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Abstract

Deep SSM models like S4, S5, and LRU are made of sequential blocks that combine
State-Space Model (SSM) layers with neural networks, achieving excellent performance on
long-range sequences. In this paper we provide a PAC bound that holds for non-selective
architectures with stable SSM blocks and does not depend on the length of the input sequence.
Imposing stability of the SSM blocks is a standard practice in the literature, and it is known
to help performance. Our results provide a theoretical justification for the use of stable SSM
blocks as the proposed PAC bound decreases as the degree of stability of the SSM blocks
increases.

1 Introduction

The challenge of learning rich representations for long-range sequences (time series, text, video) has persisted
for decades. RNNs, including LSTMs Hochreiter| (1997) and GRUs |Cho| (2014), struggled with long-term
dependencies, while Transformers, despite improvements, still perform poorly on difficult tasks [Huang et al.
(2024)); |Amos et al.| (2024).

Recently, several novel architectures have been proposed which outperform previous models by a significant
margin, for an overview see Huang et al.| (2024); |Amos et al.| (2024). One notable class of such architectures
are the so-called deep State-Space Models (deep SSMs), which typically contain several layers made of the
composition of dynamical systems of either continuous or discrete time, and non-linear transformations (e.g.
MLP) |Gu et al.| (2021bj 2023); |Gu & Dao| (2023)); [Wang et al.| (2024); (Gu et al.| (2021a} [2022)); [Smith et al.
(2022)); [Fu et al. (2022); |Orvieto et al.| (2023). While SSM architectures have been extensively validated
empirically, the theoretical foundations of SSMs are less understood. One key point of these models is that
they are - often implicitly - equipped with some form of stability constraints for the SSM components. This
motivates the question:

What is the role of stability in the success of deep SSM architectures for long-range sequences?

We partially address this problem by leveraging stability to derive a PAC bound which is independent of
input sequence length. Our contributions are:

Norms of SSMs for bounding Rademacher complexity. We show that the Rademacher complexity of
SSMs can be upper bounded by their system norms, such as the Hs and ¢; norms Chellaboina et al.| (1999),
which are well-known in control theory and linked to quadratic stability. This highlights stability not just as
a practical necessity, but as a fundamental aspect of SSM architectures, making it the key takeaway of our
work.

Rademacher Contractions. We upper bound the Rademacher complexity of multilayer deep SSM models,
encompassing many popular architectures, by introducing the concept of Rademacher Contraction (RC),
which, similarly to the celebrated Talagrand’s Contraction Lemma Ledoux & Talagrand| (1991)), allows us to
bound the Rademacher complexity of deep models.
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PAC bound for deep SSMs. Using the concept of Rademacher Contraction we establish a PAC-bound on
the generalization error of deep SSMs. The resulting bound is independent of the input sequence length and
depends only implicitly on the depth of the model. Our results cover both classification and regression tasks
for most of the popular deep SSM architectures.

Outline of the paper. In Section [2] we present the related literature, then we set some notation and present
an informal statement of our result in Section [3] The formal problem statement along with the remaining
notation and our assumptions are in Section [df We propose our main result and a sketch of the proof in
Section [5} A numerical example illustrating the result is in Section [6] The majority of the proofs and some
additional details are shown in the Appendix.

2 Related work

Apart from |Liu & Li| (2024); Nishikawa & Suzuki| (2024)), SSM research primarily addresses modeling power,
parametrization, and computational complexity, with limited focus on generalization bounds.

Theoretical analysis of SSMs. SSM modeling power has been studied via approximation capabilities
|Cirone et al.|(2024); Wang & Li| (2024)); (Orvieto et al.| (2024); Cirone et al.| (2024)), with a survey in|Tiezzi et al.
(2024). This paper, however, focuses on statistical generalization bounds. Nishikawa & Suzukil (2024) derives
statistical bounds on SSM approximation error, but only for a specific learning algorithm and parametrization,
whereas our PAC bound is algorithm-agnostic. Experimental results suggest stable SSM parametrizations
improve learning [Wang & Lil (2024)); [Parnichkun et al| (2024)); |Gu et al.| (2021a); [Smith et al.| (2022); [Fu et al|
(2022); |Gu & Dao, (2023); Smékal et al.| (2024). Computational complexity of inference and learning has been
analyzed in Massaroli et al.| (2023)); Gu et al| (2021bj [2023), while \Gu et al. (2023); [Yu et al.| (2024); [Wang &/

(2024)) investigated initialization techniques.

PAC bounds for single-layer SSMs. derived a PAC bound for a single continuous-time
LTT SSM using Rademacher complexity. In contrast, their result applies only to a single SSM block without
nonlinear elements, their bound grows with sequence length, and it does not account for discretization
effects. Moreover, their constants are not directly linked to control-theoretic quantities like Hy norms. Their
input assumptions also differ: while we assume bounded /5 norm inputs, they allow unbounded inputs, but
require subgaussianity and continuity, the latter being inapplicable in discrete time and potentially imposing
constraints on the sampling mechanism.

PAC bounds for RNNs. Since LTIs are core components of deep SSMs and a subclass of RNNs,
RNN generalization bounds are somewhat relevant. Note however, that deep SSMs and simple RNNs are
theoretically different models and we do not see any trivial way to formulate a deep SSM as a simple RNN or
vice verse, see Remark Prior PAC bounds for RNNs use VC-dimension or covering numbers [Koiran &
Sontag] (1998)); [Sontag| (1998); [Hanson et al.| (2021b)), Rademacher complexity [Wei & Ma) (2019)); [Akpinar]
et al|(2020); Joukovsky et al.|(2021); |Chen et al. (2020)); Tu et al. (2020), or PAC-Bayesian methods |Zhang
et al| (2018). However, prior PAC bounds grow with integration time (continuous) or time steps (discrete),
limiting their use for long-range sequences. The bound for single vanilla RNNs in [Chen et al.| (2020) assumes
that the state matrix represents a contraction and upper-bounds the ¢; norm used here. In contrast, our
bound is independent of state-space dimension, assumes only that the state matrix is Schur and assumes only
bounded ¢; /Hs norms. The work [Mitarchuk et al.| (2024) also assumes that the state matrix is a contraction,
works with tanh activation and prove a PAC-Bayesian bound for RNNs under a special saturation condition,
however it is unclear under what conditions they hold for the considered RNN class, not to mention deep
SSMs considered in the paper at hand. The proof techniques both in [Chen et al| (2020) and Mitarchuk et al.|
are different to what we employ.

PAC bounds for Neural Ordinary Differential Equations. PAC bounds for NODEs have been
developed in [Hanson et al. (2021a)); Hanson & Raginsky| (2024); Marion| (2023)); Fermanian et al.| (2021]).
These results are based on Rademacher complexity and they are either affine in inputs or defined in the
rough path sense. While a single block SSM interpreted in continuous time is affine in the input, general
multi-block SSMs do not fall into this category. Moreover, these bounds are still exponential in the length of
the integration interval, i.e., the length of the time series if fixed sampling time is used.
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PAC bounds for deep networks and transformers. [Trauger & Tewari (2024) derive a sequence-length-
independent Rademacher complexity bound for single-layer transformers, improving slightly on
for multi-layer cases, though their bound grows logarithmically with the sequence length.
However, their results do not apply to SSMs and involve matrix norms that may scale with the attention
matrix size. Maintaining norm stability for longer sequences requires reducing certain matrix entries. In
contrast, the Ho/¢1 norms in this paper depend only on state-space matrices and remain invariant to the
input length.

Generalization bounds for deep neural networks (DNNs) extend beyond RNNs and dynamical systems
let al] (2017); [Liang et al| (2019); |Golowich et al| (2018); [Truong| (2022b)). Since deep SSMs can simulate
DNNs and resemble feedforward networks with fixed input length, their bounds should align with DNN
results. (Golowich et al.| (2018) provide a depth-independent bound under bounded Schatten p-norm and a
polynomial-depth bound for ReLU networks via contraction. Other works use spectral [Bartlett et al.|(2017) or
Fisher-Rao norms [Liang et al.| (2019) to mitigate depth dependence. [Truong| (2022b)) further refine |Golowich
to a depth-independent, non-vacuous bound for non-ReLU activations. When applied to deep
SSMs with trivial state-space components, the bounds of the present paper are more conservative than those
of |Golowich et al. (2018) for general activation functions, but are consistent with |Golowich et al.| (2018);
Truong| (2022b)) for ReLU activation functions.

PAC-Bayesian bounds for dynamical systems. PAC-Bayesian bounds for various classes of dynamical
systems were developed in [Alquier & Wintenberger| (2012)); [Alquier et al| (2013); [Shalaeva et al.| (2020));
Haddouche & Gued]| (2022al); [Haussmann et al.| (2021); Haddouche & Guedj| (2022b)); [Seldin et al.| (2012);
Abeles et al.| (2024)). The main difference between the cited papers and the present one are as follows.

1. Single time-series vs. multiple independently sampled time-series. All the cited papers assume that
the data used for computing the empirical error is sampled from one single time series. The latter
assumption required the use of various extensions of well-known concentration inequalities to the
non-i.i.d. case. In particular, the obtained bounds all depend on some mixing coefficients. In contrast
to the cited papers, the present paper assumes multiple i.i.d. samples of time-series’, so formally, the
learning problem of the present paper is completely different from the one of the papers cited above.

2. PAC-Bayesian vs. PAC bounds. The present paper presents a PAC bound, not a PAC-Bayesian
one. PAC bounds have the advantage that they tend to be simpler to use and interpret, and they
provide a uniform bound on the generalization gap, but they also tend to be fairly conservative.
PAC-Bayesian bounds are more involved, they are sensitive to priors and they bound the average
(w.r.t. some posterior) generalization gap, only. However, they are potentially less conservative. This
means that PAC bounds might actually be competitive with PAC-Bayesian ones in situations where
the former is easy to evaluate and there are no obvious candidates for suitable priors. We believe
that SSMs might fall in this category: the proposed PAC bound is easy to evaluate, and the choice
of a suitable prior is far from obvious.

3. Different model classes. The classes of dynamical systems in [Alquier & Wintenberger| (2012); |Alquier
let al.| (2013); [Shalaeva et al.| (2020); Haddouche & Guedj| (2022al); [Haussmann et al.| (2021)) do not
include state-space processes with partially observed state. The bound [Eringis et al.| could,
in principle, be applied to a one block SSM without non-linearities, and [Eringis et al.| (2023)) can
be applicable to multi-block SSMs in case the latter satisfies some stability conditions which are
more stringent than the one in this paper. However, the application of [Eringis et al.| (2023} 2024) is
possible only if the data used for learning is sampled from a single time series. The same is true for
|Abeles et al.| (2024).

Finite-sample bounds for dynamical systems. In recent years there has been a significant interest in
deriving bounds on the true loss for dynamical systems for particular learning algorithms Oymak et al.|(2019);
Oymak & Ozay| (2022); Simchowitz et al.| (2019); Lale et al.| (2020)); [Foster & Simchowitz| (2020)); |Ziemann)|
& Tu| (2022)); [Ziemann et al. (2022); |Tsiamis & Pappas| (2019)); [Ziemann et al. (2024). However, most of
these papers consider learning from one single time-series. Notable exceptions are [Tu et al| (2024)); [Zheng
|& Li (2020)); [Sun et al.| (2020), where bounds for the true risk for linear State-Space Models were derived.
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However, there the derived bound does not relate the empirical loss to the true one, and it is applicable only
for linear dynamical systems, i.e., one block SSM. Moreover, the derived bound is specific to the learning
algorithm employed. The latter is based on least-squares solution to linear regression, and it does not seem
to be directly applicable to deep SSMs with non-linear blocks. In contrast, the results of the present paper
are applicable to deep SSMs and to any learning algorithms.

PAC bounds for non i.i.d. data. There is a significant body of literature on PAC bounds involving
Rademacher complexity [McDonald & Shalizi| (2017)); Mohri & Rostamizadeh, (2008]); Kuznetsov & Mohri
(2017) or other complexity measures for non i.i.d data, including data chosen from a single time-series. As it
was mentioned above, in this paper we consider a different learning problem, namely, learning from multiple
independently sampled time series, as opposed to one single time series. Moreover, the cited papers propose
PAC bounds which involve various measures of the complexity of the parameterization, e.g., Rademacher
complexity, but they do not dwell on estimating those measures for various classes of dynamical systems,
such as SSMs.

3 Informal statement of the result

Notation. We denote scalars with lowercase characters, vectors with lowercase bold characters and matrices
with uppercase characters. For a matrix A let A; denote its ith row. The symbol ® denotes the elementwise
product. We use [n] to denote the set {1,2,...,n} for n € N. For vector valued time function u, the notation
ul)[t] refers to the jth coordinate of the value of function at time ¢. Furthermore, we use X to denote a
dynamical system specified in the context. The constant n;, refers to the dimension of the input sequence, T’
refers to its length in time, while nyy, is the dimension of the output (not necessarily a sequence).

Denote by ¢2(R") and ¢5°(R™) the finite-dimensional Banach spaces generated by the all finite sequences over
R™ of length T', viewed as vectors of R"?| with the Eucledian norm ||-|| and the supremum norm ||- ||  over R*T
respectively. If X is a Banach space, we denote its norm by || - || x. In particular, ||uH?QT(Rn) = Zf:l ||u[k]|\§,
and ||u\|£%o(Rn) = SUDje(7),je(n] [0 [F]]. For a Banach space X, Bx(r) = {z € X | [|z[|,, <7} denotes the ball
of radius r > 0 centered at zero.

Learning problem. We consider the usual supervised learning framework for sequential input data. That
is, we consider a family F of models, each model f € F is a function which maps sequences of elements
u[l],...,u[T] of the input space R"» to outputs (labels) in )} C R™ut. We fix the length of the sequences to
T. A dataset is an i.i.d sample of the form S = {(u;,y;)}}¥; from some probability distribution D, where u; is
a sequence of length 7" having elements in R™» and y; belongs to ). The probability measure determined by
D is defined on a o-algebra generated by the Borel sets of R™»T x ), where the set of sequences of elements
of R™» of length T is identified with R™n”". We use the symbols Etuyy~ps Pluy)~ps Eswpny and Pg pn to
denote expectations and probabilities w.r.t. a probability measure D and its N-fold product DV respectively.
The notation S ~ DV tacitly assumes that S € (U x V)V, i.e. S is made of N tuples of input and output
trajectories.

An elementwise loss function is a function £ : Y x Y — R¥ such that £(y,y’) = 0 iff y = /. Its role is to
measure the discrepancy between predicted and true outputs (labels).

We define the empirical loss as L3,,,(f) = + Zf\il £(f(w;),y;) and the true loss as L(f) = B y)~p[(f(1),y)].
The goal of this paper is to bound the generalization error or gap, L(f) — £5,,,(f) uniformly for all models
ferF.

We will be interested in model classes F, elements of which arise by combining neural networks and the
so-called State-Space Models.

Model class of SSMs. A State-Space Model (SSM) is a discrete-time linear dynamical system of the form

x[k + 1] = Ax[k] + Bulk], x[1] =0 (1)
y[k] = Cx[k] + Dulk]

where A € R*»*"= B € R"*"™ (' € R™*" and D € R™*™ are matrices, u[k], x[k] and y[k] are the input,

the state and the output signals respectively for k = 1,2,...,T, where T is the number of time steps. In
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this paper we are interested in stable SSMs, i.e. in SSMs for which the matrix A from equation [I] is Schur
(the eigenvalues are inside the complex unit disk). Intuitively, stable SSMs are robust to perturbations, i.e.,
their state and output are continuous in the initial state and input, see for instance [Antoulas (2005) for more
details.

Remark 3.1 (Relationship between discrete-time SSMs (equation [1f) and continuous-time SSMs). In the
literature, the SSM layer is often defined as a continuous-time system

jjc(t) = Ac.’lic(t) + Bcv(t)’ yc(t) = Cl‘c(t> + D’U(t), xc(o) =0 (2)

where t € [0,00). In order to transform to a model mapping sequences to sequences, it is discretized in
time |Gu et al.| (2021a; 2022); [Smith et al.| (2022); |Gu & Dao| (2023)); |Dao & Gul (2024). That is, the following
discrete-time system is considered:

zlk + 1] = A(Ap)x[k] + B(Ar)ulk], y[k] = Cz[k] + Du(k), z[1] =0 (3)

such that the matrix valued functions A(A) and B(A) are defined as A(A) = eA<?, B(A) = fOA eM(A=%) Bds,
Ay = A(ulk]) is a function of u[k], and if v(¢) = u[k] for all t € (Zf:ll AVR Zle A;], then z[k] = z.(Ax_1),

ylk] = ye(Ar—1), k € [T], and A; := 0. If Ay equals a constant A, then equation [3| describes an LTI system
given by equation [l with A = A(A) and B = B(A).

Remark 3.2 (Selective SSMs). If A in equation [3[ depends on the input as in |Gu & Daol (2023)); Dao & Gu
(2024)), one obtains a discrete-time Linear Parameter-Varying system (LPV)[Téth| (2010)), or a so-called
selective State-Space Model. In this case A and B (sometimes C' as well) depend on u[k] at each step. While
they are more general, than LTI models and widely used in practice, they present greater analytical challenges.

Extending our results to such models remains future work.

An SSM given by equation induces a linear function Sy; v which maps every input sequence u[l],. .., u[T] to
the output sequence y[1],...,y[T]. In particular, Ss; v has a well-defined induced norm as a linear operator,
defined in the usual way. For stable SSMs this norm can be bounded uniformly in 7'

A SSM block is a residual composition of the SSM with a non-linear function g applied element-wise, i.e. an
SSM block maps the sequence u[l], ..., u[T] to the sequence defined by fPTB(u)[k] = g(Ss 7 (0)[k]) + aulk],
where a € R is the residual weight. A deep SSM model is a composition of several SSM blocks with an
encoder, and a decoder transformation preceded by a time-pooling layer. That is, the input-output map of
a deep SSM is a composition of functions of the form fP o fFo°lo fBr o .. o fBro fEn¢ where o denotes
composition of functions. The functions fF*¢ and fP° are linear transformations which are constant in time
and are applied to sequences element-wise, while fB¢ is the input-output map of an SSM block for all i. This
definition covers many examples from the literature, e.g. S4|Gu et al.|(2021a), S4D |Gu et al.| (2022), S5
Smith et al.[(2022) or LRU |Orvieto et al.| (2023).

The main result of this paper is the following PAC bound for deep SSMs:

Theorem 3.3 (Informal theorem). Let F be a set of deep SSM models with stable SSM blocks, which satisfy
a number of mild reqularity assumptions. There exist constants K;, and K which depend only on the model
class F, such that for any time horizon T > 0, any confidence level § > 0, with probability at least 1 — 9§ over
data samples S ~ DN,

K Ki+/2log(4
Vf e F i L)L () € &NV 5) (4)

With standard arguments on PAC bounds and Rademacher complexity, the result above also implies the
following oracle inequality for the Empirical Risk Minimization framework [Shalev-Shwartz & Ben-David
(2014).

Corollary 3.4. With the assumptions of Theorem for ferm = argminfefﬁs (f), for any § > 0, with

emp

probability at least 1 — § over data samples S ~ D" :

Kr+5K; 210g(8/6)
VN

L(ferm) < ?ggﬁ(f) + (5)
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Bounds given by inequalities [4| and |5 ensure that as N grows, the empirical and true losses converge, and the
learned model’s true loss approaches the minimum possible loss.

The term Kr depends on the norms of the SSM blocks and the magnitudes of non-SSM weights, but it
remains independent of T'. Since in general, norms of SSMs decrease as their stability increases, stability
makes the generalization gap insensitive to sequence length, and increasing stability further decreases it.
Specifically, for deep SSMs with & layers, Kz = O((SSM norm)*(non-SSM weight norm)*). While Kz grows
exponentially with the depth unless all components are contractions, high non-SSM weights can be offset by
lower SSM norms. These norms decrease as SSMs become more stable, though stability is not directly tied to
weight magnitudes — stable SSMs can still have large weights. This exponential dependence aligns with
bounds for deep neural network |Golowich et al.| (2020); [Truong| (2022a)).

Depth may negatively impact the generalization gap, but this does not imply poor generalization overall. Even
if K is large for deep SSMs, inequality [5] implies that if the best true error is small then the generalization
gap can still be small. Additionally, as N increases, the influence of Kz diminishes, suggesting deeper models
require more data, which is consistent with findings on deep neural networks.

4 Formal problem setup

4.1 Rademacher complexity

Our main result is essentially an upper bound on the Rademacher complexity of a set of deep SSMs with
specific properties, thus we begin by recalling the definition.

Definition 4.1 (Def. 26.1 in [Shalev-Shwartz & Ben-David| (2014])). The Rademacher complexity of a
bounded set A C R™ is defined as

R(A) = E, lSUP L Zaiai] ;
i=1

acA MM i

where the random variables o; are i.i.d such that P[o; = 1] = P[o = —1] = 0.5. The Rademacher complexity of a
set of functions F over a set of samples S = {s1 ... 8y, } is defined as Rg(F) = R({(f(s1),---,f(sm)) | f € F}).

The following is a standard generalization theorem, involving Rademacher complexity, that we build our
proof on.

Theorem 4.2 (Theorem 26.5 in [Shalev-Shwartz & Ben-David| (2014)). Let Ly denote the set of functions of
the form (u,y) — I(f(u),y) for f € F. Let K| be such that the functions from Lg all take values from the
interval [0, Kj]. Then for any 6 € (0,1) we have

Pg.pw~ (Vf eF: ﬁ(f) - ﬁfmp(f) < 2R5(L0) + K 210g]\[(4/5)> >1-4.

4.2 Deep SSMs

Stable SSMs. In the sequel, we consider solutions of equation [1|on the time interval [1,T], where the value
of T is fixed. As it was mentioned in Section |3] LTT systems given by equation [l| are internally stable. It is
well-known |Antoulas| (2005) that internal stability is equivalent to the A matrix in equation |1| being Schur,
i.e., meaning all the eigenvalues of A are inside the complex unit disk. In particular, a sufficient, but not
necessary condition for stability is that A is a contraction, i.e. ||A]|2 < 1. Moreover, for a system given by
equation [I] with A being a Schur matrix, there exists a non-singular matrix P representing a linear basis
transformation such that the transformed system given by A’ = PAP~!, B’ = PB,(C’ = CP~! has the same
Markov parameters as the original one (namely CA*B = C’(A")kB’ for all k € N) and | 4|, < 1.

All popular architectures in the literature use stable SSM blocks, see Table [T}
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Model SSM Block
LTI, A=A - PQ* SSM +
§4[Gu et al| (20212) block-diagonal, stable nonlinear activation
LTL A= —eXp(ARe) + - AIm SSM +
S4D (Gu et al,| (2022) block-diagonal, stable nonlinear activation
S5 [Smith et al.| (2022) LTI, stable diagonal A nonlinSjrl\ictivation
. SSM +
LRU Orvieto et al.| (2023) LTI, diagonal A MLP / GLU +

tabl 1 tial trizati . .
stable complex exponential parametrization skip connection

Table 1: Summary of popular deep SSM models.

If equation [2| describes a stable continuous-time linear system, i.e. A. is a Hurwitz matrix (all the eigenvalues
of A, have a negative real part), then A(A) is a Schur matrix [Antoulas| (2005)), i.e., the corresponding
discrete-time SSM is stable.

Input-output maps of SSMs as operators on (4.,p = 00, 2. As it was mentioned in Section [3] an SSM
given by equation |1f induces an input-output map Ss 7, which maps every input sequence u[l],...,u[T] to
output sequence y[1],...,y[T], and can be described by a convolution y[t] = S (u)[t] = Z;Zl H;_qult—j+1],
where Hy = D and H; = CA77'B, j > 0. The map Ss,r can be viewed as a linear operator Ss. 1 : £,(R™*) —
¥ (R™), for any choice p € {00, 2}. In particular, Sy r has a well-defined induced norm as a linear operator,
defined in the usual way,

150 () e

15271, ueesf;tgnu) ||u||e;(nz<ny)
It is a standard result in control theory that if ¥ is internally stable, the supremum [|X| 6 =
SUP7~0 H827T||oo7p of these norms is finite, see |Antoulas| (2005)). In this paper, we will use upper bounds on
the induced norms ||Ss 7|r,00, 7 € {2, 00} to bound the Rademacher complexity. In turn, these norms can
be upper bounded by the following two standard control-theoretical norms defined on SSMs. For an SSM
¥ given by equation [1| let us define the ¢; |Chellaboina et al. (1999) and Hs |Antoulas (2005) norms of ¥,
denoted by [|X||; and ||X]||, respectively, as

1%l = e 11Dl + _[[CAB |

2 2
IZlly = | IDIF + > ICARB].
k=0
Lemma 4.3 (Chellaboina et al.| (1999)). For a system given by equation it holds that suprsg [|Sz.7lly o <
IZ]ly and suprsg 159,7[ 0 00 < I%5-

00,00 —

An upper bound on the norms ||X||,,i = 1,2 can be easily computed by solving a suitable a linear matrix
inequality (LMI), which is a standard tool in control theory Boyd et al| (1994). Moreover, ||X||, can also
be computed using Sylvester equations, for which standard numerical algorithms exist |Antoulas| (2005)).
Alternatively, both norms can be computed by taking a sufficiently large finite sum instead of the infinite
sum used in their definition. Finally, if ||A]ls < 8 < 1, then an easy calculation reveals that ||X||; <

Bl|2]|C IMEIEEE
(||DH2 + %) and [|Z|, < \/HDII% + mlBIEICTE

Deep SSM models. In this paper, we consider deep SSM models, which consist of layers of blocks, each
block representing an SSM followed by a nonlinear transformation (MLP, GLU). Moreover, these blocks are
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preceded by a linear encoder and succeeded by a pooling block and a linear decoder.

In order to define deep SSMs, first we define MLP and GLU layers. Then we define SSM blocks, which are
compositions of SSMs given by equation [I| with MLP and GLU layers. Finally, we define deep SSM models,
where all these elements are combined.

Definition 4.4 (MLP layer). An MLP layer is a function f : £32(R") — £3°(R™) such that there exist an
integer M > 1, matrices and vectors {W;,b; }}, and activation function p : R — R, such that W; € Rmi+1xn
and b € R™, i € [M], n1 = n, and na41 = ny, and

f(u)[k] =9War41,baryr © fWM,bM ©...0 fW1,b1 (u[k]) (6)

where k € [T], fw,n,(x) = p(gw, b, (X)) and gw, b, (x) = Wix + b, for all i € [M + 1]. By slightly abusing
the notation, for a vector v, p(v) denotes the elementwise application of p to v.

Intuitively, a MLP layer represents a deep neural network applied to a signal at every time step. The function
fw, b, represents the ith layer of this neural network, with activation function p and weights W;, b;. For the
sake of simplicity, activation function is assumed to be the same across all layers of the neural network.

Definition 4.5 (GLU layer |[Smith et al.| (2022))). A GLU layer is a function of the form f : £3° (R™) — £5°(R"+)
parametrized by a matrix W such that

f(u)[k] = GELU (u[k]) ® o(W - GELU (ulk])), (7)
where o is the sigmoid function and GELU is the Gaussian Error Linear Unit [Hendrycks & Gimpel (2016).

Note that this definition of GLU layer differs from the original definition in [Dauphin et al| (2017)), because in
deep SSM models GLU is usually applied individually for each time step, without any time-mixing operations.
See Appendix G.1 in [Smith et al.| (2022).

Next, we define a SSM block, which is a composition of an SSM layer with a MLP/GLU layer.

Definition 4.6. An SSM block is a function fPTB : 5. (R") — (59(R™), r € {2,00}, such that for all
ke [T
fPTE()[K] = g o Ss.r(u)[k]) + aulk] (8)

for some SSM X given by equation |1} some MLP or GLU layer g : {3 (R™) — ¢3°(R™) and constant «.

We incorporate « so that the definition covers residual connections (typically « is either 1 or 0). The definition
above is inspired by the series of popular architectures mentioned in the introduction.

Finally, following the literature on SSMs, we define a deep SSM model as a composition of SSM blocks along
with linear layers (encoder/decoder) combined with a time-pooling layer in case of classification.
Definition 4.7 (encoder, decoder, pooling). An encoder is a function f : #.(R™») — ¢4.(R™), where
p € {2,00} is an integer, such that there exists a matrix Wy for which f(u)[k] = Wgneulk]. A decoder is a
function f : R™ — R™ut guch that there exists a matrix Wpee such that f(x) = Wpecx. A pooling layer is
the function fPo°': (32 (R") — R™*) defined by fF°°!(u) = £ 25:1 ulk].

An encoder corresponds to applying linear transformations to each element of the input sequence. The
pooling layer is typically an average pooling over the time axis.

Definition 4.8. A deep SSM model is a function f : £2.(R™n) — R"u¢ of the form
f — fDec o fPool o fBL 0...0 fBl o fEnc (9)

where fF¢ is an encoder and fP is a decoder, and fB¢ are SSM blocks for all 7, and fF°°! is the pooling
layer.

Definition covers many important architectures from the literature, e.g. S4, S4D, S5 and LRU. Note that
we did not include such commonly used normalization techniques as batch normalization in the definition
since they are not relevant for our results. Indeed, once the model training is finished, a batch normalization
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layer corresponds to applying a neural network with linear activation function, i.e., it can be integrated into
one of the neural network layers. Since the objective of PAC bounds is to bound the generalization error for
already trained models, for the purposes of PAC bounds, normalization layers can be viewed as an additional
layer of neural network.

Remark 4.9. The usual definition of a single layer, simple RNN (e.g. |Chen et al|(2020)) is
hyyr = O'l(UXk + Why + b) (10)
Yk =09(Vhy + ¢)

A single SSM block (Definition is made of a single, linear SSM layer followed by a time independent
nonlinearity. The linear SSM layer can be represented by a simple RNN. However, even a special case of
such a SSM block would result in an RNN for which the activation functions o7 and o2 in equation [I0]
are different. Using MLPs or deep stack of such SSM blocks would result in a dynamical system whose
structure is completely different from RNNs. Note that the MLP cannot be viewed as an activation function
in equation unlike the fixed activation function in equation the MLP in the deep SSM is not part
of the time-mixing component and it is parametrized, i.e. it is learned. Furthermore, as SSM layers are
discrete-time LTI systems, they are invariant under linear state-space transformations, whereas simple RNNs
are not.

4.3 Assumptions

Before moving forward to discuss the main result, we summarize the assumptions we make in the paper for
the sake of readability.

Assumption 4.10. We consider a family F of deep SSM models of depth L such that the following hold:

1. Architecture.

There exist families Fgp. of encoders, Fpec of decoders, € of SSMs, F;, i € [L], of nonlinear blocks,
and collection of residual weights {a;}£ ; such that if f € F given by equation |§|7 then

(1) the encoder fF1¢ belongs to Fguc, the decoder fP°¢ belongs to Fpec,

(2) and if the ith SSM block fBi is given by equation |8 then ¥ € £, a = «;, and g belongs to F;.

2. Scalar output.

Let nowt = 1.

3. Lipschitz loss function.

Let the elementwise loss £ be Ly-Lipschitz continuous, i.e., (y1,y1) —€(y2,v5) < Le(Jyr —y2|+ |y —v5])
for all y1,y2,9,y5 € R.

4. Bounded input.

There exist K, > 0 and K, > 0 such that for any input trajectory u and label y sampled from D,
with probability 1 we have that [[uf|,2 gn.) < Ku and [y| < K.
T

5. Stability & bounded encoder and decoder norms.

(1) There exist constants K7 and K5 such that ||X||, < K, p = 1,2 for each internally stable ¥ € £.
(2) There exists constants Kpgnc, Kpee such that if f € Fgne, and f(u)[k] = Wgnculk] for a matrix
WEne, then HVVEHCHZ2 < Kgne, and if f € Fpec and f(x) = WpeeX, then HWDec”z,z < Kpee.

6. Nonlinear blocks are either MLP or GLU.

For every i € [L], F; is either a family of MLP layers or a family of GLU layers. In the former case,
all elements of F; are MLP layers with M; layers and with the same activation functions p; which
is either ReLU or a sigmoid function which satisfies the following: p;(0) = 0.5, it is 1-Lipschitz,
p(x) € [-1,1], pi(x) — p;(0) is odd. If F; is a family of GLU layers, then all its elements have the
sigmoid function o;.
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7. Bounded weights for MLP.

For every i € [L] such that F; is a family of MLP layers, there exists Ky, Kp ; such that for every
[ € F; given by equation [6] with M = M; and p = p;, the weights of f satisfy

W; < Kw; b; < Kp ;.
jerﬁ?}iu” illoo 0o < Ewii, jer[nﬂgﬁu\l illoe < Kb

8. Bounded weights for GLU.

For every i € [L] such that F; is a family of GLUs, there exists a constant Kqr,u ; such that for every
f € F; given by equationlﬂwith 0=0; W, < Kcru,

The first assumption is a standard one, the only restriction is that all deep SSMs have the same depth and
all SSM blocks have the same residual connection.

Assumption 2, though being restrictive, covers key scenarios such as classification and 1-dimensional regression,
which are central to theoretical analysis.

Assumption 3 requires the loss function to be Lipschitz-continuous, which is a standard assumption in machine
learning and holds for most of the loss functions used in practice, including the squared loss on bounded
domains, the ¢; loss and the cross-entropy loss (see Appendix . This ensures boundedness during the
learning process.

Assumption 4 is also fairly standard, as input normalization is common in practice.

Assumption 5 is the key assumption enforcing SSM stability via structured parametrization. Beyond numerical
benefits, stability ensures reliable predictions by preventing small input changes from causing large output
variations, crucial for learning and inference. Many prior work mentioned in Section [2] proving PAC bounds
for simple RNNs assume that ||U||, < 1 for U in equation [10} corresponding to ||Al|, < 1 in equation (I} In
contrast, we require the system norm to be finite that is achieved by assuming that the SSM layers are stable,
i.e. the state matrix A is Schur in every layer. As stated in Section [£:2] this does not necessarily imply that
[|All, < 1. The converse holds, namely [|Al|, < 1 implies stability.

Assumptions 6 and 7 are again considered standard, requiring non-linear layers to be either all MLPs or all
GLUs with specific activations and enforcing bounded weights for the encoder, decoder, and MLP/GLU
layers.

5 Main results

We derive a Rademacher complexity-based generalization bound for deep SSM models, independent of
sequence length. The key challenges are:

(1) bounding the Rademacher complexity of SSMs, (2) extending this to hybrid SSM-neural network blocks,
and (3) handling deep architectures with multiple such blocks. For stable SSMs, we show their norm bounds
the Rademacher complexity for any sequence length. To address the second and third challenges, we introduce
Rademacher Contraction, a universal framework that enables componentwise complexity estimation in deep
models.

Definition 5.1 ((u, c)-Rademacher Contraction). Let X7 and Xo be subsets of Banach spaces X, Xa, with
norms || - ||x, and || - ||x,, and let > 0 and ¢ > 0. A set of functions ® = {¢ : X7 — X»} is said to be
(u, ¢)-Rademacher Contraction, or (u,c)-RC in short, if for all N € N* and Z C X{¥ we have

b2 (11)

E, |sup sup
PE® {u;}Y €z

< pE, sup
{ui}ﬁ\’:IEZ

1 Y 1Y
N;Uz@(ui) N;Uiui

where o; are i.i.d. Rademacher random variables, i € [N], i.e. P(o; = 1) =P(0; = —1) = 1/2 and E, denotes
the expected values w.r.t. the random variables {o;} 2 ;.

Xo X1

Rademacher Contractions in the literature. While the concept of RC is new, special cases of Definition
have been used in the literature for bounding Rademacher complexity of deep neural networks. In
Golowich et al.| (2018) the authors considered biasless ReLLU networks and proved a similar inequality using

10
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Talagrand’s Contraction Lemma Ledoux & Talagrand| (1991). In Truongl (2022b), the author considered
neural networks with dense and convolutional layers and derived a PAC bound via bounding the Rademacher
complexity. One of the key technical achievements in [Truong] (2022b)) is Theorem 9, which is a more general
version of the inequality in |Golowich et al.| (2018). This was then applied to obtain generalization bounds
for the task of learning Markov-chains in [Truong| (2022a)), however the generalization error was measured
via the marginal cost and the (u, c)-RC type inequality was only applied for time-invariant neural networks.
In contrast, we prove that along with time invariant models, stable SSMs, defined between certain Banach
spaces, also satisfy inequality [L1] and apply it to deep structures.

In a recent work [Trauger & Tewari| (2024)), the authors consider Transformers and implicitly establish similar
inequalities to inequality [I1] by bounding different kinds of operator norms of the model and managed to
extend it to a stack of Transformer layers. Besides these similarities, some key differences in our work are
that Definition [5.1]| provides an explicit way to combine SSMs with neural networks, even in residual blocks;
we do not assume the SSM matrices to be bounded, instead we require the system norm to be bounded via
stability, which is a weaker condition; and we upper bound the Rademacher complexity directly instead of
bounding the covering number.

Interpretation of the (u,c)-RC inequality. Inequality [11] allows relating the Rademacher complexity of a
model class to the Rademacher complexity of its inputs via the constants p and c¢. These constants depend
on the model class as well as the domain X; and range X5 of the models. As shown next, the RC property is
preserved under the composition of layers.

Lemma 5.2 (Composition lemma). Let &1 = {p1 : X1 — X} be (u1,¢1)-RC and o = {pa : Xo — X3} be
(p2, c2)-RC. Then the set of compositions @50 @1 := {pa0p1 | 1 € Py, 2 € Pa} is (12, pac1 + c2)-RC.

The proof is in Appendix [B] Consequently, for deep models composed of layers that each satisfy the RC
property, the entire model class is RC as well. Then inequality [11] can be applied to bound the Rademacher
complexity of the deep model by that of the input sample. The latter can often be bounded, for instance:

1 N
N 2 Oil;
=1

Lemma 5.3. E, U

2 1 < % for all ||wi|| € Bez (rin) (Ku), i € [N].
£2, (R™in )

The proof follows a standard argument, e.g. see Lemma 26.10 in |Shalev-Shwartz & Ben-David| (2014)), for
completeness it is presented in Appendix

That is, in order to bound the Rademacher complexity of deep SSMs, all we need to show is that each
component of a deep SSM model is (u, ¢)-RC for some p and ¢ with compatible domains and ranges. To this
end, for each i € [L], define the family FP™® of ith SSM blocks as the family of all SSMs blocks fPTE given
by equation [§ such that g € F;, ¥ € €, a = ;. In particular, for any f € F given by equation [J] the ith
SSM block fBi belongs to FPTE.

Lemma 5.4. For each set X of model layers interpreted as functions between Banach spaces such that
X € {Fnc, Foees Fi, FPTB i € [L], &, {fFo°!}}, the set X|B(r), i.e. the elements of X restricted to a ball of
radius v, is (u(r), c(r))-RC in their domain, and the range of the elements of X|p() is a ball of radius (),
where (1), c(r) and #(r) are defined in Table[3 for each layer type. For the ith SSM block, the terms are in
Table[3

The proof is in Appendix [B] The lemma implies that an SSM layer can only increase the input’s complexity by
the factor ||| »» P =1,2, and the latter gets smaller as the system gets more stable. The results on the MLP
layers rely on proof techniques from Truong (2022bzal) used to bound their Rademacher complexity. These
bounds on MLP layers are considered conservative, however improving existing bounds on the Rademacher
complexity of MLLPs are out of the scope of this paper. The proof for the GLU layer is similar to that of the
MLP layer, although handling the elementwise product in GLU requires some additional steps. In contrast
to other layers, for GLU the values of u,c depend on the magnitude of the inputs. Note that for all the
considered layer types except GLU, the (i, c)-RC property holds for unbounded domains. The only reason
we consider bounded domains and ranges is for Lemma to hold for GLU layers. This can be seen from
the fact that for SSM blocks with MLP nonlinearities, the constants u;(r), ¢;(r) and #;(r) are independent of
r for all considered i, according to Table [3]

11
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LAYER TYPE wu(r) e(r) 7(r)
FEnc Kgnc 0 Kgner
FDec Kpec 0 Kpecr
£ DEFINED ON (7 (R™) K1 0 Kir
£ DEFINED ON (%.(R™) K 0 Kor
{fPool} 1 0 r
iTH SSM BLOCK FPTB
i=1 Kopi(Kor) + a1 ci(Kaer) 7 (Kor) +aar
i>1 Kipi(Kir) + ;i c(Ear)  7(Kar) + aar

Table 2: Table of (u(r),c(r)) and #(r) constants for Lemma The layer types are each considered
component of a deep SSM model as described in Section 1.2} The various constants denoted by some form of
K are upper bounds from Assumption and «; are the residual weights. The terms p;(r), ¢;(r) and 7;(r)
represent the u(r), ¢(r) and #(r) values of the ith SSM block. Their values are in Table [3| for each type of
considered nonlinear layer.

NONLINEARITY IN FPTB i () ci(r) 7i(r)

M; M;—1

MLP witH RELU (4K ) Mitt 4Ky, - > (4Kw,:)? Kyir+ Kpio > Ky,
=1 =1
q ” q

MLP WITH SIGMOID K%@“ (Kb, +0.5) - > (Kw,i)? Kw,i + Kb,

q=1
16(rz2 + =
GLU ( ) 0 r

z=Karu, +1

Table 3: Table of (u;(r),c;(r)) and 7#;(r) constants, i.e. the u(r), ¢(r) and #(r) values of the ith SSM block,
for Table 2 and Lemma [5.41

Using Lemma and Lemma [5.3] and classical Rademacher complexity based PAC bounds, e.g. see Theorem
26.5 [Shalev-Shwartz & Ben-David| (2014)), leads to a PAC bound for deep SSMs, summarized in the main
theorem below.

Theorem 5.5 (Main). Let Assumption hold. Then

P (\ﬁ CF L)~ Loy lf) < P 210%@“”) >1- (12)

where K; = 2L max{Kpecrr, Ky}. The term rp is obtained recursively for all i € [L],

KEncKu =1
Ty = fl(KQTl) + o171 =2 (13)

Fic1(Kiric1) +oi-1ricg 0> 2

12
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where 7;(r) are as in Table@ of Lemma . Moreover, let us define 1 = pu1(Kary), c1 = c1(Kar1), and for
i>1, pp = pi(Kar1), ¢ = ci(Kurg). Finally,

L
pt = KgncKpec (11 K2 + a1) H (1K1 + o)

(14)
L L
CZKDQCZ H (MiKl —|—Oéi) Cj-

Jj=1 [i=j+1

Sketch of the proof. From standard PAC bounds involving Rademacher complexity (Theorem 26.5 [Shalev-
Shwartz & Ben-David| (2014)) and the Contraction Lemma (Lemma 26.9 from ShaleV—Shwartz & Ben-
David (2014)), it follows that with probability at least 1 — &, for any f € F, L(f) — £2,.,(f) <

E, [511p N Z sz(uz)

+ K4/ M From Lemma, 5 2(and Lemma 5 4} it follows that the restric-
feF i=1 £2,(R%in)

tion of the elements of F to the ball BlzT(Rni,,)( u) of radius K, in E (R™n) is (u, c) Wlth w and c as in the state-

N
1 1 c +c
~ Z o f(u;) < pEq ||| § 2 oiw += < S
i=1 e% (]an) i=1 Z% (an) N N

The complete proof can be found in Appendix O

ment of the Theorem. Hence, E, | sup
feF

Discussion and interpretation of Theorem The bound vanishes as IV grows and remains independent
of the sequence length and state dimension — an advantage over typical sequential model bounds that diverge
with T

The key constants are p and c. Note, that for deep SSMs with no MLP layers, ¢ is zero. Intuitively, 1 and ¢
are somewhat analogous to Lipschitz constants of deep networks, although the formal relationship between
the two requires future work.

The bound appears exponential in depth, like in case of deep neural networks [Truong] (2022b)); |Golowich
et al.| (2018)), and includes MLP bounds when MLP layers are used |Golowich et al.| (2020)); [ Truong| (2022b).
However, SSM layer norms can mitigate this effect: if SSMs are contractions, they counteract the higher
Rademacher complexity of nonlinear layers. SSM norms depend on stability — more stable SSMs typically
have smaller norms if C' and B remain unchanged, suggesting that stability may offset depth effects in both
SSM and MLP layers. Moreover, using GLU instead of MLP layers may reduce generalization gaps, as deep
SSMs with GLU layers have ¢ = 0.

As discussed in Section for Theorem we only require that the state matrices are Schur, which does
not imply weights of the SSM layers are bounded. This intuitively suggests that regularization techniques
directly penalizing the norm of the weights of the SSM layers exclude a set of potentially well-generalizing
solutions for which the norm of the weights are further from the origin, while the system norm stays low.

6 Numerical example

In order to illustrate our results, we trained a model consisting of a single SSM layer on a binary classification
problem of separating the elements of two intertwined spirals, with a training set containing N sequences of
length T, for various values of N. Let {6;}1<;<7 be a standard normal sample sorted in ascending order and
@y = Tm/0;. Consider the following two classes of time series, labeled by 0 and 1.

xq[t] = (21 + 7) cos(r), (2¢¢ + 7) sin(y))" + ¢
x1[t] = (—(2¢¢ + 7) cos(r), —(20¢ + ) sin(py)) " + &

where 1 <t < T for some T and € are i.i.d standard normal noise vectors. The training data is depicted on
Figure [}

13
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Figure 1: Dataset containing two classes of spiral curves.

We trained a linear SSM on this binary classification problem with a training set size of N, for various values
of N. The resulting parameter vector therefore depends on N. We applied ADAM on the binary cross-entropy
loss combined with applying a sigmoid activation to the scores outputted by the model. Theorem states
that with high probability, we can upper bound the true loss with the sum of the empirical loss and a
bounding term. In this case, the true loss is estimated by taking the loss of the model on a very large set
of samples (in this case, 150 000). It can be seen on Figure [2| that the bound holds and in this case it is
non-vacuous, i.e. there exists a value of the true loss - highlighted by the red broken line - which is greater,
than the value of the estimation at a different value of N.

1.6
—— True loss

154 Upper bound on the true loss

1.4 4
1.3
1.2 1
1.14
1.0 1
0.9 A

“‘n:‘\—‘::‘——"‘———“——‘———‘“——“———‘—"‘-—'* ___________________
0.8 1

2500 5000 7500 10000 12500 15000 17500 20000
N

Figure 2: Upper bound on the true loss by taking the empirical loss and the bounding term from Theorem
[5.5l for various values of N.

Moreover, it can also be seen on Figure [3|that during the learning process, the numerical value of the bounding
term, and therefore the estimation of the true loss, correlates with the true performance of the model. Once
the learning algorithm passed its optimum where the accuracy is close to 1, and starts to exhibit overfitting,
the bounding term and the estimation start to rapidly grow, while the value of the loss stays consistently low.
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Figure 3: Behavior of the bound on the true loss during learning.

7 Conclusions

We derive generalization bounds for deep SSMs by decomposing the architecture into components satisfying
the definition of Rademacher Contraction. Under reasonable stability conditions, the bound is sequence-length
independent and improves on prior results for linear RNNs as those bounds depend on the sequence-length
exponentially. Given that stability is central to state-of-the-art SSMs (e.g., S4, S5, LRU), our work offers
insight into their strong long-range performance.

We introduce the concept of Rademacher Contraction which we believe is a powerful tool for determining the
complexity of a wide variety of stacked architectures including feedforward and recurrent elements.

Our contraction-based approach, while reasonable, may yield conservative bounds for complex SSMs or deep
stacks. However, with state-of-the-art SSMs using fewer than ten blocks, this is a minor concern. A key
limitation is that all elements must be Rademacher Contractions, which may be too restrictive for complex
functions.

Future work includes extending these results to learning from limited (possibly single) time-series and deriving
tighter bounds, potentially using concentration inequalities for mixing processes and the PAC-Bayesian
framework. Incorporating Mamba-like architectures into our framework can also be a subject of future
research.
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A Lipschitzness of the cross-entropy loss

For simplicity, we consider the binary cross-entropy loss for the scalar output case as an elementwise loss
function, defined as

Uz, y) = —ylog(x) — (1 —y)log(1 — ). (15)

The function defined in equation [L5| without any other assumptions is not Lipschitz in the sense of Assumption
on the [0, 1] interval. However, if we bound the argument of the cross-entropy away from 0, i.e. it is
defined on [a, 1] for some positive a, it is Lipschitz in the sense of Assumption with a Lipschitz constant

proportional to a~!.

A more practical assumption is that the cross-entropy is combined with the softmax function. For the scalar
output case, we have

l(x,y) = —ylog(sigmoid(x)) — (1 — y) log(1 — sigmoid(z)) (16)
for y € [0,1]. If = belongs to the interval [—a, a], i.e., the model outputs are bounded, we have
E
ox
hence the function defined in equation is 2-Lipschitz in « and a-Lipschitz in y and it is max{2,a} Lipschitz

as long as y € [0, 1]. We can extend ¢ to all y by setting ¢(z,y) = ¢(x,0) for y < 0 and ¢(z,y) = ¢(z,1) for
y > 1, without changing the Lipschitz constant.

<2 and ‘Mlga
dy

This argument holds for the case when the model outputs a vector and we apply softmax, in a straightforward
manner. We omit the vector output case from the paper, because it makes the proof more technical and less
readable, while all the key terms remain the same. For the vector output case, in the first half of the proof of
Theorem [5.5] in Appendix [B] instead of applying the Contraction Lemma for the Rademacher complexity, we
need to apply (Maurer, 2016, Corollary 4).

For cross-entropy with softmax, we can also consider the labels built into the loss function and investigate the
Lipschitzness in the input variable only, i.e. instead of £(z,y) we have £(x). This definition differs from what
we have in the main text, however, our proof and the above argument works, while the Lipschitz constant is
at most 2 without depending on a in this case.

B Proofs

In this section we need to prove (u, ¢)-RC property for linear (or affine) transformations which are constant
in time, in many cases. For better readability, we only do the calculations once and use it as a lemma.

Lemma B.1. Let Xy, Xy be two Banach spaces with norms || - ||x, and || - ||x,, and for every bounded linear

operation W : Xy — Xs and any b € Xy fiyp(u) = W(u) +b € Xs. Let us denote by ||W||op the induced

norm of a bounded linear operator W : X1 — X, i.e., [[W]|, = sup,cx, % Let us assume that
1

W €W such that sup [W{|,, < Kw andb € B such that sup ||b|| y, < Ky. Then the set of transformations
Wew beB

F={fwp | W eW,b e B} is (Kw, Ky)-RC, and the image of the ball By, (r) under f € F is contained in
BXQ (Kwr + Kb)

Remark B.2. We are mainly interested in the cases when X; = ¢4 (R™), and &; = (L.(R™), (¢,1) €
{(2,2), (2,00), (00,00)}. For the special case of affine transformations that are constant in time, i.e. f(u)[k] =
Wulk] + b for a weight matrix W € R™*™ and bias term b € R™ for all k € [T], the operator norm equals

the corresponding matrix norm, i.e |[W/|,, = [[W]|, ... In this case, b is the sequence for which b[k] = b for
all k € [T, thus [[bl e (o) = [[bllso-
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Proof. First, let us prove a simple fact about Rademacher random variables that we will need, namely if
o = {o;}}¥, is a sequence of i.i.d. Rademacher variables, then

N
E, Zoil <VN. (17)
i=1
This is true, because
N N 2 N |2
Ealzgi]: (Eo ZO"L"|> < Es Zgi
i=1 i=1 i=1

N N N N
= |E, Za?-l—?ZJin = E:IE(,[U?]—F2E:I}E(,[gigj]:\/ﬁ7
i=1 i=1

\ i,j=1 1,5=1

where the first inequality follows from Jensen’s inequality and the last equality follows from the linearity of
the expectation, and the facts that o; are Rademacher variables and form and i.i.d sample.

For Z € X; we have
N

1
i > oi(W(w;) +b)

E, sup sup
(W,b)EWxXB {w;}N ez

i=1 X
i 1 & 1 &
<E, | sup sup NZJiW(ui) + E, |sup NZJib
_WGW {w}N ez ] X beB = X
i 1 & 1 &
E, | sup sup W(NZJZ-m) + E, |sup NZ@Q
WEW [u}N ez Pl M beB Pl 2
i 1 & 1|
SE; | sup [W],, sup |=)> o +E, | |D_oi|sup bl
Tlwew P luyy ez N; Sl LY ; Ypes
[ L i N
< swp [WiooBo | s ||=3 o] | +suplblly, B [ =[S o
wew o {ui}l ez N; o X, bes N ; l
| 1 & 1
< sup [W[,Eo | sup |I= ) oy + —= sup ||b|
wew T ez | N ; Sl Ve

where the first inequality follows from the triangle inequality, the first equality is the linearity of W, the
second inequality follows from the definition of the operator norm, while the third and fourth inequalities
refer only to the bias term and follow from the absolute homogeneity of the norm and inequality [I7}

We can see that the calculations hold if the transformations are restricted to the ball Bx, (r) for any choice
of X7 we consider. The radius can grow as

W (a) +blly, <[[W()|x, + [Rlx, < [Wlp, [[ally, + B, -
Remark is straightforward from the definitions of the considered norms. O

Proof of Lemma [5.3. Let the Banach spaces which contain X; be denoted by X; for i = 1,2,3. Let Z C X}V
and Z = {{p1(w;)}Y, | ¢1 € ®1}. We have

E, | sup sup sup
p2€P2 p1€P1 {u;}N €7

1 N
N ;inz(%(uz‘))

X3
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=E, | sup sup
p2€®2 {v;}N €Z

1 N
= Y oiga(vi)
N =1

X3

N
1 C2
<uEs | sup  sup || i1 (uy) +—=
7 p1€P1 {u;}N €z N z:: ’ X VN
C1 C2

< popEs sup
{w;}N ez

N

1

N 2o
i=1 X1

RN TN

O

Proof of Lemma[5.J] Encoder and decoder. The encoder is case a), while the decoder is case b) in Lemma
along with Remark

SSM. As discussed in Section an SSM is equivalent to a linear transformation called its input-output
map. Therefore, by Lemma the SSM is (u,0)-RC in both cases, where  is the operator norm of the
input-output map. Combining this with Lemma yields the result.

Remark B.3. As the value of T is fixed, the input-output map can be described by the so-called Toeplitz
matrix of the system. In this case, the operator norm equals to the appropriate induced matrix norm of the
Toeplitz matrix. For the case of T' = oo, the input-output map still exists and is a linear operator. The proof
of Lemma holds in this case as well for operator norms.

Pooling. For any Z C /3 (R™*) we have

E, sup

{z; }N €z

1 N

N ZaifPOOl(z )
i—1 o

1 N 1 T G)

(]

(g

1 Z Uizz('j) (k] ‘|

i

=E, sup sup
| {2}, €2 1<5<n.

=E, sup sup
{z}N  €21<j<n,

T

1
<E, sup — sup
[ {z:} ] eZTZl<J<nu

§ Uzzz

i=1

=E, sup —Z

{z}Nlesz 1

<E, | sup
{zi}iN:leZ

MLP. For both type of activation functions we will prove the result by first proving it for single layer networks.
To this end, let p be an activation function, which is either ReLU or a sigmoid with the properties stated in
Assumption

Consider constants Ky, Ky, > 0 and integers m, n, > 0. We first consider that the family Farrp ry Ky, 0,m,ne
of single hidden layer neural networks f : (°(R™) — (P(R™) defined by f(u)[k] = p(g(ulk])),
where g(x) = Wx + b is the preactivation function and g belongs to the set Gk, kymn, =
{g:x—>Wx+b|WeW,be B}, where W = {W € R™*" | |[W|lx,00 < Kw} and B = {b € R™ |
[blloc < Kb}
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We will show that Farrp ik ky.pmn. 18 (Kw, Kp 4+ 0.5)-RC if p is sigmoid, and it is (4Kw,4Kp)-RC if p
is ReLU. Moreover, the elements of Farr.p Ky, Ky,p,m,n, Mmap balls or radius r to balls of radius 7(r), where
7(r) = Kw + Ky if p is sigmoid, and #(r) = Kwr + Ky, if p is ReLU.

From this the statement of the lemma can be derived as follows. Let Gry, ;. Ky ;ny,n. be the set of all
models f(u)[k] = g(u[k]) such that g € Gxyy, Ky i nar,n. - Notice that F; is contained in the composition (as
defined in Lemma OKw.i . Ko.imarina © FRw.i Ko.imarmarsr,pi © 7 O FKw.i,Kp.imy.ma,p; 10T suitable integers
nj, j € [M +1]. From the discussion above, Fr, , Ky, njmnii1.00 15 (Kwyi, Kpi + 0.5)-RC (sigmoid) or
(4Kw,4Ky)-RC (ReLU) and its elements map balls of radius r to balls of radius 1 (sigmoid) or Kwr + Ky
(ReLU). From Lemma and Remark it follows that that Gr, . Ky ;nu.na 15 (Kw,i, Kp,i)-RC and its
element map ball of radius r to balls of radius Kw ;r + Ky, ;. The statement of the lemma follows now by

repeated application of Lemma
It is left to prove the claims for single layer MLPs with sigmoid and ReLU activation functions respectively.

Single layer MLP with sigmoid activations. Let p be a sigmoid such that it is 1-Lipschitz, p(z) € [-1,1],
p(0) = 0.5, p(x) — p(0) is odd.

To streamline the presentation, for an input sequence z € £ (R™) let g(z) € £5°(R™) mean that we apply ¢
for each timestep independently, i.e. g(z)[k] = g(z[k]). We have

sup - sup
9€G {2z} ez

1 N
AT Zazp(g(z
N i=1

o on)

Z oip(Wz;[k] + b)

-]

Let x; = 4, ¢ = 1,...,N and let H = {hwpr | (W,b,2,k) € W x B x (Z U {0}) x [T]} such that
hwo .k (xi) = g(z;[k]). Under our assumptions H is symmetric to the origin, meaning that h € H implies
—h € H. Indeed, notice that if (W, b) € W x B then (—W,—b) € W x B, and hence h_w, b, x = —hwb, 2k
also belongs to H. We can apply Theorem 2 from [Truong| (2022b)) for the sigmoid activation p and by using
that p(z) — p(0) is odd, we derive the following.

=E, sup sup sup
(Wb)EWXB {z;}N ez 1<k<T

E, sup sup sup

N
1
~ 2 _oip(Wz;[k] +b
(W,b)EWxXB {2} €2 1<k<T N; ip(Wzilk] )

.

I N
1
= EU sup ||+ g; h X;
2 | 7 2 (A
- L 1
< EU su e Uih X; -
- -he’% N ; e 20N
- o 1
=E, sup sup sup ||— os(Wzi[k] + b 1
| (WD)EWXB {2}V €2 1<k<T N; (Wzi[k] + D) N
- N 1
=E, sup sup (Wz; +b) L
(Wb)EWxB {2}, €2 i=1 l £9 (R 2V N
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because the sigmoid is 1-Lipschitz and p(0) = 0.5. Now we can apply Lemma (see Remark [B.2) to get
that

1
E, sup sup
(Wb)EWXB {z,}N €z

< sup [W] Eos sup
Wew

Therefore, the sigmoid MLP layer is (Kw, Ky + 0.5)-RC. The restriction of an MLP to the ball Byso(rnu)(r)
maps to the ball ngcg (rnv)(1), because of the elementwise sigmoid activation.

Single layer MLP with ReLU activations. The proof is the same as in the sigmoid case up to the first
inequality. Here we can apply Equation 4.20 from Ledoux & Talagrand| (1991)) (this is the same idea as in the
proof of Lemma 2 in |Golowich et al.| (2018])) to get

where we used that p(z) = ReLU(z) is 1-Lipschitz and the same logic for the alternative definition of the
Rademacher complexity as in the proof of Lemma [5.4] which results in a constant factor of 2. The constant 4
is then obtained by the additional constant factor 2 from Talagrand’s lemma. The rest of proof is identical to
the sigmoid case.

N

1
~ > oih(xi)

=1

E, | sup

heH

< 4E, |sup

heH

1
N ;Uz‘p(h(xi))

o0

The restriction of an MLP to the ball Byec(gnu)(r) maps to the ball Byeegn)(Kwr + Kp), because the
elementwise ReLU does not increase the infinity norm, hence we can apply Lemma and Remark
Again, for the deep model the result is straightforward from Lemma, [5.2] along with Lemma Remark

GLU. For the ease of notation, assume that Kgry; = Kgry and let W = {W € R™ X" | [|[W||oo.00 < Karu}
and let Foru = {ferv as in equation[7] | W € W}. As F; C Faru, it is enough to prove the claim of the
lemma for Fqru.

First of all, we show that the function & : (R%,]-[|,) — (R,]|-|) defined as h(x) = 1 - o(x2) is V2(K + 1)-
Lipschitz on a bounded domain, where |z;| < K for all x € R? we consider. We will later specify the value of
K in relation to Assumption .10} By the sigmoid being 1-Lipschitz, we have

|h(x) = h(y)| = [z10(22) — y10(22) + y10(22) — Y10 (y2)| <
|(x1 —y1)o(z2)| + [y1(o(z2) — o(y2))| < [z1 — yi| + |y1l|z2 — y2|
<V2(K +1) |Ix —yll,

Second, we recall Corollary 4 in |Maurer| (2016).

Theorem B.4 (Maurer| (2016)). Let X' be any set, (x1,...,xn) € XN, let F be a set of functions f: X —
C2(R™) and let h : (2(R™) — R be an L-Lipschitz function. Under fi denoting the k-th component function
of f and oy, being a doubly indexed Rademacher variable, we have

N m
SUEZ Z ik fr (xi)] .

fEF i=1 k=1

Eo

N
suEZ Uih(f(xi))] < V2LE,

fEF i=1

We wish to apply Theorem to GLU layers. For any Z C ¢5°(R"), by letting GLUw (z) = faru(z) we
have

E, | sup  sup
WeW (z}N ez

1 N
N > 0iGLUw (z:)
i=1

030 (Rnu)
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1 & :
=" i GLUY (2)[K]

i=1

=E, | sup sup sup  sup

WEW {2} | €2 1<k<T 1<j<n,

] |

Now this is an alternative version of the Rademacher complexity, where we take the absolute value of the
Rademacher average. In order to apply Theorem [B:4] we reduce the problem to the usual Rademacher
complexity. In turn, we can apply the last chain of inequalities in the proof of Proposition 6.2 in [Hajek &
Raginsky| (2019). Concretely, by denoting O = {0} ; and noticing that GLUy (0) = 0, we have

1 & 4
— 3" 0iGLUY (2)[K]

=1

E, | sup  sup sup  sup
wew {zi}i\rzlez 1<k<T 1<j<n,

N

1 .

< 2E, | sup sup sup sup — Z aiGLUé[],) (z;)[K]] -
WeW {z;}N  €Zu{0} 1<E<T 1<j<ny i—1

Letx; =4,i=1,...,Nandlet H = {fw . r; | (W, 2,k,j) € Wx(ZU{0}) x[T]x [n,]} such that fu .k ;(x;) =
[GELU(zi[k])(j) (W(GELU(zi[k})))(J')}T for z = {z;}Y, € Z. Since Z C (BZ?(Rn,y)(r)Ny it follows that for
all {z;}Y., € Z and for all k € N, the inequality ||z;[¥]||oo < holds. Hence, |GELU (z;[k])?)| < r, leading to
(W(GELU (z:[k))) )| < sup [[Wloc 0 7. In particular, GLUY (z:)[k] = h(fw . k.5 (X:)) = h|5(fw,z 5. (%:)),
where h|p is the restric“c/li/(.)erl/vof hto B={z € R?| |z]|c < K}, with K = max{r, sup ||[W|loo,c0 -7} In
particular, h|p is v2(K + 1)-Lipschitz. e

We are ready to apply Theorem [B.4} together with the GLU definition and its v/2(K + 1)-Lipschitzness, we
have

2E, | sup sup sup  sup ZQGLU(]) ) [K]

WEW {z;}N | €Z2U{0} 1<k<T 1§j§nu

— 9K, . N <4k +1)E,
l?‘é%fvz" X] e

sup — o,GELU (z;k @)
U N Z (z;[k])

A

sup — o @)
+4(K +1) UL“E?E Zz W(GELU (z;)) [k:]]

B

Due to the definition of GELU, its 2-Lipschitzness |Qi et al.| (2023) and Theorem 4.12 from |Ledoux &
Talagrand| (1991) we have

A=E, sup Z 0;GELU(z;) =
{Zz‘} GZU{O} = g$(R'rLu)
TR
< 4E, sup Z 0;%Z; =4E, sup — Z 0;Z;
{z:}N_,€zuU{0O} 059 (Rnu) {z:}N ez N =1

(23 (Rnu)
and

B=E, | sup sup
WeW {z;}N e{0O}

e > oiW(GELU(z:))

9 (R7u)
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1 N
¥ > 0:GELU(z;)

i=1

1 XN
~ iZi
N;U

< sup [|[W] Es sup
Wew

{zi}f\’zleZ{O} gqog(Rnu)

<4 sup ||[W|, Es sup
wew {Zi}i\[:IGZ

050 (R

Here we used the linearity of W and the exact same calculation as in the proof of Lemma

|<

N

1
E 0iZ;
i=1

By combining the inequalities above, it follows that

1 & ,
=" i GLUY (2:)[K]
=1

E, | sup  sup sup  sup

WEW {z;}N €z 1<kE<T 1<j<ny,

=|

16(K +1) ( sup [|[W]| o o + 1) E, sup
Wew ’

AN
{Zz}i=16Z Z;?(]R"u)

Substituting the value of K gives the result.

SSM block. By Lemma we have that the composition of the SSM layer £ and a non-linear layer F;
which is (pi(r),c;(r))-RC for ¢ > 2 and it is (p;(r) K2, ¢;(r))-RC for i = 1. A residual SSM block is then
(pi(r) Ky + i, ¢(r))-RC, where K1) = Ko Kj9) = K1, because

N
1
E, | sup sup NZJj(g(Sg(zj))—kazj) <
9°Ss {z;} €2 i=1
L . f%C(R"u)
1 1
E, |sup sup —Zajg(Sg(zj)) + aE, sup —Zojzj
908z {z}V ez | N = Y ez || N =
i T ! 05 (Rnw) ” ’ 03 (Rnw)
1< ci(r)
< (Wi(r) Ky + oi)Bo | sup || = > 05z, + =
() {zj};‘v:1ez N ; o Z“(]R"' ) N
T u

Proof of Lemma |5.5 By definition

1 & "1
N Zoiul = Z N Zaiuz[k}
i=1 £2.(R™in) k=1 i=1 2
T 1 N 1 N
= Z <N Zaiui[k], N Zajuj [k}>
k=1 i=1 Jj=1 R™in

where (-, -)gn;, denotes the standard scalar product in R™=. Therefore

1 N
Es HN ;Uz‘uz

>

E%(R”in) k=1 i=1j

0,03 <ui [k]v u; [k]>R”m

N N
—1

I

&
N
=l -
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N T N
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=\ 77 20 2 Ikl = | 7 D Il ey < N < T2
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O

Proof of Theorem[5.5 From Lemma [5.4] it follows that all maps constituting a model f € F come from
families of maps which are (u, c)-RC for suitable constants p, ¢, and map any ball of radius r to a ball of
radius 7(r). Let us consider the deep SSM model given by equation @ which is a composite of mappings as

Encoder 2 Br

B
Bé%(R"in)(Ku) e Bﬁ%(Rnu)(KuKEnc) —)1 Bé%"(R"u)(rl) —_— ... —
Poolin Decoder
Byge (1) = B 1 ) (re) = Beg,)(Kpeers),

where the constants r;, ¢ € [L] are as in equation due to repeated application of Lemma and the
expressions in Table

Note that the first SSM block is considered as a map BézT(Rn,u)(KEnCKu) — Bg%o (Rnu)(rl), while the rest of
the SSM layers in the SSM blocks are considered as a map Byee ®nu) (1) = By (R (rig1). This is needed,

because the encoder is constant in time, therefore the Composition Lemma wouldn’t be able to carry the ¢%
norm of the input through the chain of estimation along the entire model. This is one of the key technical
points which makes it possible to establish a time independent bound.

Next, we wish to apply Theorem to the set of deep SSM models F. Let us fix a random sample

S={u,...,un} C (E%(R"i“))N. As the loss function is Lipschitz according to Assumption we have
that for any f € F

[1(f(u),y)] <2L;max{f(u),y} < 2L;max{Kpecrr, Ky},

thus K; < 2L; max{Kpecrr, K, y} Again by the Lipschitzness of the loss and the Contraction Lemma (Lemma
26.9 in |Shalev-Shwartz & Ben-David| (2014)) we have

Rs(LO) <L;- Rs(]:).

It is enough to bound the Rademacher complexity of F to conclude the proof. By applying Lemma to
every layer of F and using Lemma it follows that the family F|x, of restriction of the elements F to
X1 = Bz (grin)(Ku) is a family of maps from X; to Xy = (R, |- |) which is (¢, ¢)-RC, where p, ¢ are as in
equation Next, we state a lemma before we finish the proof.

Lemma B.5. Let F be a set of functions between X1 = Byz (gnin)(Ku) and X2 = (R, [ -|) that is (u, c)-RC.
The Rademacher complezity of F w.r.t. some dataset S for which Assumption[4.10 holds, admits the following
inequality.

< N’Ku""c.

RS(}—) \/N
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Proof.

Rs(F) = R({(f(w),.... f(un))" | f € F}) = E, [

1 Y 1 Y
<E, Lsclelg N;‘U’f(ui)] < pE, HN;mui

By applying Lemma it follows

< pKy+c

RS(]:) \/N

The Theorem is then a direct corollary of Lemma

29
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