Maximum Entropy Reinforcement Learning with Diffusion Policy

Xiaoyi Dong'? Jian Cheng'3* Xi Sheryl Zhang '+

Abstract

The Soft Actor-Critic (SAC) algorithm with a
Gaussian policy has become a mainstream im-
plementation for realizing the Maximum Entropy
Reinforcement Learning (MaxEnt RL) objective,
which incorporates entropy maximization to en-
courage exploration and enhance policy robust-
ness. While the Gaussian policy performs well
on simpler tasks, its exploration capacity and po-
tential performance in complex multi-goal RL
environments are limited by its inherent uni-
modality. In this paper, we employ the diffusion
model, a powerful generative model capable of
capturing complex multimodal distributions, as
the policy representation to fulfill the MaxEnt
RL objective, developing a method named Max-
Ent RL with Diffusion Policy (MaxEntDP). Our
method enables efficient exploration and brings
the policy closer to the optimal MaxEnt pol-
icy. Experimental results on Mujoco benchmarks
show that MaxEntDP outperforms the Gaussian
policy and other generative models within the
MaxEnt RL framework, and performs compara-
bly to other state-of-the-art diffusion-based on-
line RL algorithms. Our code is available at
https://github.com/diffusionyes/MaxEntDP.

1. Introduction

Reinforcement Learning (RL) has emerged as a powerful
paradigm for training intelligent agents to make decisions in
complex control tasks (Silver et al., 2016; Mnih et al., 2015;
Kaufmann et al., 2023; Kiran et al., 2021; Ibarz et al., 2021).
Traditionally, RL focuses on maximizing the expected cu-
mulative reward, where the agent selects actions that yield
the highest return in each state (Sutton & Barto, 1999). How-
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ever, this approach often overlooks the inherent uncertainty
and variability of real-world environments, which can lead
to suboptimal or overly deterministic policies. To address
these limitations, Maximum Entropy Reinforcement Learn-
ing (MaxEnt RL) incorporates entropy maximization into
the standard RL objective, encouraging exploration and im-
proving robustness during policy learning (Toussaint, 2009;
Ziebart, 2010; Haarnoja et al., 2017).

The Soft Actor-Critic (SAC) algorithm (Haarnoja et al.,
2018) is an effective method for achieving the MaxEnt RL
objective, which alternates between policy evaluation and
policy improvement to progressively refine the policy. With
high-capacity neural network approximators and suitable
optimization techniques, SAC can provably converge to
the optimal MaxEnt policy within the chosen policy set.
The choice of policy representation in SAC is crucial, as
it influences the exploration behavior during training and
determines the proximity of the candidate policies to the
optimal MaxEnt policy. In complex multi-goal RL tasks,
where multiple feasible behavioral modes exist, the com-
monly used Gaussian policy typically explores only a single
mode, which can cause the agent to get trapped in a local
optimum and fail to approach the optimal MaxEnt policy
that captures all possible behavioral modes.

In this paper, we propose using diffusion models (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2021b), a powerful generative model, as the pol-
icy representation within the SAC framework. This allows
for the exploration of all promising behavioral modes and
facilitates convergence to the optimal MaxEnt policy. Diffu-
sion models transform the original data distribution into a
tractable Gaussian by progressively adding Gaussian noise,
which is known as the forward diffusion process. After train-
ing a neural network to predict the noise added to the noisy
samples, the original data can be recovered by solving the
reverse diffusion process with the noise prediction network.
While several generative models, e.g., variational autoen-
coders (Kingma, 2013), generative adversarial networks
(Goodfellow et al., 2020), and normalizing flows (Rezende
& Mohamed, 2015) could serve as the policy representation,
we choose diffusion models due to their balance between
expressiveness and inference speed, achieving remarkable
performance with affordable training and inference costs.
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However, integrating diffusion models into the SAC frame-
work presents two key challenges: 1) How to train a diffu-
sion model to approximate the exponential of the Q-function
in the policy improvement step? 2) How to compute the
log probability of the diffusion policy when evaluating the
soft Q-function? To address the first challenge, we analyze
the training target of the noise prediction network in diffu-
sion models and propose a Q-weighted Noise Estimation
method. For the second challenge, we introduce a numeri-
cal integration technique to approximate the log probability
of the diffusion model. We evaluate the effectiveness of
our approach on Mujoco benchmarks. The experimental re-
sults demonstrate that our method outperforms the Gaussian
policy and other generative models within the MaxEnt RL
framework, and performs comparably to other state-of-the-
art diffusion-based online RL algorithms.

2. Preliminary
2.1. Maximum Entropy Reinforcement Learning

In this paper, we focus on policy learning in continuous
action spaces. We consider a Markov Decision Process
(MDP) defined by the tuple (S, A, p,r, po,~), where S rep-
resents the state space, A is the continuous action space,
p: SXxSxA — [0,400] is the probability density function
of the next state s; 1 € S given the current state s; € S
and the action a; € A, r : & X A = ["min, "max] 1S the
bounded reward function, pg : & — [0, +-00] is the distri-
bution of the initial state s and v € [0, 1] is the discount
factor. The marginals of the trajectory distribution induced
by a policy 7(a.|s;) are denoted as p(s¢, at).

The standard RL aims to learn a policy that maximizes
the expected cumulative reward. To encourage stochastic
policies, Maximum Entropy RL augments this objective by
incorporating the expected entropy of the policy:

J(m) = Ztoio 'ytﬂi(st,m)~pTr [T(sh at) + BH(W“st))} , (D

where H(7(:|8¢)) = Eq,~r(|s,) [~ log T(at|st)], and 3 is
the temperature parameter that controls the trade-off be-
tween the entropy and reward terms. A higher value of 3
drives the optimal policy to be more stochastic, which is
advantageous for RL tasks requiring extensive exploration.
In contrast, the standard RL objective can be seen as the
limiting case where 3 — 0.

2.2. Soft Actor Critic

The optimal maximum entropy policy can be derived by
applying the Soft Actor-Critic (SAC) algorithm (Haarnoja
et al., 2018). In this subsection, we will briefly introduce
the framework of SAC, and the relevant proofs are provided
in Appendix A.1. The SAC algorithm utilizes two parame-
terized networks, @0y and 7, to model the soft Q-function

and the policy, where 6 and ¢ represent the parameters of
the respective networks. These networks are optimized by
alternating between policy evaluation and policy improve-
ment.

In the policy evaluation step, the soft Q-function of the
current policy 7y is learned by minimizing the soft Bellman
error:

L(0) = E(s.0)op [1 (Qg(s,a) - Q(s,a))1 G

2
where D is the replay buffer, and the target value Q(s, a) =
T(Sv a) + ’YES/N[),CL/Nﬂ'(p [Q@(S/, a’/) - Blog 7T¢(a/‘8/)]'

In the policy improvement step, the old policy 7, is up-
dated towards the exponential of the new Q-function, whose
soft value is guaranteed higher than the old policy. How-
ever, the target policy may be too complex to be exactly
represented by any policy within the parameterized policy
set IT = {my|¢ € O}, where P is the parameter space of
the policy. Therefore, the new policy is obtained by pro-
jecting the target policy onto the policy set II based on the
Kullback-Leibler divergence:

L(¢) = DxL <7T¢('|S)

exp(4Qs(s,))
A

Theorem 2.1. (Soft Policy Iteration) In the tabular setting,
let L(0x) = 0 and L(¢y,) be minimized for each k. Repeated
application of policy evaluation and policy improvement,
i.e., k — oo, my, will converge to a policy ™ such that
Q™ (s,a) > Q" (s,a) forall ™ € Mand (s,a) € S x A
with |A| < oo.

Theorem 2.1 suggests that if the Bellman error can be re-
duced to zero and the policy loss is minimized at each opti-
mization step, the soft actor-critic algorithm will converge
to the optimal maximum entropy policy within the policy
set Il. This indicates that the choice of the policy set II
significantly affects the performance of the soft actor-critic
algorithm. Specifically, a more expressive policy class will
yield a policy closer to the optimal MaxEnt policy. Inspired
by this intuition, we employ the diffusion model to represent
the policy, as it is highly expressive and well-suited to cap-
ture the complex multimodal distribution (Chi et al., 2023;
Wang et al., 2023; Chen et al., 2023; Ajay et al., 2023).

2.3. Diffusion Models

Diffusion models are powerful generative models. Given an
unknown data distribution p(zg), which is typically a mix-
ture of Dirac delta measures over the training dataset, diffu-
sion models transform this data distribution into a tractable
Gaussian distribution by progressively adding Gaussian
noise (Ho et al., 2020). In the context of a Variance-
Preserving (VP) diffusion process (Ho et al., 2020; Song
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et al., 2021b), the transition from the original sample x at
time ¢ = 0 to the noisy sample x; at time ¢ € [0, 1] follows
the distribution:

p(xt|zo) = N (x| /o ()0, o () T), 4)

where o, represents the log of the Signal-to-Noise Ratio
(SNR) at time ¢, and o (+) is the sigmoid function. «; deter-
mines the amount of noise added at each time and is referred
to as the noise schedule of a diffusion model. Denote the
marginal distribution of x; as p(x;). The noise schedule
should be designed to ensure that p(x1|zo) ~ p(x1) ~
N (2|0, I), and that « is strictly decreasing w.r.t. . Then,
starting from @1 ~ A (210, I), the original data samples
can be recovered by reversing the diffusion process from
t = 1tot = 0. For sample generation, we can also employ
the following probability flow ordinary differential equation
(ODE) that shares the same marginal distribution with the
diffusion process (Song et al., 2021b):

dx 1
—L = [, — 56 ()Va, logp(m), ()
dt 2

where f(t) %7‘“0%(%), g% (t) —7(”0%(“‘), and

Vz, log p(x+), known as the score function, is the only un-
known term. Consequently, diffusion models train a neural
network €4(x¢, o) to approximate the scaled score func-

tion —y/o(—a;) Vg, logp(x:). The training loss L(¢) is
defined as:
2
)

(6)
= Et,wo,e [wt Heé(mtvat) - EHE} +C (7)

L(¢) = Eta, {wt €s(xt, at) + /o (—at)Va, logp(zt)

where o ~ p(xg), € ~ N(0,I),t ~ U([0,1]), z; =
Volay)xg + v/o(—ayr)e, wy is a weighting function and
usually set to w; = 1, and C' is a constant independent of ¢.
In this setup, the network €4(x;, o) target at predicting the
expectation of noise added to the noisy sample x;, and is
therefore called the noise prediction network. Minimizing
the loss function L(¢) results in the following relationship:

th logp(cct) = _e\j((:giizti'

Then we can solve the probability flow ODE in Equation
5 with the assistance of existing ODE solvers (Ho et al.,
2020; Song et al., 2021a; Lu et al., 2022; Karras et al., 2022;
Zheng et al., 2023) to generate data samples.

®)

3. Methodology

In the soft actor-critic algorithms, Gaussian policies have
become the most widely used class of policy representation
due to their simplicity and efficiency. Although Gaussian

policies perform well in relatively simple single-goal RL
environments, they often struggle with more complex multi-
goal tasks.

Consider a typical RL task that involves multiple behavior
modes. The most efficient solution is to explore all be-
havior modes until one obviously outperforms the others.
However, this exploration strategy is difficult to achieve
with Gaussian policies. In the training process of a soft
actor-critic algorithm with Gaussian policies, minimizing
the KL divergence between the Gaussian policy and the
exponential of the Q-function—which is often multimodal
in multi-goal tasks—tends to push the Gaussian policy to
allocate most of the probability mass to the action region
with the highest Q value (Chen et al., 2024a). Consequently,
other promising action regions with slightly lower Q values
will be neglected, which may cause the agent to become
stuck at a local optimal policy.

However, an efficient exploration strategy can be achieved
by replacing the Gaussian policy with a more expressive pol-
icy representation class. If accurately fitting the multimodal
target policy (i.e., the exponential of the Q-function), the
agent will explore all high-return action regions at a high
probability, thus reducing the risk of converging to a local
optimum. Moreover, recall that when the assumptions on
loss optimization are met, the soft actor-critic algorithm is
guaranteed to converge to the optimal maximum entropy pol-
icy within the chosen policy class. Therefore, with sufficient
network capacity and appropriate optimization techniques,
we can obtain the true optimal maximum entropy policy, as
long as the selected policy representation class is expressive
enough to capture it.

The above analysis emphasizes the importance of applying
an expressive policy class to achieve efficient exploration as
well as a higher performance upper bound. Since diffusion
models have demonstrated remarkable performance in cap-
turing complex multimodal distributions, we adopt them to
represent the policy within the soft actor-critic framework.
However, integrating a diffusion-based policy into the soft
actor-critic algorithm presents several challenges: (1) In
the policy improvement step, the new diffusion policy is
updated to approximate the exponential of the Q-function.
However, existing methods for training diffusion models
rely on samples from the target distribution, which are un-
available in this case. (2) In the policy evaluation step,
computing the soft Q-function requires access to the proba-
bility of the diffusion policy. Nevertheless, diffusion models
implicitly model data distributions by estimating their score
functions, making it intractable to compute the exact proba-
bility.

The remainder of this section addresses these challenges and
describes how to incorporate diffusion models into the soft
actor-critic algorithm for efficient policy learning. We first



Maximum Entropy Reinforcement Learning with Diffusion Policy

propose the Q-weighted Noise Estimation approach to fit the
exponential of the Q-function in Section 3.1, then introduce
a method for probability approximation in diffusion policies
in Section 3.2, and finally present the complete algorithm
in Section 3.3. We name this method MaxEntDP because it
can fulfill the MaxEnt RL objective with diffusion policies.

3.1. Q-weighted Noise Estimation

Given a Q-function Q(s, a), below we will analyze how to
train a noise prediction network €4 in the diffusion model
to approximate the target distribution:

exp(3Q(s, @)

w(als) = 7(5)

C))
Omitting the state in the condition for simplicity and follow-
ing the symbol convention of diffusion models, we rewrite
m(a|s) as p(ag). The transition from the original action
samples ag at time ¢ = 0 to the noisy actions a; at time
t € [0,1] is defined as:

= N(a|\/o(ar)ag,o(—a)I)

Note that the symbol ¢ stands for the time of diffusion mod-
els if not specified.

p(atlao) (10)

The marginal distribution of noisy actions a, at time ¢ is de-
noted by p(a;). To sample from p(ay), we need to estimate
the score function V, log p(a+) at each intermediate time
t during the diffusion process. The score function can be
reformulated as:

(11)

which is an expectation with respect to the conditional distri-
bution p(ag|a;), ak.a. the reverse transition distribution of
the diffusion process. If samples from p(ag) are available,
as is often the case in the application scenarios of diffusion
models (Saharia et al., 2022; Ho et al., 2022; Chi et al., 2023;
Xu et al., 2023; Huang et al., 2023), we can first sample
original actions ag ~ p(ao), and then sample noisy actions
a; ~ p(at|ap) to obtain several sample pairs following the
joint distribution p(ag, a;). Then for a fixed noisy action a,
the corresponding ag will conform the conditional distribu-
tion p(ap|a;), which can serve as Monte Carlo samples to
estimate the expectation in Equation 11. Conversely, in the
context of the soft actor-critic algorithm, we lack samples
from the target distribution p(ag) but instead have access
to a Q-function. Therefore, we must establish the relation-
ship between the conditional distribution p(ag|a;) and the
Q-function.

vat 1ng(at) = Ep(a(ﬂat) [vat Ing(a’t‘a’O)] )

Lemma 3.1. (Decomposition of the Reverse Transition
Distribution) The conditional distribution p(ag|a;) can be
decomposed as

o(—ay)

plaglay) o eXP(%Q(ao))N(ad\/ﬁau o)

I) (12)

The proof is provided in Appendix A.2. Lemma 3.1 demon-
strates that the conditional distribution p(ag|a;) can be seen
as a Gaussian distribution of ay weighted by the exponential
of the Q-function. Sampling from the Gaussian distribu-
tion is straightforward, we can apply importance sampling
(Bishop, 2006) to estimate the expectation in Equation 11.

Theorem 3.2. (Importance Sampling Estimate for the
Score Function) The score function can be estimated by

Va, logp(a E a (13)
a g t \/T K O

1 K i 1 Vol=at)

where €, N(0,I), a} 7 o + T €
. . exp(5Q(ao))

and the importance ratio w(ag) = W with Z(a:)

being the normalizing constant of p(aol|az).

The derivation is detailed in Appendix A.3. Although this
importance sampling estimate is unbiased, it exhibits high
variance when the variance of the Q-function is large. To
address this issue, we employ the weighted importance sam-
pling approach (Bishop, 2006) to reduce variance and stabi-
lize the training process.

Theorem 3.3. (Weighted Importance Sampling Estimate
Jor the Score Function) The score function can be estimated
by

K .
1 w(ap) i
Va,l =~ . 14
ogp(a) o ; Zjﬂlw(aé)e (14)
SR i softmax(lQ(aIZK))'ei (15)
g‘(—at e /8 0 1€
10(qlK)), — _ @)
where softmax(5Q(ag™ )); = S exp(3Q(a])’

The normalizing constant Z(a) is canceled out in Equation
15, eliminating the need for its explicit computation. Since
the bias of the weighted importance sampling method de-
creases as the number of Monte Carlo samples increases,
a larger value of K is preferred in practice given adequate
computation budgets.

Then the training target of the noise prediction network is

€ (ar, ) \/T )Va, logp(ar) (16)
1 .
~— Zsoftmax(fQ(aé )€l 17)
=1 6

This target can be interpreted as a weighted sum of noise,
with the weights being the exponential of the Q-value. Con-
sequently, we refer to this method as Q-weighted Noise
Estimation for training the noise prediction network. The
overall training loss is

L(¢) =E (18)

p(a) [H %(ataat) — € (at, ar) ||§]
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While the true distribution of noisy actions p(a;) may be
inaccessible, we can substitute it with other distributions
with full support, as the loss will still be minimized for each
a; given sufficient network capacity.

We briefly compare our method with two previous ap-
proaches that approximate the exponential of a given func-
tion (a). The QSM method (Psenka et al., 2024) esti-
mates the score function as Vg, log p(a;) = Vg, %Q(at).
This approximation requires p(a;) exp(%Q(at)), which
is true only when the time ¢ is close to 0. There-
fore, the score function estimation in QSM is impre-
cise for most values of t. Another method iDEM
(Akhound-Sadegh et al., 2024) proposes Vq, logp(a:) ~
m > softmax(5Q(ag™))iVa; 5Q(ap), and the
derivation is included in Appendix A.4 for completion. Al-
though the expressions of iDEM and our method appear
similar and both can approach the true score function as
K — o0, our method does not require computing the gra-
dient of the Q-function, which is more computationally
efficient, especially when the Q-function is evaluated on a
neural network. Furthermore, the experiments in Section 5.2
demonstrate that the variance of the score estimation in our
method is significantly lower than the other two methods
that rely on gradient computation, leading to a more stable
training process.

3.2. Probability Approximation of Diffusion Policy

Diffusion models approximate the desired distributions by
estimating their score function. Although this implicit mod-
eling enhances the expressiveness of the model, enabling it
to approximate any distribution with a differentiable prob-
ability density function, it also introduces challenges in
computing the exact likelihood of the distribution.

Previous study (Kong et al., 2023; Wu et al., 2024) proved
that the log-likelihood of p(ap) can be written exactly as an
expression that depends only on the true noise prediction
target, i.e.,

logp(ap) = c— fj+oo E [|| €—e*(ag, ay) H%] day (19)

where ¢ = — 4 log(2me) + %f:: o(at)dat with d being

the dimension of ag, € ~ N(0,1), at = o(ay)ag +

Vo(—ar)e, and €*(at, o) = —/o(—ar)Va, logp(ar)

is the training target of the noise pred1ct10n network.
Corollary 3.4. (The Exact Probability of Diffusion Policy)

Let €4 be a well-trained noise prediction network, i.e., it
can induce a probability density function pg(ao) satisfying

—/0(—)Vq, log ps(ay), then

Ee [|l € — €(ar, ar) [|3] day (20)

€¢ at,at
+oo
log ps(ag) = ¢ — —j

This corollary can be inferred from Equation 19. However,

this expression is intractable because both the integral in ¢
and the integral of the noise prediction error diverge, with
only their difference converging (Kong et al., 2023). We
attempt to approximate the integral using numerical inte-
gration techniques. However, we observe that using the log
SNR as the integration variable results in a high variance,
as it spans from —oo to +o0o. Therefore, we instead utilize
o (o) with a narrower integration domain of (0, 1).

Theorem 3.5. (The Probability Approximation of Diffu-
sion Policy) The log probability of diffusion policy can be
approximated by

log py(ag) = ' + 5 ZZ LWy, (d-o(ay,) — €p(ay,, ar,)) (21)
—%log(2me), to.r are uniformly spaced
o(ay;,_y)—olay) . .
W is the weight
atty, Eglar,, an) = % S5y | € —eglal,,ar,) |3 is the
noise prediction error estimation at t;.

where ¢ =

timesteps in [tmin, tmax), Wi, =

The detailed derivation is provided in Appendix A.5.

3.3. MaxEnt RL with Diffusion Policy

After addressing the critical challenges in training and proba-
bility estimation for the diffusion policy, we present the com-
plete algorithm for achieving the MaxEnt RL objective with
a diffusion policy. Our approach is based on the soft actor-
critic framework. We utilize two neural networks: Qg (s, a)
to model the Q-function, and €4(a., s, s) to model the
noise prediction network for the diffusion policy 7y (ao|s).

The training process alternates between policy evaluation
and policy improvement. In the policy evaluation step, the
Q-network is trained by minimizing the soft Bellman error,
as defined in Equation 2. Here, the actions a’ ~ 7, (+|s’) are
sampled by solving the probability flow ODE in Equation 5
with the noise prediction network €,4(a;, v, s), and the log
probality log 74 (+|s) is approximated using Equation 21. In
the policy improvement step, the noise prediction network is
optimized using the loss function in Equation 18', with the
training target computed in Equation 17. The pseudocode
for our method is presented in Algorithm 1.

In addition, we adopt several techniques to improve the
training and inference of our method:

Truncated Gaussian Noise Distribution for Bounded Ac-
tion Space. In RL tasks with bounded action spaces, the
Q-function is undefined outside the action space. To avoid
evaluating Q-values for illegal actions, the noise distribution
in Equation 17 is modified from a standard Gaussian to a

'"The minimizers of Equation 18 and 3 will be equal when the
exponential of the Q-function can be exactly expressed by the
chosen policy set, so the capacity of the noise prediction network
is preferred to be large if allowed.
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Algorithm 1 MaxEnt RL with Diffusion Policy
1: Initialize critic networks Qp,, QQg,, and the noise pre-
diction network €4 with random parameters 61, 62, ¢.
Initialize target networks 0] < 61,05 < 6
Initialize replay buffer D
for each iteration do
for each sampling step do
Sample a ~ my(-|s) according to Equation 5
Step environment: s’, 7 < env(a)
Store (s, a,r,s’) in D
9: end for
10:  for each update step do

11: Sample B transitions (s, a, r, s") from D

12: Sample a’ ~ 74(-|s’) according to Equation 5

13: Compute log m4(a’|s’) using Equation 21

14: Compute the target Q-value: Q(s, a) = (s, a) +
v (min;=1 2 Qo, (s',a’) — Blog my(a’|s’)) .

15: Update critics: 0; = arg ming, + > (Qo, (s, a) —
O(s,))?

16: Sample t ~ tmm, tmax]) and the noisy action
a NN at|\/ Oét CLO'

17: Estimate €*(a¢, ay, s) with Equatlon 17

18: Update the noise prediction network: ¢ =
argming % Z ” 6¢(atv Qt, S) - 6*(ata Qt, S) ”%

19: Updtae target networks: 6; < 76; + (1 — 7)6;

20:  end for

21: end for

truncated standard Gaussian. This modification still gen-
erates samples according to the Gaussian function, but all
samples are bounded in the specified range.

Action Selection for inference. Previous studies (Chao
et al., 2024; Wang et al., 2023; Mao et al., 2024; Chen
et al., 2024b) have found that a deterministic policy typi-
cally outperforms its stochastic counterpart during testing.
Consequently, we employ an action selection technique to
further refine the policy after training. Specifically, M ac-
tion candidates are sampled from the diffusion policy, and
the action with the highest Q-value is selected to interact
with the RL environment.

4. Related Work

MaxEnt RL A variety of approaches have been proposed
to achieve the MaxEnt RL objective. SQL (Haarnoja et al.,
2017) introduces soft Q-learning to learn the optimal soft
Q-function and trains an energy-based model using the amor-
tized Stein variational gradient method to generate actions
according to the exponential of the optimal soft Q-function.
SAC (Haarnoja et al., 2018) presents the soft actor-critic
algorithm, which iteratively improves the policy towards
a higher soft value, and provides an implementation using

Gaussian policies. To improve the sample efficiency of SAC,
CrossQ (Bhatt et al., 2024) and BRO (Nauman et al., 2024)
construct larger critic networks and apply a suite of regular-
ization techniques to stabilize training. MEow (Chao et al.,
2024) employs energy-based normalizing flows as unified
policies to represent both the actor and the critic, simplifying
the training process for MaxEnt RL. This paper highlights
the importance of policy representation within the MaxEnt
RL framework: a more expressive policy representation
enhances exploration and facilitates closer convergence to
the optimal MaxEnt policy. Diffusion models, which are
more expressive than Gaussian distributions and energy-
based normalizing flows and easier to train and sample than
energy-based models, present an ideal policy representation
that effectively balances expressiveness and the complexity
of training and inference.

Diffusion Policies for Offline RL. Offline RL attempts to
learn a well-performing policy from a pre-collected dataset.
Collected by multiple policies, the offline datasets may ex-
hibit high skewness and multi-modality. Diffusion Policy
(Chi et al., 2023) trains a diffusion model to approximate
the multi-modal expert behavior by behavior cloning. To
optimize the policy for higher performance, Diffusion-QL
(Wang et al., 2023) combines the diffusion loss with Q-
value loss evaluated on the generated actions, CEP (Lu et al.,
2023) trains a separate guidance network using Q-function
to guide the actions to regions with high Q values, and EDA
(Chen et al., 2024b) employs direct preference optimization
to align the diffusion policy with Q-function. To improve
the training and inference speed of diffusion policy, EDP
(Kang et al., 2024) adopts action approximation and efficient
ODE sampler DPM-solver for action generation, and CPQL
(Chen et al., 2024c¢) utilizes the consistency policy (Song
et al., 2023), a one-step diffusion policy. Due to the lack of
online samples, the above approaches require staying close
to the behavior policy to prevent out-of-distribution actions
whose performances are unpredictable. However, in this
paper, we focus on online RL, where online interactions are
accessible to correct the errors in value evaluation. There-
fore, different techniques should be developed to employ
diffusion models in online RL.

Diffusion Policies for Online RL. In online RL, a key chal-
lenge lies in balancing exploration and exploitation. Pre-
vious studies (Psenka et al., 2024; Yang et al., 2023; Ding
et al., 2024; Wang et al., 2024) apply expressive diffusion
models as policy representations to promote the exploration
of the state-action space. QSM (Psenka et al., 2024) fits the
exponential of the Q-function by training a score network
to approximate the action gradient of the Q-function. DIPO
(Yang et al., 2023) improves the actions by applying the
action gradient of the Q-function and clones the improved
actions. QVPO (Ding et al., 2024) weights the diffusion
loss with the Q-value, assigning probabilities to actions that
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Figure 1. Learning curves on Mujoco benchmarks. The solid lines are the means and the shaded regions represent the standard deviations

over five runs.

are linearly proportional to the Q-value. DACER (Wang
et al., 2024) optimizes the Q-value loss to generate actions
with high Q values and adds extra noise to the generated
actions to keep a constant policy entropy. Unlike previous
approaches, we employ the MaxEnt RL objective to encour-
age exploration and enhance policy robustness. Similar to
QSM, we train the diffusion model to fit the exponential of
the Q-function. However, our Q-weighted noise estimation
method is more accurate and stable. Furthermore, we in-
clude policy entropy when computing the Q-function, which
can further promote exploration.

5. Experiments

In this section, we conduct experiments to address the fol-
lowing questions: (1) Can MaxEntDP effectively learn a
multi-modal policy in a multi-goal task? (2) Does the dif-
fusion policy outperform the Gaussian policy and other
generative models within the MaxEnt RL framework? (3)
How does performance vary when replacing the Q-weighted
Noise Estimation method with competing approaches, such
as QSM and iDEM? (4) How does MaxEntDP compare to
other diffusion-based online RL algorithms? (5) Does the
MaxEnt RL objective benefit policy training?

5.1. A Toy Multi-goal Environment

In this subsection, we use a 2-D multi-goal environment
(Haarnoja et al., 2017) to demonstrate the effectiveness of
MaxEntDP. In this environment, the agent is a 2-D point
mass trying to reach one of four symmetrically placed goals.
The state and action are position and velocity, respectively.
And the reward is a penalty for the velocity and distance

Figure 2. The generated trajectories during the training process.
From left to right are trajectories generated after 2k, 4k, and 6k
training steps. The goals are denoted by the red points.

from the closest goal. Under the MaxEnt RL objective, the
optimal policy is to choose one goal randomly and then
move toward it. Figure 2 shows the trajectories generated
by the diffusion policy during the training process. We can
see that MaxEntDP can effectively explore the state-action
space and learn a multi-modal policy that approaches the
optimal MaxEnt policy.

5.2. Comparative Evaluation

Policy Representations. To reveal the superiority of apply-
ing diffusion models as policy representations to achieve
the MaxEnt RL objective, we compare the performance of
MaxEntDP on Mujoco benchmarks (Todorov et al., 2012)
with other algorithms. Our chosen baseline algorithms in-
clude SAC (Chao et al., 2024), MEow (Chao et al., 2024),
and TD3 (Fujimoto et al., 2018). SAC and MEow are two
methods to pursue the same MaxRnt RL objective using
Gaussian policy and energy-based normalizing flow policy,
and TD3 provides a contrast to the deterministic policy. Fig-
ure 1 shows that MaxEntDP surpasses (a-d) or matches (e-f)
baseline algorithms on all tasks, and its evaluation variance
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(a) Learning Curve

(b) Standard Deviation of Target Noise Estimation
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Figure 3. Comparison between QNE and two competing methods,
QSM and iDEM on HalfCheetah-v3 benchmark. (a) Learning
curves. (b) Standard deviations of target noise (a.k.a. the scaled
score function) estimation computed on a batch of noisy actions.

is much smaller than other algorithms. This result indicates
that the combination of MaxEntRL and diffusion policy
effectively balances exploration and exploitation, enabling
rapid convergence to a robust and high-performing policy.

Diffusion Models Training Methods. In this subsection,
we demonstrate the advantages of the proposed Q-weighted
Noise Estimation method (QNE) on training diffusion mod-
els, compared to two competing methods, QSM and iDEM.
We replace the QNE module with QSM and iDEM to ob-
serve performance differences. As shown in Figure 3(a),
the performance of QSM and iDEM improves initially but
then fluctuates after reaching a high level. This may be
due to both methods relying on the gradient computation
of the Q-function to estimate the score function. When the
Q-value is large, its gradient typically varies much across
different actions, leading to a high variance in score function
estimation for QSM and iDEM, as illustrated in Figure 3(b).
This increased variance causes instability in the training of
the noise prediction network. In contrast, QNE exhibits
significantly lower variance, and its performance improves
steadily throughout the training process.

Diffusion-based Online RL Algorithms. We also compare
MaxEntDP with state-of-the-art diffusion-based online RL
algorithms: QSM, DIPO, QVPO, and DACER. These algo-
rithms adopt different techniques to seek a balance between
exploration and exploitation. Since the performances of
different exploration strategies depend quite a lot on the
characteristics of the RL tasks, none of the competing meth-
ods performs consistently well on all tasks, as shown by
Figure 4. In contrast, our MaxEntDP outperforms or per-
forms comparably to the top method on each task, showing
consistent sample efficiency and stability.

5.3. Ablation Analysis

In addition, we analyze the function of the MaxEnt RL ob-
jective by removing the probability approximation module
in MaxEntDP. After doing this, we compute the original
Q-function rather than the soft Q-function in the policy
evaluation step. As shown in Figure 5, the performance de-
creases and exhibits greater variance after excluding policy
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Figure 4. Learning curves of diffusion-based online RL algorithms.

entropy in the Q-function. This implies that the MaxEnt
RL objective can benefit policy learning: it not only encour-
ages the action distribution at the current step to be more
stochastic (by fitting the exponential of Q-function), but also
encourages transferring to the states with higher entropy (by
computing the soft Q-function). Therefore, the MaxEnt RL
objective shows a stronger exploration ability of the whole
state-action space, leading to an efficient and stable training
process.

(a) HalfCheetah-v3
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Figure 5. The learning curve of MaxEntDP with and without en-
tropy in Q-function computation.

6. Conclusion

This paper proposes MaxEntDP, a method to achieve the
MaxEnt RL objective with diffusion policies. Compared to
the Gaussian policy, the diffusion policy shows stronger ex-
ploration ability and expressiveness to approach the optimal
MaxEnt policy. To address challenges in applying diffusion
policies, we propose Q-weighted noise estimation to train
the diffusion model and introduce the numerical integration
technique to approximate the probability of diffusion policy.
Experiments on Mujoco benchmarks demonstrate that Max-
EntDP outperforms Gaussian policy and other generative
models within the MaxEnt RL framework, and performs
comparably to other diffusion-based online RL algorithms.

Limitations and Future Work. Since different RL tasks
require varying levels of exploration, we adjust the tem-
perature coefficient for each task and keep it fixed during
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training. Future work will explore how to automatically
adapt this parameter, making MaxEntDP easier to apply in
real-world applications.
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A. Theoretic Proofs.
A.1. Proofs for Soft Actor-Critic Algorithm
Our proof is based on the tabular setting, i.e., |S| < 00, |A| < oo and the replay buffer D covers all (s, a) € |S| x |AJ.

The soft Q-function of policy 7 is defined as:

Q" (st,ar) =7(s,a) + K,

> A (r(se11, @rpr) — Blog W(at+l|8t+l))1 ; (22)

=1

which satisfies:

oo

Q" (st,ai) =7(s,a) +E,p ZVZ(T(StHv aiy) — Blogm(aiii|sit))
=1

= r(s;, @) + By, [—yBlogm(ars1]sis1) +yr(sis, arsn) + Y7 (r(si41, ar41) — Blog w(at+l|st+l))]

=2

(23)

=r(st,a) +VE,,

=1

(24)
=1(8t,a1) + VEs, ~piarsr~r [—Blog T(@i1]8i41) + Q7 (8141, a41)] - (25)
Equation 25 is called the soft Bellman equation.
Lemma A.1. (Soft Policy Evaluation) Qg converges to the soft Q-function of g as L(§) — 0.
Proof. Define the soft Bellman operator 7™ as:
T"Q(s,a) =r(s,a) + VEs wpa~r [Q(s',a") — Blogm(a’|s")]. (26)
For two Q-function ) and Q’, we have
IT7Q(s,a) = T"Q'(s,a)| = WEsnp,ann [Q(s', a') — Q'(s',a)] 27
<AEsimparnn [|Q(s',a") — Q'(8',a')]] (28)
<y max |Q(s', o) — Q'(s', o) (29)
=71Q-Q (30)
Then
I17T7Q-T"Q oo <711 Q@ = Q" llos; 3D

which proves that the soft Bellman operator 7™ is a contraction. It has a unique fixed point Q™. When Q-function loss L(6) =
0, the Q-function Qg satisfies the soft Bellman equation Q¢ (s, a) = 7(s,a) +VEs wpa’nn, [Qo(s',a") — flogmy(a’(s’)]
for all (s,a) € |S| x |A|, indicating that QQy converges to the true soft function of 7. O

Lemma A.2. (Soft Policy Improvement) Let 4, € Il and assume Qg = Q™*x after soft policy evaluation. If 7y, | is the
minimizer of the loss defined in Equation 3, then Q™*++1(s,a) > Q™ (s, a) for all (s,a) € 8 x A with |A| < co.
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Proof. Since the new policy 7, , , is the minimizer of the loss defined in Equation 3, it holds that

1

€xXp 7Q9 S, -

TMoua (1|8) = arg min Dyy (W(’IS) W) (32)
. exp(£Q™x (s, -))

= argmin Dy <ﬂ<'|8> 77 (8) Gy

[ 1
— axgunig { Buegro l0gvlals) — 507 (5,0 + log 274 (5) |} (34)

S

[ 1

= arg min {anus) logm(als) — BQ’W (s, a)] + log Z™ (8)} (35)
S
. [ 1 .
= argmin {EQNW(,B) _1og m(als) — BQ (s, a)] } . (36)
Since 7y, € II, we have
1 - 1 -
anr%“(-\s) log 7y, ., (als) — BQ k(s,a)| < anmk(,|s) log 7y, (als) — BQ k(s ,a)l . (37)
According the soft Bellman equation, the Q-function of 7y, satisfies

Q% (st,a¢) = 1(8t,at) + VEs, i mparsimvms, [Q7F (St41, @ry1) — Blogmg, (aeg1]si41)] (38)
< 1(8t,at) +VEs i mparing,,, [Q7% (St41,et1) — Blog Ty, (@rtr|ser1)] (39)
= T(stv at) + 7E8t+1~p7at+1~ﬂ'¢k+l [T(stJrlv at+1) - ﬂ IOg T g1 (at+1 |st+1)] (40)

+ 72E3t+1~p7at+l~ﬂ-¢k+1 1842~ Q42 VT [Q”dm (8t+2,a112) — Blog Ty, (at+2‘3t+2)] 41)

: (42)
< QT (s, ay), (43)

which is proved by repeatedly expanding Q7 ¢« using the soft Bellman equation and applying Equation 37. Then the proof
for Lemma A.2 is completed. O

Theorem A.3. (Soft Policy Iteration) In the tabular setting, let L(0),) = 0 and L(¢$y.) be minimized for each k. Repeated
application of policy evaluation and policy improvement, i.e., k — oo, mg, will converge to a policy ©* such that
Q™ (s,a) > Q" (s,a) forall w € Mand (s,a) € S x Awith |A| < co.

Proof. According to Lemma A.1 and A.2, when L(0)) = 0 and L(¢x) be minimized for each k, we have Vk, Q"¢»+1 >
Q™. This indicates that the sequence Q™+ is monotonically increasing. Furthermore, the Q-function is bounded since
both the reward and entropy are bound. Therefore, when & — oo, the policy sequence converges to some 7*. Below we will
prove that 7* is the optimal MaxEnt policy within 7.

Since 7* has already converged, it satisfies

7*(|s) = arggleill_ll {anﬁus) {10g7r(a|s) — %Q”*(s7 a)] } (44)

following Equation 36. Then for all 7 € II, it holds that
Eqre(.|s) [logm"(als) — ;Q”*(s,a)} < Eannr(|s) {log m(als) — ;Q’T*(s,a)] . (45)
Using the same iterative argument as in the proof of Equation 43, we can derive Q™ (s,a) > Q™ (s, a) forall (s,a) € Sx A.
Consequently, 7* is the optimal MaxEnt policy within II. The proof is completed. O
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A.2. The Decomposition of the Condition Distribution p(a|a;)

According to the Bayesian rule, the conditional distribution p(ag|a;) satisfies:

p(ao)p(atlao)

plaolar) = (@0) (46)
o p(ag)p(atlao) (47)
o exp(BQ(ao))N(at\\/a(at)ao, o(—a)I), (48)

where Equation 48 is derived by substituting Equation 9 and 10. For the same ag and a;, the probability density of a;
following the Gaussian distribution N (a|+/c(a;)ag, o(—ay)I) is equal to the probability density of ag following the

o(=ay)
o (o)

Gaussian distribution N (ao| \/ﬁat, TI) up to a constant to compensate for the scale difference between the two
t

random variables. Then we have

1 o(—ay)

1
apla;) x exp(=Q(ag))N(a ay, I). 49
plaolar) x exp(5Q(a0)N (a0l s, S 1) 49)
A.3. Estimating the Score Function with Importance Sampling
The score function satisfies
Va, logp(ar) = Eyagla,) [Va, logpailao)] (50)
—E (‘10"”) Va, log pla]ao) (51)
= aONN(aO|ﬁat7%D N(ao|——ay, °C “§)I) a; l0gplatag
\/7 ' o(on
= Bapntanl 2 tezin @ [0(a0)Va, log plalao)] (52)
B a; — +/o(ap)ag
- EGONN(adﬁ%ﬁafj) ) —w(ao)—g(iat) ; (53)
where the importance ratio w(ag) = W with Z(a;) = [ exp(5Q(a0))N (aol \/7at, (= O‘t)I)dao being the
normalizing constant of p(ag|a:). Let ag = T L af + V\;(( a;) €, then Equation 53 can be rewritten as
1
Va,logp(ai) = ———= - Ecn(o.1) [w(ao)e] (54)
o(—au)
K
1 1 o
S — w(ay)€e’, (55)
o) K ; (af)
where €!,..., & ~ N(0,1), a} = ———a; + ozon) i,

Volar)

A.4. The Derivation of the iDEM Method

V(o)

We provide the derivation of the iDEM method to demonstrate the difference and relationship between Q-weighted noise
estimation and iDEM. Our derivation is equivalent to the official proof of iDEM, although in a different way.

Since Vg, logJ\/'(ag|\/7 g, 22 e = /o(ay) mfav( Uia)*)ao and V,, log p(a|ag) = _“67 V("ia)*)‘“’ it holds that

1 1 o(—ay)
Va,l atlag) = ————=Vyq, log N a,
ogp(a:lao) o(ay) ogN(aol o () K o(ay)

I). (56)
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Substitute Equation 56 into Equation 52, we have

1 1 o(—ay)
Va,l =-———EF o(—a Va, log N , I 57
t ng(at) O’(th) ao~N(ag| ——— =ar, a(wtt))I) [w(aO) 0 108 (a0|\/mat O'(Ott) ) (57)
_ / w(@ao)Va, N (aol ar, 25 1dap, (58)
/o () a(at) o)
After applying the integration by parts formula, Equation 58 can be expanded to
1 o(—ay)
Va, logp(a /Vawa -N(a ag, Iday. 59
gp(at) = \/7 0 0 (aol () t o (o) )dag (39)
. _ exp(3Q(a0)) .. . _ 1
Since w(ag) = —F(a,y it satisfies that Va,w(ag) = w(ag)Va,5Q(ao). Then we have
1 1 1 o(—ay)
Va, logp(a zi/wa Va —=Qlag) - N(a a;, Ida 60
gp(at) Jotan (ao) OBQ( 0) - N(ao| o™ ola) )dag (60)
1 1
= o P iy 2000 Va0l @

Equation 61 appears similar to Equation 53, except that the random variable in the expectation transfers from Q-weighted
noise to Q-weighted gradient. Utilizing the same weighted importance sampling method as Q-weighted noise, the score
function can be estimated by

1 X w(a) 1 ;
ol ~ : V.. ~Q(al 62
v t ng(at) O'(Oét) ; Z]}( 1w(a6) QBQ(G’O) ( )
(5QaF"): V., 5Qlah). (63)

A.5. Probabity Approximation of Diffusion Policy using Numerical Integration Techniques

We use numerical integration techniques to estimate the following integral:

1 e
logpofan) =~ 5 [ B[l e~ eslanar) 3] das, (64
wherec = — & log(27re +8 f o (¢ )day with d being the dimension of ag, € ~ N'(0,1I), a; = v/o(ar)ao++/o(—ay)e.

First, using the equation oy = log 1f£foéfl)f), we change the integral variable from «; to o(ay) as o(ay) has a narrow
integration domain of (0, 1):

dO’(O{t)

o(ano(—ar)’ ()

d I
logps(an) =~ og(2ne) + 5 | (d- a(a0) ~ Be [ € - cofar,ar) ]
0
In practice, we calculate the integral between [o(ay,, ), o(ay,,, )] for numerical stability, where in our experiments, tmin =
le — 3 and tyax = 0.9946. Obtain T' + 1 discrete timesteps by setting ¢; = tpiy, + = (tmax —tmin), @ = 0,1,...,T. Then the
integration domain of [o(ay,, ), o (o, )] is split into T intervals, where the range of the i-th segment is [o(ay, ), o (o, _,)]-
Using the left-hand endpoints to represent the function value of each interval, the integral can be approximated by

~

g pa(an) =~ log(2ne) + 3 3" (d-olan,) ~ B [| €~ eolan ) [f]) o700 o)

Estimating the noise predicting error E. [|| € — €4(as,, o,) ||3] using Monte Carlo samples, we have

U(ati—l) B U(ati)

U(ati>0(_ati)

T N
d 1 1 , ;
logps(ag) =~ —= log (2me) + 5 Z d-o N Z | € —eg(al,, o) B , (67)
i=1 j=1
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where €',..., €N ~ N(0,1), a], = \/o(ay,)ao + \/o(—a,)€’. The equation 67 can be short for

T
1 -
1ng¢(a'0) ~c + 5 E Wt (d ' U(ati) - €¢(ati7 atz‘)) (68)

i=1

o(ay,_)—o(ay,)
o’(ati)a(fati)
noise prediction error estimation at ¢;.

where ¢ = — 4 log(2me), wy, = is the weight at t;, €y(ay,, o) = E;\Ll | € — eslal,,ay,) |13 s the

B. Supplementary Related Work on Diffusion-based Energy Models

A line of work focuses on applying the expressive diffusion models to approximate the exponential of a given energy
function. QSM (Psenka et al., 2024) trains the score function by aligning it with the gradient of the energy function. iDEM
(Akhound-Sadegh et al., 2024) proposes a weighted sum of the gradient of the energy function to estimate the true score
function. These two approaches, which are based on gradient computation, suffer from a large estimation variance and
demonstrate training instability when used for diffusion policy optimization, as evidenced in Section 5.2. Recently, a work
(Sendera et al., 2024) considers the Euler-Maruyama samplers of diffusion models as continuous generative flow networks
(GFlowNets), and exploits the trajectory balance objective to train diffusion models. In this method, a replay buffer is used
to store the sample generation trajectories of diffusion models, which may cause a heavy memory burden. The model-based
diffusion (Pan et al., 2024) proposes the Monte Carlo estimation for computing the score function and uses the Monte Carlo
score ascent to generate samples following the Boltzmann distribution of a given function. The model-based diffusion is
similar to our QNE method, however, QNE has several properties that matter in RL training:

* We use a parameterized network to approximate the scaled score function, while the model-based diffusion needs to
compute the score function using Monte Carlo estimation when generating samples. Therefore, sample generation of
diffusion-based diffusion is time-consuming, which will slow the training speed of the RL algorithms.

* We adopt ancestral sampling in DDPM to generate samples, that are more diverse than that of Monte Carlo score ascent
used in model-based diffusion.

* We propose to modify the standard Gaussian to the truncated Gaussian in QNE to model the action distribution with a
bounded action space. However, model-based diffusion can not address such a bounded distribution.

These properties make QNE well-suited for the optimization of diffusion policy.

C. Experimental Details
C.1. Hyperparameters Settings

All experiments in this paper are conducted on a GPU of Nvidia GeForce RTX 3090 and a CPU of
AMD EPYC 7742. Our implementation of SAC, MEow, TD3, QSM, DACER, QVPO, and DIPO follows
their official codes: https://github.com/toshikwa/soft-actor-critic.pytorch, https://github.com/ChienFeng-hub/meow,
https://github.com/sfujim/TD3, https://github.com/Alescontrela/score_matching_rl, https://github.com/happy-yan/DACER-
Diffusion-with-Online-RL, https://github.com/wadx2019/qvpo, and https://github.com/BellmanTimeHut/DIPO. The shared
hyperparameters of all algorithms are listed in Table 12.

C.2. Training time

The training time for all algorithms is presented in Table 2. Leveraging the computation efficiency of JAX (Frostig et al.,
2018) and the parallel processing capabilities of GPU, MaxEntDP demonstrates high training efficiency compared to
competing methods, only behind TD3 and QSM. This highlights its advantage for real-world applications that require high
computation efficiency.

2When comparing with other diffusion-based algorithms, MaxEntDP uses 3-layer MLPs as the actor and critic networks following the
default settings of these algorithms. In other experiments, 2-layer MLPs are used as they can already attain good performance.
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Table 1. The shared hyperparameters of all algorithms.

Hyperparameter MaxEntDP  SAC MEow TD3 QSM DACER QVPO DIPO
Batch size 256 256 256 256 256 256 256 256
Discount factor «y 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Target smoothing coefficient 7 0.005 0.005 0.005 0.005 0.005 0.005 0.005  0.005
No. of hidden layers 2 2 2 2 3 3 3 3
No. of hidden nodes 256 256 256 256 256 256 256 256
Actor learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Critic learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Activation mish relu relu relu mish mish mish mish
Replay buffer size le6 le6 le6 le6 le6 le6 le6 le6
Diffusion steps 20 N/A N/A N/A 20 20 20 20
Action candidate number 10 N/A N/A N/A N/A N/A 32 N/A

Table 2. The comparison of training time on HalfCheetah-v3 benchmark.

Algorithm (2-layer MLP)  MaxEntDP (jax) SAC MEow TD3
Training time (h) 3.9 4.6 11 1.7

Algorithm (3-layer MLP) MaxEntDP (jax) QSM (jax) DACER (jax) QVPO DIPO
Training time (h) 5.5 1.9 5.9 22.6 55.6

D. Supplementary Experiments

D.1. Hyperparameter Analysis

In this subsection, we analyze the effect of different hyperparameter settings on the performance:

L]

Sample Number for Q-weighted Noise Estimation. The Q-weighted noise estimation can be seen as a weighted
importance sampling method to estimate the training target of the noise prediction network. With more samples, the
estimation will be more accurate and less varied, which benefits the training of diffusion policy. This is consistent with
the observation in Figure 6(a) that the performance will be better with a larger K. We select K = 500 since it can
obtain good performance and cause relatively small computation costs.

Sample Number for Probability Approximation. For probability approximation of diffusion policy, several Monte
Carlo samples are utilized to estimate the noise prediction error at each diffusion timestep. This sample number is also
preferred to be large for higher accuracy and less variance. The performance of different sample numbers N is shown
in Figure 6(b). We set N = 50 after trading off performance and computation efficiency.

Diffusion Steps. Due to the discretization error of ODE solvers, the actual distribution of generated actions may be
different from the diffusion policy induced by the noise prediction network. Therefore, when the diffusion steps 7'
is small, the non-negligible discretization error will disrupt the training process and lead to a performance drop. As
shown in Figure 6(c), the performance is higher with larger 7". We choose T' = 20 as the default setting for a balance
between performance and computation efficiency.

Candidate Number for Action Selection. By selecting the action with the highest Q-value among several action
candidates, the action selection technique can further improve the performance of the diffusion policy when testing.
Figure 6(d) demonstrates that a larger number of action candidates will result in a better performance. Consequently,
we set M = 10 by default.

Temperature Coefficient. The temperature coefficient 3, which determines the exploration strength, is an important
parameter in the MaxEnt RL framework. Since the difficulty and reward scales vary across different tasks, different 3
need to be set for different tasks. We sweep over [0.01,0.02,0.05,0.1,0.2] to find the optimal setting for each task,
displaying the results in Figure 7. The temperature coefficient selected for each task is listed in Table 3.
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Figure 6. Learning curves of different parameter settings on HalfCheetah-v3 benchmark. (a) Testing different numbers of samples K for

Q-weighted noise estimation. (b) Testing different numbers of samples N for probability approximation. (c) Testing different diffusion
steps 1'. (d) Testing different candidate numbers M for action selection.

Table 3. The temperature coefficients adapted for each benchmark.

Benchmark Temperature coefficient
Ant-v3 0.05
HalfCheetah-v3 0.2
Hopper-v3 0.05
Humanoid-v3 0.02
Swimmer-v3 0.01
Walker2d-v3 0.01

D.2. Multimodal Policy Learning on the Challenging AntMaze Benchmarks

We adopt the AntMaze benchmarks proposed in DDiffPG (Li et al., 2024) to test the multi-modal policy learning ability
of MaxEntDP on the challenging high-dimensional RL tasks. In this environment, the agent is a quadruped robot trying
to reach the specified goals. Instead of the sparse reward employed in DDiffPG, we use a dense reward, a penalty for the
distance from the closest goal, to guide policy learning. We demonstrate the trajectories generated by MaxEntDP and
SAC after IM environment interactions in Figure 8. MaxEntDP can learn diverse behavior modes even in the challenging
high-dimensional tasks, while SAC fails to learn different solutions. In addition, we visualize state coverage through the
training process for MaxEntDP and SAC, showing the results in Figure 9. We can see that MaxEntDP can explore multiple
behavior modes at the same time, while SAC focuses only on a simple mode. This reveals the importance of using the
expressive diffusion policy for efficient exploration and multimodal policy learning.

D.3. Comparative Evaluation on the DeepMind Control Suite

We test MaxEntDP on 3 high-dimensional tasks on the DeepMind Control Suite benchmarks. The performance comparison
with SAC, MEow, and TD3 is displayed in Figure 10. MaxEntDP outperforms other baseline algorithms on these challenging
high-dimensional RL tasks.
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Figure 7. Learning curves of different temperature coefficients on Mujoco benchmarks.

D.4. Testing the Accuracy of the Proposed Numerical Integration Technique on Probability Approximation

In theory, the numerical integration will be accurate when the diffusion step 7" and the number of samples IV for probability
approximation become large enough, according to the Law of Large Numbers. To exhibit the accuracy of different T’
and N, we conduct experiments on a simple 2-D toy example where the target distribution p(x) is a mixture of four
Gaussian distributions with equal weights. Therefore, we set Q(z) = log p(x) and utilize the QNE method proposed in
our paper to train a diffusion model. We display the approximation results of different 7" and N in Figure 11. The setting
T = 20, N = 50 used in the paper can provide an effective probability approximation for the diffusion policy. When the
samples are less (I' = 20, N = 20), although there is a non-negligible error to the ground truth, the numerical integration
method can still assign higher values for the region with higher probability. In this case, the estimated log probability can be
considered as a kind of intrinsic curiosity reward to promote the exploration of the action region with low policy probability.
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Figure 8. Trajecories generated by MaxEntDP and SAC after 1M environment interactions in Antmaze benchmarks.
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Figure 9. State coverage of MaxEntDP and SAC after 1M environment interactions in Antmaze benchmarks. MaxEntDP can explore
different behavior modes at the same time and show broader state coverage than SAC, exhibiting efficient exploration of the high-
dimensional state-action space.
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Figure 10. Learning curves on DeepMind Control suite. The solid lines are the means, and the shaded regions represent the standard
deviations over five runs.
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(a) True log probability (b) Estimated log probability

Figure 11. The probability approximation using numerical integration method on a 2-D toy example with different diffusion steps 7" and
sample numbers N. The target distribution is a mixture of four Gaussian distributions, whose means are (-0.5, -0.5), (-0.5, 0.5), (0.5,
0.5) and (0.5, -0.5). The standard deviations and weights of the four components are the same, which are 0.1 and 0.25, respectively.
The setting in the paper (1" = 20, N = 50) can provide an effective approximation for the true log probability. When fewer samples
(T = 20, N = 10) are used, despite some estimation errors, our method can still assign higher values to high-probability regions.

21



