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Background: Although in-lab polysomnography (PSG) remains the gold standard for objec-
tive sleep monitoring, the use of at-home sensor systems has gained popularity in recent years.
Two categories of monitoring, autonomic and limb movement physiology, are increasingly
recognized as critical for sleep disorder phenotyping, yet at-home options remain limited out-
side of research protocols. The purpose of this study was to validate the BiostampRC® sensor
system for respiration, electrocardiography (ECG), and leg electromyography (EMG) against
gold standard PSG recordings.

Methods: We report analysis of cardiac and respiratory data from 15 patients and anterior tibi-
alis (AT) data from 19 patients undergoing clinical PSG for any indication who simultaneously
wore BiostampRC® sensors on the chest and the bilateral AT muscles. BiostampRC® is a flexible,
adhesive, wireless sensor capable of capturing accelerometry, ECG, and EMG. We compared
BiostampRC® data and feature extractions with those obtained from PSG.

Results: The heart rate extracted from BiostampRC® ECG showed strong agreement with the
PSG (cohort root mean square error of 5 beats per minute). We found the thoracic BiostampRC®
respiratory waveform, derived from its accelerometer, accurately calculated the respiratory
rate (mean average error of 0.26 and root mean square error of 1.84 breaths per minute). The
AT EMG signal supported periodic limb movement detection, with area under the curve of
the receiver operating characteristic curve equaling 0.88. Upon completion, 88% of subjects
indicated willingness to wear BiostampRC® at home on an exit survey.

Conclusion: The results demonstrate that BiostampRC® is a tolerable and accurate method
for capturing respiration, ECG, and AT EMG time series signals during overnight sleep when
compared with simultaneous PSG recordings. The signal quality sufficiently supports analyt-
ics of clinical relevance. Larger longitudinal in-home studies are required to support the role
of BiostampRC® in clinical management of sleep disorders involving the autonomic nervous
system and limb movements.

Keywords: clectrocardiography, electromyography, respiration, wearable

Introduction

The objective recording of sleep physiology is required for certain sleep disorders such
as sleep apnea and periodic limb movement disorder.! The role of objective testing
for other disorders such as insomnia, traditionally diagnosed and managed solely on
clinical grounds, is gaining increasing attention.>* Beyond the commonly accepted
clinical phenotypes, advanced analytics of autonomic function in particular has an
extensive evidence basis and shows promise for informing sleep quality and cardio-
vascular risk.>” In parallel with this improved understanding of sleep pathophysiology,
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advances in at-home technology have facilitated “real-
world” assessments that may mitigate certain limitations
of in-lab polysomnography (PSG). For example, the first
night effect® is a reminder that in-lab PSG may disrupt the
very process of sleep one intends to measure. In addition,
at-home sensing allows tracking over time, which is criti-
cal for any process that exhibits night-to-night variability,
whether stochastic or linked to waking behaviors or expo-
sures that vary over time.’!? To date, the dominant form of
at-home monitoring focuses on uncomplicated obstructive
sleep apnea (OSA) detection,'* whereas at-home detection of
periodic limb movements of sleep (PLMS) by accelerometry
has shown only limited success and is not commonly used
in practice.'* Given the proposed links between PLMS and
vascular morbidity,'s coupled with the fact that at-home
sleep monitors for OSA do not contain leg sensors,'¢ there
is urgent clinical need specifically for PLMS-tracking solu-
tions. In addition, tracking autonomic physiology through the
windows of noninvasive cardiac and respiratory physiology
may inform various aspects of sleep disturbance of potential
clinical relevance,'”?° in addition to tracking electrocardi-
ography (ECG) for arrhythmia. Interestingly, single-channel
respiration signals such as thoracic movement can support
estimation of the apnea—hypopnea index (AHI), which
may inform screening or be used to quantify the so-called
apnea burden.” The aim of the current work is to validate
BiostampRC®, a small, wireless adhesive sensor system that
is worn on the chest for ECG and respiration measurements,

Table | Demographics and ECG analysis across individual subjects

or on the leg for anterior tibialis electromyography (EMG)
measurements.

Methods

This study was approved by the Partners Institutional Review
Board, and all participants provided signed informed consent.
Adult patients undergoing PSG in the clinical laboratory for
any reason were eligible to participate. PSG recordings were
performed in accordance with the American Academy of
Sleep Medicine (AASM) in this accredited laboratory, and
scored by experienced technologists off-line. The analysis
considers N=19 subjects (13 males/6 females) with an aver-
age age of age 54+12 years and average body mass index
(BMI) of 29.3144.9. See Table 1 for individual subject
descriptors. Standard clinical PSG sensors were applied
according to AASM practice standards, including surface
electrodes on the left and right anterior tibialis (LAT and
RAT, respectively) surface muscle. A BiostampRC® sensor
was applied next to each clinical lead on the bilateral legs,
and two BiostampRC® sensors were placed on the anterior
chest for cardiac and respiration measurements.

Respiration

The BiostampRC® contains a tri-axial accelerometer that can
capture motion. When placed on the chest wall, the motion
detected is associated with inhalation and exhalation. For
validation, we compare the output of our respiratory rate algo-
rithm on both the BiostampRC® respiratory waveform and

Subject Age M/F BMI Lead | Lead | RMSE Lead Il Lead Il RMSE
(years) readable % (bpm) readable % (bpm)
19P0907 67 M 35.1 47 5 93 2
18P0907 42 M 24.9 72 3 13 2
20P0907 52 M 27.9 95 3 27 2
34P0907 53 M 33.7 39 6 55 |
24P0907 70 M 24.1 91 4 6l 5
23P0907 62 M 30.2 88 4 8l 4
28P0907 60 M 29.1 85 4 86 14
31P0907 33 F 19.7 50 6 8l 7
30P0907 58 M 345 8l 2 22 N/A
29P0907 57 F 32.9 21 3 98 2
17P0907 21 M 25.9 63 5 77 14
32P0907 51 F 34.6 47 10 67 2
33P0907 27 F 28.5 95 2 60 2
27P0907 67 F 383 17 4 53 21
26P0907 72 F 29.3 51 21 90 |
25P0907 67 M 25.1 75 4 44 3
21P0907 6l M 28.0 46 2 89 3
Cohort 54.12 1 IM/6F 29.5 61 5 67 5

Abbreviations: ECG, electrocardiography; M, male; F, female; BMI, body mass index; RMSE, root mean square error; bpm, beats per minute; N/A, not applicable.
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the PSG system’s airflow waveform, as performed by Bates
et al.”® The BiostampRC® accelerometer-derived respiration
(ADR) waveform preprocessing consists of three steps: low-
pass filtering (as described in 23), principal component analy-
sis (PCA), and a resonator filter (Figure S1). The low-pass
filter removes high-frequency noise while still preserving
the shape of the respiratory waveform. A PCA then linearly
projects the three axes onto an orthogonal set that maximizes
variance. We assume the respiration signal can be spread
across multiple spatial axes. We then select the projection
identified by PCA as the most variate and augment it as a
fourth channel. A respiratory signal quality evaluation then
selects the best of the four channels within a given 1-minute
epoch. The algorithm assigns a signal quality index to each
channel according to the signal power ratio of the waveform
against the human respiration frequency band (0.05-0.5 Hz).
Both the PSG airflow channel and BiostampRC® respiration
channels were assigned a signal quality index value. For the
respiration analysis, epochs where the PSG had low signal
quality index are not analyzed, even if the BiostampRC®
system reported an acceptable signal quality index.

The channel with the best quality provides the input for
the resonator filter. In the case where all channel signal qual-
ity falls below a preset threshold (0.65), a respiration rate for
that epoch is not reported, as the signal is likely corrupted by
motion artifacts or other sources of noise.

The resonator filter tunes the signal to its central dominant
frequency, selected as the most prominent power spectrum
density peak from its Fast Fourier Transform. This filter
smooths notches in the respiratory waveform that may bias
the respiratory rate state machine. The resonator designs
a tight bandpass filter, with dominant gain at the central
frequency. The width (kernel) of the filter was empirically
determined to be 1.5. The respiration rate state machine,
originally described by Bates et al,> compares this final ADR
signal directly against the PSG airflow signal.

The state machine defines high (H), middle (M), and low
(L) bands of the sinusoidal respiratory waveform. A scaling
factor multiplied by the standard deviation of the epoch’s
signal establishes the bounds about the mean of the ADR
sinusoid for the high, middle, and low regions. A breath
qualifies when the state machine sees that the signal passes
through the bands in H-M—L—M-H order (or a permutation
of that order). The algorithm stores the start and end time
of each breath. This gives an instantaneous respiration rate
according to each breath. Once all breaths within the min-
ute window have been detected, the algorithm calculates
the median of the instantaneous respiration rates from each

detected breath. The median value is the reported respira-
tion rate of that epoch. We limited the reporting of PSG and
BiostampRC® respiration rates to between 2 and 60 beats per
minute (bpm), under the assumption that rates outside of this
range were nonphysiological.

Heart rate

The BiostampRC® system contains an analog front-end
sensor capable of detecting electrophysiological signals
(sampling frequency range between 125 and 1,000 Hz). Study
participants wore two BiostampRC® devices on the upper
torso to capture ECG activity, the first in a Lead I configura-
tion (horizontal) and the second in a Lead II configuration
(right shoulder to left hip direction, 30 degrees from verti-
cal). A beat detection algorithm identifies the R peaks within
the QRS complexes of the ECG signal.** The median R—R
interval for each minute determines the epoch’s heart rate
(HR) in bpm for that specific lead configuration. The HR
calculated from the BiostampRC® ECG signals (Lead I and
IT) are compared against the gold standard defined by the
PSG pulse rate derived from a pulse oximeter worn on the
subject’s finger.

The Pan Tompkins beat detection is a widely used and
reliable R peak identifier, validated on the MIT/BIH and AHA
databases.? The algorithm consists of four transformations:
digital bandpass filter, differentiation, signal rectification,
and a moving window integration. The digital bandpass
filter consists of both high- and low-pass filters designed to
enhance signal components of human ECG frequency bands.
The filtered signal undergoes differentiation to find the slope
ofthe QRS complex. The algorithm then intensifies the slope
of'the frequency-response curve by squaring the differential.
Rectification limits the prominence of T waves with high
spectral energy and therefore reduces T wave detection as a
false positive. Finally, the moving window integration creates
a signal which contains both the slope and width parameters
per QRS complex. A series of learned thresholds determines
beats from this processed signal.

The algorithm determines dual thresholds for detec-
tion based on a series of learning phases. Learning Phase I
informs the beat detection threshold, adjusting for the signal
vs noise spectrum. Learning Phase II uses initial heart beats
to initialize the R—R interval average and limit thresholds.
If a beat of appropriate slope and width falls within these
determined threshold, Pan-Tompkins assigns a pulse for the
QRS complex. With each detection, the thresholds adapt
to accommodate significant change in the R-R interval. A
refractory period of 200 ms after each beat detection ensures
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a single beat will not be identified multiple times and intro-
duce false positives.

We limited reporting of HR and validation statistics to
when the incoming BiostampRC® ECG signal passes two
signal quality requirements. The signal quality checks on the
raw ECG waveform consist of two indices: a frequency power
ratio and a contact quality index (CQI). The frequency power
ratio calculates the ratio of power in a selected frequency band
against the power of the rest of the spectrum. We consider
the main signal frequency band of the QRS energy to be
between 10 and 20 Hz.

The frequency power ratio was designed to identify arti-
facts (ie, 60 Hz interference, and some muscle activities).
Another primary source of noise in the ECG signal is due
to partial or poor electrode contact on the skin surface. This
type of noise overlaps with the ECG frequency spectrum.
To evaluate electrode contact, a temporal-based CQI was
designed. The ECG signal is first median-filtered to give
a cleaner estimate of the ECG signal. The median-filtered
signal is subtracted from the original ECG signal resulting
in an estimate of the background noise. The CQI equals the
ratio of the power of the estimated noise to the power of the
estimated ECG signal. During poor contact, the power of the
noise will be significantly lower than the power of the median-
filtered ECG signal. With good electrode contact, the noise
statistics are more Gaussian and the CQI converges to one.
To pass, both the frequency ratio and the CQI values have
to be greater than the prespecified threshold of 0.5, or else
the section of data is marked unreadable. The ANSI/AAMI
60601-2-47 standards outline reporting practices for ECG
recordings.?® According to these standards, ECG recordings
may be tagged into readable and unreadable sections when the
ECG signal is lost to noise. For BiostampRC®, the readable
or unreadable designation is done on 5 second, contiguous
windows. Validation statistics comparing BiostampRC® to
the gold standard PSG system was reported only when the
signal quality deems the BiostampRC® ECG readable. The
percent of the signal determined to be unreadable is reported
in Table 1.

Muscle EMG

BiostampRC® contains an analog front end (sampling fre-
quency of 250 Hz) that can detect electrical signals from
muscle activity present during muscle contractions. We aim
to systematically compare the PSG and BiostampRC® signals
by seeing if the same contractions (as annotated by clinicians
on PSG signal) are visible in both data streams. The PSG
and BiostampRC® signals were aligned using an instructed

activity of leg contractions during clinical biocalibration at
the start of the PSG recording. The EMG signals from the
LAT and RAT were treated independently. The expert annota-
tion files were analyzed and selected data followed the AASM
scoring guidelines. Rarely, annotations of periodic leg move-
ment (PLM) events longer than 10 seconds were noted, and
presumed to be erroneous and thus were not included in the
analysis. A total of 25.6 hours of data were selected, consist-
ing of selections ranging in duration from 2 to 30 minutes.

The transformation of the BiostampRC’s® EMG signal
followed standard practices of EMG analysis.* The steps are
as follows: filtering, rectification, and an envelope function. A
bandpass filter cleans each EMG signal’s frequency content
to eliminate interference outside of the 1-45 Hz range. A
median filter with a small kernel (0.15 seconds) addresses
spikes in the voltage signal such as may occur with gross
movements. These artifact spikes can be of on the same order
of magnitude of contractions (0.01-0.15 mV). In rectification,
all amplitudes become positive by taking the absolute value
of the filtered signal. Finally, a smoothing operation takes
place to estimate the envelope of the rectified signal. Options
to find the envelope include low-pass filter, moving average,
and root mean square (RMS) calculation. The RMS method
maintains signal power better than the moving average and
does not have ringing artifacts that can occur in the low-pass
filter method.?> RMS was selected for the BiostampRC®
envelope calculation.

The PSG and BiostampRC® envelope signals were com-
pared directly on a window-to-window basis (2 seconds) with
the PSG data as the gold standard. Because we are performing
a sensor-level validation, we focused on correlations in signal
fluctuations rather than tech-scoring of PLMS events per
se. The contraction positive class was determined when the
PSG signal surpassed a threshold and lasted for at least 0.5
seconds. The envelope function caused an average reduction
in power of 50% for the PSG signal, so the AASM threshold
of 0.008 mV was halved to 0.004 mV above baseline noise
for the contraction identifications threshold. To find the
optimal BiostampRC® threshold to match the PSG system,
the BiostampRC® contraction identification was performed
using a grid search over all parameters. The parameters to
determine the final threshold included a set mV value added
to an estimate of the noise floor. In any given section of region
of interest, we assume the signal contains a significant amount
of noncontraction samples. A histogram of the considered
section shows the range of amplitudes within the signal. The
noise floor was then estimated from the low bin values of
the histogram.

submit your manuscript

400

Dove

Nature and Science of Sleep 2018:10


www.dovepress.com
www.dovepress.com
www.dovepress.com

Dove

Biosensor sleep-monitoring system

The quality of the PSG and BiostampRC® signals are
dependent on both body physiology and electrode application
as the electrodes require good conductance for a clear signal.
The variability of each subject’s application requires a per-
sonalized set of parameters for signal-to-signal comparison.
For this reason, each grid search was calculated individually
rather than find a best fit for the cohort.

To minimize edge effects of slight differences in contrac-
tion shape, windows containing edges of the contraction are
not considered in the final analysis. If either signal in the
PLM series did not pass a signal-to-ratio requirement, that
data were not considered. For the signal-to-signal analysis,
the number of true negatives (TNs) greatly outweighs the
number of true positives (TPs), which will impact accuracy
calculations due to weighting by the performance in the
dominant class. Examples of TN class were randomly chosen
to balance the number of TP class events by patient.

Results

Respiration

The subject population consisted of 15 participants who were
undergoing clinical PSG evaluation. The mean age was 52,
the mean BMI was 28.0, and 10 were male (Table 2).

The respiratory rate state machine calculated respiratory
rate from the gold standard (PSG) airflow measurement and
from the BiostampRC® ADR waveform, epoch by epoch. The
respiration detected by the BiostampRC® vs that detected by
PSG for an example subject is shown in Figure 1, including
a calculated rate (panel A) and superimposed raw waveforms
(panel B). We were able to calculate a respiration rate 74%

of the time that the gold standard was able to calculate a rate.
The root mean square error (RMSE), a common metric for
reporting error, was 1.84 breaths/minute in the group. For
individual subject results, see Table 2. The mean absolute
error across subjects was 0.26 bpm with a cohort relative
error of 0.04%.

Heart rate

Figure 2 is a representative segment comparing the raw ECG
signals of the PSG and BiostampRC® systems. The analysis of
HR extracted from the BiostampRC® raw signals, per subject,
is reported in Table 1. The HR (in bpm) equals the median
value of the instantaneous R—R intervals over 1 minute. This
HR is compared with the HR reported by the PSG system
from a pulse oximeter. We compared two body locations to
evaluate HR: Lead I at the hypochondrium location and Lead
IT over the upper left chest. Across 17 subjects, the average
RMSE for both Lead I and Lead II was 5 bpm. (One subject
could not be reported for Lead II due to a low percentage of
readable data.)

Leg movements

In the validation study for leg movements, we tested the
surface EMG (sEMGQG) sensor system on the left and right
anterior tibialis, adjacent to the gold standard PSG sen-
sors. An image of a BiostampRC® in this position is given
in Figure S2. Examples of raw muscle activity signals are
shown in Figure S3. We considered the muscle contractions
as the primary indicator for comparison of the BiostampRC®
and the PSG EMG signals. To determine the threshold

Table 2 Demographics and respiration analysis across individual subjects

Subject Age (years) M/F BMI Readable (% record) RMSE (min-') MAE (min-')

17P0907 21 M 25.9 78 1.59 0.21

18P0907 42 M 24.9 79 1.61 0.23

19P0907 67 M 35.0 71 2.87 0.61

20P0907 52 M 27.9 80 1.58 0.06

21P0907 6l M 28.0 70 1.22 0.26

22P0907 60 M 224 72 2.60 0.75

23P0907 62 M 30.2 71 1.38 0.03

24P0907 70 M 24.1 62 2.25 0.40

25P0907 67 M 25.1 69 1.53 0.64

27P0907 67 F 383 51 2.95 0.04

31P0907 33 F 19.7 8l 2.06 0.04

33P0907 27 F 28.5 76 1.76 0.02

38P0907 73 M 30.0 77 0.92 0.04

42P0907 28 F 39.3 79 1.99 0.42

45P0907 56 F 20.4 88 1.30 0.13

Cohort 52 10M/5F 28.0 74 1.84 0.26
Abbreviations: M, male; F, female; BMI, body mass index; RMSE, root mean square error; MAE, mean average error.
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Figure | Respiration measurements.

RR Biostamp
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Notes: (A) Overlaid calculations of respiratory rate (RR) from the BiostampRC® system (red dots) and the PSG recording (blue dots) for a full night of recording in the lab.

(B) Overlaid raw (blue) and filtered (green) signal of respiration from the BiostampRC®.
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Figure 2 Electrocardiogram measurements.

Notes: Overlaid raw signals from the ECG of the PSG recording (blue) and the ECG measured by the BiostampRC® (red) placed at Lead Il position on the chest.

for identifying limb movement events, we conducted a
parameter tuning over a grid search. The most influential
parameter was the adaptive threshold above baseline noise,
which was iteratively increased from 0.004 to 0.011 mV.

BiostampRC’s® average threshold was 0.0085 mV. Figure 3
shows an example of PSG and BiostampRC® EMG signals,
annotated as to true/false positive/negative, based on this
threshold approach.
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o Envelope BRC w Filtered

Envelope PSG

Figure 3 Limb movement detection example.

Notes: The anterior tibialis EMG signals from the BiostampRC® (blue) and PSG system (red) are shown in A. The black bars in B and C represent identified contractions.

Each parameter configuration provided a sensitivity and
specificity, which were then plotted on a patient-specific
ROC curve with false positive (FP) rate (1-specificity) on the
x-axis and TP rate (sensitivity) on the y-axis (Figure 4). The
final configuration chosen per subject was the point with the
minimum distance from the [0, 1] point on the ROC curve.
The overall resulting area under the curve for the ROC curve
was 0.88. At the balance point of the ROC curve, sensitivity
equals 0.87 with a specificity of 0.82.

Discussion

Although in-lab PSG provides important data for clinical
diagnostics, several limitations are well known: uncomfort-
able environment, high personnel and resource burden,
regional variation in access to sleep laboratories, and the
use of single-night snapshots for clinical decision-making.
Thus, diagnostic testing has seen a transition of monitoring
into the home, using limited sensors, mainly to detect OSA."
However, these kits have their own limitations of comfort,

usability, and accuracy—and most are designed for only one
or two nights of recording. Because autonomic and EMG
signals have use beyond that of OSA detection, the clinical
need remains for improved at-home monitoring for clinical
sleep evaluation and management.

This validation study demonstrates that the BiostampRC®
system provides accurate sensing of HR, RR, and leg EMG,
compared with gold standard equivalent sensor data during
routine clinical PSG. As such, the system offers the opportunity
for a more natural and less invasive approach to multi-night at-
home cardiopulmonary monitoring during sleep. In total, 88%
of subjects when surveyed upon study completion expressed
willingness to wear the BiostampRC® system in the home.

For comparison of respiration rate performance, Bates
et al reported RMSE=0.38, with maximum 3 breaths/minute
on postoperative patients, in which 45% of the data were
useable.”® In a subsequent study, 19 patients (age 53126
years) who received opioid analgesia were monitored post-
operatively.?® The study compared an accelerometry and nasal

Nature and Science of Sleep 2018:10
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Figure 4 ROC curve for PLMS detection.

34P0907

Biostamp
Biostamp Limit
PSG

PSG Limit

Notes: Each vertical bar is 2 seconds duration (the entire segment is just over 2 minutes of recording). The signals are color coded according to the legend in the top left.
For example, the first upward deflection of the BiostampRC® (left side of tracing) was not seen by the PSG sensor, and thus is a false positive limb movement detection.
The blue and red horizontal lines near the bottom of the plot are the thresholds (“limit” in the legend), relative to baseline noise, used by the algorithm for event detection.
There are no false negatives in this image. Edges where signal falls below threshold adjacent to suprathreshold segments are shown for illustrative purposes only, but are not

considered in the algorithm (see Methods section).

cannula-derived respiration rate at a 5-minute epoch using the
algorithm described in a study.? Their analysis found 62%
of the accelerometer data to be usable for comparison to the
nasal cannula as gold standard. They reported an absolute
difference of 0.6 breaths per minute and average 87%18%
agreement within 3 breaths per minute on 67%=*13% of
matched breaths. Overall, the BiostampRC® system is com-
parable with other ADR rate methods, in terms of accuracy vs
gold standard and usable data proportion of recording time.
Here, the BiostampRC® and PSG were within an average of
0.26 breaths per minute and at 74% of the PSG total time.
The degree of acceptable data loss will depend on the clinical
goals of monitoring, with less tolerance in settings of unstable
vital signs or alarm-based decision support.

The BiostampRC® system can couple HR and respiration,
which have been used in algorithms designed to screen for
sleep apnea,?” or to distinguish obstructive and central forms
of sleep apnea.?® Future studies of our system in subjects with
a range of sleep apnea severity and obstructive vs central
phenotypes can test the hypothesis that the sensor data can
support such algorithms, especially for at-home monitoring
uses. Further studies are necessary to determine whether the
system is feasible for respiration rate monitoring around-
the-clock in patients warranting inpatient care and real-time
information about respiratory status.

It is possible that a single BiostampRC® sensor could pro-
vide both cardiac and respiratory information. When placed at
the Lead II location, one BiostampRC® sensor may be used to

capture both respiratory rate and HR. In this study, respiration
rate was derived from the accelerometer at the Lead II loca-
tion. The ECG signal also includes respiratory information.
As a person inhales and exhales, the electrical impedance of
the body changes and modulates the QRS complexes. The
modulation reflects the breathing pattern of the subject. The
electrocardiogram-derived respiration (EDR) signal provides
another respiratory estimation. Combining respiration rate mea-
surements from multiple data streams as described in a study”
could improve the robustness of respiration rate estimation.
PLMS is not uncommon, and the main predictor is the
presence of restless legs syndrome (RLS; or Willis—Ekbom
disease), with most patients with RLS having elevated
PLMS if studied using PSG. However, most individuals
with elevated PLMS will not have RLS symptoms, and thus
the occurrence of PLMS may remain occult unless PSG is
performed. Given this clinical uncertainty at the diagnostic
phase, there is an urgent need for PLMS-specific sensing
that does not require PSG. Beyond the cross-sectional
links with vascular morbidity, the link between elevated
PLMS and non-refreshing sleep remains poorly understood:
patients may remain asymptomatic, or have insomnia, or
hypersomnia. The ideal path to diagnose elevated PLMS is
unclear, as symptom prediction outside of clinical RLS is
quite uncertain.’® Another major challenge in the diagnostic
phenotyping of PLMS is night-to-night variability.>! At the
management phase, assessing the impact of therapy depends
on self-reported sleep symptoms, whether insomnia or
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hypersomnia or both. However, if therapy targeting PLMS
does not improve sleep symptoms, it could be because the
treatment did not sufficiently reduce the PLMS, or because
the PLMS were not actually causing the symptoms. We can-
not distinguish between these alternatives in practice without
objective testing, which is not routinely available in the home
or via PSG. Thus, a solution is needed that would allow for
at-home objective PLMS monitoring, ideally over multiple
nights, before and after therapy changes are initiated.

This study demonstrates that a simple adhesive wear-
able sensor system can detect and store muscle contraction
activity with fidelity sufficiently high to support algorithm
development relevant for detection and classification of
PLMS. Quantifying PLMS is currently limited in practice,
where their detection is often incidental during laboratory
PSG performed for other reasons such as sleep apnea. Fur-
thermore, given pressures to move objective sleep testing
into the home, and the lack of limb leads on at-home kits
designed for sleep apnea testing, PLMS measurement will
remain limited. Our results suggest that PLMS measurement
is feasible with a simple monitoring system. We suspect
that EMG-based sensor systems will be more sensitive and
specific, as they reproduce the gold standard PSG approach
to PLMS, compared with accelerometry-based systems that
require gross movement. The growing literature suggesting
the importance of PLMS for vascular morbidity and the
challenges in clinically predicting elevated PLMS outside of
RLS? are strong incentives to develop objective measurement
options to enhance the diagnostic, management, and clinical
research efforts in this important area.

Limitations

This study has important limitations, which can be addressed
in future work. First, larger studies can identify clinical fac-
tors that impact adhesive-based sensors (in the laboratory,
or in a portable device), such as body habitus, medications,
neurological conditions, and sweat, that could impact ECG,
EMG, or even thoracic respiration movement sensing. Sec-
ond, the sensors were applied by research staff; future work
will assess whether unsupervised application in the patient’s
home is also feasible and acceptable for patient experience.
Third, electrode placement may impact accuracy, given the
necessity for adjacent positioning between PSG leads and the
BiostampRC®, which may introduce variance in muscle activ-
ity detection based on position (not physiology), or variance
in ECG or respiration dynamics. Fourth, algorithmic work for
auto-detection of sleep apnea or limb movements using an
isolated EMG sensor on the leg is subject to clinical scoring

conventions that require assessment of other sensors (elec-
troencephalogram for sleep—wake distinction, and respiratory
sensors for sleep apnea events). Without concurrent sensors
in the home, for example, overestimation of leg movements
could occur if sleep apnea were also present, or if protracted
wake time with motor restlessness occurs. Training on larger
datasets, annotated not just for PLMS but also for non-PLMS
motor activity (such as gross body movements during arous-
als), will be helpful.
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Figure S| Schematic of signal processing of respiration signals.
Abbreviations: AXL, accelerometer; BRC, BiostampRC® sensor system; LP, low pass; PCA, principle component analysis; RMSE, root mean square error; RR, respiration

rate; X, y, z, axes of the accelerometer; SQI, signal quality index.

Figure S2 BiostampRC® device.
Note: Left, position on the lower leg; Right, close-up view of one device.
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Figure S3 The true positive (TP) rate (ie, sensitivity) is shown on the y-axis, and the FP rate (ie, |-speciificity) is shown on the x-axis
Abbreviations: AUC, area under the curve; EMG, electromyography; PSG, polysomnography; RMS, root mean square; TP, true positive.
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