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Abstract

Predicting a sequence of actions has been crucial in the success of recent behavior
cloning algorithms in robotics. Can similar ideas improve reinforcement learning
(RL)? We answer affirmatively by observing that incorporating action sequences
when predicting ground-truth return-to-go leads to lower validation loss. Motivated
by this, we introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS),
a novel value-based RL algorithm that learns a critic network that outputs Q-values
over a sequence of actions, i.e., explicitly training the value function to learn the
consequence of executing action sequences. Our experiments show that CQN-AS
outperforms several baselines on a variety of sparse-reward humanoid control
and tabletop manipulation tasks from BiGym and RLBench. Code is available at:
https://younggyo.me/cqn-as/
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Figure 1: Summary of results. Coarse-to-fine Q-Network with Action Sequence (CQN-AS) learns a
critic network with action sequence. CQN-AS outperforms various RL and BC baselines such as
CQN (Seo et al., 2024), DrQ-v2+ (Yarats et al., 2022), and ACT (Zhao et al., 2023) on 45 robotic
tasks from BiGym (Chernyadev et al., 2024) and RLBench (James et al., 2020).

1 Introduction

Predicting action sequences from expert trajectories is a key idea in recent successful behavior cloning
(BC; Pomerleau 1988) approaches in robotics. This has enabled policies to effectively approximate
the noisy, multi-modal distribution of expert demonstrations (Zhao et al., 2023; Chi et al., 2023). Can
this idea similarly be useful for reinforcement learning (RL)?

Our initial finding is affirmative: we make an intriguing observation that using action sequences
can enhance value learning. Specifically, with humanoid demonstrations from BiGym (Chernyadev
et al., 2024), we train regression models that predict the ground-truth return-to-go, i.e., the sum of
discounted future rewards from the timestep t, given the current observation and action. In Figure 2a,
we find that using an action sequence at:t+K = {at, ...,at+K−1} as input results in lower validation
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Figure 2: Analyses. (a) We measure the improvement in the validation L1 loss of the return-to-go
prediction model with different action sequence lengths. We find that using action sequence of length
50 results in the lower loss than using single-step action. (b) We find that SAC and TD3 with action
sequences suffer from severe value overestimation in stand task from HumanoidBench, which leads
to random near-zero performance. (c) Actor-critic algorithms like TD3 become vulnerable to value
overestimation when redundant no-op actions are added to the action space. In contrast, a critic-only
algorithm that uses discrete actions, CQN, is robust with high-dimensional action spaces.

losses than using a single-step action at. We hypothesize this is because action sequences, which
can correspond to behavioral primitives such as going straight, make it easier for the model to learn
the long-term outcomes compared to evaluating the effect of individual single-step actions (see
Appendix A for additional analysis based on a 2D Point-mass environment).

Building on this observation, we train actor-critic algorithms (Haarnoja et al., 2018; Fujimoto et al.,
2018) with action sequence on stand task from HumanoidBench (Sferrazza et al., 2024). Specifically,
we train the actor to output action sequence and the critic to take action sequence as inputs instead of
single-step actions. However, we find these algorithms with action sequences suffer from severe value
overestimation (see Figure 2b) and completely fail to solve the task. This is because a wider action
space makes the critic more vulnerable to function approximation error (Fujimoto et al., 2018) and
the actor excessively maximizes value functions by exploiting this estimation error. To further support
this, in Figure 2c, we report additional toy experiments where we introduce redundant no-op actions
for training TD3 agents on Cheetah Run task (Tassa et al., 2020). Here, we find that actor-critic
algorithms are indeed vulnerable to value overestimation with high-dimensional action spaces.

This result motivates us to design our RL algorithm with action sequence upon a recent critic-only
algorithm, i.e., Coarse-to-fine Q-Network (CQN; Seo et al. 2024), which solves continuous control
tasks with discrete actions. Because there is no separate actor that may exploit value functions, i.e.,
CQN simply selects discrete actions with the highest Q-values, we find that training with action
sequences is stable and thus avoids value overestimation problem (see Figure 2c). In particular, we
introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), which learns a critic network
that outputs Q-values over a sequence of actions (see Figure 3). By training the critic network to
explicitly learn the consequence of taking a sequence of current and future actions, CQN-AS enables
the RL agents to effectively learn useful value functions on challenging robotic tasks.

Our experiments show that CQN-AS improves the performance of CQN on sparse-reward humanoid
control tasks from BiGym benchmark (Chernyadev et al., 2024) that provides human-collected
demonstrations and sparse-reward tabletop manipulation tasks from RLBench (James et al., 2020)
that provide demonstrations generated via motion-planning. Considering that CQN-AS is a critic-only
algorithm that selects actions with the highest Q-value without a separate actor network, these results
highlight the benefit of using action sequences in value learning.

Our contributions can be summarized as below:

• We make an observation that shows using action sequences can be useful for RL by enhancing
value learning. We also show that standard actor-critic algorithms (Haarnoja et al., 2018;
Fujimoto et al., 2018) suffer from value overestimation when trained with action sequences.

• We introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS) that trains a critic
network to output Q-values over action sequences. This critic-only algorithm successfully
avoids value overestimation problem and enhances the base CQN algorithm.
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Figure 3: Coarse-to-Fine Q-Network with Action Sequence. CQN-AS extends Coarse-to-Fine Q-
Network (CQN; Seo et al. 2024), a critic-only RL algorithm for continuous control using discretized
actions. (a) CQN progressively zooms into the action space by discretizing it into B bins and finding
the bin with the highest Q-value to further discretize at the next level. Last level’s action sequence
is used for controlling robots. CQN-AS generalizes this to action sequences by computing all K
actions in parallel. (b) We train a critic to predict Q-values over entire action sequences by extracting
per-step features and aggregating them with a recurrent network before projection to Q-values.

• In a demo-driven RL setup that initializes training with expert demonstrations, we show that
CQN-AS surpasses the performance of ACT (Zhao et al., 2023) – a BC algorithm that trains
a Transformer (Vaswani et al., 2017) to predict action sequences.

2 Preliminaries

We formulate a robotic control problem as a partially observable Markov decision process (Kaelbling
et al., 1998; Sutton & Barto, 2018). At time step t, an RL agent encounters an observation ot, executes
an action at, receives a reward rt+1, and encounters a new observation ot+1 from the environment.
We aim to train a policy π that maximizes the expected sum of rewards through RL while using as
few online samples as possible, optionally with access to a modest amount of expert demonstrations.

Inputs and encoding Given visual observations ov
t = {ov1

t , ...,ovM
t } from M cameras, we encode

each ovi
t using convolutional neural networks (CNN) into hvi

t . We then process them through a series
of linear layers to fuse them into hv

t . If low-dimensional observations olowt are available along with
visual observations, we process them through a series of linear layers to obtain hlow

t . We then use
concatenated features ht = [hv

t ,h
low
t ] as inputs to the critic network. In domains without vision

sensors, we simply use olowt as ht without encoding the low-dimensional observations.

Coarse-to-fine Q-Network Coarse-to-fine Q-Network (CQN; Seo et al. 2024) is a critic-only RL
algorithm that solves continuous control tasks with discrete actions. CQN trains an RL agent to learn
to select coarse discrete actions in shallower levels with larger bin sizes, and then refine their choices
by selecting finer-grained actions in deeper levels with smaller bin sizes. Specifically, CQN iterates
the procedures of (i) discretizing the continuous action space into multiple bins and (ii) selecting the
bin with the highest Q-value to further discretize. This reformulates the continuous control problem
as a multi-level discrete control problem, allowing for the use of ideas from sample-efficient discrete
RL algorithms (Mnih et al., 2015; Silver et al., 2017) for continuous control.

Formally, let alt be an action at level l with a0t being the zero vector.1 We then define the coarse-to-fine
critic to consist of multiple Q-networks which compute Q-values for actions at each level alt, given
the features ht and actions from the previous level al−1

t , as follows:

Ql
θ(ht, a

l−1
t ) =

[
Ql

θ(ht, a
l
t = al,bt , al−1

t )
]B
b=1

∈ RB (1)

1For simplicity, we describe CQN and CQN-AS with a single-dimensional action in the main section. See
Appendix C for full description with N -dimensional actions.
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where al,bt denotes an action for each bin b and B is the number of bins for each level. We note that
CQN uses scalar values representing the center of each bin for previous level’s action al−1

t , enabling
the network to locate itself without access to all previous levels’ actions. We optimize each Q-network
at level l with the following objective:

Ll =
(
Ql

θ(ht, a
l
t, a

l−1
t )− rt+1 − γmax

a′
Ql

θ̄(ht+1, a
′, πl−1(ht+1)

)
,

where θ̄ are delayed parameters for a target network (Polyak & Juditsky, 1992) and πl is a policy
that outputs the action alt at each level l via the inference steps with our critic, i.e., πl(ht) = alt.
Specifically, to output actions at time step t, CQN first initializes constants alowt and a

high
t with −1

and 1. Then the following steps are repeated for l ∈ {1, ..., L}:

• Step 1 (Discretization): Discretize an interval [alowt , ahight ] into B uniform intervals, and each of
these intervals become an action space for Ql

θ.

• Step 2 (Bin selection): Find a bin with the highest Q-value and set alt to the centroid of the bin.

• Step 3 (Zoom-in): Set alowt and ahight to the minimum and maximum of the selected bin, which
intuitively can be seen as zooming-into each bin.

We then use the last level’s action aLt as the action at time step t. For more details, including the
inference procedure for computing Q-values, we refer readers to Appendix C.

3 Method

We present Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a value-based RL algorithm
that learns a critic network that outputs Q-values for a sequence of actions at:t+K = {at, ..., at+K−1}
for a given observation ot. Our main motivation comes from one of the key ideas in recent BC
approaches: predicting action sequences, which helps resolve ambiguity when approximating noisy
distributions of expert demonstrations (Zhao et al., 2023; Chi et al., 2023). Similarly, by explicitly
learning Q-values of a sequence of actions from the given state, our approach mitigates the challenge
of learning Q-values with noisy trajectories. We provide the overview of CQN-AS in Figure 3.

3.1 Coarse-to-fine Critic with Action Sequence

Objective Let alt:t+K = {alt, ..., alt+K−1} be an action sequence at level l and a0t:t+K be a zero
vector. We design our coarse-to-fine critic network to consist of multiple Q-networks that compute
Q-values for each action at sequence step k ∈ {1, ...,K} and level l ∈ {1, ..., L}:

Ql,k
θ (ht, a

l−1
t:t+K) =

[
Ql,k

θ (ht, a
l,b
t+k−1, a

l−1
t:t+K)

]B
b=1

∈ RB

where al,bt+k−1 denotes an action for each bin b at step k. We optimize our critic network with the
following objective:∑

k

∑
l

(
Ql,k

θ (ht, a
l
t+k−1, a

l−1
t:t+K)−

∑N

i=1
rt+i − γmax

a′
Ql,k

θ̄
(ht+1, a

′, πl−1
K (ht+1)

)2
, (2)

where N is a hyperparameter for N -step return and πl
K is an action sequence policy that outputs the

action sequence alt:t+K by following the similar inference procedure as in Section 2 (see Figure 3a).
In practice, we compute Q-values for all sequence step k ∈ {1, ...,K} in parallel, which is possible
as Q-values for future actions depend only on features ht but not on previous actions.

Remarks on objective with N -step return We note that any N -step return can be used in Equa-
tion 2 because the network can learn the long-term value of outputting action at+k from bootstrapping.
There is a trade-off: if one considers a short N -step return, it can cause a challenge as the setup
becomes a delayed reward setup; but training with higher N -step return may introduce variance
(Sutton & Barto, 2018). In our considered setups, we empirically find that using common values
N ∈ {1, 4} works the best. We provide empirical analysis on the effect of N in Figure 8c.
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Figure 4: Examples of robotic tasks. We study CQN-AS on 25 humanoid control tasks from BiGym
(Chernyadev et al., 2024) and 20 tabletop manipulation tasks from RLBench (James et al., 2020).

Architecture Our critic network initially extracts features for each sequence step k and aggregates
features from multiple steps with a recurrent network (see Figure 3b). This architecture is helpful
in cases where a single-step action is already high-dimensional so that concatenating them make
inputs too high-dimensional. Specifically, let ek denote an one-hot encoding for k. At each level
l, we construct features for each sequence step k as hl

t,k =
[
ht, a

l−1
t+k−1, ek

]
. We then encode

each hl
t,k with a shared MLP network and process them through GRU (Cho et al., 2014) to obtain

slt,k = fGRU
θ (fMLP

θ (hl
t,1), ..., f

MLP
θ (hl

t,k). We find that this design empirically performs better than
directly giving actions as inputs to GRU. We then use a shared projection layer to map each slt,k into
Q-values at each sequence step k, i.e., [Ql,k

θ (ht, a
l,b
t+k−1, a

l−1
t:t+K)]Bb=1 = fproj

θ (slt,k).

3.2 Action Execution and Training Details

Executing action with temporal ensemble With the policy that outputs an action sequence at:t+K ,
one question is how to execute actions at time step i ∈ {t, ..., t+K − 1}. For this, we use temporal
ensemble (Zhao et al., 2023) that computes at:t+K every time step, saves it to a buffer, and executes
a weighted average

∑
i wiā

i
t/

∑
wi where āit denotes an action for step t computed at step t − i,

wi = exp(−m ∗ i) denotes a weight that assigns higher value to more recent actions, with m as a
hyperparameter that adjusts the weighting magnitude. We find this scheme outperforms the alternative
of computing at:t+K every K steps and executing each action for subsequent K steps on most tasks
we considered, except on several tasks that need reactive control.

Storing training data When storing samples from the environment, we store a transition
(ot, ât, rt+1,ot+1) where ât denotes an action executed at time step t. For instance, if we use
temporal ensemble for action execution, ât is a weighted average of action outputs obtained from
previous K time steps, i.e., ât =

∑
i wiā

i
t/

∑
wi.

Sampling training data from a replay buffer When sampling training data from the replay buffer,
we sample a transition with action sequence, i.e., (ot, ât:t+K , rt+1,ot+1). If we sample time step t
near the end of episode so that we do not have enough data to construct a full action sequence, we fill
the action sequence with null actions. In particular, in position control where we specify the position
of joints or end effectors, we repeat the action from the last step so that the agent learns not to change
the position. In torque control where we specify the force to apply, we set the action after the last
step to zero so that agent learns to not to apply force.

4 Experiment

We study CQN-AS on 25 humanoid control tasks from BiGym (Chernyadev et al., 2024) and 20
tabletop manipulation tasks from RLBench (James et al., 2020) (see Figure 4 for examples of robotic
tasks). To focus on challenging robotic tasks that aim to induce policies generating realistic behaviors,
we consider a practical setup of demo-driven RL where we initialize training with a modest amount
of expert demonstrations and then train with online data. In particular, our experiments are designed
to investigate the following questions:

• Can CQN-AS quickly match the performance of a recent BC algorithm (Zhao et al., 2023)
and surpass it through online learning? How does CQN-AS compare to previous model-free
RL algorithms (Yarats et al., 2022; Seo et al., 2024)?

• What is the effect of each component in CQN-AS?

• Under which conditions is CQN-AS effective?
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Figure 5: BiGym results on 25 sparsely-rewarded mobile bi-manual manipulation tasks. All RL
algorithms are trained from scratch, with a replay buffer initialized with 17 to 60 human-collected
demonstrations, and with an auxiliary BC objective. We report the success rate over 25 episodes. The
solid line and shaded regions represent the mean and confidence intervals, respectively, across 8 runs.

Baselines We consider model-free RL baselines that learn deterministic policies, as we find that
stochastic policies struggle to solve fine-grained manipulation tasks. Specifically, we consider (i)
Coarse-to-fine Q-Network (CQN; Seo et al. 2024), our backbone algorithm and (ii) DrQ-v2+, an
optimized demo-driven variant of an actor-critic algorithm DrQ-v2 (Yarats et al., 2022) that uses a
deterministic policy algorithm and data augmentation. We further consider (iii) Action Chunking
Transformer (ACT; Zhao et al. 2023) that trains a transformer (Vaswani et al., 2017) policy to predict
action sequences from expert demonstrations and utilizes temporal ensemble, as our BC baseline.

Implementation details For training with expert demonstrations, we follow the setup of Seo et al.
(2024). We keep a separate replay buffer that stores demonstrations and sample half of training data
from demonstrations. We also relabel successful online episodes as demonstrations and store them in
the demonstration replay buffer. For CQN-AS, we use an auxiliary BC loss from Seo et al. (2024)
based on large margin loss (Hester et al., 2018). For actor-critic baselines, we use an auxiliary BC
loss that minimizes L2 loss between the policy outputs and expert actions.

4.1 BiGym Experiments

We study CQN-AS on mobile bi-manual manipulation tasks from BiGym (Chernyadev et al., 2024).
BiGym’s human-collected demonstrations are often noisy and multi-modal, posing challenges for
RL algorithms. These algorithms must effectively leverage the information within demonstrations to
learn strong initial behaviors, thereby mitigating exploration difficulties in sparsely rewarded tasks.

Setup We consider 25 BiGym tasks with 17 to 60 demonstrations2. We use RGB observations
with 84×84 resolution from head, left_wrist, and right_wrist cameras. We also use low-
dimensional proprioceptive states. We use (i) absolute joint position control action mode and (ii)

2BiGym benchmark provides different number of successful demonstrations for each task. But we use the
same number of demonstrations for all algorithms. See Appendix B for more details.
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Figure 6: RLBench results on 20 sparsely-rewarded tabletop manipulation tasks from RLBench
(James et al., 2020). All RL algorithms are trained from scratch, with a replay buffer initialized with
100 synthetic demonstrations generated via motion-planning, and with an auxiliary BC objective.
As expected, with synthetic demonstrations, CQN-AS achieves similar performance to CQN on
most tasks. However, CQN-AS often significantly outperforms baselines on several challenging,
long-horizon tasks such as Open Oven. We report the success rate over 25 episodes. The solid line
and shaded regions represent the mean and confidence intervals, respectively, across 4 runs.

floating base that replaces locomotion with classic controllers. We use the same set of hyperparameters
for all the tasks. Details on BiGym experiments are available in Appendix B.

Comparison to baselines Figure 5 shows that CQN-AS quickly matches the performance of ACT
and outperforms it through online learning on most tasks, while other RL algorithms fail to do so
especially on challenging long-horizon tasks such as Move Plate and Saucepan To Hob. A notable
result here is that CQN-AS enables solving challenging BiGym tasks while other RL baselines
completely fail as they achieve a 0% success rate on many tasks.

Limitation However, CQN-AS struggles to achieve meaningful success rate on some of the long-
horizon tasks that require interaction with delicate objects such as cups or cutlery. This leaves room
for future work to incorporate advanced vision encoders (He et al., 2016) or critic architectures
(Chebotar et al., 2023; Springenberg et al., 2024).

4.2 RLBench Experiments

We also study CQN-AS on manipulation tasks from RLBench (James et al., 2020). Unlike BiGym,
RLBench provides synthetic demonstrations generated via motion planning, which are cleaner and
more consistent. This allows us to examine whether CQN-AS is also effective in settings with clean,
unambiguous demonstrations – where the effect of each single-step action is easier to interpret.

Setup We use the official CQN implementation for collecting demonstrations and reproducing the
baseline results on the same set of tasks. We use RGB observations with 84×84 resolution from
front, wrist, left_shoulder, and right_shoulder cameras. We also use low-dimensional
proprioceptive states consisting of 7-dimensional joint positions and a binary value for gripper open.
We use 100 demonstrations and delta joint position control action mode. We use the same set of
hyperparameters for all the tasks, in particular, we use action sequence of length 4. More details on
RLBench experiments are available in Appendix B.
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Figure 7: HumanoidBench results on eight densely-rewarded humanoid control tasks (Sferrazza
et al., 2024). All the experiments start from scratch and all the methods do not have an auxiliary
BC objective. CQN-AS significantly improves the performance of underlying RL algorithm CQN,
while outperforming a model-free RL baseline, SAC. For CQN-AS and CQN, we report the results
aggregated over 8 runs. For SAC, we report the results aggregated over 3 runs available from public
website. The solid line and shaded regions represent the mean and confidence intervals.

CQN-AS is also effective with clean demonstrations Because RLBench provides synthetic clean
demonstrations, as we expected, Figure 6 shows that CQN-AS achieves similar performance to CQN
on most tasks, except 2/25 tasks where it hurts the performance. But we still find that CQN-AS
achieves quite superior performance to CQN on some challenging long-horizon tasks such as Open
Oven or Take Plate Off Colored Dish Rack. These results show that CQN-AS can be used in
various benchmark with different characteristics.

4.3 HumanoidBench Experiments

To show that CQN-AS is generally applicable to tasks without demonstrations, we also study CQN-AS
on densely-rewarded tasks from HumanoidBench (Sferrazza et al., 2024).

Setup We follow a standard setup that trains RL agents from scratch. We use low-dimensional states
consisting of proprioception and privileged task information as inputs. For tasks, we simply select
the first 8 locomotion tasks in the benchmark. For baselines, we consider CQN and Soft Actor-Critic
(SAC) (Haarnoja et al., 2018). For SAC, we use the results available from HumanoidBench repository,
which are evaluated on tasks with dexterous hands. For CQN-AS and CQN, we also evaluate them on
tasks with hands. We use the same set of hyperparameters for all the tasks (see Appendix B).

Comparison to baselines Figure 7 shows that, by learning the critic network with action sequence,
CQN-AS outperforms other model-free RL baselines, i.e., CQN and SAC, on most tasks. In particular,
the difference between CQN-AS and baselines becomes larger as the task gets more difficult, e.g.,
baselines fail to achieve high episode return on Walk and Run tasks but CQN-AS achieves strong
performance. This result shows that our idea of using action sequence can be applicable to generic
setup without demonstrations.

4.4 Ablation Studies, Analysis, Failure Cases

Effect of action sequence length Figure 8a shows the performance of CQN-AS with different
action sequence lengths. We find that training the critic network with longer action sequences tends to
consistently improve performance, plateaus or decreases performance if the sequences get too long.

RL objective is crucial for strong performance Figure 8b shows the performance of CQN-AS
without RL objective that trains the model only with BC objective on successful demonstrations. We
find this baseline significantly underperforms CQN-AS, which shows that RL objective enables the
agent to learn from trial-and-error experiences.
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Figure 8: Ablation studies and analysis on the effect of (a) action sequence, (b) RL objective, (c)
N -step return, and (d & e) temporal ensemble. (f) We also provide results on locomotion tasks from
DeepMind Control Suite (Tassa et al., 2020), where CQN-AS fails to improve performance. The
solid line and shaded regions represent the mean and confidence intervals, respectively, across 4 runs.

Effect of N -step return Figure 8c shows experimental results with varying N -step returns. We
find that too high N -step return significantly degrades performance. We hypothesize this is because
the variance from N -step return makes it difficult to learn useful value functions.

Effect of temporal ensemble Figure 8d shows that performance degrades without temporal en-
semble on Saucepan To Hob as temporal ensemble induces a smooth motion and thus improves
performance in fine-grained control tasks. But we also find that temporal ensemble is harmful on
Reach Target Single. This is because temporal ensemble uses predictions from previous steps and
thus makes it difficult to refine behaviors based on recent observations. Nonetheless, we use temporal
ensemble for all the tasks as it helps on most tasks and we aim to use the same set of hyperparameters.

Effect of temporal ensemble magnitude We further provide results with different temporal
ensemble magnitudes by adjusting a hyperparameter m in Figure 8e. Here, higher m puts higher
weights on recent actions and thus very high m corresponds to using only first action. Similarly to
previous paragraph, we find that higher m leads to better performance on Reach Target Single
that needs fast reaction, but degrades performance on Saucepan To Hob.

Failure case: Torque control Figure 8f shows that CQN-AS underperforms CQN on locomotion
tasks with torque control, which are drawn from the DeepMind Control Suite (Tassa et al., 2020). We
hypothesize that this performance degradation arises because sequences of joint positions tend to have
clearer semantic structure in joint space, making them easier to learn from compared to sequences of
raw torques. Addressing this failure case represents an interesting direction for future work.
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5 Related Work

Behavior cloning with action sequence Recent behavior cloning approaches have shown that
predicting a sequence of actions enables the policy to imitate noisy expert trajectories and helps in
dealing with idle actions from human pauses during data collection (Zhao et al., 2023; Chi et al.,
2023). Notably, Zhao et al. (2023) train a transformer model (Vaswani et al., 2017) that predicts action
sequence and Chi et al. (2023) train a denoising diffusion model (Ho et al., 2020) that approximates
the action distributions. This idea has been extended to multi-task setup (Bharadhwaj et al., 2024),
mobile manipulation (Fu et al., 2024b) and humanoid control (Fu et al., 2024a). Our work is inspired
by this line of research and proposes to learn RL agents with action sequence.

Reinforcement learning with action sequence In the context of RL, Medini & Shrivastava (2019)
propose to pre-compute frequent action sequences from expert demonstrations and augment the
action space with these sequences. However, this idea introduces additional complexity and is not
scalable to setups without demonstrations. One recent work relevant to ours is Saanum et al. (2024)
that encourage a sequence of actions from RL agents to be predictable and smooth. Our work differs
in that we directly incorporate action sequences into value learning. Recently, Ankile et al. (2024)
point out that RL with action sequence is challenging and instead propose to use RL for learning a
single-step policy that corrects action sequence predictions from BC. In contrast, we show that RL
with action sequence is feasible and improves performance of RL algorithms.

Multi-token prediction Recent large language models have incorporated a notably similar idea
to predicting action sequences from demonstrations – predicting multiple future tokens at once, or
multi-token prediction (Gloeckle et al., 2024; Liu et al., 2024). For instance, Gloeckle et al. (2024)
show that predicting multiple n future tokens in parallel with n independent output heads improves
the performance and can accelerate inference speed. DeepSeek-V3 (Liu et al., 2024) also make
a similar observation but with a sequential multi-token prediction. It would be interesting to see
whether our idea can be utilized for fine-tuning these models with multi-token prediction.

Hierarchical reinforcement learning Approaches that learn RL agents with temporally extended
high-level actions, or options, have been well studied (Sutton, 1988). The key idea is to train high-
level policies that output options by manually defining subgoals (Kulkarni et al., 2016; Dayan &
Hinton, 1992) or learning options from data (Bacon et al., 2017; Vezhnevets et al., 2017; Nachum
et al., 2018), and then train a low-level agent that learns to execute low-level actions conditioned
on options. Our work is not directly comparable to these works as we do not abstract temporally
extended actions but use raw action sequences for value learning.

6 Discussion

We have presented Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a critic-only RL
algorithm that trains a critic network to output Q-values over action sequences. Extensive experiments
in benchmarks with various setups show that our idea not only improves the performance of the base
algorithm but also allows for solving complex tasks where prior RL algorithms fail.

Limitations and future work One limitation of our work is the lack of real-world robot evaluation.
Moreover, as discussed in Section 4.1 and Section 4.4, solving tasks involving small objects remains a
limitation of our approach. One potential approach would be using strong pre-trained vision encoders,
but we find that computational cost is often prohibitively large, which remains as an open problem.
We are excited about future directions, including real-world RL with humanoid robots, incorporating
advanced critic architectures (Kapturowski et al., 2023; Chebotar et al., 2023; Springenberg et al.,
2024), bootstrapping RL agents from imitation learning (Hu et al., 2023; Xing et al., 2024) or offline
RL (Nair et al., 2020; Lee et al., 2021), extending the idea to recent model-based RL approaches
(Hafner et al., 2023; Hansen et al., 2024), extend parallel value learning scheme to autoregressive,
multi-step Q-learning scheme (Kahn et al., 2018), fine-tuning vision-language-action models that
use action sequence (Team et al., 2024; Doshi et al., 2024) or language models that use multi-token
prediction (Gloeckle et al., 2024; Liu et al., 2024) with our algorithm, to name but a few.
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A Motivating Experiments

Additional details For Figure 2a, we use the same demonstrations used in our main experiments
(see Appendix B for more details). For SAC and TD3 experiments with action sequences in Figure 2b,
we implemented our code based on the official HumanoidBench repository. We use the hyperparam-
eters in the repository for training SAC agents. For TD3, we use the standard deviation of 0.2 for
exploration. We report the average target Q-values recorded throughout experiments. For Figure 2c,
we train SAC and CQN agents with 6 original actions and 294 no-op actions with [-1, 1] action
bounds and use an environment wrapper that slices out no-op actions.

Experiment with 2D Point-mass environment To further motivate the use of action sequence
for value learning, we train DQN agents (Mnih et al., 2015) on 2D Point-mass environment with
discrete action spaces. In particular, we train a Raw agent that trains with the raw discrete action space
consisting of single-step accelerations parameterized by 8 discrete headings (cardinal and discrete
directions) and 1 magnitude level, resulting in 8 total actions. We compare this against a Sequence
agent that trains with the discrete action space that consists of smooth 5-step acceleration sequences
parameterized by cubic Bezier curves instead of single-step accelerations. Both agents operate on a
2D double-integrator environment where the goal is to reach a target position. In Figure 9, as expected,
we find that training DQN agent with pre-defined action sequences lead to faster convergence. Our
main experimental results in Section 4 further show that, CQN-AS can achieve similar benefit of
using action sequences without pre-defined set of action sequences on various challenging continuous
control benchmarks.
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Figure 9: 2D Point-mass experiments (a) We consider a simple toy environment where the goal is to
reach the region around a randomly spawned goal point. (b) We show that, as expected, training with
pre-defined action sequences lead to faster convergence. The solid line and shaded regions represent
the mean and confidence intervals, respectively, across 10 runs.
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B Experimental Details

BiGym BiGym3 (Chernyadev et al., 2024) is built upon MuJoCo (Todorov et al., 2012). We use
Unitree H1 with two parallel grippers. We find that demonstrations available in the recent version of
BiGym are not all successful. Therefore we adopt the strategy of replaying all the demonstrations and
only use the successful ones as demonstrations. instead of discarding the failed demonstrations, we
store them in a replay buffer as failure experiences. To avoid training with too few demonstrations,
we exclude the tasks where the ratio of successful demonstrations is below 50%. Table 1 shows the
list of 25 sparsely-rewarded mobile bi-manual manipulation tasks used in our experiments.

Table 1: BiGym tasks with their maximum episode length and number of successful demonstrations.

Task Length Demos Task Length Demos

Move Plate 300 51 Cupboards Close All 620 53
Move Two Plates 550 30 Reach Target Single 100 30
Saucepan To Hob 440 28 Reach Target Multi Modal 100 60
Sandwich Flip 620 34 Reach Target Dual 100 50
Sandwich Remove 540 24 Dishwasher Close 375 44
Dishwasher Load Plates 560 17 Wall Cupboard Open 300 44
Dishwasher Load Cups 750 58 Drawers Open All 480 45
Dishwasher Unload Cutlery 620 29 Wall Cupboard Close 300 60
Take Cups 420 32 Dishwasher Open Trays 380 57
Put Cups 425 43 Drawers Close All 200 59
Flip Cup 550 45 Drawer Top Open 200 40
Flip Cutlery 500 43 Drawer Top Close 120 51
Dishwasher Close Trays 320 62

HumanoidBench HumanoidBench4 (Sferrazza et al., 2024) is built upon MuJoCo (Todorov et al.,
2012). We use Unitree H1 with two dexterous hands. We consider the first 8 locomotion tasks in the
benchmark: Stand, Walk, Run, Reach, Hurdle, Crawl, Maze, Sit Simple. We use proprioceptive
states and privileged task information instead of visual observations. Unlike BiGym and RLBench
experiments, we do not utilize dueling network (Wang et al., 2016) and distributional critic (Bellemare
et al., 2017) in HumanoidBench for faster experimentation.

RLBench RLBench5 (James et al., 2020) is built upon CoppeliaSim (Rohmer et al., 2013) and
PyRep (James et al., 2019). We use a 7-DoF Franka Panda robot arm and a parallel gripper. Following
the setup of Seo et al. (2024), we increase the velocity and acceleration of the arm by 2 times. For all
experiments, we use 100 demonstrations generated via motion-planning. Table 2 shows the list of 20
sparsely-rewarded visual manipulation tasks used in our experiments.

Table 2: RLBench tasks with their maximum episode length used in our experiments.

Task Length Task Length

Take Lid Off Saucepan 100 Put Books On Bookshelf 175
Open Drawer 100 Sweep To Dustpan 100
Stack Wine 150 Pick Up Cup 100
Toilet Seat Up 150 Open Door 125
Open Microwave 125 Meat On Grill 150
Open Oven 225 Basketball In Hoop 125
Take Plate Off
Colored Dish Rack 150 Lamp On 100

Turn Tap 125 Press Switch 100
Put Money In Safe 150 Put Rubbish In Bin 150
Phone on Base 175 Insert Usb In Computer 100

3https://github.com/chernyadev/bigym
4https://github.com/carlosferrazza/humanoid-bench
5https://github.com/stepjam/RLBench
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Hyperparameters We use the same set of hyperparameters across the tasks in each domain. For
hyperparameters shared across CQN and CQN-AS, we use the same hyperparameters for both
algorithms for a fair comparison. We provide detailed hyperparameters for BiGym and RLBench
experiments in Table 3 and HumanoidBench experiments in Table 4

Table 3: Hyperparameters for demo-driven vision-based experiments in BiGym and RLBench

Hyperparameter Value

Image resolution 84× 84× 3
Image augmentation RandomShift (Yarats et al., 2022)
Frame stack 4 (BiGym) / 8 (RLBench)

CNN - Architecture Conv (c=[32, 64, 128, 256], s=2, p=1)

MLP - Architecture Linear (c=[512, 512, 64, 512, 512], bias=False) (BiGym)
Linear (c=[64, 512, 512], bias=False) (RLBench)

CNN & MLP - Activation SiLU (Hendrycks & Gimpel, 2016) and LayerNorm (Ba et al., 2016)
GRU - Architecture GRU (c=[512], bidirectional=False)
Dueling network True

C51 - Atoms 51
C51 - vmin, vmax -2, 2

Action sequence 16 (BiGym) / 4 (RLBench)
Temporal ensemble weight m 0.01
Levels 3
Bins 5

BC loss (LBC) scale 1.0
RL loss (LRL) scale 0.1
Relabeling as demonstrations True
Data-driven action scaling True
Action mode Absolute Joint (BiGym), Delta Joint (RLBench)
Exploration noise ϵ ∼ N (0, 0.01)
Target critic update ratio (τ ) 0.02
N-step return 1
Batch size 256
Demo batch size 256
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 5e-5
Weight decay 0.1

Computing hardware For BiGym and Humanoid experiments, we use NVIDIA A5000 GPU with
24GB VRAM. With A5000, each BiGym experiment with 100K environment steps take 16 hours,
and each HumanoidBench experiment with 10M environment steps take 40 hours. For RLBench
experiments, we use NVIDIA RTX 2080Ti GPU, with which each experiment with 30K environment
steps take 6.5 hours. We find that CQN-AS takes 13% more memory compared to CQN and is
40% slower than CQN. Overall, CQN-AS is around 33% slower than running CQN because larger
architecture slows down both training and inference.

Baseline implementation For CQN (Seo et al., 2024) and DrQ-v2+ (Yarats et al., 2022), we
use the implementation available from the official CQN implementation6. For ACT (Zhao et al.,
2023), we use the implementation from RoboBase repository7. For SAC (Haarnoja et al., 2018),
DreamerV3 (Hafner et al., 2023), and TD-MPC2 (Hansen et al., 2024), we use results provided in
HumanoidBench8 repository (Sferrazza et al., 2024).

6https://github.com/younggyoseo/CQN
7https://github.com/robobase-org/robobase
8https://github.com/carlosferrazza/humanoid-bench
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Table 4: Hyperparameters for state-based experiments in HumanoidBench

Hyperparameter Value

MLP - Architecture Linear (c=[512, 512], bias=False)
CNN & MLP - Activation SiLU (Hendrycks & Gimpel, 2016) and LayerNorm (Ba et al., 2016)
GRU - Architecture GRU (c=[512], bidirectional=False)
Dueling network True

Action sequence 4
Temporal ensemble weight m 0.01
Levels 3
Bins 5

RL loss (LRL) scale 1.0
Action mode Absolute Joint
Exploration noise ϵ ∼ N (0, 0.01)
Target critic update ratio (τ ) 1.0
Target critic update interval (τ ) 100
Update-to-data ratio (UTD) 0.5
N-step return 3
Batch size 128
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 5e-5
Weight decay 0.1

C Full description of CQN and CQN-AS

This section provides the formulation of CQN and CQN-AS with n-dimensional actions.

C.1 Coarse-to-fine Q-Network

Let al,nt be an action at level l and dimension n and alt = {al,1t , ..., al,Nt } be actions at level l with a0t
being zero vector. We then define coarse-to-fine critic to consist of multiple Q-networks:

Ql,n
θ (ht, a

l,n
t ,al−1

t ) =
[
Ql

θ(ht, a
l,n
t = al,n,bt , al−1

t )
]B
b=1

for l ∈ {1, ..., L} and n ∈ {1, ..., N}
(3)

Where B denotes the number of bins. We optimize the critic network with the following objective:∑
n

∑
l

(
Ql,n

θ (ht, a
l,n
t ,al−1

t )− rt+1 − γmax
a′

Ql,n

θ̄
(ht+1, a

′, πl−1(ht+1)
)2

, (4)

where θ̄ are delayed parameters for a target network (Polyak & Juditsky, 1992) and πl is a policy that
outputs the action alt at each level l via the inference steps with our critic, i.e., πl(ht) = alt.

Action inference To output actions at time step t with the critic, CQN first initializes constants
an,lowt and a

n,high
t with −1 and 1 for each n. Then the following steps are repeated for l ∈ {1, ..., L}:

• Step 1 (Discretization): Discretize an interval [an,lowt , an,hight ] into B uniform intervals, and
each of these intervals become an action space for Ql,n

θ .

• Step 2 (Bin selection): Find the bin with the highest Q-value, set al,nt to the centroid of the
selected bin, and aggregate actions from all dimensions to alt.

• Step 3 (Zoom-in): Set an,lowt and a
n,high
t to the minimum and maximum of the selected bin,

which intuitively can be seen as zooming-into each bin.

We then use the last level’s action aLt as the action at time step t.
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Computing Q-values To compute Q-values for given actions at, CQN first initializes constants
an,lowt and an,hight with −1 and 1 for each n. We then repeat the following steps for l ∈ {1, ..., L}:

• Step 1 (Discretization): Discretize an interval [an,lowt , an,hight ] into B uniform intervals, and
each of these intervals become an action space for Ql,n

θ .

• Step 2 (Bin selection): Find the bin that contains input action at, compute al,nt for the
selected interval, and compute Q-values Ql,n

θ (ht, a
l,n
t ,al−1

t ).

• Step 3 (Zoom-in): Set an,lowt and an,hight to the minimum and maximum of the selected bin,
which intuitively can be seen as zooming-into each bin.

We then use a set of Q-values {Ql,n
θ (ht, a

l,n
t ,al−1

t )}Ll=1 for given actions at.

C.2 Coarse-to-fine Critic with Action Sequence

Let alt:t+K = {alt, ...,alt+K−1} be an action sequence at level l and a0t:t+K be zero vector. Our critic
network consists of multiple Q-networks for each level l, dimension n, and sequence step k:

Ql,n,k
θ (ht, a

l,n
t+k−1,a

l−1
t:t+K) =

[
Ql,n,k

θ (ht, a
l,n
t+k−1 = al,n,bt+k−1,a

l−1
t:t+K)

]B
b=1

for l ∈ {1, ..., L}, n ∈ {1, ..., N} and k ∈ {1, ...,K}
(5)

We optimize the critic network with the following objective:∑
n

∑
l

∑
k

(
Ql,n,k

θ (ht, a
l,n
t ,al−1

t:t+K)− rt+1 − γmax
a′

Ql,n,k

θ̄
(ht+1, a

′, πl−1
K (ht+1)

)2

, (6)

where πl
K is an action sequence policy that outputs the action sequence alt:t+K . In practice, we

compute Q-values for all sequence step k ∈ {1, ...,K} and all action dimension n ∈ {1, ..., N} in
parallel. This can be seen as extending the idea of Seyde et al. (2023), which learns decentralized
Q-networks for action dimensions, into action sequence dimension. As we mentioned in Section 3.1,
we find this simple scheme works well on challenging tasks with high-dimensional action spaces.

Architecture Let ek denote an one-hot encoding for k. For each level l, we construct features for
each sequence step k as hl

t,k =
[
ht,a

l−1
t+k−1, ek

]
. We encode each hl

t,k with a shared MLP network
and process them through GRU (Cho et al., 2014) to obtain slt,k = fGRU

θ (fMLP
θ (hl

t,1), ..., f
MLP
θ (hl

t,k)).
We use a shared projection layer to map each slt,k into Q-values at each sequence step k, i.e.,
fproj
θ (slt,k) = {[Ql,k

θ (ht, a
l,n,b
t+k−1,a

l−1
t:t+K)]Bb=1}Nn=1. We compute Q-values for all dimensions n ∈

{1, ..., N} at the same time with a big linear layer, which follows the design of Seo et al. (2024).

D Additional Preliminary Experiments

Offline RL with CQN-AS To further investigate whether CQN-AS formulation is compatible with
offline RL, we conduct preliminary experiments on BiGym’s Sandwich Remove task. Specifically,
we combine CQN-AS with Cal-QL (Nakamoto et al., 2023) and train it on the dataset that consists of
26 successful demonstrations and 10 failed trajectories. We find that CQN-AS + Cal-QL achieves 33
(± 6.8) % while CQN + Cal-QL achieves 7 (± 14) %, which shows CQN-AS can be indeed effective
for offline setup. We leave further exhaustive investigation as an interesting future work.

Experiments with ResNet-18 To investigate if using larger and stronger pre-trained vision encoders
such as ResNet (He et al., 2016) can improve performance, we tried running CQN-AS with ResNet-18
encoder on BiGym tasks. However, we find that it requires a GPU with at least 48GB memory and is
extremely slow to train. We will leave this direction of incorporating larger vision encoders in an
efficient manner as a future direction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have claimed that incorporating action sequences into reinforcement
learning can be beneficial in the abstract and introduction, which clearly reflects the main
contribution of this paper – CQN-AS that uses action sequences in value learning. We have
provided experimental results and analysis in the paper to support the claims in Figure 2,
Figure 5, Figure 6, and Figure 8.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed our limitations in Section 4.1, Section 4.4, and Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the detailed experimental details along with the source code
to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the source code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided sufficient details used in our experiments along with the
source code that contains hyperparameters required for reproducing the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have provided error bars aggregated over 8 runs for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided detailed information about compute costs in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are committed to conforming with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed broader impacts of this work in ??.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work do not require safeguards as we do not foresee the imminent risks
from using our algorithms.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited references for benchmarks we used in the paper. Each benchmark
provides licenses for assets used in their simulations in their papers or websites.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have not introduced new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We have not conducted relevant experiments in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We have not conducted relevant experiments in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Developing our algorithm have not involved LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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