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Abstract

Pre-trained language models (PLMs) show im-
pressive performance in various downstream
NLP tasks. However, pre-training large lan-
guage models demands substantial memory and
training compute. Furthermore, due to the sub-
stantial resources required, many PLM weights
are confidential. Consequently, users are com-
pelled to share their data with model owners for
fine-tuning specific tasks. To overcome the lim-
itations, we introduce Plug-in External Mem-
ory Adaptation (PEMA), a Parameter-Efficient
Fine-Tuning (PEFT) method, enabling PLM
fine-tuning without requiring access to all the
weights. PEMA integrates with context rep-
resentations from test data during inference
to perform downstream tasks. It uses external
memory to store PLM-generated context rep-
resentations mapped with target tokens. Our
method utilizes LoRA-based weight matrices
in the PLM’s final layer to enhance efficiency.
Our approach also includes Gradual Unrolling,
a novel interpolation strategy to improve gen-
eration quality. We validate PEMA’s effective-
ness through experiments on syntactic and real
datasets for machine translation and style trans-
fer. Our findings show that PEM A outperforms
other PEFT approaches in memory and latency
efficiency for training, and also excels in main-
taining sentence meaning and generating appro-
priate language and styles.

1 Introduction

Pre-trained language models (PLMs) are widely
used in downstream NLP tasks (Devlin et al.,
2019a). Recent developments in large language
models have shown remarkable performance in
zero-shot and few-shot learning scenarios (Brown
et al., 2020; Hendy et al., 2023; OpenAl, 2023b;
Anil et al., 2023; Chowdhery et al., 2022). How-
ever, fine-tuning is still required to optimize the
performance of the NLP tasks such as machine
translation (Ustiin and Cooper Stickland, 2022;
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Figure 1: A motivation for PEMA. (a) The data own-
ers who want to fine-tune PLMs encounter a problem
when the PLM owner refuses to share all the weights
of the PLM. (b) In the PEMA training phase, the data
owner takes a CR from the PLM owner by providing a
context prompt. They subsequently train their PEMA
model with their dataset. (c) At inference, the data owner
takes a CR for test data from the PLM owner. Using
Gradual Unrolling (GU), they generate the next-token
by interpolating between PEM A and PLM next-token
probabilities.

Huang et al., 2020; Ding et al., 2022). The most
straightforward approach to fine-tuning is full fine-
tuning (Raffel et al., 2020; Qiu et al., 2020), which
involves fine-tuning all parameters in a PLM. Yet,
this approach requires substantial resources regard-
ing memory and training compute (Iyer et al., 2022;
Zhang et al., 2022; Touvron et al., 2023). To over-
come this limitation, researchers have proposed
Parameter-Efficient Fine-Tuning (PEFT) methods



to fine-tune a full model efficiently. Adapter tun-
ing (Pfeiffer et al., 2021; He et al., 2021; Houlsby
et al., 2019) utilizes small, additional parameters
known as adapters inserted between layers within
a PLM. On the other hand, LoRA (Hu et al., 2022)
uses trainable low-rank matrices that incrementally
update the pre-trained weights. These fine-tuning
methods require access to all the weights of PLMs.

However, proprietary PLMs such as Chat-
GPT (OpenAl, 2022), Bard (Pichai, 2023), and
Claude (AnthropicAl, 2023) are confidential.
Hence, the owners of these PLMs do not reveal
all the model weights. Consequently, data owners
possessing their datasets and wishing to fine-tune
proprietary PLMs for specific downstream tasks
must provide their datasets to the PLM owners for
fine-tuning (OpenAl, 2023a). However, this pro-
cess can be challenging due to the confidential na-
ture of the datasets, which may involve privacy con-
cerns (Guinney and Saez-Rodriguez, 2018). Fig-
ure la shows problems for fine-tuning proprietary
PLMs. To overcome this situation, (Xiao et al.,
2023) proposes the offsite-tuning approach that
uses one-third of the middle layers of a PLM, re-
ferred to as the emulator. Nevertheless, this ap-
proach still needs a large parameter size, and com-
pressing the full model into an emulator requires a
computationally intensive distillation process.

To address the challenges mentioned above, we
introduce a novel PEFT method named Plug-in
External Memory Adaptation (PEMA) designed
for efficient fine-tuning of proprietary PLMs in
machine translation tasks. PEMA utilizes LoRA-
based weight matrices designed for learning down-
stream tasks with accessible features provided by
OpenAl API (OpenAl, 2022) and minimal part of
PLM’s weight (language model head).

In the training phase, the data owner begins the
process by providing a prompt with initial input
to the PLM owner, which includes an instruction
and a source sentence from a parallel corpus. The
PLM owner receives this initial input to generate a
context representation and predict the next-token.
Then, it iteratively processes subsequent inputs con-
taining the predicted next-tokens. This approach
avoids the need for the full dataset from the data
owner. Throughout this process, the data owner
builds an external memory comprised of context
representations and corresponding desired target
tokens. They train PEMA by reconstructing the
stored context representations and predicting target
tokens based on these representations. Figure 1b

shows the training phase process of PEMA.
During the inference phase, the data owner uses
a prompt to request a context representation for
test data from the PLM owner. The PLM owner
then outputs a context representation and a next-
token probability given the prompt. PEMA also
outputs a next-token probability based on a con-
text representation. These probabilities are interpo-
lated to compute a final next-token probability. We
propose Gradual Unrolling (GU), an interpolation
strategy that initially emphasizes PEMA’s distri-
bution, gradually shifts to the PLM’s context-based
predictions as the sentence progresses. Figure 1c
illustrates the inference phase process of PEMA.
We evaluate PEMA by comparing it with other
PEFT methods. PEMA shows better resource ef-
ficiency, consuming less GPU memory and run-
ning faster. Additionally, PEMA outperforms other
baselines in translating English sentences into Ger-
man and paraphrasing informal sentences into for-
mal ones while preserving the original meaning.
Lastly, we conduct ablation studies to assess the ef-
fectiveness of each component of PEMA. PEMA
is publicly available for further exploration into
offsite-tunable efficient fine-tuning.'

2 Related Work

2.1 Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning aims to fine-tune
PLMs to address resource constraints in memory
and training compute. (Iyer et al., 2022; Zhang
et al., 2022; Touvron et al., 2023). Several ap-
proaches have been proposed to overcome this lim-
itation. Adapter tuning (Pfeiffer et al., 2021; He
et al., 2021; Houlsby et al., 2019) inserts small
parameters, known as adapters, between layers
within a PLM. Prefix and Prompt tuning (Li and
Liang, 2021; Liu et al., 2021; Lester et al., 2021)
incorporate additional trainable prefix tokens to a
PLM’s input or hidden layers. Low-Rank Adap-
tation (LoRA) (Hu et al., 2022) uses trainable
low-rank matrices, denoted as B and A, that in-
crementally update PLM weights. B and A are
reduced to a low-rank r. This adaptation can be
mathematically represented as transitioning from
h =Wyxtoh = Wyxr + AWz = Wyx + BAxz,
where W, € RF¥4 B ¢ RF*" and A € R™*¢,
UniPELT (Mao et al., 2022) combines multiple
PEFT methods, using a gating mechanism to acti-
vate the most suitable components for given data or

'The Github repository link will be provided after review.



tasks. We propose a novel adaptation method that
leverages LoRA parameters and is offsite-tunable.

2.2 k-Nearest Neighbors Language Model

The k-Nearest Neighbors Language Model (kKNN-
LM) estimates the next-token distribution by in-
terpolating the output distributions from a pre-
trained language model (Prjs), and an external
memory (Pyny) (Khandelwal et al., 2020). The
memory is used to perform a kNN search and to
integrate out-of-domain data, thereby enabling a
single language model to be adaptive across var-
ious domains. Given a context represented as a
sequence of tokens ¢; = (w1, ..., w;—1), the kNN-
LM utilizes a pre-trained language model f(-) to
generate a context representation f(c;). This rep-
resentation is then paired with the desired target
token y; to create the external memory (referred
to as a datastore in (Khandelwal et al., 2020))
{(f(ci),yi)|(ci,yi) € E} from the training dataset
£. The next-token distribution from the external
memory, Pxypy, is computed using a k-nearest
neighborhood approach with the squared L? dis-
tance. The final next-token distribution is then ob-
tained by interpolating between Py v and Pp s as:
P(yilci) = APenn (yile:) + (1 = A) Pra (yilci).

We adapt the concept of external memory and
interpolation of different next-token distributions
to PEMA. Instead of employing a kNN-based ap-
proach, we employ a neural network-based model
that directly learns to estimate the next-token,
which is more effective in mitigating overfitting
to the training data. Additionally, we use the Grad-
ual Unrolling interpolation strategy to enhance the
quality of interpolation. The KNN-LM method re-
lies on kNN for external memory search to adapt
the language model to diverse domains. However, it
is well known that the non-parametric model kNN
can potentially overfit. Therefore, it often requires
a large amount of training data. To address this, we
introduce a parametric approach within PEMA to
improve its performance on downstream tasks. This
approach is better suited for limited training data
scenarios. It involves replacing the existing kNN
with a parametric model in PEMA, thus enabling
effective adaptation to various domains in terms of
performance.

3 Plug-in External Memory Adaptation

This section describes Plug-in External Memory
Adaptation (PEMA), which aims to fine-tune a

pre-trained language model without requiring a full
model during training. PEMA is integrated into
the language model during inference to facilitate
downstream NLP tasks. It uses external memory
to build a context representation f(c¢;), mapped
with the desired target token y;. Using the exter-
nal memory, we train PEMA in two phases. The
first phase involves reconstruction training to re-
construct f(c;) with B, A, resulting in the output
of a reconstruction loss. Subsequently, the joint
retraining phase focuses on generating the next-
token probability Ppg s 4 that predicts target token
y; given Af(c;) with B, Simultaneously, it uses
pre-trained B, to retain the original feature f(c;).
During the inference stage, the next-token probabil-
ities from both the pre-trained generative language
model Pp s and PEMA Pppgj 4 are interpolated
to generate the next-token. Figure 2 shows the struc-
ture of PEMA.

3.1 Building an External Memory

The first step of PEMA is to build an external mem-
ory. The output f(c;) represents a context represen-
tation obtained from the final layer’s feed-forward
network output of a pre-trained language model.

For the i-th token training example in external
memory (¢;,y;) € &, a paired representation is
created by defining an input prompt ¢; and a cor-
responding target token sequence. Predicted to-
ken sequences are generated by sequentially ex-
tending the input prompt. @ Initially, the input
prompt c¢; is fed into the pre-trained language
model, resulting in the predicted next-token
and @ the corresponding context representation
f(c1). @ Including 7 in the input prompt ex-
tends it to the next context co2 = {c1, w1}, sub-
sequently producing the next predicted token ws
and its context representation f(cz). This iterative
process yields a sequence of context representa-
tions (f(cl>7 f(02)7 R f(ct = {Cla Wy ey wtfl})
for training, with each context ¢; corresponding to
the i-th position in the token sequence and ¢ denot-
ing the total number of tokens in a token sequence
of one sentence training example.

We map the context representation f(c;) €
R4, where d is the size of the context repre-
sentation with the target token y;, resulting in the
pair (f(c;),y;). The external memory (f(C),Y)
is formed by collecting all such context and token
pairs constructed from the training set £ as below:

(f(C),Y) ={(f(ci),yi)l(ci,yi) € EF (1)
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Figure 2: An illustration of PEMA. The areas of the PLM owner and the data owner are separated by the blue
horizontal line. The data owner can train and infer using only the PLM’s LM head. PEMA builds an external
memory from the training context with an instruction [Inst] given to a PLM. The PLM outputs the representation
f(¢;) and predicts the next-token distribution P,/ (1;). The representation f(c;) is then aligned with its target
y;. In the training phase, PEMA uses external memory for two tasks: preserving the original representation via
reconstruction training with B;..; and generating a target token probability distribution using 4. For inference, the
model inputs a test data representation to generate two probability distributions: Pr s (10;) and Ppgasa(10;). These
are then interpolated using Gradual Unrolling to obtain the final token distribution.

3.2 PEMA Adaptation Model

We incorporate LoRA (Hu et al., 2022), a low-rank
parameterization adaptation known for its effective-
ness in various adaptation tasks, into PEMA for
adapting to multiple text generation tasks.

The PEMA consists of three weight matrices:
A € R™4, B, € R, and Bpy € R¥" where
d is the size of the context representation and r
is a rank-size that » < d. Given Af(c;) where
f(c;) € R™¥4, B, is used to reconstruct the con-
text representation input f(c;), with the goal of
approximating h,.; ~ f(c;), Additionally, B,
is used to produce a representation hyq, that max-
imizes target token prediction when fed into the
frozen weight of a language model head (LM head)
Wha € RU*? where v is the vocabulary size that
outputs the predicted next-token w;.

hrcti = AWrctf(Ci) = Brctf(ci)
hpdi = AWpdf(Ci) = def(ci)
PPEMA(ZDZ“CZ’) = softmax(thhpdi)

2

3.3

The training process consists of two distinct phases:
initial reconstruction training to preserve the gen-

Model Training

eral knowledge within the context representation of
PLM and subsequent joint retraining, encompass-
ing both the reconstruction of context representa-
tions and the prediction of next-tokens.

Initial Reconstruction Training. First, we train
the decoder B,..; by reconstructing the i-th original
context representation of the n-th sentence training
example f(c;)". We use a mean-square error loss
between original input f(c;)™ and the output A}’
as below:

rcti

€l tn

SN

n=1 i=1

rctz)2 (3)

rct

€]

where t,, is the number of tokens in a token se-
quence of n-th sentence training example and |&|
is the size of the training dataset.

Joint Retraining After completing the initial re-
construction training, we proceed to the joint re-
training phase, using the pre-trained B, and ran-
domly initialized A. Our first objective is to acquire
a representation h;‘di that is optimized for predict-
ing the target token y;'. We utilize a cross-entropy
loss based on the softmax function of the output of



thhzdi given the target token y;* as below:

€] tn
D0 yitlog Preaa(yp [Whahy,) (4)

n=1i=1

1

Loa= o
g €]

The second objective is to reconstruct the input con-
text representation x; using the randomly initial-
ized A and pre-trained B,..; with the reconstruction
loss function as depicted in Equation 3. The recon-
struction loss intends to retain the general knowl-
edge obtained from the pre-trained language model
while maximizing the target token prediction. We
introduce a parameter « that can be fine-tuned to
adjust the emphasis on the objectives as below:

Liotal = KLret + (1 - /{)‘de 5
3.4 Model Inference

To generate the next-token w, we exclude B, and
use B4 and A. The PLM receives the input con-
text = from the test dataset, and generates f(x),
which serves as input for two pathways. One path-
way uses PEMA’s A and B, to create hyq for
x. Subsequently, it is passed through Wj4 to pro-
duce a distribution of the next-token Ppgysa(W|x).
The other pathway directly feeds r into Wp4 to
produce the next-token distribution Pr,ps(w|x). Fi-
nally, these two distributions are blended using a
tuned parameter A to produce the final distribution
of tokens for the desired task as below:

P(u?\x) = )\PPEMA(IZ}|I) + (1 — )\)PLM(’Lz)ll’) (6)
4 Gradual Unrolling Interpolation

Given that an adaptation model trained with only a
limited number of parameters may lack the context-
awareness and language-generation capabilities of
pre-trained language models, it is more effective
to use the adaptation model to guide the genera-
tion of tokens of the desired task at the beginning
of the sentence, and rely on a pre-trained language
model to provide context for the rest of the sentence.
To achieve this, we suggest the Gradual Unrolling
strategy, which aims for strong Ppgpsa(w|z) in-
terpolation at the beginning of generation and grad-
ually decreases the interpolation. As the sentence
progresses, the pre-trained language model increas-
ingly contributes to providing the necessary con-
text, as shown in Figure 3.

In the context of sentence generation, we de-
fine SL as the input sentence length, excluding
instruction and user-defined variables Ap,q5. A rep-
resents the proportion of the adaptation model’s
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I The authoritative date is on the original receipt of purchase. :
1
|

PEMA %

Start End

With Gradual Unrolling:
Die offizielle Datumsangabe ist auf dem Kaufschein.

Figure 3: The intuition of Gradual Unrolling. Given
the input sentence (Black), the interpolation percent-
age of the adaptation model (Blue) decreases gradually
while that of the language model (Red) increases as the
sentence is being generated. This strategy ensures that
the adaptation model generates tokens trained for the
desired task at the beginning of the sentence, and the
language model provides the necessary context in the
remaining part of the sentence.

interpolation (0 < A < 1). We also have the de-
pendent variables of the current step (C'S) and
the step size (S.5). The step size is computed as
SS = Mpaz/SL, and C'S is initialized to Ay
at the start of sentence generation. At each token
generation step, C'S decreases by S'S until the end
of the sentence (i.e., C'Scyr = CSpast — 5SS where
C'Spast 1s the latest token’s C'S variable). Then, we
calculate the current interpolation proportion gy,
(i.e., X at Equation 6) as A, = CS2,,..

S Experiments

This section describes the experiments and re-
sults to show both the computational efficiency
and performance in downstream tasks of PEMA.
First, we perform an experiment on the compu-
tational efficiency of PEMA. Subsequently, we
evaluate PEMA across two downstream tasks: the
WMT22 EN—DE machine translation task (Kocmi
et al., 2022) and the GYAFC formal style transfer
task (Rao and Tetreault, 2018). Lastly, we conduct
an ablation study to show the gradual improvement
by incorporating each idea of PEMA.

5.1 Computational Efficiency

To evaluate the computational efficiency of PEMA,
we conduct a comparison of different fine-tuning
methods based on their resource utilization dur-
ing both training and inference. We follow the ap-
proach of previous work (Pope et al., 2023) that



employs a fixed size of input tensors. We use in-
put tensors with the size [1, 10], equivalent to se-
quences of 10 tokens with OPT-IML-MAX-1.3B.
The resource utilization metrics encompass training
memory consumption, training latency, inference
memory consumption, inference latency, and float-
ing point operations per token.

The evaluation involves several steps. First,
we clear the CUDA cache to compute the mem-
ory and ensure no background GPU processes.
GPU memory utilization is determined using
the memory_summary function provided by Py-
torch (Paszke et al., 2019). We calculate the time
difference before inputting the data into the model
and after obtaining the output. For training latency,
we consider the time encompassing the entire back-
propagation process. To ensure the accuracy of la-
tency, we compute the mean and variance based on
ten trials of inputs for each fine-tuning method. We
conducted a comparative analysis with the offsite-
tuning baseline approach, Offsite-Tuning (Xiao
et al., 2023). Offsite-Tuning involves knowledge
distillation (OT Emulator) and downstream task
training using the OT Emulator (OT Plug-in). Sub-
sequently, it utilizes the OT Plug-in to interact with
the PLM during the inference phase.

As shown in Table 1, PEMA demonstrates the
efficiency by utilizing one-tenth of the training
memory consumption compared to LoRA. In ad-
dition, PEMA shows the fastest training latency
among all the methods. This is because PEMA
uses external memory to store context representa-
tions and does not require access to a pre-trained
language model during the training phase, as il-
lustrated in Figure 2. These results highlight the
significance of PEMA’s reduced training memory
consumption and improved training latency, mak-
ing it an appealing choice for efficient natural lan-
guage generation tasks.

5.2 Performance of Downstream Tasks

We present a comprehensive analysis of the per-
formance of PEMA and baseline models on two
downstream tasks: the WMT22 (EN—DE) transla-
tion task and the GYAFC task involving Family &
Relationships and Entertainment & Music.

For the machine translation task, we use the
EN—DE news-commentary dataset to address the
limitation noted in (Brown et al., 2020), where
translations into English tend to be stronger than
those from English due to training set biases. We
evaluate our model using the latest test set provided

Method Tr-MC Tr-Lat Inf-MC  Inf-Lat FLOPs

FT 20,082 250411406 5,021 17.1410 2.41e9
FT—[OpZ 7,355 70-3i108.6 5,021 17-3i1.3 2.41e9
ENN-LM None 20315672 5,021 37.5414 FT+6.29¢6
LoRA 5,056 21.640.4 5,031 205415 FT+4.19¢6
UniPELT 5,138 30.3401 5,047 213406 FT+1.49¢7
OT Emulator 11,713 88.41309.4 None None FT+8.03e8
OT Plug-in 5,267  59.61107.8 5,269 213401 FT+4.82¢8
PEMA 478 185410 5,043 182405 FT+4.19¢6

Table 1: Comparison of various training and inference re-
source utilization methods with OPT-IML-MAX-1.3B.
We evaluate memory consumption (MC) and latency
(Lat) for training (Tr) and inference (Inf), as well as
FLOPs per token, using 10-token length sequences.
Memory size is measured in megabytes, and latency
is measured in milliseconds. PEMA stands out by us-
ing only one-tenth of the training memory utilized by
LoRA. Furthermore, PEMA demonstrates the fastest
training latency among the methods.

by (Hendy et al., 2023).

For the formality style transfer task, we use the
GYAFC dataset (Rao and Tetreault, 2018), which
consists of a parallel training set of informal and
formal sentences. The test set comprises four refer-
ence sentences paired with one informal sentence.
In this task, our objective is to transfer the style of
informal sentences into formal ones.

We use three pre-trained language models:
OPT-IML-MAX-1.3B, LLaMA-7B, and OPT-IML-
MAX-30B (Iyer et al., 2022; Touvron et al., 2023).
We compare PEMA with the following methods:
Full fine-tuning (FT) updates all pre-trained
model parameters, including weights and biases.
Fine-tuning top-2 (FT-Top2) updates the last two
layers while the remaining layers are frozen.
k-Nearest Neighbors Language Model (XNN-
LM) (Khandelwal et al., 2020) uses kNN search
within an external memory to derive a next-token
distribution Py v, which is then interpolated with
Pras to produce an adapted next-token distribution.
LoRA (Hu et al., 2022) uses two additional train-
able matrices. We apply LoRA at the last layer out-
put projection matrices in the self-attention module.
UniPELT (Mao et al., 2022) is a state-of-the-
art PEFT method that combines Adapter tun-
ing (Houlsby et al., 2019), Prefix tuning (Li and
Liang, 2021), and LoRA (Hu et al., 2022) with a
gating mechanism to select the optimal approaches.
We apply UniPELT at the last layer.
Offsite-Tuning (Xiao et al., 2023) is an offsite-
tunable method that uses a distilled PLM emulator
with an adapter, which includes multiple copies at



Model WMT22 (EN—DE) GYAFC (F&R) GYAFC (E&M)
Tr-MC (MB) sBLEU PPL COMET sBLEU PPL FormImp sBLEU PPL Formlmp
OPT-1.3B None 9.55 5130 5724 | 5500 18.98 11.05 | 53.98 20.89 10.67
OPT-1.3B (FT) 20,082 | 10.15 40.83 6144 | 29.17 24.82 5228 | 3150 27.99 46.82
OPT-1.3B (FT-Top2) 7,355 357 5136 3835 | 21.60 2433 59.00 | 23.94 27.07 51.52
OPT-1.3B (kNN-LM) None 8.07 9137 4175 | 56.69 20.87 1626 | 5474 23.15 14.46
OPT-1.3B (LoRA) 5,025 428 61.25 3932 | 2098 19.07 4571 | 1557 19.71 46.32
OPT-1.3B (UniPELT) 5,138 9.15 47.09 5630 | 51.38 44.43 5222 | 4667 22.08 53.31
OPT-1.3B (Offsite-Tuning) 5,267 765 3691 52.85 | 59.01 20.70 2482 | 57.01 2325 23.76
OPT-1.3B (PEMA) 478 | 12.87 42.62 64.16 | 64.82 23.15 4190 | 6124 2428 36.28
LLaMA-7B None 278 78.49 3949 | 20.18 34.53 4281 | 24.14 3733 44.81
LLaMA-7B (kNN-LM) None 0.07 85.09 38.53 1.72 4150 55.13 1.94 4631 68.61
LLaMA-7B (LoRA) 13237 | 1146 5136 6748 | 5267 2242 7223 | 5215 2474 71.28
LLaMA-7B (UniPELT) 13,810 9.13  46.62 5631 | 59.81 22.95 71.69 | 58.07 25.35 68.33
LLaMA-7B (PEMA) 996 | 14.50 54.26 7031 | 63.99 23.19 6140 | 60.88 26.00 60.94
OPT-30B None | 1822 45.81 7741 | 6041 20.04 2933 | 57.60 21.97 23.88
OPT-30B (KNN-LM) None | 16.65 74.06 6298 | 61.02 20.86 29.80 | 58.58 2275 23.39
OPT-30B (LoRA) 58,083 826 46.97 69.41 | 61.39 22.00 7310 | 59.76 23.97 68.29
OPT-30B (UniPELT) 59,028 | 15.57 47.34 7342 | 64.54 21.72 47.14 | 56.86 23.77 34.08
OPT-30B (PEMA) 1,909 | 1922 46.62 7921 | 70.84 22.04 5235 | 6543 2553 44.63

Table 2: Comparison of various models across different tasks. The evaluated tasks include WMT22 (EN—DE)
translation and GYAFC Family & Relationships (F&R) and GYAFC Entertainment & Music (E&M) style transfer.
The models considered for evaluation are OPT-IML-MAX-1.3B, LLaMA-7B, and OPT-IML-MAX-30B, each with

specific adaptations and configurations.

the PLM’s beginning and end. We use four adapter
layers for training and inference.

We use widely used evaluation metrics to assess
the performance of PEMA as follows:
Sacre-Bleu (sBLEU) (Post, 2018) is a commonly
used metric to calculate the n-gram accuracy be-
tween the source and target sentences. It evalu-
ates how well the generated sentence preserves the
meaning of the reference and captures target do-
main distribution. Higher scores are better.
Perplexity (PPL) (Jelinek et al., 1977) is to as-
sess the fluency of generated sentences. We use
pre-trained GPT-2 large (Radford et al., 2019)
to calculate the exponential of the negative log-
likelihood of a current token given the previous
context. Lower scores are better.

COMET (Rei et al., 2020) is a neural network-
based metric for assessing machine translation qual-
ity. It shows a positive correlation with human judg-
ments. We utilize the default, pre-trained COMET
model?® for the WMT22. Higher scores are better.

Formality Improvement (FormImp) measure for-
mality improvement based on XFORMAL (Bri-
akou et al., 2021a). To measure the formality score
of a sentence, we train a BERT-Large (Devlin et al.,
2019b) on an external formality dataset consist-
ing of 4K human-annotated examples (Pavlick and
Tetreault, 2016). We compute the formality score
for each formal reference sentence (F'R), informal

2https://github.com/Unbabel/COMET

input sentence (/71), and generated sentence (G).
Then, we measure the relative distance using the
formula: % x 100. We employ this metric for
the GYAFC task. Higher scores are better.

5.2.1 Results

For the WMT22 (EN—DE) translation task, we
evaluated sBLEU, PPL, and COMET metrics. As
Table 2 shows, PEMA outperforms baselines in
sBLEU and COMET. Offsite-Tuninig, LoRA, and
UniPELT perform slightly better than a naive pre-
trained language model and PEMA in terms of
PPL. However, they require more memory con-
sumption for training than PEMA. Finally, PEMA
generates more appropriate translated sentences
than other baselines for sSBLEU with relatively
small memory consumption.

For the GYAFC style transfer task, we evalu-
ated sBLEU, PPL, and Formality Improvement
(FormImp) metrics. As Table 2 shows, PEMA con-
sistently achieves favorable performance. PEMA
shows the highest sSBLEU scores, effectively main-
taining meaning preservation across different do-
mains and models. PEM A performs slightly better
than a naive pre-trained language model and is com-
parable to other baselines in terms of FormImp. Fur-
thermore, we observe a trade-off between sBLEU
and formality. These findings support previous ob-
servations in the same formality style transfer task
with multilingual formality (Briakou et al., 2021b).


https://github.com/Unbabel/COMET

WMT22 (EN—DE) sBLEU PPL COMET
OPT-30B 18.22 45.81 7741
OPT-30B+DB,q 18.74 48.05 77.76
OPT-30B+B,4+GU 19.17 48.60 78.57
OPT-30B+B,4+GU+B,.; (PEMA) 19.22  46.62 79.21
GYAFC (F&R) sBLEU PPL  Formlmp
OPT-30B 60.41 20.04 29.33
OPT-30B+B,4 70.00 20.38 47.38
OPT-30B+B,+GU 70.29 16.95 51.24
OPT-30B+B,q+GU+B,. (PEMA) 70.84 22.04 52.35
GYAFC (E&M) sBLEU PPL  Formlmp
OPT-30B 57.60 21.97 23.88
OPT-30B+DB,q 64.37 26.76 38.80
OPT-30B+DB,¢+GU 64.82 25.62 42.61

OPT-30B+B,4+GU+B,.; (PEMA) 65.43 2553 44.63

Table 3: Ablation results of PEMA over our proposed
approaches. The techniques include a token prediction
decoder (B,q), Gradual Unrolling (GU), and a recon-
struction decoder (B,..;). We use OPT-IML-MAX-30B
as a baseline. Implementing all techniques together en-
hances overall performance.

A Amaz 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

With GU 4745 46.61 46.62 46.18 46.12 46.03 4585 45.89 4584
Without GU  54.29 51.87 5022 49.70 49.45 48.09 47.76 47.67 47.52

Table 4: Impact of Gradual Unrolling (GU) on perplex-
ity across different A/\,,q. values. Using GU consis-
tently outperforms the approach without GU for all
A/ Amaz values, ranging from 0.1 to 0.9.

5.3 Ablation Study

To assess the effectiveness of PEMA, we conduct
ablation studies to demonstrate the incremental im-
provement achieved by incorporating each com-
ponent of PEMA. We utilize a token prediction
decoder (B,4) to predict the target token based
on the context representation obtained from the
pre-trained language model. As shown in Table 3,
the token prediction decoder enhances task perfor-
mance. Building on this, we incorporated Gradual
Unrolling (GU) and the Reconstruction Decoder
(Byet) to further improve performance. The inclu-
sion of these three methods yields the highest per-
formance gains, as shown in the results.

Interpolation Parameter (\,,,;) We propose the
Gradual Unrolling (GU) interpolation strategy,
where PEMA initially guides the generation of a
new task and subsequently leverages the language
model for contextual completion of sentences. Ta-
ble 3 shows the effectiveness of GU in enhancing
performance by enabling the language model to
provide context completion. We further compare
with and without GU by adjusting the A4, hy-
perparameter in the WMT?22 task. As shown in
Figure 4, with GU maintains better performance

COMET

501 —e— with GU
—— Without GU 78.6

0.0 0.2 04 06 0.8 00 02 04 06 08
Interpolation Parameter (A) Interpolation Parameter (k)

Figure 4: Performance variations on the WMT22 task
with interpolation values ., (left) and & (right). For
Amazs Using Gradual Unrolling (GU) prevents perfor-
mance degradation and enhances results, unlike without
GU, where performance drops sharply. With x when
Amaz 18 set at 0.7, combining reconstruction loss with
next-token prediction loss improves performance over
excluding reconstruction loss (red dotted line), as indi-
cated by better results when  is above zero.

stability at higher A\, values while achieving no-
ticeable performance improvement over without
GU. We also report details on the impact of in-
corporating A, in Figure 5 in the appendix. Ad-
ditionally, we conduct an experiment to measure
perplexity. Table 4 shows that GU consistently out-
performs across \/\p,q, values from 0.1 to 0.9.
Interpolation Parameter (x) We investigate the
effectiveness of the reconstruction decoder, which
reconstructs the original vector f(c;). Table 3 and
Figure 4 demonstrate that incorporating the recon-
struction decoder improves performance across de-
sired tasks, demonstrating its efficacy in enhancing
generation quality. We also report details on the im-
pact of incorporating « in Figure 6 in the appendix.

6 Conclusion

In this paper, we present PEM A, a novel parameter-
efficient fine-tuning approach for language mod-
els. Unlike existing PEFT methods, PEMA utilizes
minimal pre-trained model parameters during train-
ing, making it an efficient and adaptable method
for offsite-tuning. PEMA includes a token predic-
tion decoder, Gradual Unrolling, and a reconstruc-
tion decoder to improve model performance. Our
comprehensive evaluations on translation and style
transfer tasks demonstrate PEMA’s effectiveness
in generating text that more closely follows target
domain distributions. Additionally, PEMA proves
its computational efficiency by utilizing minimal
training memory and achieving faster training la-
tency with a syntactic dataset. Overall, PEMA of-
fers efficient fine-tuning and presents a promising
direction for an offsite-tunable PEFT approach in
downstream NLP tasks.



Limitations

PEMA introduces a novel Parameter-Efficient
Fine-Tuning (PEFT) method for privacy-preserving
offsite-tuning. However, this process requires data
owners to share predicted next-tokens with PLM
owners during inference, which raises potential pri-
vacy concerns. These concerns necessitate further
investigation of effective mitigation strategies.

Additionally, sharing the W}, weight between
PLM owners and data owners poses challenges re-
lated to model privacy. In our experiments, we used
open-source PLMs due to the confidentiality issues
associated with proprietary PLMs. Our future work
will explore enabling data owners to generate a
new Language Model (LM) head using a shared
tokenizer from the PLM owner, enhancing privacy
between the PLM and the data owner.

Finally, through PEMA, data and PLM owners
can fine-tune efficiently and effectively with mini-
mal communication. However, the way data own-
ers use PEMA could unintentionally lead to data
leakage issues. Subsequent research will explore
solutions to address this challenge.

While our research has been focused on machine
translation tasks, it can be applied to various NLP
tasks depending on the initial input. Consequently,
future studies will investigate the application of our
method across a range of NLP tasks.

Ethics Statement

The results of our research are based on existing
studies, and all generation models and datasets used
are publicly available and used for their intended
use with no ethical concerns.
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A Performance on Different Rank Sizes

Model WMT22 GYAFC GYAFC

(EN—DE) (F&R) (E&M)
OPT-1.3B (LoRA,_g) 325 2313 1841
OPT-1.3B (LoRA,_512) 428 2098 1557
OPT-1.3B (PEMA,_g) 1175 5629  54.22
OPT-1.3B (PEMA,_s512) 1287 6482  61.24
LLaMA-7B (LoRA,_g) 1092 1480  12.69
LLaMA-7B (LoRA,_s12) 1146 5267  52.15
LLaMA-7B (PEMA,_g) 3.88  48.88  45.73
LLaMA-7B (PEMA,_s12) 1450 6399  60.88
OPT-30B (LoRA,_g) 1605 6128  59.48
OPT-30B (LoRA,_512) 1603 6139  59.76
OPT-30B (PEMA,_s) 1833  62.87  60.12
OPT-30B (PEMA, _s512) 1922 70.84  65.43

Table 5: Experiment on LoRA and PEMA on mean-
ing preservation (SBLEU) across rank variations (r =
{8,512}). The result shows PEMA consistently outper-
forms LoRA on sBLEU and COMET.

LoRA (Hu et al., 2022) states performance re-
mains comparable with a small rank size. However,
Adal.oRA (Zhang et al., 2023) finds a large rank
size in the last layer of PLMs is needed for better
performance. Performance evaluation on PEMA
and baseline PEFT methods is conducted at the last
layer of PLMs. For this reason, we set 7 = 512
for LoRA and PEMA to minimize the effect on
performance with rank size. However, LoORA uses
arank size between 1 to 64 for their experiment. As
PEMA is a LoRA-based PEFT method, we com-
pared the performance on meaning preservation
using the rank size employed in LoRA (8) and the
rank size used in our experiment (512). As Table 5
shows, a larger rank size generally achieves favor-
able performance. In the case of LoRA, using a
rank size of 512 outperforms 8 in 6 out of 9 cases.
PEMA with a rank size of 512 performs better than
PEMA with a rank size of 8 at all tasks.

B Measuring Informal Language Patterns

The GYAFC dataset for style transfer includes com-
mon informal input patterns that are frequently oc-
cur. To analyze the amount of mitigation, we cate-
gorize these patterns into four types. The four infor-
mal patterns are as follows. Slang abbreviations
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Informal  Formal Naive KNN-LM LoRA UniPELT Offsite-Tuning PEMA
Input  Reference OPT-30B

Family & Relationships
Slang Abbreviation 525 307.75 346 339 356 322 361 289
All Capital 68 0 61 60 8 5 65 3
Redundant Word 39 2 1 1 2 0 17 3
Non-Capital Start 636 1.5 16 2 1 1 2 0
Entertainment & Music
Slang Abbreviation 651 485.75 541 538 530 534 529 463
All Capital 36 0 31 34 9 9 37 0
Redundant Word 49 17.75 5 5 7 3 16 32
Non-Capital Start 655 7 24 2 0 1 3 0

Table 6: Count of informal patterns for each generated formal sentence. The result shows that PEMA performs
better in mitigating informal patterns than baseline approaches. Lower is better.

are informal short forms of words or phrases (e.g.,
"LOL"-"laughing out loud"). To identify the pres-
ence of slang words, we check how many words
from the predicted target sentence are present in
the slang dictionary from (Productions, 2023). All
capital is a pattern in which all characters in a
generated word are capitalized (e.g., "FUNNY").
We calculate how many generated words are all
capitalized. Redundant word occurs when two
consecutive words are the same. For example, "I
lie lie lie and then I lie some more." has two redun-
dant words. Non-capital start is counted when a
sentence does not start with a capital letter (e.g., "i
only want points").

Table 6 shows the count of each informal pattern
in generated sentences for both the baseline and
PEMA. We also show an informal pattern count
on informal input and formal reference. There are
four reference sentences for each example in the
test set. We show the average count for each pat-
tern using the formal reference. It shows PEMA is
good at mitigating slang abbreviation, all capital,
and non-capital start compared to other baseline
approaches. Interestingly, PEMA outperforms for-
mal references in mitigating slang abbreviations
and non-capital start.

C Dataset

C.1 Data Statistic

Table 7 shows data statistics of GYAFC and
WMT22. For WMT22, we use a news-commentary
v16 (EN—DE) for training. The test set for GYAFC
has four references, while WMT?22 has one refer-
ence for each test input.
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Dataset Train  Valid Test Lengthof £
GYAFC (F&R) 51,967 2,788 1,332 691,531
GYAFC (E&M) 52,595 2877 1416 695,465
WMT22 388,482 2,203 1,984 20,983,482

Table 7: Data statistic of GYAFC and WMT22 with
length of external memory €.

Task Example
WMT22 English:  In better shape, but not alone.

German:  In besserer Verfassung, aber nicht allein.
GYAFC Informal: I'd say itis punk though.

Formal: However, I do believe it to be punk.

Table 8: Example of parallel dataset GYAFC and
WMT?22.

C.2 Dataset Examples

Table 8 demonstrates examples of parallel datasets
of GYAFC and WMT?22.

C.3 Prompts

Table 9 presents prompt input used for evalua-
tion. WMT22 and GYAFC have two placeholders.
This includes [English Input] and [Informal Input].
[Generated Output] is a predicted output sentence
generated by PLMs.

[English Input] represents the English input sen-
tence in WMT?22. [Informal Input] is the informal
input sentence in GYAFC. An example of the par-
allel data input can be found in Table 8.

C.4 Post-processing

We use three decoder-based pre-trained language
models for evaluation: OPT-IML-MAX-1.3B,
LLaMA-7B, and OPT-IML-MAX-30B. These



Task
WMT22

Prompt

Translate this from English to German:
[English Input]
German: [Generated Output]

GYAFC  Convert the following informal sentence into a formal sentence:
Informal: [Informal Input]

Formal: [Generated Output]

Table 9: Prompt used for evaluation. [ ] represents the
placeholder.

Model
OPT

Common hallucination patterns

I’'mnot sure ...

150% ...

Convert the following informal sentence ...
Translate this from English to German: ...

LLaMA Informal: ...
#it# ..
Comment: ...
\\[...

\begin ...

Answer: ...

Table 10: Common hallucination patterns after generat-
ing a predicted sentence.

models are capable of generating tokens contin-
uously. This characteristic makes decoder-based
language models generate beyond the predicted
sentences, typically called hallucinations. We find
common hallucination patterns in each pre-trained
language model. We post-process hallucinations
generated after the predicted sentence for evalua-
tion. Table 10 shows common hallucination pat-
terns that are removed.

D Implementation Details

We use three RTX 8000 GPUs with 48GB GDDR6
memory for our experiment. For OPT-IML-MAX-
1.3B, we use full precision (FP32) for training and
inference. For LLaMA-7B and OPT-IML-MAX-
30B, we use half-precision (FP16) and distribute
the model across three GPUs using the Hugging-
Face Accelerate library. The hyperparameters for
PEMA and the baselines are in Table 11. The best
hyperparameter is selected using a grid search.

E Examples of Generated Outputs

The generated formal outputs of GYAFC are shown
in Table 13 and Table 12. In WMT?22, the German
output generated is presented in Table 14. It shows
PEMA understands the meaning of abbreviated
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PEMA
Random seed 123
Batch size 40,960
Adam [r 1e-03
Adam (1, B2) (0.9, 0.999)
Adam eps le-08
Number of rank 512
Optimal Apqx 0.7t0 0.9
Offsite-Tuning
Random seed 42
Batch size 18
Emulator size % of PLM
Adam Ir le-04
Adam (1, B2) (0.9, 0.999)
Adam eps le-08
LoRA
Random seed 123
Batch size 10 to 30
Adam [r 1e-03
Adam (31, B2) (0.9, 0.999)
Adam eps le-08
Number of rank 512
LoRA « 1
Merge weight FALSE
kNN-LM
Random seed 1
Number of centroids learn 4,096
Quantized vector size 64
Number of clusters to query 32
Distance function L2 Distance
UniPELT
Random seed 123
Batch size 10 to 30
Adam [r 1e-03
Adam (31, B2) (0.9, 0.999)
Adam eps le-08
Prefix gate True
Prefix length 10
Prefix mid dimension 512
LoRA gate True
Number of rank 10
LoRA « 16
Adapter gate True
Adapter down sample Dpiq/2
Adapter
Used PEFT methods Prefix tuning
LoRA

Table 11: Hyper-parameter setup of each baseline
method. We select the batch size between 10 to 30.
Dy, represent hidden size of a model.

format (e.g., translating "5’4" to "5 feet 4 inches"),
or removing the informal word (e.g., "flirt" which
typically refers to playful or teasing behavior). Mit-
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Figure 5: Performance variation for each interpolation
value \,,, 4, in the WMT22 task. With both Gradual Un-
rolling (GU) (blue) and without GU (red), there is a
decline in performance at a specific point of \,,4,. How-
ever, when utilizing GU, the model is not only robust
to performance degradation but also gains performance
improvement.
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Figure 6: Impact of mixing ratio values between recon-
struction loss and predicting the next-token loss in the
WMT?22 task. When « is 0, it means excluding recon-
struction loss (red dashed line). We fix the \,,,,, value
as 0.7. The graphs show that combining reconstruction
loss and predicting the next-token loss is superior to
excluding reconstruction loss.

igating common informal patterns such as all capi-
tal words (e.g., "PINK FLOYD" to "Pink Floyd")
while preserving the meaning of input (e.g., "Wir"
means "We" in German).

F Difference Between PEMA and LoRA
at th

Applying LoRA to W,q € R"*4, a larger set of
parameters is required due to the difference in in-
put and output sizes (d and v). Conversely, PEMA
operates more efficiently, utilizing computation re-
sources by receiving an input of size d and yielding
an output of the same size. For instance, OPT-1.3B
has d = 2,048 and v = 50, 272.

G Impact on Interpolation \ and

In the WMT?22 task, we observe performance vari-
ation with different interpolation values, \y,q; in
Figure 5. Additionally, we investigate the impact
of the mixing ratio values between reconstruction
loss and predicting the next-token loss in Figure 6.
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H Licensing Information

Models OPT is licensed under the MIT License.
The LLaMA is licensed under the GNU General
Public License (GPL) version 3.

Fine-tuning Methods ANN-LM, LoRA, and
Offsite-Tuning are licensed under the MIT License.
UniPELT is licensed under the Creative Commons
Attribution-NonCommercial (CC-BY-NC) license.
Dataset GYAFC is based on the Yahoo Answers
corpus (L6 - Yahoo! Answers Comprehensive
Questions and Answers version 1.0) (Yahoo, 2007),
and is designated for research purposes. Access to
the GYAFC dataset requires prior access to Yahoo
Answers corpus. WMT22 is freely available for
research purposes for academic and educational
activities.



Input he is probably wondering if your interested in him at all... flirt back!! sBLEU
Reference 1 He is likely wondering if you are interested in him at all; Flirt back with him.
2 He probably wants to know if you’re interested in him.
3 He is probably wondering if you are interested in him at all, so flirt back.
4 He is probably wondering if you are interested in him at all. Flirt back.
Output PEMA He is probably wondering if you are interested in him at all. 100.0
LoRA He is probably wondering if you are interested in him at all. If you are interested, flirt back. 66.78
kNN-LM It is most likely that he is wondering if you are interested in him at all....flirt back!! 42.60
UniPELT He is probably wondering if your interested in him at all....flirt back! 50.82
Offsite-Tuning ~ He probably is wondering if you are interested in him at all. Flirt back!! 72.98
Naive OPT-30B In informal situations he is probably wondering if your interested in him at all. 46.03
Input I don’t know!...I just want the points...1ol
Reference 1 I only want points.
2 I do not know. I merely want the points.
3 I do not know; I just want the points.
4 I do not know, I only want the points.
Output PEMA I do not know, but I just want the points. 73.49
LoRA I don’t know!... I just want the points. I am not sure what I am doing. 25.31
kNN-LM I don’t know!...I just want the points...lol 34.90
UniPELT I don’t know!...I just want the points...1ol 34.90
Offsite-Tuning - 0.00
Naive OPT-30B I don’t know!...I just want the points...lol 34.90
Input No way im 5‘4 and he‘s 62
Reference 1 No, I am 5ft 4inches and he is 6ft and 2inches.
2 No way, I am only 5’4" and he is 6°2".
3 Not at all. I am five feet four inches tall and he is 6 feet 2 inches tall. *
4 No chance, I am five feet four inches tall and he is six feet two inches tall.
Output PEMA No way, [ am 5 feet 4 inches tall and he is 6 feet 2 inches tall. 74.44
LoRA No way, I am 5’4 and he is 6°2. 51.52
kNN-LM No way, I am 5’4 and he is 6°2 50.05
UniPELT No way, [ am 5’4 and he is 6’2 50.05
Offsite-Tuning ~ No way im 5’4 and he’s 6°2. 7.78
Naive OPT-30B No way, I am 5‘4 and he is 62 45.72

Table 12: Examples of generated formal output of GYAFC (Family & Relationships) for given informal input. One
interesting example is PEMA can understand the meaning of abbreviated height descriptions like "5’4" and "6’2".
And rewrite them into more formal forms "5 feet 4 inches" and "6 feet 2 inches".
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Input I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won... sBLEU

Reference 1 While I respect that Tyra Banks is branching out into television hosting, Oprah Winfrey is the better example.
2 I respect the hostess Tyra Banks, but I prefer Oprah.
3 I admire Tyra Banks for trying to become a tv show host. However, Oprah is clearly the best hostess.
4 I respect that Tyra Banks is trying out show hosting, but I think that Oprah won.

Output PEMA T respect that Tyra Banks is trying to show hosting..but the big O [aka Oprah Winfrey] won. 35.56
LoRA I respect that tyra banks is trying show hosting, but the big O won. 24.32
kNN-LM I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won. 12.02
UniPELT I respect that tyra banks is trying show hosting..but the big O won... 13.40
Offsite-Tuning I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won... 10.90
Naive OPT-30B  In informal: I respect that tyra banks is trying show hosting..but the big O [aka OPRAH] won... 9.56

Input Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!!

Reference 1 T am not sure what is going to happen but I am sure it will be good.
2 I’'m not sure what is going to happen, I'm sure it will be good.
3 I am not sure what will happen, but I am sure it will be good. Oh, yes.
4 I am not sure what will happen, however, I am sure that it will be good.

Output PEMA T am not sure what is going to happen, but I am sure it will be good and OH YEAH!!!!!!! 61.11
LoRA Not sure what’s going to happen, but I am sure it will be good and OH YEAH!!!!!!1. 43.05
kNN-LM Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!! 20.22
UniPELT Not sure what’s going to happen, but 16.74
Offsite-Tuning ~ Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!! 20.22
Naive OPT-30B  Not sure what’s gonna happen, sure it will be good and OH YEAH!!!!!!! 20.22

Input Journey, PINK FLOYD, The POLICE, The EAGLES & RUSH... omg!

Reference 1 Journey, Pink Floyd, The Police, The Eagles, and Rush - oh my!
2 1 like Journey, Pink Floyd, The Police, The Eagles, and Rush.
3 Oh goodness, Journey, Pink Floyd, The Police, the Eagles, and Rush!
4 Journey, Pink Floyd, The Police, The Eagles, and Rush are all great classic bands.

Output PEMA T love Journey, Pink Floyd, The Police, The Eagles and Rush. 69.01
LoRA Journey, PINK FLOYD, The Police, The Eagles & Rush. I love it! 36.45
kNN-LM Journey, PINK FLOYD, The Police, The Eagles & Rush... omg! 35.66
UniPELT Journey, PINK FLOYD, The Police, The Eagles & Rush... omg! 35.66
Offsite-Tuning  Journey, Pink Floyd, The Eagles, Rush, and The Police. Oh my god! 47.29
Naive OPT-30B  Journey, PINK FLOYD, The Police, The Eagles & Rush... omg! 35.66

Table 13: Examples of generated formal output of GYAFC (Entertainment & Music) for given informal input.
It shows that PEMA is capable of restoring All Capital patterns to their formal format. For example, PEMA
successfully restore "Oprah Winfrey" given "OPRAH" as an input.

Input In Berlin he trained as an opera singer and in 1986 he founded the Palast Orchester together with his classmates. sBLEU
Reference In Berlin studierte er Operngesang, 1986 griindete er zusammen mit Kommilitonen das Palast Orchester.
Output PEMA In Berlin studierte er als Opernsénger und griindete 1986 mit seinen Schiilern das Palast Orchester. 33.16
LoRA In Berlin wurde er als Opernsiinger trainiert und 1986 griindete er mit seinen Schiilern das Palast Orchester. 22.79
kNN-LM In Berlin schloss er 1986 mit seinen Schiilern die Palast-Orchester zusammen. 6.64
UniPELT In Berlin trainierte er als Opernsidnger und griindete 1986 mit seinen Schiilern das Palast Orchester. When 19.35
Offsite-Tuning  ich war in Berlin als Opernstitte und 1986 griindete er die Palast Orchester gemeinsam mit seinen Kollegen. 11.31
Naive OPT-30B  In Berlin wurde er als Opernsénger trainiert und 1986 griindete er mit seinen Schiilern das Palast Orchester. 22.79
Input Since then the baritone has established himself with his repertoire of hits and chansons in the style of the Comedian Harmonists.
Reference Seitdem hat sich der Bariton mit seinem Repertoire aus Schlagern und Chansons im Stil der Comedian Harmonists etabliert.
Output PEMA Seitdem hat er sich mit seinem Repertoire aus Hits und Chansons im Stil der Comedian Harmonists etabliert. 60.26
LoRA Seitdem ist er mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonists aufgestiegen. 46.00
kNN-LM Seitdem ist er mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonistslipperlipper 39.81
dieserenedenauit festgelegt.
UniPELT Seitdem ist der Bariton mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonists auf 42.85
dem Gebiet der Kulturlandschaft in der Schweiz etabliert.
Offsite-Tuning  ich habe seitdem die Baritone seine Rekorde aus der Stil der Comedian Harmonisten errichtet. 8.91
Naive OPT-30B  Seitdem ist er mit seinem Repertoire aus Hitparaden und Chansons im Stil der Comedian Harmonists auf dem 39.81

Gebiet der Baritonen geschrieben.

Input We have the book Terra, but I am generally not very satisfied with the assignments in the book.

Reference Wir haben das Buch Terra und mit den meisten Aufgabenstellungen im Buch bin ich eher unzufrieden.

Output PEMA Wir haben das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit den Aufgaben in dem Buch. 22.37
LoRA ich habe das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit den Aufgaben in dem Buch. 10.11
kNN-LM ich habe das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit denenteilen in dem Buch. 9.38
UniPELT ich habe das Buch Terra, aber in der Regel bin ich nicht sehr zufrieden mit den Aufgaben in dem Buch. 10.06
Offsite-Tuning  ich habe die Buch Terra, aber ich bin allgemein nicht sehr begeistert mit den Schreibungen in der Buch. 6.44
Naive OPT-30B  ich habe das Buch Terra, aber ich bin im Allgemeinen nicht sehr zufrieden mit den Aufgaben in dem Buch. 10.11

Table 14: Examples of generated German output in WMT?22 test set. The result shows that PEMA is capable of
generating German output that preserves its meaning.
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