
Published in Transactions on Machine Learning Research (10/2025)

Length independent generalization bounds for deep SSM
architectures via Rademacher contraction and stability con-
straints

Dániel Rácz racz.daniel@sztaki.hun-ren.hu
HUN-REN SZTAKI and ELTE, Budapest, Hungary

Mihály Petreczky mihaly.petreczky@centralelille.fr
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, France

Bálint Daróczy daroczy.balint@sztaki.hun-ren.hu
HUN-REN SZTAKI, Budapest, Hungary

Reviewed on OpenReview: https: // openreview. net/ forum? id= Vo6wHBv07k

Abstract

Deep SSM models like S4, S5, and LRU are made of sequential blocks that combine State-
Space Model (SSM) layers with neural networks, achieving excellent performance on learning
representations of long-range sequences. In this paper we provide a PAC bound on the
generalization error of non-selective architectures with stable SSM blocks, that does not
depend on the length of the input sequence. Imposing stability of the SSM blocks is a
standard practice in the literature, and it is known to help performance. Our results provide
a theoretical justification for the use of stable SSM blocks as the proposed PAC bound
decreases as the degree of stability of the SSM blocks increases.

1 Introduction

The challenge of learning rich representations for long-range sequences (time series, text, video) has persisted
for decades. RNNs, including LSTMs (Hochreiter, 1997) and GRUs (Cho, 2014), struggled with long-term
dependencies, while Transformers, despite improvements, still perform poorly on difficult tasks (Huang et al.,
2024; Amos et al., 2024).

Recently, several novel architectures have been proposed which outperform previous models by a significant
margin, for an overview see Huang et al. (2024); Amos et al. (2024). One notable class of such architectures
are the so-called deep State-Space Models (deep SSMs), which typically contain several layers made of the
composition of dynamical systems of either continuous or discrete time, and non-linear transformations (e.g.
Multilayer Perceptron (MLP), defined in Definition 4.4) (Gu et al., 2021b; 2023; Gu & Dao, 2023; Wang et al.,
2024; Gu et al., 2021a; 2022; Smith et al., 2022; Fu et al., 2022; Orvieto et al., 2023). While SSM architectures
have been extensively validated empirically, the theoretical foundations of SSMs are less understood. One key
point of these models is that they are - often implicitly - equipped with some form of stability constraints for
the SSM components. This motivates the question:

What is the role of stability in the success of deep SSM architectures for long-range sequences?

We partially address this problem by leveraging stability to derive a PAC bound which is independent of
input sequence length. Our contributions are:

Stability related system norms for bounding the Rademacher complexity. We show that the Rademacher
complexity of SSMs can be upper bounded by their system norms, such as the H2 and ℓ1 norms (Chellaboina
et al., 1999), which are well-known in control theory and linked to quadratic stability. This highlights stability

1

https://openreview.net/forum?id=Vo6wHBv07k

Published in Transactions on Machine Learning Research (10/2025)

not just as a practical necessity, but as a fundamental aspect of SSM architectures, making it the key takeaway
of our work.

Rademacher Contractions. We upper bound the Rademacher complexity of multilayer deep SSM models,
encompassing many popular architectures, by introducing the concept of Rademacher Contraction (RC),
which, similarly to the celebrated Talagrand’s Contraction Lemma (Ledoux & Talagrand, 1991), allows us to
directly bound the Rademacher complexity of deep models that employ nonlinearities. However, in contrast
to Talagrand’s contraction lemma which requires these nonlinearities to be fixed, i.e., to be independent of
the model parameters, RC also handles the case when these nonlinearities are parametrised. Instead, we use
a weaker assumption regarding bounded system norms that measure the degree of stability of dynamical
systems and are widely used in control theory. In other words, the concept of Rademacher Contractions links
a handy tool from the control literature to machine learning.

PAC bound for stable deep SSMs. Using the concept of Rademacher Contraction we establish a
PAC-bound on the generalization error of deep SSMs. The resulting bound is independent of the input
sequence length due to stability, and depends only implicitly on the depth of the model. Our results cover
both classification and regression tasks for most of the popular deep SSM architectures.

Outline of the paper. In Section 2 we present the related literature, then we set some notation and present
an informal statement of our result in Section 3. The formal problem statement along with the remaining
notation and our assumptions are in Section 4. We propose our main result and a sketch of the proof in
Section 5. A numerical example illustrating the result is in Section 6. The majority of the proofs and some
additional details are shown in the Appendix.

2 Related work

Apart from Liu & Li (2024); Nishikawa & Suzuki (2024), SSM research primarily addresses modeling power,
parametrization, and computational complexity, with limited focus on generalization bounds.

Theoretical analysis of SSMs. SSM modeling power has been studied via approximation capabilities
(Cirone et al., 2024; Wang & Li, 2024; Orvieto et al., 2024), with a survey in Tiezzi et al. (2024). This
paper, however, focuses on statistical generalization bounds. Nishikawa & Suzuki (2024) derives statistical
bounds on SSM approximation error, but only for a specific learning algorithm and parametrization, whereas
our PAC bound is algorithm-agnostic. Experimental results suggest stable SSM parametrizations improve
learning (Wang & Li, 2024; Parnichkun et al., 2024; Gu et al., 2021a; Smith et al., 2022; Fu et al., 2022; Gu
& Dao, 2023; Smékal et al., 2024). Computational complexity of inference and learning has been analyzed in
Massaroli et al. (2023); Gu et al. (2021b; 2023), while Gu et al. (2023); Yu et al. (2024); Wang & Li (2024)
investigated initialization techniques.

PAC bounds for single-layer SSMs. Liu & Li (2024) derived a PAC bound for a single continuous-time
LTI SSM using Rademacher complexity. In this context, LTI refers to Linear Time-Invariant systems and is
defined in discrete time in equation 1. In contrast, their result applies only to a single SSM block without
nonlinear elements, their bound grows with sequence length, and it does not account for discretization effects.
Moreover, their constants are not directly linked to control-theoretic quantities like H2/ℓ1 norms. Their
input assumptions also differ: while we assume bounded ℓ2 norm inputs, they allow unbounded inputs, but
require subgaussianity and continuity, the latter being inapplicable in discrete time and potentially imposing
constraints on the sampling mechanism.

PAC bounds for RNNs. Since LTIs are core components of deep SSMs and a subclass of RNNs,
RNN generalization bounds are somewhat relevant. Note however, that deep SSMs and simple RNNs are
theoretically different models and we do not see any trivial way to formulate a deep SSM as a simple RNN or
vice verse, see Remark 4.9. Prior PAC bounds for RNNs use VC-dimension or covering numbers (Koiran
& Sontag, 1998; Sontag, 1998; Hanson et al., 2021b), Rademacher complexity (Wei & Ma, 2019; Akpinar
et al., 2020; Joukovsky et al., 2021; Chen et al., 2020; Tu et al., 2020), or PAC-Bayesian methods (Zhang
et al., 2018). However, prior PAC bounds grow with integration time (continuous) or time steps (discrete),
limiting their use for long-range sequences. The bound for single vanilla RNNs in Chen et al. (2020) assumes
that the state matrix represents a contraction and upper-bounds the ℓ1 norm used here. In contrast, our

2

Published in Transactions on Machine Learning Research (10/2025)

bound is independent of state-space dimension, assumes only that the state matrix is Schur and assumes only
bounded ℓ1/H2 norms. The work Mitarchuk et al. (2024) also assumes that the state matrix is a contraction,
works with tanh activation and prove a PAC-Bayesian bound for RNNs under a special saturation condition,
however it is unclear under what conditions they hold for the considered RNN class, not to mention deep
SSMs considered in the paper at hand. The proof techniques both in Chen et al. (2020) and Mitarchuk et al.
(2024) are different to what we employ.

PAC bounds for Neural Ordinary Differential Equations. PAC bounds for NODEs have been
developed in Hanson et al. (2021a); Hanson & Raginsky (2024); Marion (2023); Fermanian et al. (2021).
These results are based on Rademacher complexity and they are either affine in inputs or defined in the
rough path sense. While a single block SSM interpreted in continuous time is affine in the input, general
multi-block SSMs do not fall into this category. Moreover, these bounds are still exponential in the length of
the integration interval, i.e., the length of the time series if fixed sampling time is used.

PAC bounds for deep networks and transformers. Trauger & Tewari (2024) derive a sequence-length-
independent Rademacher complexity bound for single-layer transformers, improving slightly on Edelman
et al. (2022) for multi-layer cases, though their bound grows logarithmically with the sequence length.
However, their results do not apply to SSMs and involve matrix norms that may scale with the attention
matrix size. Maintaining norm stability for longer sequences requires reducing certain matrix entries. In
contrast, the H2/ℓ1 norms in this paper depend only on state-space matrices and remain invariant to the
input length.
Generalization bounds for deep neural networks (DNNs) extend beyond RNNs and dynamical systems
(Bartlett et al., 2017; Liang et al., 2019; Golowich et al., 2018; Truong, 2022b). Since deep SSMs can simulate
DNNs and resemble feedforward networks with fixed input length, their bounds should align with DNN
results. Golowich et al. (2018) provide a depth-independent bound under bounded Schatten p-norm and
a polynomial-depth bound for ReLU networks via contraction. Other works use spectral (Bartlett et al.,
2017) or Fisher-Rao norms (Liang et al., 2019) to mitigate depth dependence. Truong (2022b) further refine
Golowich et al. (2018) to a depth-independent, non-vacuous bound for non-ReLU activations. When applied
to deep SSMs with trivial state-space components, the bounds of the present paper are more conservative
than those of Golowich et al. (2018) for general activation functions, but are consistent with Golowich et al.
(2018); Truong (2022b) for ReLU activation functions.

PAC-Bayesian bounds for dynamical systems. PAC-Bayesian bounds for various classes of dynamical
systems were developed in Alquier & Wintenberger (2012); Alquier et al. (2013); Shalaeva et al. (2020);
Haddouche & Guedj (2022a); Haussmann et al. (2021); Haddouche & Guedj (2022b); Seldin et al. (2012);
Abeles et al. (2024)). The main difference between the cited papers and the present one are as follows.

1. Single time-series vs. multiple independently sampled time-series. All the cited papers assume that
the data used for computing the empirical error is sampled from one single time series. The latter
assumption required the use of various extensions of well-known concentration inequalities to the
non-i.i.d. case. In particular, the obtained bounds all depend on some mixing coefficients. In contrast
to the cited papers, the present paper assumes multiple i.i.d. samples of time-series’, so formally, the
learning problem of the present paper is completely different from the one of the papers cited above.

2. PAC-Bayesian vs. PAC bounds. The present paper presents a PAC bound, not a PAC-Bayesian one.
PAC bounds have the advantage that they tend to be simpler to use and interpret, and they provide a
uniform bound on the generalization gap, but they also tend to be fairly conservative. PAC-Bayesian
bounds are more involved, they are sensitive to priors and they only bound the average (w.r.t. some
posterior) generalization gap. However, they are potentially less conservative. This means that PAC
bounds might actually be competitive with PAC-Bayesian ones in situations where the former is easy
to evaluate and there are no obvious candidates for suitable priors. We believe that SSMs might fall
in this category: the proposed PAC bound is easy to evaluate, and the choice of a suitable prior is
far from obvious.

3. Different model classes. The classes of dynamical systems in Alquier & Wintenberger (2012); Alquier
et al. (2013); Shalaeva et al. (2020); Haddouche & Guedj (2022a); Haussmann et al. (2021) do not

3

Published in Transactions on Machine Learning Research (10/2025)

include state-space processes with partially observed state. The bound in Eringis et al. (2024) could,
in principle, be applied to a one block SSM without non-linearities, and Eringis et al. (2023) can
be applicable to multi-block SSMs in case the latter satisfies some stability conditions which are
more stringent than the one in this paper. However, the application of Eringis et al. (2023; 2024) is
possible only if the data used for learning is sampled from a single time series. The same is true for
Abeles et al. (2024).

Finite-sample bounds for dynamical systems. In recent years there has been a significant interest in
deriving bounds on the true loss for dynamical systems for particular learning algorithms (Oymak et al.,
2019; Oymak & Ozay, 2022; Simchowitz et al., 2019; Lale et al., 2020; Foster & Simchowitz, 2020; Ziemann
& Tu, 2022; Ziemann et al., 2022; Tsiamis & Pappas, 2019; Ziemann et al., 2024). However, most of these
papers consider learning from one single time-series. Notable exceptions are Tu et al. (2024); Zheng & Li
(2020); Sun et al. (2020), where bounds for the true risk for linear State-Space Models were derived. However,
there the derived bound does not relate the empirical loss to the true one, and it is applicable only for linear
dynamical systems, i.e., one block SSM. Moreover, the derived bound is specific to the learning algorithm
employed. The latter is based on least-squares solution to linear regression, and it does not seem to be
directly applicable to deep SSMs with non-linear blocks. In contrast, the results of the present paper are
applicable to deep SSMs and to any learning algorithms.

PAC bounds for non i.i.d. data. There is a significant body of literature on PAC bounds involving
Rademacher complexity (McDonald & Shalizi, 2017; Mohri & Rostamizadeh, 2008; Kuznetsov & Mohri, 2017)
or other complexity measures for non i.i.d data, including data chosen from a single time-series. As it was
mentioned above, in this paper we consider a different learning problem, namely, learning from multiple
independently sampled time series, as opposed to one single time series. Moreover, the cited papers propose
PAC bounds which involve various measures of the complexity of the parameterization, e.g., Rademacher
complexity, but they do not dwell on estimating those measures for various classes of dynamical systems,
such as SSMs.

We argue that existing methods and techniques used in proofs for simple RNNs or single layer SSMs are not
sufficient to handle deep SSM architectures, see Remark 5.6 and 5.7 for the details.

3 Informal statement of the result

Notation. Unless stated otherwise, we denote scalars with lowercase characters, vectors with lowercase bold
characters and matrices with uppercase characters. The symbol ⊙ denotes the elementwise product of vectors,
i.e., x ⊙ y = (x1y1, . . . , xnyn)T for all x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ∈ Rn. We use [n] to denote the set
{1, 2, . . . , n} for n ∈ N. For a vector v we denote by v(j) its jth coordinate. For vector valued time function
u, the notation u(j)[t] refers to the jth coordinate of the value of function at time t. Furthermore, we use Σ
to denote a dynamical system specified in the context. The constant nin refers to the dimension of the input
sequence, T refers to its length in time, while nout is the dimension of the output (not necessarily a sequence).
Denote by ℓ2

T (Rn) and ℓ∞
T (Rn) the finite-dimensional Banach spaces generated by the all finite sequences over

Rn of length T , viewed as vectors of RnT , with the Eucledian norm ∥·∥2 and the supremum norm ∥·∥∞ over RnT

respectively. If X is a Banach space, we denote its norm by ∥ · ∥X . In particular, ∥u∥2
ℓ2

T
(Rn) =

∑T
k=1 ∥u[k]∥2

2,
and ∥u∥ℓ∞

T
(Rn) = supk∈[T],j∈[n] |uj [k]|. For a Banach space X , BX (r) = {x ∈ X | ∥x∥X ≤ r} denotes the ball

of radius r > 0 centered at zero.

Learning problem. We consider the usual supervised learning framework for sequential input data. That
is, we consider a family F of models, each model f ∈ F is a function which maps sequences of elements
u[1], . . . , u[T] of the input space Rnin to outputs (labels) in Y ⊆ Rnout . We fix the length of the sequences to
T and we denote by U the set of all sequences of elements of Rnin of length T . That is, f ∈ F can be viewed
as a function f : U → Y.

A dataset is an i.i.d sample of the form S = {(ui, yi)}N
i=1 from some probability distribution D, where ui ∈ U

is a sequence of length T having elements in Rnin , and yi belongs to Y . The probability measure determined
by D is defined on the σ-algebra generated by the Borel sets of U × Y = RninT × Y, where the set U of

4

Published in Transactions on Machine Learning Research (10/2025)

sequences of elements of Rnin of length T is identified with RninT . We use the symbols E(u,y)∼D, P(u,y)∼D,
ES∼DN and PS∼DN to denote expectations and probabilities w.r.t. a probability measure D and its N -fold
product DN respectively. The notation S ∼ DN tacitly assumes that S ∈ (U × Y)N , i.e. S is made of N
tuples of input sequences and output labels.

An elementwise loss function is a function ℓ : Y × Y → R+ such that ℓ(y, y′) = 0 iff y = y′. Its role is to
measure the discrepancy between predicted and true outputs (labels).

We define the empirical loss as LS
emp(f) = 1

N

∑N
i=1 ℓ(f(ui), yi) and the true loss as L(f) =

E(u,y)∼D[ℓ(f(u), y)]. The goal of this paper is to bound the generalization error or gap, L(f) − LS
emp(f)

uniformly for all models f ∈ F .

We will be interested in model classes F , elements of which arise by combining neural networks and the
so-called State-Space Models.

Model class of SSMs. A State-Space Model (SSM) is a discrete-time, Linear Time-Invariant (LTI) dynamical
system of the form

Σ
{

x[k + 1] = Ax[k] + Bu[k], x[1] = 0
y[k] = Cx[k] + Du[k]

(1)

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu are matrices, u[k], x[k] and y[k] are the input,
the state and the output signals respectively for k = 1, 2, . . . , T , where T is the number of time steps. Here
nx is the state dimension, nu is the input dimesion and ny is the output dimension of the SSM (LTI system).
Note that nu and ny may not coincide with nin and nout as the former ones refer to the SSM’s input and
output, while the latter ones refer to the actual dataset. In this paper we are interested in internally stable
(stable for short) SSMs, i.e. in SSMs for which the matrix A from equation 1 is Schur. By definition, a matrix
A is Schur if its eigenvalues are inside the complex unit disk. This is a widespread definition in control
theoretic literature (Antoulas, 2005). We remark that within other domains, a matrix being Schur may be
defined in a different way which need not be equivalent to our definition.

Intuitively, stable SSMs are robust to perturbations, i.e., their state and output are continuous in the initial
state and input, see for instance Antoulas (2005) for more details.
Remark 3.1 (Relationship between discrete-time SSMs (equation 1) and continuous-time SSMs). In the
literature, the SSM layer is often defined as a continuous-time system

ẋc(t) = Acxc(t) + Bcv(t), yc(t) = Cxc(t) + Dv(t), xc(0) = 0 (2)

where t ∈ [0, ∞). In order to transform equation 2 to a model mapping sequences to sequences, it is discretized
in time (Gu et al., 2021a; 2022; Smith et al., 2022; Gu & Dao, 2023; Dao & Gu, 2024). That is, the following
discrete-time system is considered:

x[k + 1] = A(∆k)x[k] + B(∆k)u[k], y[k] = Cx[k] + Du(k), x[1] = 0 (3)

such that the matrix valued functions A(∆) and B(∆) are defined as A(∆) = eAc∆, B(∆) =
∫∆

0 eA(∆−s)Bds,
∆k = ∆(u[k]) is a function of u[k], and if v(t) = u[k] for all t ∈ (

∑k−1
i=1 ∆i,

∑k
i=1 ∆i], then x[k] = xc(∆k−1),

y[k] = yc(∆k−1), k ∈ [T], and ∆0 := 0. If ∆k equals a constant ∆, then equation 3 describes an LTI system
given by equation 1 with A = A(∆) and B = B(∆). Note that if Ac is Hurwitz, i.e., all its eigenvalues have a
negative real part, then A(∆) is a Schur matrix for ∆ > 0, i.e., the arising SSM block is stable. Also, Ac

being Hurwitz is equivalent to equation 2 being stable Antoulas (2005).
Remark 3.2 (Selective SSMs). If ∆ in equation 3 depends on the input as in Gu & Dao (2023); Dao & Gu
(2024), one obtains a discrete-time Linear Parameter-Varying system (LPV) (Tóth, 2010), or a so-called
selective State-Space Model. In this case A and B (sometimes C as well) depend on u[k] at each step. While
they are more general, than LTI models and widely used in practice, they present greater analytical challenges.
Extending our results to such models remains future work.

An SSM given by equation 1 induces a linear function SΣ,T which maps every input sequence u[1], . . . , u[T] to
the output sequence y[1], . . . , y[T]. In particular, SΣ,T has a well-defined induced norm as a linear operator,

5

Published in Transactions on Machine Learning Research (10/2025)

defined in the usual way. For stable SSMs this norm can be bounded uniformly in T .
A SSM block is a residual composition of the SSM with a non-linear function g applied element-wise, i.e. an
SSM block maps the sequence u[1], . . . , u[T] to the sequence defined by fDTB(u)[k] = g(SΣ,T (u)[k]) + αu[k],
where α ∈ R is the residual weight. A deep SSM model is a composition of several SSM blocks with an
encoder, and a decoder transformation preceded by a time-pooling layer. That is, the input-output map of
a deep SSM is a composition of functions of the form fDec ◦ fPool ◦ fBL ◦ . . . ◦ fB1 ◦ fEnc, where ◦ denotes
composition of functions. The functions fEnc and fDec are linear transformations which are constant in time
and are applied to sequences element-wise, while fBi is the input-output map of an SSM block for all i,
1 ≤ i ≤ L, where L is the depth of the model. This definition covers many examples from the literature, e.g.
S4 (Gu et al., 2021a), S4D (Gu et al., 2022), S5 (Smith et al., 2022) or LRU (Orvieto et al., 2023).

The main result of this paper is the following PAC bound for deep SSMs:

Theorem 3.3 (Informal theorem). Let F be a set of deep SSM models with stable SSM blocks, which satisfy
a number of mild regularity assumptions. There exist constants Kl and KF which depend only on the model
class F , such that for any time horizon T > 0, any confidence level 1 > δ > 0, with probability at least 1 − δ
over the data sample S ∼ DN ,

∀f ∈ F : L(f)−LS
emp(f) ≤

KF + 4Kl

√
2 log

(4
δ

)
√

N
(4)

With standard arguments on PAC bounds and Rademacher complexity, the result above also implies the
following oracle inequality for the Empirical Risk Minimization framework (Shalev-Shwartz & Ben-David,
2014).

Corollary 3.4. With the assumptions of Theorem 3.3 for fERM = argminf∈F LS
emp(f), for any 1 > δ > 0,

with probability at least 1 − δ over the data sample S ∼ DN ,

L(fERM) ≤ min
f∈F

L(f) +
KF + 5Kl

√
2 log

(8
δ

)
√

N
(5)

Bounds given by inequalities 4 and 5 ensure that as N grows, the empirical and true losses converge, and the
learned model’s true loss approaches the minimum possible loss.
The term KF depends on the norms of the SSM blocks and the magnitudes of non-SSM weights, but it
remains independent of T . Since in general, norms of SSMs decrease as their stability increases, stability
makes the generalization gap insensitive to sequence length, and increasing stability further decreases it.
Specifically, for deep SSMs with k layers, KF = O((SSM norm)k(non-SSM weight norm)k). While KF grows
exponentially with the depth unless all components are contractions, high non-SSM weights can be offset by
lower SSM norms. These norms decrease as SSMs become more stable, though stability is not directly tied to
weight magnitudes — stable SSMs can still have large weights. This exponential dependence aligns with
bounds for deep neural network (Golowich et al., 2020; Truong, 2022a).
Depth may negatively impact the generalization gap, but this does not imply poor generalization overall. Even
if KF is large for deep SSMs, inequality 5 implies that if the best true error is small then the generalization
gap can still be small. Additionally, as N increases, the influence of KF diminishes, suggesting deeper models
require more data, which is consistent with findings on deep neural networks.

4 Formal problem setup

4.1 Rademacher complexity

Our main result is essentially an upper bound on the Rademacher complexity of a set of deep SSMs with
specific properties, thus we begin by recalling the definition.

6

Published in Transactions on Machine Learning Research (10/2025)

Definition 4.1 (Def. 26.1 in Shalev-Shwartz & Ben-David (2014)). The Rademacher complexity of a
bounded set A ⊂ Rm is defined as

R(A) = Eσ

[
sup
a∈A

1
m

m∑
i=1

σiai

]
,

where the random variables σi are i.i.d such that P(σi = 1) = P(σi = −1) = 0.5 and σ = (σ1, . . . , σm)T .
The Rademacher complexity of a set of functions H defined over U × Y, with respect to the sample
S = ((u1, y1) . . . , (um, ym)) ∈ (U × Y)N is defined as

RS(H) = R(
{

(h(u1, y1), . . . , h(um, ym))T | h ∈ H
}

) = Eσ

[
sup
h∈H

1
m

m∑
i=1

σih(ui, yi)
]

.

Intuitively, the Rademacher complexity RS(H) tries to capture the sensitivity of H to overfit random noise.
The term

m∑
i=1

σih(ui, yi) can be seen as an inner product, therefore the supremum over H has the intuitive

meaning of finding the function h ∈ H that aligns best with the random vector σ. In this context, the
alignment is measured with an inner product as opposed to the usual cosine similarity, where the inner
product is inversely scaled with the norm of the vectors. Practically, the ability to align with a random vector
correlates with the ability to overfit the data. The expectation over σ means we consider the average (over
the random vectors) maximum alignment between the function outputs on the data sample and the random
vector.

A different intuitive explanation of the above definition can be found in Section 26.1 of Shalev-Shwartz
& Ben-David (2014). In a nutshell, this second explanation is that the sum 1

m

∑m
i=1 σih(ui, yi) =

1
m

∑
i=1,...,m,σi=1 h(ui, yi) − 1

m

∑
i=1,...,m,σi=−1 h(ui, yi) represents the difference between the average perfor-

mance of the model on the validation dataset (data points for which σi = 1) and on the training dataset (data
points for which σi = −1), when the elements of both datasets are chosen randomly. Then the expectation
over sigma of the supremum of these sums is intuitively proportional to the worst-case generalization gaps
(difference between the true loss and the empirical loss).

The following is a standard generalization theorem, involving Rademacher complexity, that we build our
proof on.
Theorem 4.2 (Theorem 26.5 in Shalev-Shwartz & Ben-David (2014)). Let L0 denote the set of functions of
the form (u, y) 7→ ℓ(f(u), y) for f ∈ F . Let Kl be such that the functions from L0 all take values from the
interval [0, Kl]. Then for any δ ∈ (0, 1) we have

PS∼DN

(
∀f ∈ F : L(f) − LS

emp(f) ≤ 2RS(L0) + 4Kl

√
2 log

(4
δ

)
N

)
≥ 1 − δ.

4.2 Deep SSMs

Stable SSMs. In the sequel, we consider solutions of equation 1 on the time interval [1, T], where the value
of T is fixed. As it was mentioned in Section 3, we consider only LTI systems given by equation 1, for which
the matrix A is Schur. It is well-known (Antoulas, 2005) that (internal) stability is equivalent to the A matrix
in equation 1 being Schur, i.e., meaning all the eigenvalues of A are inside the complex unit disk. In particular,
a sufficient, but not necessary condition for stability is that A is a contraction, i.e. ∥A∥2 < 1. Moreover, for a
system given by equation 1 with A being a Schur matrix, there exists a non-singular matrix P representing a
linear basis transformation such that the transformed system given by A′ = PAP −1, B′ = PB, C ′ = CP −1,
D

′ = D has the same Markov parameters as the original one (namely CAkB = C ′(A′)kB′ for all k ∈ N) and
∥A′∥2 < 1. Markov parameters of an LTI system are the members of the set {D} ∪

{
CAkB | k ∈ N

}
and are

widely used in control theory. In fact, the output of an LTI system can be formulated as a function of the

input sequence and its Markov parameters, namely y[k] = Du[k] +
k∑

i=1
CAi−1Bu[k − i] for 0 ≤ k ≤ T .

7

Published in Transactions on Machine Learning Research (10/2025)

All popular architectures in the literature use stable SSM blocks, see Table 4.2.

If equation 2 describes a stable continuous-time linear system, i.e. Ac is a Hurwitz matrix (all the eigenvalues
of Ac have a negative real part), then A(∆) is a Schur matrix (Antoulas, 2005), i.e., the corresponding
discrete-time SSM is stable.

Input-output maps of SSMs as operators on ℓp
T ,p = ∞, 2. As it was mentioned in Section 3, an SSM

given by equation 1 induces an input-output map SΣ,T , which maps every input sequence u[1], . . . , u[T] to
output sequence y[1], . . . , y[T], and can be described by a convolution y[t] = SΣ(u)[t] =

∑t
j=1 Hj−1u[t−j +1],

where H0 = D and Hj = CAj−1B, j > 0. The map SΣ,T can be viewed as a linear operator SΣ,T : ℓp
T (Rnu) →

ℓ∞
T (Rny), for any choice p ∈ {∞, 2}. In particular, SΣ,T has a well-defined induced norm as a linear operator,

defined in the usual way,

∥SΣ,T ∥∞,p = sup
u∈ℓp

T
(Rnu)

∥SΣ,T (u)∥ℓ∞
T

(Rny)

∥u∥ℓp
T

(Rny)
.

Model SSM Block

S4 (Gu et al., 2021a) LTI, Ac = Λ − PQ∗

block-diagonal, stable
SSM +

nonlinear activation

S4D (Gu et al., 2022) LTI, Ac = −exp(ARe) + i · AIm

block-diagonal, stable
SSM +

nonlinear activation

S5 (Smith et al., 2022) LTI, stable diagonal Ac
SSM +

nonlinear activation

LRU (Orvieto et al., 2023) LTI, diagonal Ac

stable complex exponential parametrization

SSM +
MLP / GLU +
skip connection

Table 1: Summary of popular deep SSM models. The SSM blocks in these models arise by discretizing a
continuous-time system, see Remark 3.1.

It is a standard result in control theory that if Σ is internally stable, the supremum ∥Σ∥∞,p =
supT >0 ∥SΣ,T ∥∞,p of these norms is finite, see Antoulas (2005). In this paper, we will use upper bounds on
the induced norms ∥SΣ,T ∥r,∞, r ∈ {2, ∞} to bound the Rademacher complexity. In turn, these norms can
be upper bounded by the following two standard control-theoretical norms defined on SSMs. For an SSM
Σ given by equation 1 let us define the ℓ1 (Chellaboina et al., 1999) and H2 (Antoulas, 2005) norms of Σ,
denoted by ∥Σ∥1 and ∥Σ∥2 respectively, as

∥Σ∥1 := max
1≤i≤ny

[
∥Di∥1 +

∞∑
k=0

∥∥CiA
kB
∥∥

1

]
,

∥Σ∥2 :=

√√√√∥D∥2
F +

∞∑
k=0

∥CAkB∥2
F .

Lemma 4.3 (Chellaboina et al. (1999)). For a system given by equation 1, it holds that supT ≥0 ∥SΣ,T ∥2,∞ ≤
∥Σ∥1 and supT ≥0 ∥SΣ,T ∥∞,∞ ≤ ∥Σ∥2.

An upper bound on the norms ∥Σ∥i,i = 1, 2 can be easily computed by solving a suitable a linear matrix
inequality (LMI), which is a standard tool in control theory (Boyd et al., 1994). Moreover, ∥Σ∥2 can
also be computed using Sylvester equations, for which standard numerical algorithms exist (Antoulas,
2005). Alternatively, both norms can be computed by taking a sufficiently large finite sum instead of

8

Published in Transactions on Machine Learning Research (10/2025)

the infinite sum used in their definition. Finally, if ∥A∥2 < β < 1, then an easy calculation reveals that
∥Σ∥1 ≤

(
∥D∥2 + ∥B∥2∥C∥2

1−β

)
and ∥Σ∥2 ≤

√
∥D∥2

F + ny∥B∥2
2∥C∥2

2
1−β2 .

Deep SSM models. In this paper, we consider deep SSM models, which consist of layers of blocks, each
block representing an SSM followed by a nonlinear transformation (MLP, Gated Linear Units (GLU), defined
in Definiton 4.5). Moreover, these blocks are preceded by a linear encoder and succeeded by a pooling block
and a linear decoder.
In order to define deep SSMs, first we define MLP and GLU layers. Then we define SSM blocks, which are
compositions of SSMs given by equation 1 with MLP and GLU layers. Finally, we define deep SSM models,
where all these elements are combined.
Definition 4.4 (MLP layer). An MLP layer is a function f : ℓ∞

T (Rny) → ℓ∞
T (Rnu) such that there exist an

integer M ≥ 1, matrices and vectors {Wi, bi}M+1
i=1 and activation function ρ : R → R, such that Wi ∈ Rni+1×ni

and b ∈ Rni , i ∈ [M], n1 = ny and nM+1 = nu, and

f(u)[k]=gWM+1,bM+1 ◦ fWM ,bM
◦ . . . ◦ fW1,b1(u[k]) (6)

where k ∈ [T], fWi,bi
(x) = ρ(gWi,bi

(x)) and gWi,bi
(x) = Wix + bi for all i ∈ [M + 1]. By slightly abusing

the notation, for a vector v, ρ(v) denotes the elementwise application of ρ to v.

Intuitively, a MLP layer represents a deep neural network applied to a signal at every time step. The function
fWi,bi

represents the ith layer of this neural network, with activation function ρ and weights Wi, bi. For the
sake of simplicity, activation function is assumed to be the same across all layers of the neural network.
Definition 4.5 (GLU layer (Smith et al., 2022)). A GLU layer is a function of the form f : ℓ∞

T (Rny) →
ℓ∞

T (Rnu) parametrized by a matrix W such that

f(u)[k] = GELU(u[k]) ⊙ σ(W · GELU(u[k])), (7)

where σ is the sigmoid function, i.e. σ(x) = (1 + e−x)−1, and GELU is the Gaussian Error Linear Unit
(Hendrycks & Gimpel, 2016), namely GELU(x) = xΦ(x), where Φ(x) = 1√

2π

∫ x

−∞ e−s2/2 ds is the cumulative
distribution function of the Gaussian standard normal distribution. Analogously to Definition 4.4, for a
vector v, σ(v) and GELU(v) denote the elementwise application of σ and GELU to v, respectively.

Note that this definition of GLU layer differs from the original definition in Dauphin et al. (2017), because in
deep SSM models GLU is usually applied individually for each time step, without any time-mixing operations.
See Appendix G.1 in Smith et al. (2022).

Next, we define a SSM block, which is a composition of an SSM layer with a MLP/GLU layer.
Definition 4.6. An SSM block is a function fDTB : ℓr

T (Rnu) → ℓ∞
T (Rnu), r ∈ {2, ∞}, such that for all

k ∈ [T]
fDTB(u)[k] = g ◦ SΣ,T (u)[k] + αu[k] (8)

for some SSM Σ given by equation 1, some MLP or GLU layer g : ℓ∞
T (Rny) → ℓ∞

T (Rnu) and constant α.

We incorporate α so that the definition covers residual connections (typically α is either 1 or 0). The definition
above is inspired by the series of popular architectures mentioned in the introduction.

Finally, following the literature on SSMs, we define a deep SSM model as a composition of SSM blocks along
with linear layers (encoder/decoder) combined with a time-pooling layer in case of classification.
Definition 4.7 (encoder, decoder, pooling). An encoder is a function f : ℓp

T (Rnin) → ℓp
T (Rnu), where

p ∈ {2, ∞} is an integer, such that there exists a matrix WEnc for which f(u)[k] = WEncu[k]. A decoder is a
function f : Rnu → Rnout such that there exists a matrix WDec such that f(x) = WDecx. A pooling layer is
the function fPool : ℓ∞

T (Rnu) → Rnu defined by fPool(u) = 1
T

∑T
k=1 u[k].

An encoder corresponds to applying linear transformations to each element of the input sequence. The
pooling layer is typically an average pooling over the time axis.

9

Published in Transactions on Machine Learning Research (10/2025)

Definition 4.8. A deep SSM model is a function f : ℓ2
T (Rnin) → Rnout of the form

f = fDec ◦ fPool ◦ fBL ◦ . . . ◦ fB1 ◦ fEnc (9)

where fEnc is an encoder and fDec is a decoder, and fBi are SSM blocks for all i, and fPool is the pooling
layer.

Definition 4.8 covers many important architectures from the literature, e.g. S4, S4D, S5 and LRU. Note that
we did not include such commonly used normalization techniques as batch normalization in the definition
since they are not relevant for our results. Indeed, once the model training is finished, a batch normalization
layer corresponds to applying a neural network with linear activation function, i.e., it can be integrated into
one of the neural network layers. Since the objective of PAC bounds is to bound the generalization error for
already trained models, for the purposes of PAC bounds, normalization layers can be viewed as an additional
layer of neural network.
Remark 4.9. The usual definition of a single layer, simple RNN (e.g. Chen et al. (2020)) is{

hk+1 = σ1(Uxk + Whk + b)
yk = σ2(V hk + c)

(10)

where (U, W, V, b, c) are the parameters of the RNN and σ1, σ2 are some fixed activation functions.

A single SSM block (Definition 4.6) is made of a single, linear SSM layer followed by a time independent
nonlinearity. The linear SSM layer can be represented by a simple RNN. However, even a special case of
such a SSM block would result in an RNN for which the activation functions σ1 and σ2 in equation 10
are different. Using MLPs or deep stack of such SSM blocks would result in a dynamical system whose
structure is completely different from RNNs. Note that the MLP cannot be viewed as an activation function
in equation 10: unlike the fixed activation function in equation 10, the MLP in the deep SSM is not part
of the time-mixing component and it is parametrized, i.e. it is learned. Furthermore, as SSM layers are
discrete-time LTI systems, they are invariant under linear state-space transformations, whereas simple RNNs
are not.

4.3 Assumptions

Before moving forward to discuss the main result, we summarize the assumptions we make in the paper for
the sake of readability.
Assumption 4.10. We consider a family F of deep SSM models of depth L such that the following hold:

1. Architecture.
There exist families FEnc of encoders, FDec of decoders, E of SSMs, Fi, i ∈ [L], of nonlinear blocks,
and collection of residual weights {αi}L

i=1 such that if f ∈ F given by equation 9, then
(1) the encoder fEnc belongs to FEnc, the decoder fDec belongs to FDec,
(2) and if the ith SSM block fBi is given by equation 8, then Σ ∈ E , α = αi, and g belongs to Fi.

2. Scalar output.
Let nout = 1.

3. Lipschitz loss function.
Let the elementwise loss ℓ be Lℓ-Lipschitz continuous, i.e., ℓ(y1, y′

1)−ℓ(y2, y′
2) ≤ Lℓ(|y1 −y2|+|y′

1 −y′
2|)

for all y1, y2, y′
1, y′

2 ∈ R.

4. Bounded input.
There exist Ku > 0 and Ky > 0 such that for any input trajectory u and label y sampled from D,
with probability 1 we have that ∥u∥ℓ2

T
(Rnin) ≤ Ku and |y| ≤ Ky.

10

Published in Transactions on Machine Learning Research (10/2025)

5. Stability & bounded encoder and decoder norms.
(1) Each element Σ of E is stable, i.e., if Σ is of the form equation 1, then A is a Schur matrix.
Moreover, there exist constants K1 and K2 such that ∥Σ∥p ≤ Kp, p = 1, 2 for each Σ ∈ E .
(2) There exists constants KEnc, KDec such that if f ∈ FEnc, and f(u)[k] = WEncu[k] for a matrix
WEnc, then ∥WEnc∥2,2 < KEnc, and if f ∈ FDec and f(x) = WDecx, then ∥WDec∥2,2 < KDec.

6. Nonlinear blocks are either MLP or GLU.
For every i ∈ [L], Fi is either a family of MLP layers or a family of GLU layers. In the former case,
all elements of Fi are MLP layers with Mi layers and with the same activation functions ρi which is
either ReLU or a sigmoid-like function which satisfies the following: ρi(0) = 0.5, it is 1-Lipschitz,
ρ(x) ∈ [−1, 1], ρi(x) − ρi(0) is odd for any x in the domain of ρ. If Fi is a family of GLU layers, then
each σi is the actual sigmoid function, i.e. σ(x) = (1 + e−x)−1.

7. Bounded weights for MLP.
For every i ∈ [L] such that Fi is a family of MLP layers, there exists KW,i, Kb,i such that for every
f ∈ Fi given by equation 6 with M = Mi and ρ = ρi, the weights of f satisfy

max
j∈[M+1]

∥Wj∥∞,∞ < KW,i, max
j∈[M+1]

∥bj∥∞ < Kb,i.

8. Bounded weights for GLU.
For every i ∈ [L] such that Fi is a family of GLUs, there exists a constant KGLU,i such that for every
f ∈ Fi given by equation 7 with σ = σi, ∥Wi∥∞,∞ < KGLU,i.

The first assumption is a standard one, the only restriction is that all deep SSMs have the same depth and
all SSM blocks have the same residual connection.
Assumption 2, though being restrictive, covers key scenarios such as classification and 1-dimensional regression,
which are central to theoretical analysis.
Assumption 3 requires the loss function to be Lipschitz-continuous, which is a standard assumption in machine
learning and holds for most of the loss functions used in practice, including the squared loss on bounded
domains, the ℓ1 loss and the cross-entropy loss (see Appendix A). This ensures boundedness during the
learning process.
Assumption 4 is also fairly standard, as input normalization is common in practice.
Assumption 5 is the key assumption enforcing SSM stability via structured parametrization. Beyond numerical
benefits, stability ensures reliable predictions by preventing small input changes from causing large output
variations, crucial for learning and inference. Many prior work mentioned in Section 2 proving PAC bounds
for simple RNNs assume that ∥U∥2 < 1 for U in equation 10, corresponding to ∥A∥2 < 1 in equation 1. In
contrast, we require the system norm to be finite that is achieved by assuming that the SSM layers are stable,
i.e. the state matrix A is Schur in every layer. As stated in Section 4.2, this does not necessarily imply that
∥A∥2 < 1. The converse holds, namely ∥A∥2 < 1 implies stability.
Assumptions 6 and 7 are again considered standard, requiring non-linear layers to be either all MLPs or all
GLUs with specific activations and enforcing bounded weights for the encoder, decoder, and MLP/GLU
layers.

5 Main results

We derive a Rademacher complexity-based generalization bound for deep SSM models, independent of
sequence length. The key challenges are:
(1) bounding the Rademacher complexity of SSMs, (2) extending this to hybrid SSM-neural network blocks,
and (3) handling deep architectures with multiple such blocks. For stable SSMs, we show their norm bounds
the Rademacher complexity for any sequence length. To address the second and third challenges, we introduce
Rademacher Contraction, a universal framework that enables componentwise complexity estimation in deep
models.

11

Published in Transactions on Machine Learning Research (10/2025)

Definition 5.1 ((µ, c)-Rademacher Contraction). Let X1 and X2 be subsets of Banach spaces X1, X2, with
norms ∥ · ∥X1 and ∥ · ∥X2 , and let µ ≥ 0 and c ≥ 0. A set of functions Φ = {φ : X1 → X2} is said to be
(µ, c)-Rademacher Contraction, or (µ, c)-RC in short, if for all N ∈ N+ and Z ⊆ XN

1 we have

Eσ

sup
φ∈Φ

sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiφ(ui)

∥∥∥∥∥
X2

 ≤ µEσ

 sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
X1

+ c√
N

, (11)

where σi are i.i.d. Rademacher random variables, i ∈ [N], i.e. P(σi = 1) = P(σi = −1) = 0.5 and
σ = (σ1, . . . , σN)T .

Rademacher Contractions in the literature. While the concept of RC is new, special cases of Definition
5.1 have been used in the literature for bounding Rademacher complexity of deep neural networks. In
Golowich et al. (2018) the authors considered biasless ReLU networks and proved a similar inequality using
Talagrand’s Contraction Lemma (Ledoux & Talagrand, 1991). In Truong (2022b), the author considered
neural networks with dense and convolutional layers and derived a PAC bound via bounding the Rademacher
complexity. One of the key technical achievements in Truong (2022b) is Theorem 9, which is a more general
version of the inequality in Golowich et al. (2018). This was then applied to obtain generalization bounds
for the task of learning Markov-chains in Truong (2022a), however the generalization error was measured
via the marginal cost and the (µ, c)-RC type inequality was only applied for time-invariant neural networks.
In contrast, we prove that along with time invariant models, stable SSMs, defined between certain Banach
spaces, also satisfy inequality 11 and apply it to deep structures.

In a recent work Trauger & Tewari (2024), the authors consider Transformers and implicitly establish similar
inequalities to inequality 11 by bounding different kinds of operator norms of the model and managed to
extend it to a stack of Transformer layers. Besides these similarities, some key differences in our work are
that Definition 5.1 provides an explicit way to combine SSMs with neural networks, even in residual blocks;
we do not assume the SSM matrices to be bounded, instead we require the system norm to be bounded via
stability, which is a weaker condition; and we upper bound the Rademacher complexity directly instead of
bounding the covering number.

Interpretation of the (µ, c)-RC inequality. Inequality 11 allows relating the Rademacher complexity of a
model class to the Rademacher complexity of its inputs via the constants µ and c. These constants depend
on the model class as well as the domain X1 and range X2 of the models. As shown next, the RC property is
preserved under the composition of layers.
Lemma 5.2 (Composition lemma). Let Φ1 = {φ1 : X1 → X2} be (µ1, c1)-RC and Φ2 = {φ2 : X2 → X3} be
(µ2, c2)-RC. Then the set of compositions Φ2 ◦ Φ1 := {φ2 ◦ φ1 | φ1 ∈ Φ1, φ2 ∈ Φ2} is (µ1µ2, µ2c1 + c2)-RC.

The proof is in Appendix B. Consequently, for deep models composed of layers that each satisfy the RC
property, the entire model class is RC as well. Then inequality 11 can be applied to bound the Rademacher
complexity of the deep model by that of the input sample. The latter can often be bounded, for instance:

Lemma 5.3. Eσ

[∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥
ℓ2

T
(Rnin)

]
≤ Ku√

N
for all ∥ui∥ ∈ Bℓ2

T
(Rnin)(Ku), i ∈ [N].

The proof follows a standard argument, e.g. see Lemma 26.10 in Shalev-Shwartz & Ben-David (2014), for
completeness it is presented in Appendix B.

That is, in order to bound the Rademacher complexity of deep SSMs, all we need to show is that each
component of a deep SSM model is (µ, c)-RC for some µ and c with compatible domains and ranges. To this
end, for each i ∈ [L], define the family FDTB

i of ith SSM blocks as the family of all SSMs blocks fDTB given
by equation 8 such that g ∈ Fi, Σ ∈ E , α = αi. In particular, for any f ∈ F given by equation 9, the ith
SSM block fBi belongs to FDTB

i .
Lemma 5.4. For each set X of model layers interpreted as functions between Banach spaces such that
X ∈ {FEnc, FDec, Fi, FDTB

i , i ∈ [L], E , {fPool}}, the set X |B(r), i.e. the elements of X restricted to a ball
of radius r, is (µX (r), cX (r))-RC in their domain, and the range of the elements of X |B(r) is a subset of

12

Published in Transactions on Machine Learning Research (10/2025)

Layer type X , X ≠ Fi µX (r) cX (r) r̂X (r)

X = FEnc KEnc 0 KEncr

X = FDec KDec 0 KDecr

X = E defined on ℓ∞
T (Rnu) K1 0 K1r

X = E defined on ℓ2
T (Rnu) K2 0 K2r

X = {fPool} 1 0 r

ith SSM block X = FDTB
i

i = 1 K2µF1 (K2r) + α1 cF1 (K2r) r̂F1 (K2r) + α1r

i > 1 K1µFi (K1r) + αi cFi (K1r) r̂Fi (K1r) + αir

Table 2: Table of (µX (r), cX (r)) and r̂X (r) constants for Lemma 5.4. The layer types are each considered
component of a deep SSM model as described in Section 4.2. The various constants denoted by some form of
K are upper bounds from Assumption 4.10 and αi are the residual weights. The terms µFi(r), cFi(r) and
r̂Fi

(r) are in Table 3 for each type of considered nonlinear layer.

Nonlinearity
X = Fi

in FDTB
i µFi (r) cFi (r) r̂Fi (r)

MLP with ReLU (4KW,i)Mi+1 4Kb,i ·
Mi∑
q=1

(4KW,i)q KMi+1
W,i r + Kb,i ·

Mi−1∑
q=1

Kq
W,i

MLP with sigmoid KMi+1
W,i (Kb,i + 0.5) ·

Mi∑
q=1

(KW,i)q
KW,i + Kb,i

GLU
16(rz2 + z)

z = KGLU,i + 1
0 r

Table 3: Table of (µFi
(r), cFi

(r)) and r̂Fi
(r) constants for Table 2 and Lemma 5.4.

.

the ball of radius r̂X (r), where µX (r), cX (r) and r̂X (r) are defined in Table 2 for each SSM blocks and for
encoder/decoder layer, i.e. X ̸= Fi, i ∈ [L] and in Table 3 for the nonlinear layers, i.e. X = Fi, i ∈ [L].

The proof is in Appendix B. The lemma implies that an SSM layer can only increase the input’s complexity by
the factor ∥Σ∥p, p = 1, 2, and the latter gets smaller as the system gets more stable. The results on the MLP
layers rely on proof techniques from Truong (2022b;a) used to bound their Rademacher complexity. These
bounds on MLP layers are considered conservative, however improving existing bounds on the Rademacher
complexity of MLPs are out of the scope of this paper. The proof for the GLU layer is similar to that of the
MLP layer, although handling the elementwise product in GLU requires some additional steps. In contrast
to other layers, for GLU the values of µ, c depend on the magnitude of the inputs. Note that for all the
considered layer types except GLU, the (µ, c)-RC property holds for unbounded domains. The only reason we
consider bounded domains and ranges is for Lemma 5.4 to hold for GLU layers. This can be seen from the
fact that for SSM blocks with MLP nonlinearities, the constants µFi

(r), cFi
(r) and r̂Fi

(r) are independent of
r for all considered i, according to Table 3.

To simplify the notation, in the rest of the paper we denote µX (r), cX (r) and r̂X (r) by µ(r), c(r) and r̂(r)
respectively, whenever X is clear from the context, and for i ∈ [L], we sometimes denote µFi(r), cFi(r), r̂Fi(r)
by µi(r), ci(r) and r̂i(r) respectively.

Using Lemma 5.4 and Lemma 5.3 and classical Rademacher complexity based PAC bounds, e.g. see Shalev-
Shwartz & Ben-David (2014, Theorem 26.5), leads to a PAC bound for deep SSMs, summarized in the main
theorem below.

13

Published in Transactions on Machine Learning Research (10/2025)

Theorem 5.5 (Main). Let Assumption 4.10 hold. Then for any δ ∈ (0, 1) we have

PS∼DN

(
∀f ∈ F : L(f) − LS

emp(f) ≤ µKuLl + cLl√
N

+ 4Kl

√
2 log

(4
δ

)
N

)
≥ 1 − δ (12)

where Kl = 2Ll max{KDecrL+1, Ky}. The term rL+1 is obtained recursively for all i ∈ [L + 1],

ri =


KEncKu i = 1

r̂F1(K2r1) + α1r1 i = 2

r̂Fi−1(K1ri−1) + αi−1ri−1 i > 2

(13)

where r̂Fi(r) are as in Table 3 of Lemma 5.4. Moreover, let us define µ1 = µF1(K2r1), c1 = cF1(K2r1), and
for i = 2, . . . , L, let us define µi = µFi

(K1ri), ci = cFi
(K1ri). Using these quantities, the constants µ and c

are defined as follows

µ = KEncKDec (µ1K2 + α1)
L∏

i=2
(µiK1 + αi)

c = KDec

cL +
L−1∑
j=1

 L∏
i=j+1

(µiK1 + αi)

 cj

 .

(14)

Sketch of the proof. From standard PAC bounds involving Rademacher complexity (Shalev-Shwartz & Ben-
David, 2014, Theorem 26.5) and the Contraction Lemma (Shalev-Shwartz & Ben-David, 2014, Lemma 26.9), it

follows that with probability at least 1−δ, for any f ∈ F , L(f)−LS
emp(f) ≤ Eσ

[
sup
f∈F

∥∥∥∥ 1
N

N∑
i=1

σif(ui)
∥∥∥∥

ℓ2
T

(Rnin)

]
+

Kl

√
2 log(4/δ)

N . From Lemma 5.2 and Lemma 5.4, it follows that the restriction of the elements of F to the
ball Bℓ2

T
(Rnin)(Ku) of radius Ku in ℓ2

T (Rnin) is (µ, c)-RC with µ and c as in the statement of the Theorem.

Hence, Eσ

[
sup
f∈F

∥∥∥∥ 1
N

N∑
i=1

σif(ui)
∥∥∥∥

ℓ2
T

(Rnin)

]
≤ µEσ

[∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥
ℓ2

T
(Rnin)

]
+ c√

N
≤ µKu+c√

N
. The complete proof

can be found in Appendix B.

Discussion and interpretation of Theorem 5.5. The bound vanishes as N grows and remains independent
of the sequence length and state dimension — an advantage over typical sequential model bounds that diverge
with T .

The key constants are µ and c. Note, that for deep SSMs with no MLP layers, c is zero. Intuitively, µ and c
are somewhat analogous to Lipschitz constants of deep networks, although the formal relationship between
the two requires future work.

The bound appears exponential in depth, like in case of deep neural networks (Truong, 2022b; Golowich
et al., 2018), and includes MLP bounds when MLP layers are used (Golowich et al., 2020; Truong, 2022b).
However, SSM layer norms can mitigate this effect: if SSMs are contractions, they counteract the higher
Rademacher complexity of nonlinear layers. SSM norms depend on stability — more stable SSMs typically
have smaller norms if C and B remain unchanged, suggesting that stability may offset depth effects in both
SSM and MLP layers. Moreover, using GLU instead of MLP layers may reduce generalization gaps, as deep
SSMs with GLU layers have c = 0.

As discussed in Section 4.3, for Theorem 5.5 we only require that the state matrices are Schur, which does
not imply weights of the SSM layers are bounded. This intuitively suggests that regularization techniques
directly penalizing the norm of the weights of the SSM layers exclude a set of potentially well-generalizing
solutions for which the norm of the weights are further from the origin, while the system norm stays low.

14

Published in Transactions on Machine Learning Research (10/2025)

Remark 5.6 (Proof techniques from prior work on simple RNNs or single layer SSMs.). Prior work establishing
PAC bounds on sequential models employ proof techniques that are not applicable to deep SSMs considered
in the paper at hand. Comparing our proof to every relevant paper is not feasible, hence we only discuss the
most common techniques.

First of all, we are not aware of any prior paper generalization bounds that hold for deep SSMs. It is not
clear how to formulate deep SSMs as simple RNNs or Transformers, therefore proof techniques that hold for
those models do not automatically hold for deep SSMs.

Many proofs on simple RNNs, Transformers or single layer SSMs (single LTI systems) bound the Rademacher
complexity by first bounding covering numbers which serve as natural upper bounds on the Rademacher
complexity. However, it is not clear how to bound covering numbers of deep SSMs, even if the covering
numbers of the individual layers are known, as the behavior of covering numbers under model composition is
not straightforward. One option for dealing with this problem is to use the contraction lemma for covering
numbers (Shalev-Shwartz & Ben-David, 2014), or alternatively to apply Talagrand’s contraction lemma
(Ledoux & Talagrand, 1991) and express the Rademacher complexity of the composition via that of the first
layer, followed by covering number arguments. This technique cannot be applied directly to SSM blocks due
to the nonlinearity being parametrized. Even if this was possible, the Lipschitz constant of such parametrized
nonlinearity is often hard to estimate.

The required assumptions for PAC bounds on the generalization error of simple RNNs, single layer SSMs or
Transformers usually employ an explicit upper bound on the parameter norm of the considered model. This
is often the case when proofs based on covering numbers are used. This is a stronger assumption than what
we require as it is possible to define SSM layers with arbitrarily large parameter norm, but which are stable
with uniformly bounded H2 or ℓ1 system norms.

Finally, majority of the generalization bounds for similar model structures often depend (exponentially) on
the sequence length T and only hold for a single time-mixing layer.
Remark 5.7 (The role of Rademacher Contractions in the proof of Theorem 5.5.). The use of RC allows us
to overcome all the obstacles from Remark 5.6. Namely, by Lemma 5.2-5.4, it is possible to upper bound
the Rademacher complexity of an arbitrarily deep model whose components satisfy the (µ, c)-RC inequality.
As (µ, c)-RC is defined for mappings between arbitrary Banach-spaces, therefore it is a generalization of
Talagrand’s lemma and can be applied to time-mixing model components which act on Banach-spaces
of sequences and which contain components with parametrized nonlinearities without explicit Lipschitz
constraints. Additionally, (µ, c)-RC allows us to establish a time-independent bound for deep SSMs with
stable LTI layers due to the µ and c terms of such model components not depending on T .

We remark that the 4th point in Assumption 4.10 requiring a bound on the ℓ2 norms of input sequences is
also necessary (but not sufficient) for deriving a time-independent bound. Without this assumption the bound
would depend linearly on T , if the stability assumption still holds. If we drop the stability assumption, then
our proof technique may still be used, but it will result in a bound with a possibly exponential dependence
on T .

6 Numerical example

In order to illustrate our results, we trained a model consisting of a single SSM layer on a binary classification
problem of separating the elements of two intertwined spirals, with a training set containing N sequences of
length T , for various values of N . Let {θt}1≤t≤T be a standard normal sample sorted in ascending order and
φt = 7π

√
θt. Consider the following two classes of time series, labeled by 0 and 1.

x0[t] = ((2φt + π) cos(φt), (2φt + π) sin(φt))T + ε

x1[t] = (−(2φt + π) cos(φt), −(2φt + π) sin(φt))T + ε

where 1 ≤ t ≤ T for some T and ε are i.i.d standard normal noise vectors. The training data is depicted on
Figure 1.

15

Published in Transactions on Machine Learning Research (10/2025)

Figure 1: Dataset containing two classes of spiral curves. This dataset is used in our experiment to illustrate
our result

.

We trained a linear SSM on this binary classification problem with a training set size of N , for various
values of N . The resulting parameter vector therefore depends on N . We applied the Adam optimizer to
the binary cross-entropy loss combined with applying a sigmoid activation to the scores outputted by the
model. Theorem 5.5 states that with high probability, we can upper bound the true loss with the sum of the
empirical loss and a bounding term.

Namely, let fN be the model obtained by preforming the training on an N -sized training set. Then by
Theorem 5.5, with probability at least 1 − δ over the choice of S we have that for all N ∈ N

L(fN) ≤ LS
emp(fN) +

KF + Kl

√
2 log(4

δ)
√

N︸ ︷︷ ︸
=:r(N,δ)

(15)

Consequently, we can plot the left and right hand side of inequality 15 for many values of N and expect
the curve N 7→ r(N, δ) = LS

emp(fN) + KF +Kl

√
2 log(4

δ)√
N

to be roughly shaped as L(fN) + c√
N

for a constant
c > 0 and for large enough N . Moreover, the curve N 7→ L(fN) should be under the curve of N 7→ r(N, δ).
Moreover, we expect that for some values of N1 and N2, L(fN1) > r(N2, δ) holds, at least for some model
classes and some datasets. Otherwise, the bound would be vacuous and thus not very useful. An example of a
vacuous bound would be one where r(N, δ) ≥ 1 and the loss function is between [0, 1]. In this case the bound
would say that the true loss is smaller than 1, which, while true, is not very useful. We show that for the
example at hand, there exist N1, N2 ∈ N such that L(fN1) > r(N2, δ), and hence the bound is non-vacuous.

In this case, the true loss is estimated by taking the loss of the model on a very large set of samples (concretely,
150 000). It can be seen on Figure 2 that the bound holds and in this scenario it is non-vacuous, i.e. there
exists a value of the true loss - highlighted by the red broken line - which is greater, than the value of the
estimation at a different value of N .

Moreover, it can also be seen on Figure 3 that during the learning process, the numerical value of the bounding
term, and therefore the estimation of the true loss, correlates with the true performance of the model. Once
the learning algorithm passed its optimum where the accuracy is close to 1, and starts to exhibit overfitting,
the bounding term and the estimation start to rapidly grow, while the value of the loss stays consistently low.
This suggests that adding the bounding term to the loss function as a regularization term during training
could be beneficial. We consider this as a research topic on its own and out of the scope of this paper.

16

Published in Transactions on Machine Learning Research (10/2025)

Figure 2: Upper bound on the true loss by taking the empirical loss and the bounding term from Theorem 5.5 for
various values of N . This is standard figure in PAC literature and illustrate the behavior of the generalization
bound in Theorem 5.5. The orange curve is the proposed upper bound r(N, δ) = LS

emp(fN) + KF +Kl

√
2 log(4

δ)√
N

,
and the blue curve is the true loss L(fN) of the learned model fN . The model fN was learned from a training
dataset with N data points. The true loss L(fN) is approximated by the empirical loss on a validation
dataset with 150 000 data points. The fact that the orange curve is above the blue one illustrates that the
statement of Theorem 5.5 indeed holds, i.e., L(fN) ≤ r(N, δ). The orange curve converges to the blue one
at rate O(1√

N
), i.e., for a constant c and for large enough N , the bound r(N, δ) is roughly L(fN) + c√

N
.

The fact that the orange line (r(N, δ)) descends below the red dashed line (the maximal value maxN L(fN)
of the true loss) indicates that the bound r(N1, δ) for some N1 (N1 is around 15 000) is strictly smaller
than the true loss at L(fN2) for some N2 (N2 is around 1250), i.e., L(N2) > r(N1, δ), meaning the bound is
non-vacuous in this scenario.

7 Conclusions

We derive generalization bounds for deep SSMs by decomposing the architecture into components satisfying
the definition of Rademacher Contraction. Under reasonable stability conditions, the bound is sequence-length
independent and improves on prior results for linear RNNs as those bounds depend on the sequence-length
exponentially. Given that stability is central to state-of-the-art SSMs (e.g., S4, S5, LRU), our work offers
insight into their strong long-range performance.

We introduce the concept of Rademacher Contraction which we believe is a powerful tool for determining the
complexity of a wide variety of stacked architectures including feedforward and recurrent elements.

Our contraction-based approach, while reasonable, may yield conservative bounds for complex SSMs or deep
stacks. However, with state-of-the-art SSMs using fewer than ten blocks, this is a minor concern. A key
limitation is that all elements must be Rademacher Contractions, which may be too restrictive for complex
functions.

Future work includes extending these results to learning from limited (possibly single) time-series and deriving
tighter bounds, potentially using concentration inequalities for mixing processes and the PAC-Bayesian
framework. Incorporating Mamba-like architectures into our framework can also be a subject of future
research.

17

Published in Transactions on Machine Learning Research (10/2025)

Figure 3: Behavior of the bound on the true loss during learning. The proposed PAC bound r(N, δ) =
LS

emp(fN) + KF +Kl

√
2 log(4

δ)√
N

(orange line) is always greater than the actual true loss L(fN) (blue line) during
learning, a simple consequence of Theorem 5.5. Moreover, the behavior of the bound strongly correlates with
the model’s true performance in accuracy (green dashed line), where by accuracy we mean the complement
1 − E(u,y)∼D[ℓ0−1(fN (u), y)] of the true loss E(u,y)∼D[ℓ0−1(fN (u), y)] for the 0 − 1 binary loss function

ℓ0−1(y, y′) =

 1 y ̸= y′

0 y = y′
. This true loss was approximated by the corresponding empirical loss on a

validation dataset with 150 000 data points. Recall that our model is a classifier and we used the cross-entropy
loss function instead of the 0 − 1 binary loss for defining true and empirical losses for training and applying
Theorem 5.5. The bound r(N, δ) stays low up to the point where the accuracy starts to decrease, where the
bound starts to grow rapidly.

Acknowledgements

This research was supported in part by the European Union project RRF-2.3.1-21-2022-00004 within the
Artificial Intelligence National Laboratory (MILAB); in part by the C.N.R.S. E.A.I. Project “Stabilité des
algorithmes d’apprentissage pour les réseaux de neurones profonds et récurrents en utilisant la géométrie et
la théorie du contrôle via la compréhension du rôle de la surparamétrisation (StabLearnDyn)”; and in part
by the E.D.F. project FaRADAI under Grant 101103386.

References
Baptiste Abeles, Eugenio Clerico, and Gergely Neu. Generalization bounds for mixing processes via delayed

online-to-pac conversions, 2024. URL https://arxiv.org/abs/2406.12600.

Nil-Jana Akpinar, Bernhard Kratzwald, and Stefan Feuerriegel. Sample complexity bounds for rnns with
application to combinatorial graph problems (student abstract). Proceedings of the AAAI Conference
on Artificial Intelligence, 34(10):13745–13746, 4 2020. doi: 10.1609/aaai.v34i10.7144. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/7144.

P. Alquier, X Li, and O. Wintenberger. Prediction of time series by statistical learning: general losses and
fast rates. Dependence Modeling, 1(2013):65–93, 2013.

Pierre Alquier and Olivier Wintenberger. Model selection for weakly dependent time series forecasting.
Bernoulli, 18(3):883 – 913, 2012.

18

https://arxiv.org/abs/2406.12600
https://ojs.aaai.org/index.php/AAAI/article/view/7144
https://ojs.aaai.org/index.php/AAAI/article/view/7144

Published in Transactions on Machine Learning Research (10/2025)

Ido Amos, Jonathan Berant, and Ankit Gupta. Never train from scratch: Fair comparison of long-sequence
models requires data-driven priors, 2024. URL https://arxiv.org/abs/2310.02980.

Athanasios C Antoulas. Approximation of large-scale dynamical systems. SIAM, 2005.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

S.P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control
Theory. SIAM, 1994.

VS Chellaboina, WM Haddad, DS Bernstein, and DA Wilson. Induced convolution operator norms for
discrete-time linear systems. In Proceedings of the 38th IEEE Conference on Decision and Control (Cat.
No. 99CH36304), volume 1, pp. 487–492. IEEE, 1999.

Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent neural networks.
In Proceedings of AISTATS 2020, volume 108 of PMLR, pp. 1233–1243, 8 2020.

Kyunghyun Cho. On the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. Theoretical
foundations of deep selective state-space models, 2024. URL https://arxiv.org/abs/2402.19047.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In International Conference on Machine Learning, pp. 10041–10071. PMLR,
2024.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated convolutional
networks. In International conference on machine learning, pp. 933–941. PMLR, 2017.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable creation in
self-attention mechanisms. In International Conference on Machine Learning, pp. 5793–5831. PMLR, 2022.

D. Eringis, J. Leth, Z.H. Tan, R. Wisniewski, and M. Petreczky. PAC-Bayesian bounds for learning LTI-ss
systems with input from empirical loss. arXiv preprint arXiv:2303.16816, 2023.

Deividas Eringis, john leth, Zheng-Hua Tan, Rafal Wisniewski, and Mihaly Petreczky. PAC-bayesian error
bound, via rényi divergence, for a class of linear time-invariant state-space models. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=a1Olc2QhPv.

Adeline Fermanian, Pierre Marion, Jean-Philippe Vert, and Gérard Biau. Framing rnn as a kernel method: A
neural ode approach. Advances in Neural Information Processing Systems, 34:3121–3134, 2021.

Dylan Foster and Max Simchowitz. Logarithmic regret for adversarial online control. In Proceedings of the
37th ICML, volume 119 of PMLR, pp. 3211–3221. PMLR, 7 2020.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré. Hungry hungry
hippos: Towards language modeling with state space models. arXiv preprint arXiv:2212.14052, 2022.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural
networks. In Conference On Learning Theory, pp. 297–299. PMLR, 2018.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural
networks. Information and Inference: A Journal of the IMA, 9(2):473–504, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021a.

19

https://arxiv.org/abs/2310.02980
https://arxiv.org/abs/2402.19047
https://openreview.net/forum?id=a1Olc2QhPv

Published in Transactions on Machine Learning Research (10/2025)

Albert Gu, Isys Johnson, Karan Goel, Khaled Kamal Saab, Tri Dao, Atri Rudra, and Christopher Re.
Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021b. URL https://openreview.net/forum?id=yWd42CWN3c.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization of
diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–35983, 2022.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Re. How to train your HIPPO:
State space models with generalized orthogonal basis projections. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=klK17OQ3KB.

Maxime Haddouche and Benjamin Guedj. Online pac-bayes learning. Advances in Neural Information
Processing Systems, 35:25725–25738, 2022a.

Maxime Haddouche and Benjamin Guedj. Pac-bayes with unbounded losses through supermartingales. arXiv
preprint arXiv:2210.00928, 2022b.

Bruce Hajek and Maxim Raginsky. Ece 543: Statistical learning theory. University of Illinois lecture notes,
2019.

Joshua Hanson and Maxim Raginsky. Rademacher complexity of neural odes via chen-fliess series. arXiv
preprint arXiv:2401.16655, 2024.

Joshua Hanson, Maxim Raginsky, and Eduardo Sontag. Learning recurrent neural net models of nonlinear
systems. In Learning for Dynamics and Control, pp. 425–435. PMLR, 2021a.

Joshua Hanson, Maxim Raginsky, and Eduardo Sontag. Learning recurrent neural net models of nonlinear
systems. In Proceedings of the 3rd Conference on Learning for Dynamics and Control, volume 144 of
PMLR, pp. 425–435. PMLR, 6 2021b.

Manuel Haussmann, Sebastian Gerwinn, Andreas Look, Barbara Rakitsch, and Melih Kandemir. Learning
partially known stochastic dynamics with empirical pac bayes. arXiv:2006.09914, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang, Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing Ma, Lijuan
Yang, Hao Chen, Shupeng Li, and Penghao Zhao. Advancing transformer architecture in long-context large
language models: A comprehensive survey, 2024. URL https://arxiv.org/abs/2311.12351.

Boris Joukovsky, Tanmoy Mukherjee, Huynh Van Luong, and Nikos Deligiannis. Generalization error bounds
for deep unfolding rnns. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial
Intelligence, volume 161 of PMLR, pp. 1515–1524. PMLR, 7 2021.

Pascal Koiran and Eduardo D. Sontag. Vapnik-chervonenkis dimension of recurrent neural networks. Discrete
Applied Mathematics, 86(1):63–79, 1998.

Vitaly Kuznetsov and Mehryar Mohri. Generalization bounds for non-stationary mixing processes. Machine
Learning, 106(1):93–117, 2017.

Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Logarithmic regret bound in
partially observable linear dynamical systems. Advances in Neural Information Processing Systems, 33:
20876–20888, 2020.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and Processes, volume 23.
Springer Science & Business Media, 1991.

20

https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=klK17OQ3KB
https://arxiv.org/abs/2311.12351

Published in Transactions on Machine Learning Research (10/2025)

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry, and
complexity of neural networks. In The 22nd international conference on artificial intelligence and statistics,
pp. 888–896. PMLR, 2019.

Fusheng Liu and Qianxiao Li. From generalization analysis to optimization designs for state space models. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=WjNzXeiOSL.

Pierre Marion. Generalization bounds for neural ordinary differential equations and deep residual networks.
arXiv preprint arXiv:2305.06648, 2023.

Stefano Massaroli, Michael Poli, Daniel Y Fu, Hermann Kumbong, Rom Nishijima Parnichkun, David W.
Romero, Aman Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, Ce Zhang, Christopher Re, Stefano
Ermon, and Yoshua Bengio. Laughing hyena distillery: Extracting compact recurrences from convolutions.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=OWELckerm6.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In Algorithmic Learning
Theory: 27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings 27, pp.
3–17. Springer, 2016.

Daniel J. McDonald and Cosma Rohilla Shalizi. Rademacher complexity of stationary sequences, 2017. arXiv
preprint arXiv:1106.0730.

Volodimir Mitarchuk, Clara Lacroce, Rémi Eyraud, Rémi Emonet, Amaury Habrard, and Guillaume
Rabusseau. Length independent pac-bayes bounds for simple rnns. In International Conference on Artificial
Intelligence and Statistics, pp. 3547–3555. PMLR, 2024.

Mehryar Mohri and Afshin Rostamizadeh. Rademacher complexity bounds for non-i.i.d. processes. In
Advances in Neural Information Processing Systems, volume 21, 2008.

Naoki Nishikawa and Taiji Suzuki. State space models are comparable to transformers in estimating functions
with dynamic smoothness. In ICML 2024 Workshop on Theoretical Foundations of Foundation Models,
2024. URL https://openreview.net/forum?id=t7a9R0fIMC.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. Resurrecting recurrent neural networks for long sequences. In International Conference on
Machine Learning, pp. 26670–26698. PMLR, 2023.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L. Smith. Universality of linear
recurrences followed by non-linear projections: Finite-width guarantees and benefits of complex eigenvalues.
In ICML, 2024. URL https://openreview.net/forum?id=47ahBl70xb.

Samet Oymak and Necmiye Ozay. Revisiting ho–kalman-based system identification: Robustness and
finite-sample analysis. IEEE Transactions on Automatic Control, 67(4):1914–1928, 4 2022.

Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guarantees for neural
networks via harnessing the low-rank structure of the jacobian. arXiv preprint arXiv:1906.05392, 2019.

Rom N. Parnichkun, Stefano Massaroli, Alessandro Moro, Jimmy T. H. Smith, Ramin Hasani, Mathias
Lechner, Qi An, Christopher Ré, Hajime Asama, Stefano Ermon, Taiji Suzuki, Atsushi Yamashita, and
Michael Poli. State-free inference of state-space models: The transfer function approach, 2024. URL
https://arxiv.org/abs/2405.06147.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing lipschitz
continuity to vision transformers. arXiv preprint arXiv:2304.09856, 2023.

Yevgeny Seldin, François Laviolette, Nicolo Cesa-Bianchi, John Shawe-Taylor, and Peter Auer. Pac-bayesian
inequalities for martingales. IEEE Transactions on Information Theory, 58(12):7086–7093, 2012.

21

https://openreview.net/forum?id=WjNzXeiOSL
https://openreview.net/forum?id=WjNzXeiOSL
https://openreview.net/forum?id=OWELckerm6
https://openreview.net/forum?id=OWELckerm6
https://openreview.net/forum?id=t7a9R0fIMC
https://openreview.net/forum?id=47ahBl70xb
https://arxiv.org/abs/2405.06147

Published in Transactions on Machine Learning Research (10/2025)

V. Shalaeva, A. F. Esfahani, P. Germain, and M. Petreczky. Improved PAC-bayesian bounds for linear
regression. Proceedings of the AAAI Conference, 34:5660–5667, 4 2020.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Max Simchowitz, Ross Boczar, and Benjamin Recht. Learning linear dynamical systems with semi-parametric
least squares. In Conference on Learning Theory, pp. 2714–2802. PMLR, 2019.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence
modeling. arXiv preprint arXiv:2208.04933, 2022.

Jakub Smékal, Jimmy T. H. Smith, Michael Kleinman, Dan Biderman, and Scott W. Linderman. Towards a
theory of learning dynamics in deep state space models, 2024. URL https://arxiv.org/abs/2407.07279.

Eduardo D Sontag. A learning result for continuous-time recurrent neural networks. Systems & control
letters, 34(3):151–158, 1998.

Yue Sun, Samet Oymak, and Maryam Fazel. Finite sample system identification: Optimal rates and the role
of regularization. In Proceedings of the 2nd Conference on Learning for Dynamics and Control, volume
120, pp. 16–25. PMLR, 2020.

Matteo Tiezzi, Michele Casoni, Alessandro Betti, Tommaso Guidi, Marco Gori, and Stefano Melacci. On the
resurgence of recurrent models for long sequences – survey and research opportunities in the transformer
era, 2024. URL https://arxiv.org/abs/2402.08132.

Roland Tóth. Modeling and identification of linear parameter-varying systems, volume 403. Springer, 2010.

Jacob Trauger and Ambuj Tewari. Sequence length independent norm-based generalization bounds for
transformers. In International Conference on Artificial Intelligence and Statistics, pp. 1405–1413. PMLR,
2024.

Lan V Truong. Generalization error bounds on deep learning with markov datasets. Advances in Neural
Information Processing Systems, 35:23452–23462, 2022a.

Lan V Truong. On rademacher complexity-based generalization bounds for deep learning. arXiv preprint
arXiv:2208.04284, 2022b.

Anastasios Tsiamis and George J. Pappas. Finite sample analysis of stochastic system identification. In 2019
IEEE 58th Conference on Decision and Control (CDC), pp. 3648–3654, 2019.

Stephen Tu, Roy Frostig, and Mahdi Soltanolkotabi. Learning from many trajectories. Journal of Machine
Learning Research, 25(216):1–109, 2024. URL http://jmlr.org/papers/v25/23-1145.html.

Zhuozhuo Tu, Fengxiang He, and Dacheng Tao. Understanding generalization in recurrent neural networks.
In International Conference on Learning Representations, 2020.

Shida Wang and Qianxiao Li. Stablessm: Alleviating the curse of memory in state-space models through
stable reparameterization. In Forty-first International Conference on Machine Learning, 2024.

Xiao Wang, Shiao Wang, Yuhe Ding, Yuehang Li, Wentao Wu, Yao Rong, Weizhe Kong, Ju Huang, Shihao
Li, Haoxiang Yang, et al. State space model for new-generation network alternative to transformers: A
survey. arXiv preprint arXiv:2404.09516, 2024.

Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via lipschitz
augmentation. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Annan Yu, Dongwei Lyu, Soon Hoe Lim, Michael W. Mahoney, and N. Benjamin Erichson. Tuning frequency
bias of state space models, 2024. URL https://arxiv.org/abs/2410.02035.

22

https://arxiv.org/abs/2407.07279
https://arxiv.org/abs/2402.08132
http://jmlr.org/papers/v25/23-1145.html
https://arxiv.org/abs/2410.02035

Published in Transactions on Machine Learning Research (10/2025)

Jiong Zhang, Qi Lei, and Inderjit Dhillon. Stabilizing gradients for deep neural networks via efficient SVD
parameterization. In 35th ICML, volume 80 of PMLR, pp. 5806–5814. PMLR, 7 2018.

Yang Zheng and Na Li. Non-asymptotic identification of linear dynamical systems using multiple trajectories.
IEEE Control Systems Letters, 5(5):1693–1698, 2020. doi: http://dx.doi.org/10.1109/LCSYS.2020.3042924.

Ingvar Ziemann and Stephen Tu. Learning with little mixing. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35,
pp. 4626–4637. Curran Associates, Inc., 2022.

Ingvar Ziemann, Stephen Tu, George J. Pappas, and Nikolai Matni. Sharp rates in dependent learning theory:
Avoiding sample size deflation for the square loss. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=DHtF8Y6PqS.

Ingvar M Ziemann, Henrik Sandberg, and Nikolai Matni. Single trajectory nonparametric learning of nonlinear
dynamics. In Po-Ling Loh and Maxim Raginsky (eds.), Proceedings of Thirty Fifth Conference on Learning
Theory, volume 178 of Proceedings of Machine Learning Research, pp. 3333–3364. PMLR, Jul 2022. URL
https://proceedings.mlr.press/v178/ziemann22a.html.

23

https://openreview.net/forum?id=DHtF8Y6PqS
https://proceedings.mlr.press/v178/ziemann22a.html

Published in Transactions on Machine Learning Research (10/2025)

A Lipschitzness of the cross-entropy loss

For simplicity, we consider the binary cross-entropy loss for the scalar output case as an elementwise loss
function, defined as

ℓ(x, y) = −y log(x) − (1 − y) log(1 − x). (16)

The function defined in equation 16 without any other assumptions is not Lipschitz in the sense of Assumption
4.10 on the [0, 1] interval. However, if we bound the argument of the cross-entropy away from 0, i.e. it is
defined on [a, 1] for some positive a, it is Lipschitz in the sense of Assumption 4.10 with a Lipschitz constant
proportional to a−1.

A more practical assumption is that the cross-entropy is combined with the softmax function. For the scalar
output case, we have

ℓ(x, y) = −y log(sigmoid(x)) − (1 − y) log(1 − sigmoid(x)) (17)

for y ∈ [0, 1]. If x belongs to the interval [−a, a], i.e., the model outputs are bounded, we have∣∣∣∣ ∂ℓ

∂x

∣∣∣∣ ≤ 2 and
∣∣∣∣ ∂ℓ

∂y

∣∣∣∣ ≤ a

hence the function defined in equation 17 is 2-Lipschitz in x and a-Lipschitz in y and it is max{2, a}-Lipschitz
as long as y ∈ [0, 1]. We can extend ℓ to all y by setting ℓ(x, y) = ℓ(x, 0) for y < 0 and ℓ(x, y) = ℓ(x, 1) for
y > 1, without changing the Lipschitz constant.

This argument holds for the case when the model outputs a vector and we apply softmax, in a straightforward
manner. We omit the vector output case from the paper, because it makes the proof more technical and less
readable, while all the key terms remain the same. For the vector output case, in the first half of the proof of
Theorem 5.5 in Appendix B, instead of applying the Contraction Lemma for the Rademacher complexity, we
need to apply Maurer (2016, Corollary 4).

For cross-entropy with softmax, we can also consider the labels built into the loss function and investigate the
Lipschitzness in the input variable only, i.e. instead of ℓ(x, y) we have ℓ(x). This definition differs from what
we have in the main text, however, our proof and the above argument works, while the Lipschitz constant is
at most 2 without depending on a in this case.

B Proofs

In this section we need to prove (µ, c)-RC property for linear (or affine) transformations which are constant
in time, in many cases. For better readability, we only do the calculations once and use it as a lemma.

Lemma B.1. Let X1, X2 be two Banach spaces with norms ∥ · ∥X1 and ∥ · ∥X2 , and for every bounded linear
operation W : X1 → X2 and any b ∈ X2 fW,b(u) = W (u) + b ∈ X2. Let us denote by ∥W∥op the induced
norm of a bounded linear operator W : X1 → X2, i.e., ∥W∥op := supx∈X1

∥W (x)∥X2
∥x∥X1

. Let us assume that
W ∈ W such that sup

W ∈W
∥W∥op < KW and b ∈ B such that sup

b∈B
∥b∥X2

< Kb. Then the set of transformations

F = {fW,b | W ∈ W, b ∈ B} is (KW , Kb)-RC, and the image of the ball BX1(r) under f ∈ F is contained in
BX2(KW r + Kb).

Remark B.2. We are mainly interested in the cases when X1 = ℓq
T (Rnu), and X1 = ℓl

T (Rny), (q, l) ∈
{(2, 2), (2, ∞), (∞, ∞)}. For the special case of affine transformations that are constant in time, i.e. f(u)[k] =
W u[k] + b for a weight matrix W ∈ Rnv×nu and bias term b ∈ Rnv for all k ∈ [T], the operator norm equals
the corresponding matrix norm, i.e ∥W∥op = ∥W∥q,∞. In this case, b is the sequence for which b[k] = b for
all k ∈ [T], thus ∥b∥ℓ∞

T
(Rnv) = ∥b∥∞.

24

Published in Transactions on Machine Learning Research (10/2025)

Proof. First, let us prove a simple fact about Rademacher random variables that we will need, namely if
σ = (σ1, . . . , σN)T and σi are i.i.d. Rademacher variables, then

Eσ

[∣∣∣∣∣
N∑

i=1
σi

∣∣∣∣∣
]

≤
√

N. (18)

This is true, because

Eσ

[∣∣∣∣∣
N∑

i=1
σi

∣∣∣∣∣
]

=

√√√√(Eσ

[∣∣∣∣∣
N∑

i=1
σi

∣∣∣∣∣
])2

≤

√√√√√Eσ

∣∣∣∣∣
N∑

i=1
σi

∣∣∣∣∣
2

=

√√√√√Eσ

 N∑
i=1

σ2
i + 2

N∑
i,j=1

σiσj

 =

√√√√ N∑
i=1

Eσ [σ2
i] + 2

N∑
i,j=1

Eσ [σiσj] =
√

N,

where the first inequality follows from Jensen’s inequality and the last equality follows from the linearity of
the expectation, and the facts that σi are Rademacher variables and form and i.i.d sample.

For Z ∈ X1 we have

Eσ

 sup
(W,b)∈W×B

sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σi(W (ui) + b)

∥∥∥∥∥
X2


≤ Eσ

 sup
W ∈W

sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiW (ui)

∥∥∥∥∥
X2

+ Eσ

sup
b∈B

∥∥∥∥∥ 1
N

N∑
i=1

σib

∥∥∥∥∥
X2


= Eσ

 sup
W ∈W

sup
{ui}N

i=1∈Z

∥∥∥∥∥W

(
1
N

N∑
i=1

σiui

)∥∥∥∥∥
X2

+ Eσ

sup
b∈B

∥∥∥∥∥ 1
N

N∑
i=1

σib

∥∥∥∥∥
X1


≤ Eσ

 sup
W ∈W

∥W∥op sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
X1

+ Eσ

[
1
N

∣∣∣∣∣
N∑

i=1
σi

∣∣∣∣∣ sup
b∈B

∥b∥X2

]

≤ sup
W ∈W

∥W∥op Eσ

 sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
X1

+ sup
b∈B

∥b∥X2
Eσ

[
1
N

∣∣∣∣∣
N∑

i=1
σi

∣∣∣∣∣
]

≤ sup
W ∈W

∥W∥op Eσ

 sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
X1

+ 1√
N

sup
b∈B

∥b∥X2

where the first inequality follows from the triangle inequality, the first equality is the linearity of W , the
second inequality follows from the definition of the operator norm, while the third and fourth inequalities
refer only to the bias term and follow from the absolute homogeneity of the norm and inequality 18.

We can see that the calculations hold if the transformations are restricted to the ball BX1(r) for any choice of
X1 we consider. The radius can grow as

∥W (u) + b∥X2
≤ ∥W (u)∥X2

+ ∥b∥X2
≤ ∥W∥op ∥u∥X1

+ ∥b∥X2
.

Remark B.2 is straightforward from the definitions of the considered norms.

Proof of Lemma 5.2. Let the Banach spaces which contain Xi be denoted by Xi for i = 1, 2, 3. Let Z ⊆ XN
1

and Z̃ = {{φ1(ui)}N
i=1 | φ1 ∈ Φ1}. We have

Eσ

 sup
φ2∈Φ2

sup
φ1∈Φ1

sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiφ2(φ1(ui))

∥∥∥∥∥
X3


25

Published in Transactions on Machine Learning Research (10/2025)

= Eσ

 sup
φ2∈Φ2

sup
{vi}N

i=1∈Z̃

∥∥∥∥∥ 1
N

N∑
i=1

σiφ2(vi)

∥∥∥∥∥
X3


≤ µ2Eσ

 sup
φ1∈Φ1

sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiφ1(ui)

∥∥∥∥∥
X2

+ c2√
N

≤ µ2µ1Eσ

 sup
{ui}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
X1

+ µ2
c1√
N

+ c2√
N

Proof of Lemma 5.4. Encoder and decoder. The encoder is case a), while the decoder is case b) in Lemma
B.1 along with Remark B.2.

SSM. As discussed in Section 4.2, an SSM is equivalent to a linear transformation called its input-output
map. Therefore, by Lemma B.1, the SSM is (µ, 0)-RC in both cases, where µ is the operator norm of the
input-output map. Combining this with Lemma 4.3 yields the result.

Remark B.3. As the value of T is fixed, the input-output map can be described by the so-called Toeplitz
matrix of the system. In this case, the operator norm equals to the appropriate induced matrix norm of the
Toeplitz matrix. For the case of T = ∞, the input-output map still exists and is a linear operator. The proof
of Lemma B.1 holds in this case as well for operator norms.

Pooling. For any Z ⊆ ℓ∞
T (Rnu) we have

Eσ

[
sup

{zi}N
i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σif
Pool(zi)

∥∥∥∥∥
∞

]

= Eσ

[
sup

{zi}N
i=1∈Z

sup
1≤j≤nu

∣∣∣∣∣ 1
N

N∑
i=1

σi

(
1
T

T∑
k=1

z(j)
i [k]

)∣∣∣∣∣
]

= Eσ

[
sup

{zi}N
i=1∈Z

sup
1≤j≤nu

∣∣∣∣∣ 1
T

T∑
k=1

(
1
N

N∑
i=1

σiz(j)
i [k]

)∣∣∣∣∣
]

≤ Eσ

[
sup

{zi}N
i=1∈Z

1
T

T∑
k=1

sup
1≤j≤nu

∣∣∣∣∣ 1
N

N∑
i=1

σiz(j)
i [k]

∣∣∣∣∣
]

= Eσ

[
sup

{zi}N
i=1∈Z

1
T

T∑
k=1

∥∥∥∥∥ 1
N

N∑
i=1

σizi[k]

∥∥∥∥∥
∞

]

≤ Eσ

 sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞

T
(Rnu)



MLP. For both type of activation functions we will prove the result by first proving it for single layer networks.
To this end, let ρ be an activation function, which is either ReLU or a sigmoid with the properties stated in
Assumption 4.10.

Consider constants KW , Kb > 0 and integers m, nv > 0. We first consider the family FMLP,KW ,Kb,ρ,m,nv
of sin-

gle hidden layer neural networks f : ℓ∞
T (Rm) → ℓ∞

T (Rnv) defined by f(u)[k] = ρ(g(u[k])), where g(x) = W x+b
is the preactivation function and g belongs to the set GKW ,Kb,m,nv = {g : x 7→ Wx + b | W ∈ W, b ∈ B},
where W = {W ∈ Rnv×m | ∥W∥∞,∞ < KW } and B = {b ∈ Rnv | ∥b∥∞ < Kb}.

26

Published in Transactions on Machine Learning Research (10/2025)

We will show that FMLP,KW ,Kb,ρ,m,nv
is (KW , Kb + 0.5)-RC if ρ is sigmoid, and it is (4KW , 4Kb)-RC if ρ

is ReLU. Moreover, the elements of FMLP,KW ,Kb,ρ,m,nv map balls or radius r to balls of radius r̂(r), where
r̂(r) = KW + Kb if ρ is sigmoid, and r̂(r) = KW r + Kb if ρ is ReLU.

From this the statement of the lemma can be derived as follows. Let GKW,i,Kb,i,nM ,nu
be the set of all

models f(u)[k] = g(u[k]) such that g ∈ GKW,i,Kb,i,nM ,nu . Notice that Fi is contained in the composition (as
defined in Lemma 5.2) GKW,i,Kb,i,nM ,nu ◦ FKW,i,Kb,i,nM ,nM−1,ρi ◦ · · · ◦ FKW,i,Kb,i,ny,n2,ρi for suitable integers
nj , j ∈ {2, 3, . . . , M}. From the discussion above, FKW,i,Kb,i,nj ,nj+1,ρi

is (KW,i, Kb,i + 0.5)-RC (sigmoid) or
(4KW , 4Kb)-RC (ReLU) and its elements map balls of radius r to balls of radius 1 (sigmoid) or KW r + Kb
(ReLU). From Lemma B.1 and Remark B.2 it follows that that GKW,i,Kb,i,nu,nM

is (KW,i, Kb,i)-RC and its
element map ball of radius r to balls of radius KW,ir + Kb,i. The statement of the lemma follows now by
repeated application of Lemma 5.2.

It is left to prove the claims for single layer MLPs with sigmoid and ReLU activation functions respectively.

Single layer MLP with sigmoid activations. Let ρ be a sigmoid such that it is 1-Lipschitz, ρ(x) ∈ [−1, 1],
ρ(0) = 0.5, ρ(x) − ρ(0) is odd. Let G = GKW ,Kb,m,nv

= {g : x 7→ Wx + b | W ∈ W, b ∈ B}. Recall that for
an input sequence z ∈ ℓ∞

T (Rm) and function g ∈ G, g(z) ∈ ℓ∞
T (Rnv) means that we apply g for each timestep

independently, i.e. g(z)[k] = g(z[k]). We have

Eσ

sup
g∈G

sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiρ(g(zi))

∥∥∥∥∥
ℓ∞

T
(Rnu)


= Eσ

[
sup

(W,b)∈W×B
sup

{zi}N
i=1∈Z

sup
1≤k≤T

∥∥∥∥∥ 1
N

N∑
i=1

σiρ(Wzi[k] + b)

∥∥∥∥∥
∞

]

Let xi = i, i = 1, . . . , N and let H = {hW,b,z,k | (W, b, z, k) ∈ W × B × (Z ∪ {0}) × [T]} such that
hW,b,z,k(xi) = W (zi[k])+b. Under our assumptions H is symmetric to the origin, meaning that h ∈ H implies
−h ∈ H. Indeed, notice that if (W, b) ∈ W × B then (−W, −b) ∈ W × B, and hence h−W,−b,z,k = −hW,b,z,k

also belongs to H. We can apply Theorem 2 from Truong (2022b) for the sigmoid activation ρ and by using
that ρ(x) − ρ(0) is odd, we derive the following.

Eσ

[
sup

(W,b)∈W×B
sup

{zi}N
i=1∈Z

sup
1≤k≤T

∥∥∥∥∥ 1
N

N∑
i=1

σiρ(Wzi[k] + b)

∥∥∥∥∥
∞

]

= Eσ

[
sup
h∈H

∥∥∥∥∥ 1
N

N∑
i=1

σiρ(h(xi))

∥∥∥∥∥
∞

]

≤ Eσ

[
sup
h∈H

∥∥∥∥∥ 1
N

N∑
i=1

σih(xi)

∥∥∥∥∥
∞

]
+ 1

2
√

N

= Eσ

[
sup

(W,b)∈W×B
sup

{zi}N
i=1∈Z

sup
1≤k≤T

∥∥∥∥∥ 1
N

N∑
i=1

σi(Wzi[k] + b)

∥∥∥∥∥
∞

]
+ 1

2
√

N

= Eσ

 sup
(W,b)∈W×B

sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σi(Wzi + b)

∥∥∥∥∥
ℓ∞

T
(Rnv)

+ 1
2
√

N
,

because the sigmoid is 1-Lipschitz and ρ(0) = 0.5. Now we can apply Lemma B.1 (see Remark B.2) to get
that

Eσ

 sup
(W,b)∈W×B

sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σi(Wzi + b)

∥∥∥∥∥
ℓ∞

T
(Rnv)

+ 1
2
√

N

27

Published in Transactions on Machine Learning Research (10/2025)

≤ sup
W ∈W

∥W∥∞,∞ Eσ

 sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞

T
(Rnu)

+ 1√
N

sup
b∈B

∥b∥∞ + 1
2
√

N

Therefore, the sigmoid MLP layer is (KW , Kb + 0.5)-RC. The restriction of an MLP to the ball Bℓ∞
T

(Rm)(r)
maps to the ball Bℓ∞

T
(Rnv)(1), because of the elementwise sigmoid activation.

Single layer MLP with ReLU activations. We repeat the same steps as in the proof up to the first
inequality. Here we can apply Equation 4.20 from Ledoux & Talagrand (1991) (this is the same idea as in the
proof of Lemma 2 in Golowich et al. (2018)) to get

Eσ

[
sup
h∈H

∥∥∥∥∥ 1
N

N∑
i=1

σiρ(h(xi))

∥∥∥∥∥
∞

]
≤ 4Eσ

[
sup
h∈H

∥∥∥∥∥ 1
N

N∑
i=1

σih(xi)

∥∥∥∥∥
∞

]
,

where we used that ρ(x) = ReLU(x) is 1-Lipschitz and ρ(0) = 0, and the same logic for the alternative
definition of the Rademacher complexity (without the absolute value) as in the proof of Proposition 6.2 Hajek
& Raginsky (2019). The constant 4 is then obtained by the additional constant factor 2 from Talagrand’s
lemma. The rest of proof is identical to the sigmoid case.

The restriction of an MLP to the ball Bℓ∞
T

(Rnu)(r) maps to the ball Bℓ∞
T

(Rnv)(KW r + Kb), because the
elementwise ReLU does not increase the infinity norm, hence we can apply Lemma B.1 and Remark B.2.
Again, for the deep model the result is straightforward from Lemma 5.2 along with Lemma B.1, Remark B.2.

GLU. For the ease of notation, assume that KGLU,i = KGLU and let W = {W ∈ Rny×nu | ∥W∥∞,∞ < KGLU }
and let FGLU = {fGLU as in equation 7 | W ∈ W}. As Fi ⊆ FGLU, it is enough to prove the claim of the
lemma for FGLU.

First of all, we show that the function h : (R2, ∥·∥2) → (R, | · |) defined as h(x) = x1 · σ(x2) is
√

2(K + 1)-
Lipschitz on a bounded domain, where |xi| ≤ K for all x ∈ R2 we consider. We will later specify the value of
K in relation to Assumption 4.10. By the sigmoid being 1-Lipschitz, we have

|h(x) − h(y)| = |x1σ(x2) − y1σ(x2) + y1σ(x2) − y1σ(y2)| ≤
|(x1 − y1)σ(x2)| + |y1(σ(x2) − σ(y2))| ≤ |x1 − y1| + |y1||x2 − y2|

≤
√

2(K + 1) ∥x − y∥2

Second, we recall Corollary 4 in Maurer (2016).

Theorem B.4 (Maurer (2016)). Let X be any set, (x1, . . . , xN) ∈ X N , let F̃ be a set of functions f : X →
ℓ2

T (Rm) and let h : ℓ2
T (Rm) → R be an L-Lipschitz function. Under fk denoting the k-th component function

of f and σik being a doubly indexed Rademacher variable, we have

Eσ

[
sup
f∈F̃

N∑
i=1

σih(f(xi))
]

≤
√

2LEσ

[
sup
f∈F̃

N∑
i=1

m∑
k=1

σikfk(xi)
]

.

We wish to apply Theorem B.4 to GLU layers. For any Z ⊆ ℓ∞
T (Rnu), by letting GLUW (z) = fGLU (z) we

have

Eσ

 sup
W ∈W

sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σiGLUW (zi)

∥∥∥∥∥
ℓ∞

T
(Rnu)


= Eσ

[
sup

W ∈W
sup

{zi}N
i=1∈Z

sup
1≤k≤T

sup
1≤j≤nu

∣∣∣∣∣ 1
N

N∑
i=1

σiGLU
(j)
W (zi)[k]

∣∣∣∣∣
]

.

Now this is an alternative version of the Rademacher complexity, where we take the absolute value of the
Rademacher average. In order to apply Theorem B.4, we reduce the problem to the usual Rademacher

28

Published in Transactions on Machine Learning Research (10/2025)

complexity. In turn, we can apply the last chain of inequalities in the proof of Proposition 6.2 in Hajek &
Raginsky (2019). Concretely, by denoting O = {0}N

i=1 and noticing that GLUW (0) = 0, we have

Eσ

[
sup

W ∈W
sup

{zi}N
i=1∈Z

sup
1≤k≤T

sup
1≤j≤nu

∣∣∣∣∣ 1
N

N∑
i=1

σiGLU
(j)
W (zi)[k]

∣∣∣∣∣
]

≤ 2Eσ

[
sup

W ∈W
sup

{zi}N
i=1∈Z∪{O}

sup
1≤k≤T

sup
1≤j≤nu

1
N

N∑
i=1

σiGLU
(j)
W (zi)[k]

]
.

Let xi = i, i = 1, . . . , N and let H = {fW,z,k,j | (W, z, k, j) ∈ W × (Z ∪ {0}) × [T] × [nu]} such that

fW,z,k,j(xi) =
(

GELU(zi[k])(j), (W (GELU(zi[k])))(j)
)T

for z = {zi}N
i=1 ∈ Z. Since Z ⊆ (Bℓ∞

T
(Rny)(r))N ,

it follows that for all {zi}N
i=1 ∈ Z and for all k ∈ N, the inequality ∥zi[k]∥∞ ≤ r holds. Hence, it follows that

|GELU(zi[k])(j)| < r, leading to |W (GELU(zi[k]))(j)| < sup
W ∈W

∥W∥∞,∞ · r. In particular, GLU
(j)
W (zi)[k] =

h(fW,z,k,j(xi)) = h|B(fW,z,k,j(xi)), where h|B is the restriction of h to B = {x ∈ R2 | ∥x∥∞ < K}, with
K = max{r, sup

W ∈W
∥W∥∞,∞r}. In particular, h|B is

√
2(K + 1)-Lipschitz.

We are ready to apply Theorem B.4, together with the GLU definition and its
√

2(K + 1)-Lipschitzness, we
have

2Eσ

[
sup

W ∈W
sup

{zi}N
i=1∈Z∪{O}

sup
1≤k≤T

sup
1≤j≤nu

1
N

N∑
i=1

σiGLU
(j)
W (zi)[k]

]

= 2Eσ

[
sup
f∈H

1
N

N∑
i=1

σih(f(xi))
]

≤ 4(K + 1)Eσ

[
sup

{zi}N
i=1∈Z∪{O}

1
N

N∑
i=1

σiGELU(zi[k])(j)

]
︸ ︷︷ ︸

A

+ 4(K + 1)Eσ

[
sup

{zi}N
i=1∈Z∪{O}

1
N

N∑
i=1

σiW (GELU(zi))(j)[k]
]

︸ ︷︷ ︸
B

Due to the definition of GELU, its 2-Lipschitzness (Qi et al., 2023) and Theorem 4.12 from Ledoux &
Talagrand (1991) we have

A = Eσ

 sup
{zi}N

i=1∈Z∪{O}

∥∥∥∥∥ 1
N

N∑
i=1

σiGELU(zi)

∥∥∥∥∥
ℓ∞

T
(Rnu)

 =

≤ 4Eσ

 sup
{zi}N

i=1∈Z∪{O}

∥∥∥∥∥ 1
N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞

T
(Rnu)

 = 4Eσ

 sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞

T
(Rnu)


and

B = Eσ

 sup
W ∈W

sup
{zi}N

i=1∈{O}

∥∥∥∥∥ 1
N

N∑
i=1

σiW (GELU(zi))

∥∥∥∥∥
ℓ∞

T
(Rnu)


≤ sup

W ∈W
∥W∥∞ Eσ

 sup
{zi}N

i=1∈Z{O}

∥∥∥∥∥ 1
N

N∑
i=1

σiGELU(zi)

∥∥∥∥∥
ℓ∞

T
(Rnu)


≤ 4 sup

W ∈W
∥W∥∞ Eσ

 sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞

T
(Rnu)


29

Published in Transactions on Machine Learning Research (10/2025)

Here we used the linearity of W and the exact same calculation as in the proof of Lemma B.1. By combining
the inequalities above, it follows that

Eσ

[
sup

W ∈W
sup

{zi}N
i=1∈Z

sup
1≤k≤T

sup
1≤j≤nu

∣∣∣∣∣ 1
N

N∑
i=1

σiGLU
(j)
W (zi)[k]

∣∣∣∣∣
]

≤

16(K + 1)
(

sup
W ∈W

∥W∥∞,∞ + 1
)
Eσ

 sup
{zi}N

i=1∈Z

∥∥∥∥∥ 1
N

N∑
i=1

σizi

∥∥∥∥∥
ℓ∞

T
(Rnu)


Substituting the value of K gives the result.

SSM block. By Lemma 5.2 and the proof of this lemma for SSM layers and non-linear layers Fi, we have
that the composition of the SSM layer E and a non-linear layer Fi is (µi(rK1)K1, ci(rK1))-RC for i > 1 and
it is (µi(K2r)K2, ci(K2r))-RC for i = 1 and its elements map a ball of radius r to a ball of radius r̂i(K1r)
for i > 1 and to ball of radius r̂i(K2r) for i = 1. A SSM block is then (µi(Kl(i)r)Kl(i) + αi, ci(Kl(i)r))-RC,
where Kl(1) = K2 Kl(i) = K1, i > 1 because

Eσ

 sup
g∈Fi,Σ∈E

sup
{zj}N

j=1∈Z

∥∥∥∥∥∥ 1
N

N∑
j=1

σj(g(SΣ(zj)) + αzj)

∥∥∥∥∥∥
ℓ∞

T
(Rnu)

 ≤

Eσ

 sup
g∈Fi,Σ∈E

sup
{zj}N

j=1∈Z

∥∥∥∥∥∥ 1
N

N∑
j=1

σjg(SΣ(zj))

∥∥∥∥∥∥
ℓ∞

T
(Rnu)

+ αEσ

 sup
{zj}N

j=1∈Z

∥∥∥∥∥∥ 1
N

N∑
j=1

σjzj

∥∥∥∥∥∥
ℓ∞

T
(Rnu)


≤ (µi(r)Kl(i) + αi)Eσ

 sup
{zj}N

j=1∈Z

∥∥∥∥∥∥ 1
N

N∑
j=1

σjzj

∥∥∥∥∥∥
ℓ∞

T
(Rnu)

+ ci(r)√
N

Proof of Lemma 5.3. By definition

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
ℓ2

T
(Rnin)

=

√√√√ T∑
k=1

∥∥∥∥∥ 1
N

N∑
i=1

σiui[k]

∥∥∥∥∥
2

2

=

√√√√ T∑
k=1

〈
1
N

N∑
i=1

σiui[k], 1
N

N∑
j=1

σjuj [k]
〉

Rnin

=

√√√√ T∑
k=1

1
N2

N∑
i=1

N∑
j=1

σiσj ⟨ui[k], uj [k]⟩Rnin

where ⟨·, ·⟩Rnin denotes the standard scalar product in Rnin . Therefore

Eσ

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
ℓ2

T
(Rnin)

 = Eσ

√√√√ T∑
k=1

1
N2

N∑
i=1

N∑
j=1

σiσj ⟨ui[k], uj [k]⟩Rnin



≤

√√√√√Eσ

 T∑
k=1

1
N2

N∑
i=1

N∑
j=1

σiσj ⟨ui[k], uj [k]⟩Rnin


30

Published in Transactions on Machine Learning Research (10/2025)

=

√√√√ T∑
k=1

1
N2

N∑
i=1

N∑
j=1

Eσ [σiσj] ⟨ui[k], uj [k]⟩Rnin

=

√√√√ T∑
k=1

1
N2

N∑
i=1

Eσ [σ2
i] ⟨ui[k], ui[k]⟩Rnin

=

√√√√ 1
N2

N∑
i=1

T∑
k=1

∥ui[k]∥2
2 =

√√√√ 1
N2

N∑
i=1

∥ui∥2
ℓ2

T
(Rnin) ≤

√
1

N2 NK2
u ≤ Ku√

N

Proof of Theorem 5.5. From Lemma 5.4 it follows that all maps constituting a model f ∈ F come from
families of maps which are (µ, c)-RC for suitable constants µ, c, and map any ball of radius r to a ball of
radius r̂(r). Let us consider the deep SSM model given by equation 9, which is a composite of mappings as

Bℓ2
T

(Rnin)(Ku) Encoder−−−−−→ Bℓ2
T

(Rnu)(KuKEnc︸ ︷︷ ︸
r1

) B1−−→ Bℓ∞
T

(Rnu)(r2) B2−−→ . . .
BL−−→

Bℓ∞
T

(Rnu)(rL+1) Pooling−−−−−→ B(Rnu ,∥·∥∞)(rL+1) Decoder−−−−−→ B(R,|·|)(KDecrL+1),

where the constants ri, i ∈ [L + 1] are as in equation 13, due to repeated application of Lemma 5.4 and the
expressions in Table 3.

Note that the first SSM block is considered as a map Bℓ2
T

(Rnu)(KEncKu) → Bℓ∞
T

(Rnu)(r2), while for i > 1
the SSM layer in the ith SSM block is considered as a map Bℓ∞

T
(Rnu)(ri) → Bℓ∞

T
(Rnu)(ri+1). This is needed,

because the encoder is constant in time, therefore the Composition Lemma wouldn’t be able to carry the ℓ2
T

norm of the input through the chain of estimation along the entire model. This is one of the key technical
points which makes it possible to establish a time independent bound.

Next, we wish to apply Theorem 4.2 to the set of deep SSM models F . Let us fix a random sample
S = {u1, . . . , uN } ⊂

(
ℓ2

T (Rnin)
)N . As the loss function is Lipschitz according to Assumption 4.10, we have

that for any f ∈ F

|ℓ(f(u), y)| ≤ 2Ll max{f(u), y} ≤ 2Ll max{KDecrL+1, Ky},

thus Kl ≤ 2Ll max{KDecrL+1, Ky}. Again by the Lipschitzness of the loss and the Contraction Lemma
(Shalev-Shwartz & Ben-David, 2014, Lemma 26.9) we have

RS(L0) ≤ Ll · RS(F),

and recall that RS(F) = R(
{

(f(u1), . . . , f(uN))T | f ∈ F
}

). It is enough to bound the Rademacher com-
plexity RS(F) of F to conclude the proof. By applying Lemma 5.4 to every layer of F and using Lemma 5.2,
it follows that the family F|X1 of restriction of the elements F to X1 = Bℓ2

T
(Rnin)(Ku) is a family of maps

from X1 to X2 = (R, | · |) which is (µ, c)-RC, where µ, c are as in equation 14. Next, we state a lemma before
we finish the proof.

Lemma B.5. Let F be a set of functions between X1 = Bℓ2
T

(Rnin)(Ku) and X2 = (R, | · |) that is (µ, c)-RC.
The Rademacher complexity of F w.r.t. some dataset S for which Assumption 4.10 holds, admits the following
inequality.

RS(F) ≤ µKu + c√
N

.

Proof.

RS(F) = R(
{

(f(u1), . . . , f(uN))T | f ∈ F
}

) = Eσ

[
sup
f∈F

1
N

N∑
i=1

σif(ui)
]

31

Published in Transactions on Machine Learning Research (10/2025)

≤ Eσ

[
sup
f∈F

∣∣∣∣∣ 1
N

N∑
i=1

σif(ui)

∣∣∣∣∣
]

≤ µEσ

∥∥∥∥∥ 1
N

N∑
i=1

σiui

∥∥∥∥∥
ℓ2

T
(Rnin)

+ c√
N

By applying Lemma 5.3, it follows

RS(F) ≤ µKu + c√
N

The Theorem is then a direct corollary of Lemma B.5.

32

	Introduction
	Related work
	Informal statement of the result
	Formal problem setup
	Rademacher complexity
	Deep SSMs
	Assumptions

	Main results
	Numerical example
	Conclusions
	Lipschitzness of the cross-entropy loss
	Proofs

