floyd, The Police, The Eagles, and Rush are all great classic bands.

Output PEMA I love Journey, Pink Floyd, The Police, The Eagles and Rush. 69.01
LoRA Journey, PINK FLOYD, The Police, The Eagles & Rush. I love it! 36.45
kNN-LM Journey, PINK FLOYD, The Police, The Eagles & Rush... omg! 35.66
UniPELT Journey, PINK FLOYD, The Police, The Eagles & Rush... omg! 35.66
Offsite-Tuning Journey, Pink Floyd, The Eagles, Rush, and The Police. Oh my god! 47.29
Naïve OPT-30B Journey, PINK FLOYD, The Police, The Eagles & Rush... omg! 35.66

Table 13: Examples of generated formal output of GYAFC (Entertainment & Music) for given informal input.
It shows that PEMA is capable of restoring All Capital patterns to their formal format. For example, PEMA
successfully restore "Oprah Winfrey" given "OPRAH" as an input.

Input In Berlin he trained as an opera singer and in 1986 he founded the Palast Orchester together with his classmates. sBLEU

Reference In Berlin studierte er Operngesang, 1986 gründete er zusammen mit Kommilitonen das Palast Orchester.

Output PEMA In Berlin studierte er als Opernsänger und gründete 1986 mit seinen Schülern das Palast Orchester. 33.16
LoRA In Berlin wurde er als Opernsänger trainiert und 1986 gründete er mit seinen Schülern das Palast Orchester. 22.79
kNN-LM In Berlin schloss er 1986 mit seinen Schülern die Palast-Orchester zusammen. 6.64
UniPELT In Berlin trainierte er als Opernsänger und gründete 1986 mit seinen Schülern das Palast Orchester. When 19.35
Offsite-Tuning ich war in Berlin als Opernstätte und 1986 gründete er die Palast Orchester gemeinsam mit seinen Kollegen. 11.31
Naive OPT-30B In Berlin wurde er als Opernsänger trainiert und 1986 gründete er mit seinen Schülern das Palast Orchester. 22.79

Input Since then the baritone has established himself with his repertoire of hits and chansons in the style of the Comedian Harmonists.

Reference Seitdem hat sich der Bariton mit seinem Repertoire aus Schlagern und Chansons im Stil der Comedian Harmonists etabliert.

Output PEMA Seitdem hat er sich mit seinem Repertoire aus Hits und Chansons im Stil der Comedian Harmonists etabliert. 60.26
LoRA Seitdem ist er mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonists aufgestiegen. 46.00
kNN-LM Seitdem ist er mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonistslipperlipper 39.81

dieserenedenauit festgelegt.
UniPELT Seitdem ist der Bariton mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonists auf 42.85

dem Gebiet der Kulturlandschaft in der Schweiz etabliert.
Offsite-Tuning ich habe seitdem die Baritone seine Rekorde aus der Stil der Comedian Harmonisten errichtet. 8.91
Naive OPT-30B Seitdem ist er mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonists auf dem 39.81

Gebiet der Baritonen geschrieben.

Input We have the book Terra, but I am generally not very satisfied with the assignments in the book.

Reference Wir haben das Buch Terra und mit den meisten Aufgabenstellungen im Buch bin ich eher unzufrieden.

Output PEMA Wir haben das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit den Aufgaben in dem Buch. 22.37
LoRA ich habe das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit den Aufgaben in dem Buch. 10.11
kNN-LM ich habe das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit denenteilen in dem Buch. 9.38
UniPELT ich habe das Buch Terra, aber in der Regel bin ich nicht sehr zufrieden mit den Aufgaben in dem Buch. 10.06
Offsite-Tuning ich habe die Buch Terra, aber ich bin allgemein nicht sehr begeistert mit den Schreibungen in der Buch. 6.44
Naive OPT-30B ich habe das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit den Aufgaben in dem Buch. 10.11

Table 14: Examples of generated German output in WMT22 test set. The result shows that PEMA is capable of
generating German output that preserves its meaning.
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